Supporting Information

Remote Radical Alkynylation of Unactivated C(sp3)–H Bonds of Ethynesulfonamides

Pan Zhou,^{a,c} Mengru Guo,^{a,c} Jiawei Li,^a Xu Li,^a Danyang Xie,^b* Bo Qin^a* and Yong

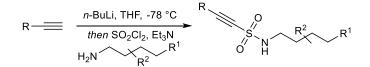
Xia^a*

^a School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.

^b School of Smart Health, Chongqing College of Electronic Engineering, Chongqing 401331, China.

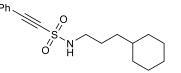
^c P. Zhou and M. Guo contributed equally to this work.

E-mail: xiedanyang@cqcet.edu.cn; qinbo@cqu.edu.cn; xiayong@cqu.edu.cn


Table of contents

1. General information	2
2. General procedure for the preparation of ethynesulfonamides from the	
corresponding amines (GP1)	2
3. General procedure for the preparation of N-protected ethynesulfonamides	
from the corresponding ethynesulfonamides (GP2)	16
4. Optimization of the reaction conditions and control experiments	.32
5. General procedure and characterization data for the alkynylation products	
GP3	.34
6. Scale-up reaction	49
7. Synthetic transformations of the alkynylated products	
8. Radical trapping experiments	
9 References	
10. NMR spectra of the starting materials and products	

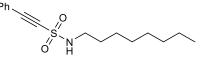
1. General information


All reactions were carried out using oven-dried glassware and magnetic stirring under an inert atmosphere (N₂). All chemical were obtained from commercial supplier and were used without further purification unless otherwise stated. All solvents were dried and distilled under N_2 prior to use. Solvents for chromatography were of technical grade and distilled prior to use. Analytical thin layer chromatography was carried out using silica gel GF254, visualized under UV light (at 254 nm). ¹H NMR (TMS as internal reference) and ¹³C NMR spectra were recorded on Bruker 400 (400, 101 MHz). Chemical shifts were referenced relative to internal reference or residual solvent. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration, coupling constant (Hz). ¹³C spectra were reported as chemical shifts in ppm and multiplicity where appropriate. Melting points were measured using a melting point apparatus in open glass capillaries. High resolution mass spectra were acquired on an LTQ Orbitrap Elite mass spectrometer (ESI). TLC was performed using silica, detection of compounds with UV light or dipping into asolution of KMnO₄ (1.5 g in 400 mL H₂O, 5.0 g NaHCO₃), followed by heating. Flash column chromatography (FC) was performed using Qingdao Haiyang silica gel 60 (40-63 µm) applying a pressure of about 0.2 bar.

2. General procedure for the preparation of ethynesulfonamides from the corresponding amines (GP1).

To a solution of the corresponding acetylene (10.0 mmol, 1 equiv) in THF (50 mL) at -78 °C was added *n*-BuLi (11.0 mmol, 1.1 equiv) dropwise. After stirring at this temperature for 0.5 hours, sulfuryl chloride (10.0 mmol) was added to the reaction mixture. The resulting mixture was stirred for 2 hours. Then, Et₃N (10.0 mmol) and alkylamine (10.0 mmol) were added. Upon completion of the reaction, the mixture was diluted with EA and washed with 1N HCl solution (10.0 mL), H₂O (13.0 mL) and brine (13.0 mL). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on silica gel to provide the corresponding ethynesulfonamides. Note: Alkylamines were synthesized according to relevant literatures ^[1-5] and directly used in the next reaction!

N-(3-Cyclohexylpropyl)-2-phenylethyne-1-sulfonamide (S1)


Prepared according to GP1 starting from phenylacetylene (1.02 g, 10 mmol), n-BuLi

(4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 3-cyclohexyl-1-propanamine (1.41 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20:1), giving the product **S1** as yellow solid in 52% yield (1.58 g). **TLC** $R_f = 0.6$ (PE:EA = 7:1). mp 147–149 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 – 7.51 (m, 2H), 7.51 – 7.46 (m, 1H), 7.43 – 7.36 (m, 2H), 4.69 (t, *J* = 6.1 Hz, 1H), 3.29 – 3.21 (m, 2H), 1.71 – 1.61 (m, 7H), 1.26 – 1.11 (m, 6H), 0.91 – 0.84 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 132.7, 131.2, 128.7, 118.3, 88.5, 83.6, 44.2, 37.2, 34.3, 33.2, 26.7, 26.6, 26.3.

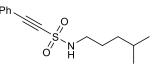
HRMS (ESI) m/z calcd for $C_{17}H_{23}NNaO_2S$ [M+Na]⁺ 328.1342, found 328.1341. *N*-Octyl-2-phenylethyne-1-sulfonamide (S2)

Prepared according to GP1 starting from phenylacetylene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and octan-1-amine (1.29 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S2** as yellow oil in 54% yield (1.51 g). **TLC** R_f = 0.6 (PE:EA = 7:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 – 7.39 (m, 2H), 7.39 – 7.33 (m, 1H), 7.31 – 7.22 (m, 2H), 5.27 (t, *J* = 6.0 Hz, 1H), 3.24 – 3.08 (m, 2H), 1.62 – 1.50 (m, 2H), 1.32 – 1.24 (m, 2H), 1.22 – 1.10 (m, 8H), 0.77 (t, *J* = 6.5 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 132.6, 131.1, 128.7, 118.3, 88.5, 83.6, 43.9, 31.7, 29.2, 29.1, 29.1, 26.6, 22.6, 14.1.

HRMS (ESI) m/z calcd for $C_{16}H_{23}NNaO_2S$ [M+Na]⁺ 316.1342, found 316.1346. *N*-(3-Cyclopentylpropyl)-2-phenylethyne-1-sulfonamide (S3)

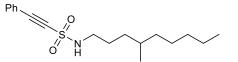


Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 3-cyclopentylpropan-1-amine (1.27 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S3** as pale yellow solid in 20% yield (0.56 g). **TLC** $R_f = 0.3$ (PE:EA = 20:3). mp 143–145 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 – 7.51 (m, 2H), 7.50 – 7.45 (m, 1H), 7.41 – 7.35 (m, 2H), 5.13 (t, *J* = 6.0 Hz, 1H), 3.28 – 3.22 (m, 2H), 1.79 – 1.71 (m, 3H), 1.70 – 1.63 (m, 2H), 1.61 – 1.53 (m, 2H), 1.53 – 1.44 (m, 2H), 1.42 – 1.36 (m, 2H), 1.11 – 1.01 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 132.6, 131.2, 128.7, 118.3, 88.5, 83.6, 44.1, 39.7, 33.0, 32.6, 28.5, 25.1.

HRMS (ESI) m/z calcd for $C_{16}H_{21}NNaO_2S$ [M+Na]⁺ 314.1185, found 314.1193. *N*-(4-Methylpentyl)-2-phenylethyne-1-sulfonamide (S4)

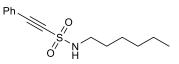


Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 4-methylpentan-1-amine (1.01 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S4** as yellow oil in 42% yield (1.10 g). **TLC** $R_f = 0.5$ (PE:EA = 7:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.45 (m, 2H), 7.42 – 7.38 (m, 1H), 7.34 – 7.27 (m, 2H), 4.92 (t, *J* = 6.1 Hz, 1H), 3.20 – 3.13 (m, 2H), 1.62 – 1.55 (m, 2H), 1.53 – 1.42 (m, 1H), 1.22 – 1.16 (m, 2H), 0.81 (d, *J* = 6.6 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 132.6, 131.2, 128.7, 118.3, 88.5, 83.5, 44.1, 35.7, 27.7, 27.2, 22.5.

HRMS (ESI) m/z calcd for $C_{14}H_{19}NNaO_2S$ [M+Na]⁺ 288.1029, found 288.1030. *N*-Nonyl-2-phenylethyne-1-sulfonamide (S5)

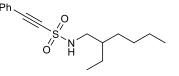


Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 4-methylnonan-1-amine (1.57 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S5** as yellow solid in 58% yield (1.78 g). **TLC** $R_f = 0.6$ (PE:EA = 7:1). mp 32–34 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 2H), 7.49 – 7.44 (m, 1H), 7.40 – 7.32 (m, 2H), 5.30 (t, *J* = 6.0 Hz, 1H), 3.29 – 3.20 (m, 2H), 1.71 – 1.60 (m, 2H), 1.47 – 1.31 (m, 3H), 1.30 – 1.18 (m, 8H), 0.89 – 0.82 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 132.6, 131.1, 128.7, 118.3, 88.5, 83.6, 44.3, 36.8, 33.9, 32.4, 32.2, 26.8, 26.7, 22.7, 19.5, 14.1.

HRMS (ESI) m/z calcd for $C_{18}H_{27}NNaO_2S$ [M+Na]⁺ 344.1655, found 344.1663. *N*-Hexyl-2-phenylethyne-1-sulfonamide (S6)

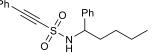

Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and hexan-1-amine (1.01 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S6** as yellow oil in 45% yield (1.18 g). **TLC** R_f = 0.33

(PE:EA = 20:3).

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 2H), 7.50 – 7.46 (m, 1H), 7.42 – 7.34 (m, 2H), 4.99 (t, *J* = 6.1 Hz, 1H), 3.31 – 3.22 (m, 2H), 1.69 – 1.62 (m, 2H), 1.42 – 1.36 (m, 2H), 1.33 – 1.25 (m, 4H), 0.91 – 0.84 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 132.6, 131.2, 128.7, 118.3, 88.5, 83.5, 43.9, 31.3, 29.2, 26.3, 22.5, 14.0.

HRMS (ESI) m/z calcd for $C_{14}H_{19}NNaO_2S$ [M+Na]⁺ 288.1029, found 288.1035. *N*-(2-Ethylhexyl)-2-phenylethyne-1-sulfonamide (S7)

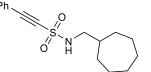


Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 2-ethylhexan-1-amine (1.29 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S7** as yellow oil in 48% yield (1.43 g). **TLC** R_f = 0.60 (PE:EA = 20:3).

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 – 7.43 (m, 2H), 7.42 – 7.37 (m, 1H), 7.32 – 7.25 (m, 2H), 5.02 (t, *J* = 6.2 Hz, 1H), 3.15 – 3.06 (m, 2H), 1.54 – 1.46 (m, 1H), 1.36 – 1.30 (m, 2H), 1.28 – 1.18 (m, 6H), 0.85 – 0.77 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 132.6, 131.1, 128.7, 118.3, 88.5, 83.5, 46.4, 39.0, 30.7, 28.8, 24.0, 22.9, 14.0, 10.7.

HRMS (ESI) m/z calcd for $C_{16}H_{23}NNaO_2S$ [M+Na]⁺ 316.1342, found 316.1346. **2-Phenyl-***N*-(1-phenylhexyl)ethyne-1-sulfonamide (S8)

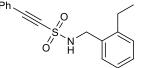

Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 1-phenylpentan-1-amine (1.63 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S8** as yellow oil in 28% yield (0.92 g). **TLC** $R_f = 0.33$ (PE:EA = 20:3).

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 3H), 7.27 (m, 4H), 7.23 – 7.16 (m, 3H), 5.91 (d, J = 8.4 Hz, 1H), 4.61 – 4.51 (m, 1H), 1.97 – 1.88 (m, 1H), 1.84 – 1.74 (m, 1H), 1.43 – 1.25 (m, 4H), 0.83 (t, J = 6.9 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.6, 132.5, 130.9, 128.7, 128.4, 127.8, 126.8, 118.2, 88.6, 84.3, 59.2, 37.3, 28.1, 22.3, 13.9.

HRMS (ESI) m/z calcd for C₁₉H₂₁NNaO₂S [M+Na]⁺ 350.1185, found 350.1193.

N-(Cycloheptylmethyl)-2-phenylethyne-1-sulfonamide (S9)

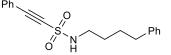

Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and cycloheptylmethanamine (1.27 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S9** as yellow oil in 24% yield (0.69 g). **TLC** $R_f = 0.33$ (PE:EA = 20:3).

¹**H** NMR (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.51 – 7.45 (m, 1H), 7.42 – 7.36 (m, 2H), 4.92 (t, *J* = 6.3 Hz, 1H), 3.13 – 3.07 (m, 2H), 1.84 – 1.76 (m, 3H), 1.72 – 1.63 (m, 2H), 1.59 – 1.40 (m, 6H), 1.29 – 1.21 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 132.6, 131.1, 128.7, 118.3, 88.5, 83.6, 50.2, 39.1, 31.9, 28.3, 26.2.

HRMS (ESI) m/z calcd for $C_{16}H_{21}NO_2S$ [M+Na]⁺ 314.1185, found 314.1190.

N-(2-Ethylbenzyl)-2-phenylethyne-1-sulfonamide (S10)

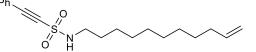

Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and (2-ethylphenyl)methanamine (1.35 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S10** as yellow oil in 47% yield (1.39 g). **TLC** $R_f = 0.33$ (PE:EA = 20:3).

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.46 (m, 3H), 7.44 – 7.32 (m, 3H), 7.30 – 7.17 (m, 3H), 4.90 (t, *J* = 5.8 Hz, 1H), 4.45 (d, *J* = 5.8 Hz, 2H), 2.75 (q, *J* = 7.6 Hz, 2H), 1.24 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.9, 132.7, 132.5, 131.3, 129.5, 129.1, 128.9, 128.8, 126.4, 118.2, 89.1, 83.2, 45.5, 25.3, 15.3.

HRMS (ESI) m/z calcd for $C_{17}H_{17}NNaO_2S$ [M+Na]⁺ 322.0872, found 322.0881.

2-Phenyl-N-(4-phenylbutyl)ethyne-1-sulfonamide (S11)

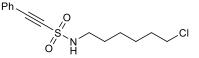


Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 4-phenylbutan-1-amine (1.49 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S11** as yellow oil in 50% yield (1.57 g). **TLC** R_f = 0.3 (PE:EA = 7:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.39 – 7.33 (m, 1H), 7.30 – 7.23 (m, 2H), 7.19 – 7.13 (m, 2H), 7.12 – 7.03 (m, 3H), 4.98 (t, *J* = 6.1 Hz, 1H), 3.23 – 3.13 (m, 2H), 2.55 (t, *J* = 7.1 Hz, 2H), 1.65 – 1.53 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 141.8, 132.7, 131.2, 128.8, 128.4, 126.0, 118.2, 88.6, 83.5, 43.7, 35.3, 28.8, 28.3.

HRMS (ESI) m/z calcd for $C_{18}H_{19}NNaO_2S$ [M+Na]⁺ 336.1029, found 336.1036. **2-Phenyl-N-(undec-10-en-1-yl)ethyne-1-sulfonamide (S12)**

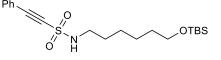


Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and undec-10-en-1-amine (1.69 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S12** as yellow oil in 50% yield (1.57 g). **TLC** $R_f = 0.15$ (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 2H), 7.51 – 7.46 (m, 1H), 7.43 – 7.37 (m, 2H), 5.87 – 5.73 (m, 1H), 5.03 – 4.90 (m, 2H), 4.76 (t, *J* = 6.1 Hz, 1H), 3.31 – 3.21 (m, 2H), 2.06 – 2.00 (m, 2H), 1.69 – 1.63 (m, 2H), 1.43 – 1.33 (m, 6H), 1.30 – 1.24 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 139.2, 132.6, 131.2, 128.7, 118.3, 114.2, 88.5, 83.5, 43.9, 33.8, 29.4, 29.4, 29.3, 29.1, 29.1, 28.9, 26.6.

HRMS (ESI) m/z calcd for $C_{19}H_{27}NNaO_2S$ [M+Na]⁺ 356.1655, found 356.1663. *N*-(6-Chlorohexyl)-2-phenylethyne-1-sulfonamide (S13)

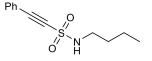

Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 6-chlorohexan-1-amine (1.35 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S13** as yellow oil in 38% yield (1.14 g). **TLC** R_f = 0.3 (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 – 7.43 (m, 2H), 7.42 – 7.36 (m, 1H), 7.35 – 7.25 (m, 2H), δ 5.03 (t, *J* = 6.2 Hz, 1H). 3.44 (t, *J* = 6.6 Hz, 2H), 3.27 – 3.09 (m, 2H), 1.71 – 1.64 (m, 2H), 1.63 – 1.55 (m, 2H), 1.43 – 1.29 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 132.7, 131.2, 128.8, 118.2, 88.6, 83.5, 44.8, 43.7, 32.3, 29.2, 26.4, 25.9.

HRMS (ESI) m/z calcd for $C_{14}H_{18}Cl^{35}NNaO_2S$ [M+Na]⁺ 322.0639, found 322.0641. $C_{14}H_{18}Cl^{37}NNaO_2S$ [M+Na]⁺ 324.0609, found 324.0610.

N-(6-((*tert*-Butyldimethylsilyl)oxy)hexyl)-2-phenylethyne-1-sulfonamide (S14)

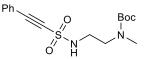


Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 6-((tert-butyldimethylsilyl)oxy)hexan-1-amine (2.31 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S14** as yellow oil in 39% yield (0.77 g). **TLC** $R_f = 0.3$ (PE:EA = 7:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 2H), 7.51 – 7.45 (m, 1H), 7.44 – 7.35 (m, 2H), 4.86 (brs, 1H), 3.58 (t, *J* = 6.4 Hz, 2H), 3.32 – 3.21 (m, 2H), 1.69 – 1.64 (m, 2H), 1.54 – 1.47 (m, 2H), 1.45 – 1.33 (m, 4H), 0.88 (s, 9H), 0.03 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 132.6, 131.2, 128.7, 118.3, 88.5, 83.5, 63.0, 43.8, 32.6, 29.3, 26.4, 26.0, 25.4, 18.4, -5.3.

HRMS (ESI) m/z calcd for $C_{20}H_{33}NNaO_3SSi [M+Na]^+ 418.1843$, found 418.1850. *N*-Butyl-2-phenylethyne-1-sulfonamide (S15)

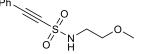


Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and butan-1-amine (0.73 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S15** as yellow oil in 50% yield (1.18 g). **TLC** R_f = 0.30 (PE:EA = 20:3).

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 – 7.52 (m, 2H), 7.50 – 7.45 (m, 1H), 7.41 – 7.34 (m, 2H), 5.17 (t, *J* = 6.1 Hz, 1H), 3.30 – 3.23 (m, 2H), 1.68 – 1.60 (m, 2H), 1.47 – 1.38 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H).

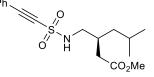
¹³**C NMR** (101 MHz, CDCl₃) δ 132.6, 131.2, 128.7, 118.3, 88.5, 83.5, 43.5, 31.2, 19.8, 13.6.

HRMS (ESI) m/z calcd for C₁₂H₁₅NNaO₂S [M+Na]⁺ 260.0716, found 260.0717. *tert*-Butyl methyl(2-((phenylethynyl)sulfonamido)ethyl)carbamate (S16)


Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and tert-butyl (2-aminoethyl)(methyl)carbamate (1.74 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 4/1), giving the product **S16** as yellow solid in 4% yield (0.14 g). **TLC** $R_f = 0.1$ (PE:EA = 4:1). mp 113–115 °C.

¹**H NMR** (400 MHz, CDCl₃, mixture of rotamers) δ 7.61 – 7.53 (m, 2H), 7.52 – 7.46 (m, 1H), 7.40 (m, 2H), 6.13 (brs, 1H), 3.52 – 3.46 (m, 2H), 3.45 – 3.38 (m, 2H), 2.92 (s, 3H), 1.46 (s, 9H).

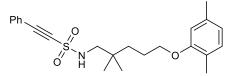
¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 157.1, 155.6, 132.6, 131.2, 128.7, 118.3, 88.0, 83.6, 80.5, 48.5, 47.7, 42.5, 35.2, 28.4.


HRMS (ESI) m/z calcd for C₁₆H₂₂N₂NaO₄S [M+Na]⁺ 361.1192, found 361.1199.

N-(2-Methoxyethyl)-2-phenylethyne-1-sulfonamide (S17)

Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 2-methoxyethan-1-amine (0.75 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 5/1), giving the product **S17** as yellow oil in 73% yield (1.75 g). **TLC** R_f = 0.1 (PE:EA = 5:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 – 7.55 (m, 2H), 7.52 – 7.47 (m, 1H), 7.43 – 7.38 (m, 2H), 5.21 (brs, 1H), 3.62 (t, *J* = 5.0 Hz, 2H), 3.46 – 3.41 (m, 2H), 3.39 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 132.7, 131.2, 128.8, 118.2, 88.8, 83.3, 70.0, 58.9, 43.5. **HRMS (ESI)** m/z calcd for C₁₁H₁₃NNaO₃S [M+Na]⁺ 262.0508, found 262.0515. **Methyl (S)-5-methyl-3-(((phenylethynyl)sulfonamido)methyl)hexanoate (S18)**



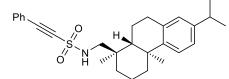
Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and methyl (*S*)-3-(aminomethyl)-5-methylhexanoate (1.73 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S18** as yellow oil in 18% yield (0.61 g). **TLC** R_f = 0.3 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 – 7.51 (m, 2H), 7.51 – 7.46 (m, 1H), 7.43 – 7.35 (m, 2H), 5.35 (t, *J* = 6.4 Hz, 1H), 3.68 (s, 3H), 3.37 – 3.29 (m, 1H), 3.20 – 3.12 (m, 1H), 2.47 – 2.37 (m, 2H), 2.29 – 2.20 (m, 1H), 1.69 – 1.64 (m, 1H), 1.30 – 1.18 (m, 2H), 0.94 – 0.86 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 173.6, 132.7, 131.2, 128.7, 118.3, 88.5, 83.5, 51.8, 47.2, 41.3, 36.9, 32.8, 25.1, 22.6, 22.5.

HRMS (ESI) m/z calcd for $C_{17}H_{23}NNaO_4S$ [M+Na]⁺ 360.1240, found 360.1249. *N*-(5-(2,5-Bimethylphenoxy)-2,2-dimethylpentyl)-2-phenylethyne-1-sulfonamide (S19)

Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 5-(2,5-dimethylphenoxy)-2,2-dimethylpentan-1-amine (2.35 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S19** as pale yellow solid in 39% yield (0.77 g). **TLC** R_f = 0.3 (PE:EA = 10:1). mp 139–141 °C.

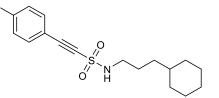

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 – 7.48 (m, 2H), 7.47 – 7.42 (m, 1H), 7.40 – 7.31 (m, 2H), 6.99 (d, *J* = 7.4 Hz, 1H), 6.65 (d, *J* = 7.4 Hz, 1H), 6.59 (s, 1H), 5.12 (t, *J* = 6.7 Hz, 1H), 3.91 (t, *J* = 6.3 Hz, 2H), 3.06 (d, *J* = 6.7 Hz, 2H), 2.29 (s, 3H), 2.17 (s, 3H), 1.83 – 1.73 (m, 2H), 1.53 – 1.43 (m, 2H), 1.00 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 156.9, 136.5, 132.7, 131.2, 130.4, 128.7, 123.6, 120.8, 118.3, 112.1, 88.7, 83.5, 68.2, 53.4, 35.8, 33.8, 25.0, 24.0, 21.4, 15.9.

HRMS (ESI) m/z calcd for C₂₃H₂₉NNaO₃S [M+Na]⁺ 422.1760, found 422.1768.

N-(((1R,4aS,10aR)-7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-

octahydrophenanthren-1-yl)methyl)-2-phenylethyne-1-sulfonamide (S20)



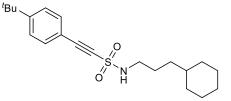
Prepared according to GP1 starting from ethynylbenzene (1.02 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and ((1*R*,4a*S*,10a*R*)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methanamine (2.85 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S20** as yellow solid in 30% yield (1.35 g). **TLC** $R_f = 0.1$ (PE:EA = 10:1). mp 162–164 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 – 7.49 (m, 2H), 7.48 – 7.44 (m, 1H), 7.39 – 7.33 (m, 2H), 7.15 (d, *J* = 8.2 Hz, 1H), 7.00 – 6.96 (m, 1H), 6.87 (d, *J* = 2.0 Hz, 1H), 5.02 (t, *J* = 6.9 Hz, 1H), 3.17 – 3.11 (m, 1H), 3.04 – 2.98 (m, 1H), 2.93 – 2.87 (m, 2H), 2.85 – 2.77 (m, 1H), 2.31 – 2.25 (m, 1H), 1.81 – 1.78 (m, 1H), 1.77 – 1.73 (m, 1H), 1.71 – 1.68 (m, 1H), 1.56 (dd, *J* = 12.0, 2.7 Hz, 1H), 1.48 – 1.44 (m, 1H), 1.42 – 1.30 (m, 3H), 1.23 – 1.19 (m, 9H), 1.00 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.9, 145.7, 134.6, 132.7, 131.2, 128.7, 126.9, 124.2, 123.9, 118.3, 88.8, 83.5, 54.4, 45.1, 38.2, 37.5, 37.0, 35.9, 33.5, 29.9, 25.3, 24.0, 24.0, 18.9, 18.6, 18.5.

HRMS (ESI) m/z calcd for $C_{28}H_{35}NNaO_2S$ [M+Na]⁺ 472.2281, found 476.2285. *N*-(3-Cyclohexylpropyl)-2-(4-propylphenyl)ethyne-1-sulfonamide (S21)

Prepared according to GP1 starting from 1-ethynyl-4-propylbenzene (1.44 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 3-cyclohexyl-1-propanamine (1.41 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S21** as white solid in 51% yield (1.75 g). **TLC** $R_f = 0.6$ (PE:EA = 7:1). mp 153–155 °C.

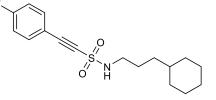

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.13

(brs, 1H), 3.23 (t, J = 7.3 Hz, 2H), 2.63 – 2.58 (m, 2H), 1.70 – 1.60 (m, 9H), 1.28 – 1.10 (m, 6H), 0.93 (t, J = 7.4 Hz, 3H), 0.90 – 0.80 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 146.6, 132.6, 128.9, 115.4, 89.2, 83.1, 44.2, 38.1, 37.2, 34.3, 33.2, 26.6, 26.6, 26.3, 24.2, 13.7.

HRMS (**ESI**) m/z calcd for C₂₀H₂₉NNaO₂S [M+Na]⁺ 370.1811, found 370.1818.

 $\label{eq:linear} 2-(4-(\textit{tert-Butyl}) phenyl)-N-(3-cyclohexyl propyl) ethyne-1-sulfonamide~(S22)$



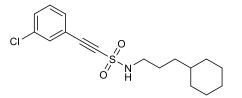
Prepared according to GP1 starting from 1-(*tert*-butyl)-4-ethynylbenzene (1.58 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 3-cyclohexyl-1-propanamine (1.41 g, 10.0 mmol). The residue was purified by column chromatography petroleum ether/ethyl acetate = 20/1), giving the product **S22** as white solid in 52% yield (1.65 g). **TLC** $R_f = 0.6$ (PE:EA = 7:1). mp 147–149 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.43 – 7.38 (m, 2H), 4.99 (t, *J* = 6.1 Hz, 1H), 3.27 – 3.19 (m, 2H), 1.71 – 1.60 (m, 7H), 1.32 (s, 9H), 1.29 – 1.19 (m, 4H), 1.18 – 1.14 (m, 2H), 0.90 – 0.80 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 154.9, 132.5, 125.8, 115.2, 89.2, 83.1, 44.2, 37.2, 35.1, 34.3, 33.2, 31.0, 26.6, 26.6, 26.3.

HRMS (ESI) m/z calcd for $C_{21}H_{31}NNaO_2S$ [M+Na]⁺ 384.1968, found 384.1973. *N*-(3-Cyclohexylpropyl)-2-(4-fluorophenyl)ethyne-1-sulfonamide (S23)

Prepared according to GP1 starting from 1-ethynyl-4-fluorobenzene (1.20 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 3-cyclohexyl-1-propanamine (1.41 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S23** as pale yellow solid in 13% yield (0.43 g). **TLC** $R_f = 0.45$ (PE:EA = 7:1). mp 124–126 °C.

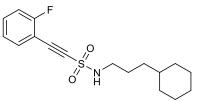

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 – 7.49 (m, 2H), 7.14 – 7.05 (m, 2H), 4.87 (t, J = 6.1 Hz, 1H), 3.29 – 3.18 (m, 2H), 1.71 – 1.64 (m, 6H), 1.31 – 1.07 (m, 7H), 0.91 – 0.82 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 164.2 (d, *J* = 255.4 Hz), 135.0 (d, *J* = 10.0 Hz), 116.3 (d, *J* = 22.5 Hz), 114.4 (d, *J* = 3.4 Hz), 87.4, 83.5, 44.2, 37.2, 34.3, 33.2, 26.7, 26.6, 26.3.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -105.3.

HRMS (ESI) m/z calcd for C₁₇H₂₂FNNaO₂S [M+Na]⁺ 346.1247, found 346.1252.

2-(3-Chlorophenyl)-N-(3-cyclohexylpropyl)ethyne-1-sulfonamide (S24)


Prepared according to GP1 starting from 1-chloro-3-ethynylbenzene (1.36 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 3-cyclohexyl-1-propanamine (1.41 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S24** as pale yellow solid in 14% yield (0.47 g). **TLC** R_f = 0.6 (PE:EA = 7:1). mp 134–136 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 1H), 7.49 – 7.42 (m, 2H), 7.37 – 7.31 (m, 1H), 4.96 (t, *J* = 6.0 Hz, 1H), 3.28 – 3.20 (m, 2H), 1.71 – 1.63 (m, 7H), 1.27 – 1.10 (m, 6H), 0.92 – 0.83 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 134.7, 132.3, 131.5, 130.7, 130.0, 120.1, 86.4, 84.5, 44.2, 37.2, 34.3, 33.3, 26.7, 26.6, 26.3.

HRMS (ESI) m/z calcd for $C_{17}H_{22}Cl^{35}NNaO_2S$ [M+Na]⁺ 362.0952, found 362.0955. $C_{17}H_{22}Cl^{37}NNaO_2S$ [M+Na]⁺ 364.0922, found 364.0926.

N-(3-Cyclohexylpropyl)-2-(2-fluorophenyl)ethyne-1-sulfonamide (S25)

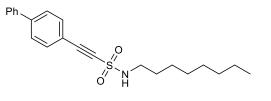
Prepared according to GP1 starting from 1-ethynyl-2-fluorobenzene (1.20 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 3-cyclohexyl-1-propanamine (1.41 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S25** as pale yellow solid in 12% yield (0.39 g). **TLC** $R_f = 0.45$ (PE:EA = 7:1). mp 69–71 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.44 (m, 2H), 7.23 – 7.10 (m, 2H), 4.71 (t, *J* = 6.2 Hz, 1H), 3.32 – 3.21 (m, 2H), 1.74 – 1.61 (m, 7H), 1.26 – 1.08 (m, 6H), 0.90 – 0.84 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.4 (d, J = 257.0 Hz), 134.2, 133.2 (d, J = 8.2 Hz), 124.4 (d, J = 3.8 Hz), 116.0 (d, J = 20.2 Hz), 107.4 (d, J = 15.0 Hz), 88.2 (d, J = 3.3 Hz), 82.1, 44.2, 37.2, 34.2, 33.2, 26.6, 26.3.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -106.9.

HRMS (ESI) m/z calcd for $C_{17}H_{22}FNNaO_2S$ [M+Na]⁺ 346.1247, found 346.1254. *N*-Octyl-2-(p-tolyl)ethyne-1-sulfonamide (S26)

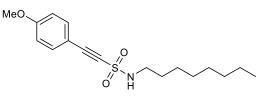


Prepared according to GP1 starting from 1-ethynyl-4-methylbenzene (1.16 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and octan-1-amine (1.29 g, 1 0.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S26** as yellow solid in 63% yield (1.93 g). **TLC** R_f = 0.6 (PE:EA = 7:1). mp 138–140 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 4.99 (t, *J* = 6.1 Hz, 1H), 3.28 – 3.21 (m, 2H), 2.39 (s, 3H), 1.68 – 1.61 (m, 2H), 1.41 – 1.35 (m, 2H), 1.30 – 1.21 (m, 8H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.9, 132.6, 129.5, 115.2, 89.1, 83.1, 43.8, 31.7, 29.2, 29.1, 29.1, 26.6, 22.6, 21.7, 14.1.

HRMS (ESI) m/z calcd for C₁₇H₂₅NNaO₂S [M+Na]⁺ 330.1498, found 330.1493. **2-([1,1'-Biphenyl]-4-yl)**-*N*-octylethyne-1-sulfonamide (S27)

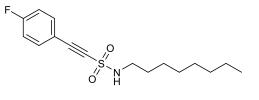

Prepared according to GP1 starting from 4-ethynyl-1,1'-biphenyl (1.78 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and octan-1-amine (1.29 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S27** as yellow solid in 47% yield (1.73 g). **TLC** $R_f = 0.6$ (PE:EA = 7:1). mp 99–101 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.67 – 7.60 (m, 4H), 7.59 – 7.56 (m, 1H), 7.56 – 7.54 (m, 1H), 7.47 – 7.43 (m, 2H), 7.41 – 7.38 (m, 1H), 5.00 (t, *J* = 6.1 Hz, 1H), 3.31 – 3.24 (m, 2H), 1.70 – 1.63 (m, 2H), 1.44 – 1.36 (m, 2H), 1.31 – 1.22 (m, 8H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.9, 139.6, 133.1, 129.0, 128.3, 127.3, 127.1, 117.0, 88.6, 84.1, 43.9, 31.8, 29.3, 29.2, 29.1, 26.6, 22.6, 14.1.

HRMS (ESI) m/z calcd for C₂₂H₂₇NNaO₂S [M+Na]⁺ 392.1655, found 392.1662.

2-(4-Methoxyphenyl)-N-octylethyne-1-sulfonamide (S28)

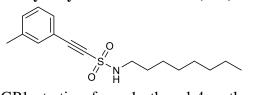

Prepared according to GP1 starting from 1-ethynyl-4-methoxybenzene (1.32 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and octan-1-amine (1.29 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S28** as yellow solid in 43% yield (1.39 g). **TLC** R_f = 0.6 (PE:EA = 7:1). mp 71–73 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.8 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 4.86

(t, *J* = 6.1 Hz, 1H), 3.84 (s, 3H), 3.28 – 3.20 (m, 2H), 1.68 – 1.58 (m, 2H), 1.42 – 1.35 (m, 2H), 1.31 – 1.22 (m, 8H), 0.87 (t, *J* = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.8, 134.5, 114.4, 110.0, 89.5, 82.7, 55.5, 43.8, 31.7, 29.2, 29.1, 29.1, 26.6, 22.6, 14.1.

HRMS (ESI) m/z calcd for $C_{17}H_{25}NNaO_3S$ [M+Na]⁺ 346.1447, found 346.1451. **2-(4-Fluorophenyl)**-*N*-octylethyne-1-sulfonamide (S29)

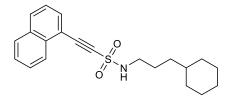

Prepared according to GP1 starting from 1-ethynyl-4-fluorobenzene (1.20 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and octan-1-amine (1.29 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S29** as pale yellow solid in 12% yield (0.18 g). **TLC** $R_f = 0.5$ (PE:EA = 7:1). mp 97–99 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 – 7.51 (m, 2H), 7.16 – 7.06 (m, 2H), 4.76 (t, *J* = 6.1 Hz, 1H), 3.31 – 3.21 (m, 2H), 1.70 – 1.62 (m, 2H), 1.42 – 1.25 (m, 10H), 0.87 (t, *J* = 6.7 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 164.2 (d, *J* = 255.5 Hz), 134.9 (d, *J* = 9.0 Hz), 116.4 (d, *J* = 22.5 Hz), 114.4 (d, *J* = 3.6 Hz), 87.4, 83.5, 43.9, 31.7, 29.3, 29.1, 29.1, 26.6, 22.6, 14.1.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -105.3.

HRMS (ESI) m/z calcd for $C_{16}H_{22}FNNaO_2S$ [M+Na]⁺ 334.1247, found 334.1256. **2-(4-Methoxyphenyl)**-*N*-octylethyne-1-sulfonamide (S30)

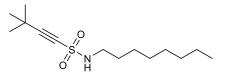

Prepared according to GP1 starting from 1-ethynyl-4-methoxybenzene (1.16 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and octan-1-amine (1.29 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S30** as yellow oil in 34% yield (0.92 g). **TLC** R_f = 0.6 (PE:EA = 7:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 2H), 7.31 – 7.26 (m, 2H), 4.78 (brs, 1H), 3.29 – 3.22 (m, 2H), 2.36 (s, 3H), 1.69 – 1.62 (m, 3H), 1.41 – 1.26 (m, 9H), 0.89 – 0.84 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.6, 133.1, 132.1, 129.8, 128.6, 118.1, 88.9, 83.2, 43.9, 31.7, 29.3, 29.1, 29.1, 26.6, 22.6, 21.2, 14.1.

HRMS (ESI) m/z calcd for C₁₇H₂₅NNaO₂S [M+Na]⁺ 330.1498, found 330.1506.

N-(3-Cyclohexylpropyl)-2-(naphthalen-1-yl)ethyne-1-sulfonamide (S31)

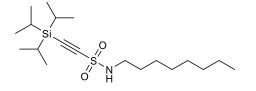

Prepared according to GP1 starting from 1-ethynyl-2-fluorobenzene (1.52 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and 3-cyclohexyl-1-propanamine (1.41 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S31** as yellow solid in 4% yield (0.1 g). **TLC** $R_f = 0.6$ (PE:EA = 7:1). mp 118–120 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.2 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.88 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.80 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.64 – 7.54 (m, 2H), 7.45 (dd, *J* = 8.2, 7.2 Hz, 1H), 5.04 (t, *J* = 6.0 Hz, 1H), 3.35 – 3.28 (m, 2H), 1.73 – 1.61 (m, 7H), 1.30 – 1.24 (m, 2H), 1.22 – 1.05 (m, 4H), 0.88 – 0.78 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 133.2, 133.0, 132.9, 131.8, 128.6, 128.0, 127.1, 125.4, 125.0, 115.8, 88.1, 87.3, 44.3, 37.2, 34.3, 33.2, 26.7, 26.5, 26.2.

HRMS (ESI) m/z calcd for C₂₁H₂₅NNaO₂S [M+Na]⁺ 378.1498, found 378.1502.

3,3-Dimethyl-*N*-octylbut-1-yne-1-sulfonamide (S32)



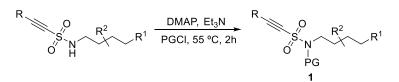
Prepared according to GP1 starting from 3,3-dimethylbut-1-yne (0.82 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and octan-1-amine (1.29 g, 10.0 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **S32** as pale yellow oil in 78% yield (2.12 g). **TLC** R_f = 0.6 (PE:EA = 7:1).

¹**H** NMR (400 MHz, CDCl₃) δ 4.56 (t, J = 6.1 Hz, 1H), 3.20 – 3.13 (m, 2H), 1.67 – 1.59 (m, 2H), 1.38 – 1.25 (m, 19H), 0.91 – 0.86 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 98.9, 74.7, 43.8, 31.7, 29.7, 29.2, 29.1, 29.1, 27.7, 26.6, 22.6, 14.1.

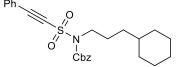
HRMS (ESI) m/z calcd for $C_{14}H_{27}NNaO_2S$ [M+Na]⁺ 296.1655, found 296.1660. *N*-octyl-2-(triisopropylsilyl)ethyne-1-sulfonamide (S33)

Prepared according to GP1 starting from ethynyltriisopropylsilane (1.82 g, 10 mmol), *n*-BuLi (4.40 mL, 2.5M in hexanes, 11.0 mmol), sulfuryl chloride (0.81 mL, 10.0 mmol), triethylamine (1.40 mL, 10.0 mmol), and octan-1-amine (1.29 g, 10.0 mmol).


The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **S33** as pale yellow oil in 65% yield (2.42 g). **TLC** R_f = 0.35 (PE:EA = 10:1).

¹**H NMR** (400 MHz, CDCl₃) δ 4.52 (t, J = 6.1 Hz, 1H), 3.17 - 3.07 (m, 2H), 1.59 - 1.54 (m, 2H), 1.32 - 1.18 (m, 11H), 1.13 - 1.01 (m, 20H), 0.81 (t, J = 6.5 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 98.7, 93.9, 43.8, 31.8, 29.2, 29.1, 29.1, 26.6, 22.6, 18.4, 14.1, 10.9.

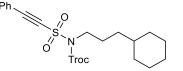
HRMS (ESI) m/z calcd for C₁₉H₃₉NNaSiO₂S [M+Na]⁺ 396.2363, found 396.2369.


3. General procedure for the preparation of N-protected ethynesulfonamides

from the corresponding ethynesulfonamides (GP2)

DMAP (0.03 mmol, 0.01 equiv) and Et_3N (7.5 mmol, 2.50 equiv) in a dry 50 mL flask equipped with stir bar was added slowly to a solution of the ethynesulfonamides (1.0 equiv, 3.0 mmol) in isopropyl acetate (7.0 mL). The solution was heated to 55 °C under N₂ atmosphere. A solution of acyl chloride (3.3 mmol, 1.10 equiv) in toluene (2.0 mL) was then dropped into the above solution at 55 °C over 1 h by syringe pump. After the addition was completed, the mixture was stirred for additional 1.5 h at 55 °C. After cooling to room temperature, the mixture was quenched with distilled water (1.0 mL). The resulting mixture was washed with 1N HCl solution (7 mL) and extracted with DCM (10.0 mL × 3 times). The combined organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by chromatography on silica gel to provide N-protected ethynesulfonamides **1**.

Benzyl (3-cyclohexylpropyl)((phenylethynyl)sulfonyl)carbamate (1a)

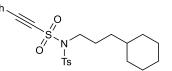

Prepared according to GP2 starting from *N*-(3-cyclohexylpropyl)-2-phenylethyne-1-sulfonamide (0.92 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 40/1), giving the product **1a** as a yellow solid in 82% yield (1.08 g). **TLC** $R_f = 0.35$ (PE:EA = 20:1). mp 104–106 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.29 (m, 10H), 5.34 (s, 2H), 3.84 (t, *J* = 7.6 Hz, 2H), 1.80 – 1.60 (m, 7H), 1.23 – 1.08 (m, 6H), 0.88 – 0.79 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.1, 134.8, 132.9, 131.6, 128.7, 128.6, 128.6, 128.2, 117.6, 90.1, 83.3, 69.4, 48.6, 37.2, 34.1, 33.2, 26.8, 26.6, 26.3.

HRMS (ESI) m/z calcd for C₂₄H₂₉NNaO₄S [M+Na]⁺ 462.1710, found 462.1711.

2,2,2-Trichloroethyl (3-cyclohexylpropyl)((phenylethynyl)sulfonyl)carbamate (1b)

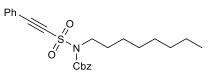


Prepared according to GP2 starting from *N*-(3-cyclohexylpropyl)-2-phenylethyne-1sulfonamide (0.92 g, 3.0 mmol), 2,2,2-trichloroethyl chloroformate (0.46 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 40/1), giving the product **1b** as a pale yellow solid in 47% yield (0.68 g). **TLC** $R_f = 0.3$ (PE:EA = 20:1). ¹H **NMR** (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 2H), 7.55 – 7.49 (m, 1H), 7.44 – 7.39 (m, 2H), 4.91 (s, 2H), 3.91 (t, *J* = 7.6 Hz, 2H), 1.86 – 1.78 (m, 2H), 1.72 – 1.67 (m, 3H), 1.64 – 1.59 (m, 1H), 1.34 – 1.07 (m, 7H), 0.91 – 0.82 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 150.9, 133.0, 131.9, 128.8, 117.5, 94.1, 90.9, 82.8, 76.1, 49.1, 37.2, 34.1, 33.3, 26.8, 26.6, 26.3.

N-(3-Cyclohexylpropyl)-4-methyl-N-

((phenylethynyl)sulfonyl)benzenesulfonamide (1c)

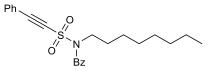

Under a nitrogen atmosphere, the *N*-(3-cyclohexylpropyl)-2-phenylethyne-1sulfonamide (0.92 g, 3.0 mmol) was dissolved in THF (15.0 mL) and placed at -78 °C. *n*-BuLi (1.32 mL, 2.5 M, 3.3 mmol) was added dropwise to the solution. After stirring at -78 °C for 0.5 hours, tosyl chloride (0.63 g, 3.3 mmol) was added to the rection mixture which was then warmed to room temperature and stirred for further 3 hours. The reaction mixture was quenched with water (1.0 mL), washed with 1N HCl solution (7 mL) and extracted with EtOAc (7 mL × 3 times). The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **1c** as a white solid in 65% yield (0.90 g). **TLC** R_f = 0.32 (PE:EA = 10:1). mp 188–190 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.86 (m, 2H), 7.58 – 7.46 (m, 3H), 7.45 – 7.37 (m, 2H), 7.35 – 7.29 (m, 2H), 3.79 (t, *J* = 7.6 Hz, 2H), 2.41 (s, 3H), 1.96 – 1.83 (m, 2H), 1.71 – 1.61 (m, 5H), 1.29 – 1.25 (m, 1H), 1.23 – 1.10 (m, 5H), 0.91 – 0.80 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.3, 136.4, 132.9, 131.7, 129.7, 128.7, 128.4, 117.6, 90.9, 83.4, 50.6, 37.2, 34.1, 33.2, 27.4, 26.6, 26.3, 21.7.

HRMS (ESI) m/z calcd for C₂₄H₂₉NNaO₄S₂ [M+Na]⁺ 482.1430, found 482.1436.

Benzyl octyl((phenylethynyl)sulfonyl)carbamate (1d)

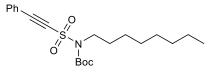

Prepared according to GP2 starting from N-octyl-2-phenylethyne-1-sulfonamide (0.88 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1d** as a yellow oil in 88% yield (1.08 g). **TLC** $R_f = 0.25$ (PE:EA = 20:1).

¹H NMR (400 MHz, CDCl₃) δ 7.38–7.33 (m, 1H), 7.33 – 7.27 (m, 2H), 7.27 – 7.20 (m, 4H), 7.21 - 7.08 (m, 3H), 5.22 (s, 2H), 3.76 (t, J = 7.5 Hz, 1H)., 1.68 - 1.59 (m, 2H), 1.29 – 1.10 (m, 10H), 0.76 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 134.8, 132.8, 131.7, 128.7, 128.7, 128.6, 128.2, 117.6, 90.1, 83.3, 69.4, 48.3, 31.8, 29.4, 29.2, 29.1, 26.6, 22.6, 14.1.

HRMS (ESI) m/z calcd for C₂₄H₂₉NNaO₄S [M+Na]⁺ 450.1710, found 450.1712.

N-Octyl-*N*-((phenylethynyl)sulfonyl)benzamide (1e)

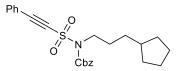

Prepared according to GP2 starting from N-octyl-2-phenylethyne-1-sulfonamide (0.88 g, 3.0 mmol), benzoyl chloride (0.39 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1e** as a yellow oil in 67% yield (0.77 g). **TLC** $R_f = 0.3$ (PE:EA = 20:1).

¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.50 (m, 1H), 7.49 – 7.47 (m, 1H), 7.48 – 7.42 (m, 1H), 7.42 - 7.38 (m, 2H), 7.38 - 7.36 (m, 2H), 7.36 - 7.32 (m, 3H), 3.79 (t, J =7.6 Hz, 2H), 1.73 - 1.64 (m, 2H), 1.22 - 1.11 (m, 10H), 0.79 (t, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 134.9, 132.9, 132.4, 131.8, 128.9, 128.6, 128.4, 117.6, 91.1, 83.2, 48.9, 31.7, 29.1, 29.0, 28.8, 26.7, 22.6, 14.1.

HRMS (ESI) m/z calcd for C₂₃H₂₇NNaO₃S [M+Na]⁺ 420.1604, found 420.1602.

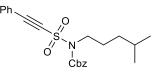
Tert-Butyl octyl((phenylethynyl)sulfonyl)carbamate (1f)



Prepared according to GP2 starting from N-octyl-2-phenylethyne-1-sulfonamide (0.88 g, 3.0 mmol), di-tert-butyl dicarbonate (0.76 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et_3N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 40/1), giving the product **1f** as a yellow oil in 87% yield (1.03 g). **TLC** $R_f = 0.2$ (PE:EA = 40:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.39 (m, 2H), 7.38 – 7.28 (m, 3H), 3.77 – 3.64 (m, 2H), 1.68 – 1.60 (m, 2H), 1.46 (s, 9H), 1.24 – 1.10 (m, 10H), 0.80 – 0.72 (m, 3H).

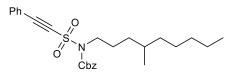
¹³**C NMR** (101 MHz, CDCl₃) δ 150.6, 132.6, 131.5, 128.8, 117.9, 89.0, 84.9, 47.7, 31.7, 29.4, 29.2, 29.1, 28.4, 28.0, 26.6, 22.6, 14.1.


HRMS (ESI) m/z calcd for $C_{21}H_{31}NNaO_4S$ [M+Na]⁺ 416.1866, found 416.1864. Benzyl (3-cyclopentylpropyl)((phenylethynyl)sulfonyl)carbamate (1g)

Prepared according to GP2 starting from *N*-(3-cyclopentylpropyl)-2-phenylethyne-1sulfonamide (0.87 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1g** as a yellow solid in 76% yield (0.97 g). **TLC** R_f = 0.25 (PE:EA = 20:1). mp 90–92 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 1H), 7.44 – 7.40 (m, 2H), 7.39 – 7.33 (m, 4H), 7.32 – 7.27 (m, 3H), 5.34 (s, 2H), 3.86 (t, *J* = 7.5 Hz, 2H), 1.79 – 1.68 (m, 5H), 1.59 – 1.51 (m, 2H), 1.50 – 1.40 (m, 2H), 1.36 – 1.29 (m, 2H), 1.09 – 0.99 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 134.8, 132.9, 131.6, 128.7, 128.7, 128.6, 128.2, 117.6, 90.1, 83.2, 69.4, 48.5, 39.7, 32.9, 32.6, 28.6, 25.2.

HRMS (ESI) m/z calcd for C₂₄H₂₇NNaO₄S [M+Na]⁺ 448.1553, found 448.1552. Benzyl (4-methylpentyl)((phenylethynyl)sulfonyl)carbamate (1h)

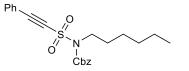


Prepared according to GP2 starting from N-(4-methylpentyl)-2-phenylethyne-1sulfonamide (0.80 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1h** as a yellow oil in 87% yield (1.04 g). **TLC** R_f = 0.25 (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 1H), 7.36 – 7.31 (m, 2H), 7.30 – 7.24 (m, 4H), 7.24 – 7.15 (m, 3H), 5.23 (s, 2H), 3.77 (t, *J* = 7.5 Hz, 2H), 1.70 – 1.61 (m, 2H), 1.51 – 1.41 (m, 1H), 1.16 – 1.09 (m, 2H), 0.77 (d, *J* = 6.7 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.1, 134.8, 132.9, 131.6, 128.7, 128.7, 128.6, 128.2, 117.6, 90.1, 83.2, 69.4, 48.5, 35.6, 27.7, 27.3, 22.5.

HRMS (ESI) m/z calcd for C₂₂H₂₅NNaO₄S [M+Na]⁺ 422.1397, found 422.1401. Benzyl (4-methylnonyl)((phenylethynyl)sulfonyl)carbamate (1i)

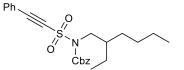

Prepared according to GP2 starting from *N*-(4-methylnonyl)-2-phenylethyne-1sulfonamide (0.96 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1i** as a yellow oil in 66% yield (0.88 g). **TLC** R_f = 0.25 (PE:EA = 20:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.46 (m, 1H), 7.44 – 7.40 (m, 2H), 7.39 – 7.33 (m, 4H), 7.33 – 7.28 (m, 3H), 5.34 (s, 2H), 3.85 (t, *J* = 7.5 Hz, 2H), 1.80 – 1.68 (m, 2H), 1.40 – 1.35 (m, 1H), 1.33 – 1.14 (m, 9H), 1.10 – 1.04 (m, 1H), 0.89 – 0.82 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.1, 134.8, 132.9, 131.6, 128.7, 128.6, 128.6, 128.2, 117.6, 90.1, 83.2, 69.4, 48.6, 36.9, 33.7, 32.4, 32.2, 27.0, 26.7, 22.7, 19.5, 14.1.

HRMS (ESI) m/z calcd for C₂₆H₃₃NNaO₄S [M+Na]⁺ 478.2023, found 478.2030.

Benzyl hexyl((phenylethynyl)sulfonyl)carbamate (1j)

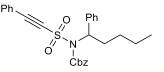


Prepared according to GP2 starting from *N*-hexyl-2-phenylethyne-1-sulfonamide (0.80 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1j** as a yellow oil in 45% yield (0.54 g). **TLC** R_f = 0.2 (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.46 (m, 1H), 7.44 – 7.39 (m, 2H), 7.39 – 7.32 (m, 4H), 7.32 – 7.27 (m, 3H), 5.33 (s, 2H), 3.86 (t, *J* = 7.6 Hz, 2H), 1.78 – 1.70 (m, 2H), 1.36 – 1.25 (m, 6H), 0.89 – 0.83 (m, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.1, 134.8, 132.9, 131.6, 128.7, 128.7, 128.6, 128.2, 117.6, 90.1, 83.2, 69.4, 48.4, 31.3, 29.4, 26.2, 22.5, 14.0.

HRMS (ESI) m/z calcd for C₂₂H₂₅NNaO₄S [M+Na]⁺ 422.1397, found 422.1399. Benzyl (2-ethylhexyl)((phenylethynyl)sulfonyl)carbamate (1k)

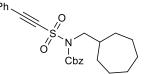

Prepared according to GP2 starting from *N*-(2-ethylhexyl)-2-phenylethyne-1sulfonamide (0.88 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1k** as a yellow oil in 90% yield (1.15 g). **TLC** R_f = 0.2 (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 1H), 7.36 – 7.31 (m, 2H), 7.30 – 7.24 (m, 4H), 7.24 – 7.17 (m, 3H), 5.25 (s, 2H), 3.70 (d, *J* = 7.4 Hz, 2H), 1.80 – 1.69 (m, 1H), 1.32 – 1.23 (m, 2H), 1.23 – 1.12 (m, 6H), 0.81 – 0.73 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.5, 134.7, 132.8, 131.6, 128.7, 128.6, 128.6, 128.3, 117.6, 90.1, 83.2, 69.5, 51.9, 38.8, 30.2, 28.5, 23.5, 23.0, 14.0, 10.5.

HRMS (ESI) m/z calcd for C₂₄H₂₉NNaO₄S [M+Na]⁺ 450.1710, found 450.1714.

Benzyl ((phenylethynyl)sulfonyl)(1-phenylpentyl)carbamate (11)

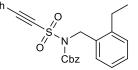


Prepared according to GP2 starting from 2-phenyl-*N*-(1-phenylpentyl)ethyne-1sulfonamide (0.98 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **11** as a yellow oil in 80% yield (1.01 g). **TLC** $R_f = 0.2$ (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 3H), 7.37 – 7.23 (m, 12H), 5.61 (dd, *J* = 10.0, 5.6Hz, 1H), 5.20 (s, 2H), 2.51 – 2.40 (m, 1H), 2.20 – 2.09 (m, 1H), 1.50 – 1.33 (m, 4H), 0.89 (t, *J* = 7.0 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 151.7, 139.0, 134.6, 132.8, 131.6, 128.7, 128.5, 128.5, 128.3, 127.8, 127.7, 117.6, 90.3, 83.4, 69.2, 63.1, 30.7, 29.1, 22.4, 14.0.

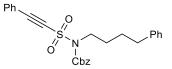
HRMS (ESI) m/z calcd for C₂₇H₂₇NNaO₄S [M+Na]⁺ 484.1553, found 484.1560. **Benzyl (cycloheptylmethyl)((phenylethynyl)sulfonyl)carbamate (1m)**



Prepared according to GP2 starting from *N*-(cycloheptylmethyl)-2-phenylethyne-1sulfonamide (0.87 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1m** as a yellow oil in 39% yield (0.48 g). **TLC** R_f = 0.2 (PE:EA = 20:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.46 (m, 1H), 7.44 – 7.40 (m, 2H), 7.39 – 7.33 (m, 4H), 7.33 – 7.27 (m, 3H), 5.34 (s, 2H), 3.71 (d, *J* = 7.6 Hz, 2H), 2.08 – 1.98 (m, 1H), 1.77 – 1.70 (m, 2H), 1.69 – 1.57 (m, 3H), 1.55 – 1.35 (m, 5H), 1.23 – 1.13 (m, 2H).

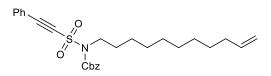
¹³C NMR (101 MHz, CDCl₃) δ 152.5, 134.7, 132.8, 131.6, 128.7, 128.6, 128.6, 128.2, 117.6, 90.2, 83.2, 69.5, 53.8, 39.0, 31.5, 28.3, 25.9.


HRMS (ESI) m/z calcd for C₂₄H₂₇NNaO₄S [M+Na]⁺ 448.1553, found 448.1552 Benzyl (2-ethylbenzyl)((phenylethynyl)sulfonyl)carbamate (1n)

Prepared according to GP2 starting from *N*-(2-ethylbenzyl)-2-phenylethyne-1sulfonamide (0.90 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1n** as a yellow oil in 81% yield (1.12 g). **TLC** R_f = 0.2 (PE:EA = 20:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.46 (m, 1H), 7.42 – 7.24 (m, 10H), 7.23 – 7.12

(m, 3H), 5.30 (s, 2H), 5.13 (s, 2H), 2.66 (q, J = 7.6 Hz, 2H), 1.19 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 141.1, 134.5, 133.5, 132.9, 131.7, 128.7, 128.6, 128.6, 128.6, 128.3, 127.6, 126.2, 126.1, 117.5, 90.9, 83.0, 69.7, 48.2, 25.5, 14.7. HRMS (ESI) m/z calcd for C₂₅H₂₃NNaO₄S [M+Na]⁺ 456.1240, found 456.1246. Benzyl (4-phenylbutyl)((phenylethynyl)sulfonyl)carbamate (10)

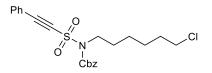

Prepared according to GP2 starting from 2-phenyl-*N*-(4-phenylbutyl)ethyne-1sulfonamide (0.94 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **10** as a yellow oil in 85% yield (1.14 g). **TLC** $R_f = 0.40$ (PE:EA = 5:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 1H), 7.30 – 7.26 (m, 2H), 7.24 – 7.18 (m, 4H), 7.18 – 7.14 (m, 3H), 7.14 – 7.09 (m, 2H), 7.06 – 6.99 (m, 3H), 5.20 (s, 2H), 3.80 (t, *J* = 7.2 Hz, 2H), 2.50 (t, *J* = 7.7 Hz, 2H), 1.72 – 1.63 (m, 2H), 1.59 – 1.51 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 152.2, 142.0, 134.8, 132.9, 131.7, 128.8, 128.7, 128.5, 128.5, 128.4, 128.3, 125.9, 117.5, 90.3, 83.3, 69.5, 48.1, 35.5, 29.1, 28.4.

HRMS (ESI) m/z calcd for C₂₆H₂₅NNaO₄S [M+Na]⁺ 470.1397, found 470.1401.

Benzyl ((phenylethynyl)sulfonyl)(undec-10-en-1-yl)carbamate (1p)

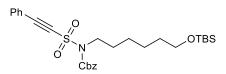


Prepared according to GP2 starting from 2-phenyl-*N*-(undec-10-en-1-yl)ethyne-1-sulfonamide (1.00 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1p** as a yellow oil in 47% yield (0.66 g). **TLC** R_f = 0.30 (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 – 7.46 (m, 1H), 7.45 – 7.40 (m, 2H), 7.39 – 7.35 (m, 4H), 7.32 – 7.29 (m, 3H), 5.85 – 5.77 (m, 1H), 5.34 (s, 2H), 5.01 – 4.91 (m, 2H), 3.86 (t, *J* = 7.6 Hz, 2H), 2.05 – 2.00 (m, 2H), 1.78 – 1.69 (m, 2H), 1.41 – 1.26 (m, 10H), 1.23 – 1.17 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 139.2, 134.7, 132.9, 131.6, 128.7, 128.6, 128.6, 128.2, 117.6, 114.2, 90.1, 83.2, 69.4, 48.4, 33.8, 29.4, 29.4, 29.4, 29.1, 29.1, 28.9, 26.6.

HRMS (ESI) m/z calcd for $C_{27}H_{33}NNaO_4S$ [M+Na]⁺ 490.2023, found 490.2022. Benzyl (6-chlorohexyl)((phenylethynyl)sulfonyl)carbamate (1q)

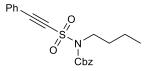


Prepared according to GP2 starting from *N*-(6-chlorohexyl)-2-phenylethyne-1sulfonamide (0.90 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1q** as a yellow oil in 74% yield (0.96 g). **TLC** $R_f = 0.30$ (PE:EA = 20:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 1H), 7.44 – 7.41 (m, 2H), 7.40 – 7.33 (m, 4H), 7.33 – 7.27 (m, 3H), 5.34 (s, 2H), 3.87 (t, *J* = 7.4 Hz, 2H), 3.49 (t, *J* = 6.7 Hz, 2H), 1.80 – 1.70 (m, 4H), 1.49 – 1.41 (m, 2H), 1.40 – 1.32 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 134.7, 132.9, 131.7, 128.7, 128.7, 128.6, 128.3, 117.5, 90.2, 83.1, 69.5, 48.1, 44.9, 32.4, 29.2, 26.4, 25.8.

HRMS (ESI) m/z calcd for C₂₂H₂₄ClNNaO₄S [M+Na]⁺ 456.1006, found 456.1011. **Benzyl (6-((***tert***-butyldimethylsilyl)oxy)hexyl)((phenylethynyl)sulfonyl)carbamate (1r)**

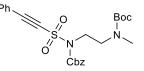


Prepared according to GP2 starting from *N*-(6-((*tert*-butyldimethylsilyl)oxy)hexyl)-2phenylethyne-1-sulfonamide (1.19 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **1r** as a yellow oil in 41% yield (0.65 g). **TLC** $R_f = 0.35$ (PE:EA = 5:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.47 (m, 1H), 7.44 – 7.40 (m, 2H), 7.39 – 7.34 (m, 4H), 7.33 – 7.29 (m, 3H), 5.34 (s, 2H), 3.86 (t, *J* = 7.6 Hz, 2H), 3.57 (t, *J* = 6.5 Hz, 2H), 1.78 – 1.71 (m, 2H), 1.52 – 1.46 (m, 2H), 1.38 – 1.32 (m, 4H), 0.89 (s, 9H) 0.04 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.1, 134.7, 132.9, 131.6, 128.7, 128.6, 128.6, 128.2, 117.6, 90.1, 83.2, 69.4, 63.1, 48.3, 32.7, 29.4, 26.4, 26.0, 25.4, 18.4, -5.3.

HRMS (ESI) m/z calcd for C₂₈H₃₉NNaO₅SSi [M+Na]⁺ 552.2210, found 552.2211. **Benzyl butyl((phenylethynyl)sulfonyl)carbamate (1s)**

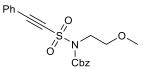


Prepared according to GP2 starting from *N*-butyl-2-phenylethyne-1-sulfonamide (0.72 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **1s** as a yellow oil in 76% yield (0.85 g). **TLC** $R_f = 0.2$ (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.45 (m, 1H), 7.44 – 7.40 (m, 2H), 7.38 – 7.33 (m, 4H), 7.32 – 7.28 (m, 3H), 5.33 (s, 2H), 3.87 (t, *J* = 7.6 Hz, 2H), 1.76 – 1.69 (m, 2H), 1.40 – 1.33 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 134.8, 132.9, 131.6, 128.7, 128.7, 128.6, 128.2, 117.6, 90.1, 83.2, 69.4, 48.1, 31.5, 19.8, 13.7.

HRMS (ESI) m/z calcd for C₂₀H₂₁NNaO₄S [M+Na]⁺ 394.1084, found 394.1092. *tert*-Butyl (2-((*N*-((benzyloxy)carbonyl)-2phenylethynyl)sulfonamido)ethyl)(methyl)carbamate (1t)

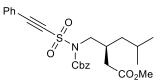


Prepared according to GP2 starting from *N*-(3-cyclopentylpropyl)-2-phenylethyne-1sulfonamide (0.87 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1t** as a yellow oil in 60% yield (0.85 g). **TLC** R_f = 0.60 (PE:EA = 5:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.45 (m, 1H), 7.45 – 7.41 (m, 2H), 7.41 – 7.34 (m, 4H), 7.34 – 7.28 (m, 3H), 5.35 (s, 2H), 4.06 – 3.96 (m, 2H), 3.55 – 3.46 (m, 2H), 2.87 (s, 3H), 1.44 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 155.5, 151.9, 134.5, 133.0, 131.7, 130.5, 128.7, 128.4, 128.3, 117.4, 90.2, 82.8, 80.0, 69.7, 48.0, 45.6, 34.9, 28.4.

HRMS (ESI) m/z calcd for C₂₄H₂₈N₂NaO₆S [M+Na]⁺ 495.1560, found 495.1564. **Benzyl (2-methoxyethyl)((phenylethynyl)sulfonyl)carbamate (1u)**


Prepared according to GP2 starting from *N*-(2-methoxyethyl)-2-phenylethyne-1sulfonamide (0.72 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1), giving the product **1u** as a yellow oil in 40% yield (0.45 g). **TLC** R_f = 0.35 (PE:EA = 5:1).

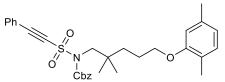
¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.46 (m, 1H), 7.45 – 7.41 (m, 2H), 7.39 – 7.34 (m, 4H), 7.33 – 7.27 (m, 3H), 5.35 (s, 2H), 4.08 (t, *J* = 5.7 Hz, 2H), 3.62 (t, *J* = 5.7 Hz, 2H), 3.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 134.7, 132.9, 131.6, 128.7, 128.6, 128.6, 128.2, 117.6, 90.3, 83.0, 70.0, 69.5, 58.9, 47.0.

HRMS (**ESI**) m/z calcd for C₁₉H₁₉NNaO₅S [M+Na]⁺ 396.0876, found 396.0882.

Methyl (S)-3-(((N-((benzyloxy)carbonyl)-2-phenylethynyl)sulfonamido)methyl)-5-methylhexanoate (1v)

Prepared according to GP2 starting from methyl (*R*)-5-methyl-3-(((phenylethynyl)sulfonamido)methyl)hexanoate (1.01 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1v** as a yellow solid in 24% yield (0.34 g). **TLC** $R_f = 0.10$ (PE:EA = 20:1). mp 113–115 °C.

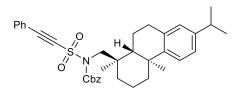

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 – 7.46 (m, 1H), 7.45 – 7.41 (m, 2H), 7.39 – 7.34 (m, 4H), 7.32 – 7.29 (m, 3H), 5.34 (s, 2H), 3.89 – 3.78 (m, 2H), 3.62 (s, 3H), 2.50 – 2.39 (m, 2H), 2.32 – 2.25 (m, 1H), 1.67 – 1.60 (m, 1H), 1.20 (t, *J* = 6.9 Hz, 2H), 0.87 (d, *J* = 6.6 Hz, 3H), 0.84 (d, *J* = 6.5 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.8, 152.3, 134.6, 132.9, 131.7, 128.7, 128.7, 128.6, 128.4, 117.5, 90.5, 82.9, 69.7, 51.7, 51.5, 41.4, 37.0, 33.1, 25.3, 22.6, 22.6.

HRMS (ESI) m/z calcd for $C_{22}H_{24}CINNaO_4S$ [M+Na]⁺ 494.1608, found 494.1609.

Benzyl (5-(2,5-dimethylphenoxy)-2,2-

dimethylpentyl)((phenylethynyl)sulfonyl)carbamate (1w)

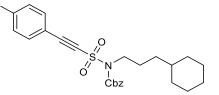


Prepared according to GP2 starting from *N*-(5-(2,5-dimethylphenoxy)-2,2-dimethylpentyl)-2-phenylethyne-1-sulfonamide (1.20 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1w** as a yellow oil in 25% yield (0.42 g). **TLC** $R_f = 0.25$ (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.44 (m, 1H), 7.44 – 7.40 (m, 2H), 7.32 (d, J = 4.4 Hz, 4H), 7.30 – 7.26 (m, 3H), 6.99 (d, J = 7.4 Hz, 1H), 6.65 (dd, J = 7.5, 1.6 Hz, 1H), 6.60 (d, J = 1.6 Hz, 1H), 5.33 (s, 2H), 3.91 – 3.83 (m, 4H), 2.30 (s, 3H), 2.15 (s, 3H), 1.83 – 1.75 (m, 2H), 1.48 – 1.41 (m, 2H), 0.99 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 157.0, 153.0, 136.5, 134.6, 132.8, 131.6, 130.3, 128.7, 128.6, 128.6, 128.4, 123.6, 120.7, 117.6, 112.1, 90.4, 83.2, 69.7, 68.4, 56.5, 36.7, 35.8, 25.3, 24.2, 21.4, 15.8.

HRMS (ESI) m/z calcd for C₃₁H₃₅NNaO₅S [M+Na]⁺ 556.2128, found 556.2132. Benzyl (((1*R*,4a*S*,10a*R*)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10aoctahydrophenanthren-1-yl)methyl)((phenylethynyl)sulfonyl)carbamate (1x)

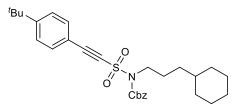

Prepared according to GP2 starting from N-(((1*R*,4a*S*,10a*R*)-7-isopropyl-1,4adimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)-2-phenylethyne-1sulfonamide (1.35 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1x** as a yellow oil in 21% yield (0.37 g). **TLC** R_f = 0.25 (PE:EA = 20:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.20 (m, 9H), 7.16 – 7.08 (m, 1H), 7.03 – 6.96 (m, 2H), 6.94 – 6.85 (m, 1H), 5.39 – 5.23 (m, 2H), 4.05 – 3.80 (m, 2H), 3.11 – 2.73

(m, 3H), 2.29 – 2.16 (m, 1H), 2.01 – 1.93 (m, 1H), 1.77 – 1.51 (m, 6H), 1.26 – 1.19 (m, 8H), 0.99 (s, 3H), 0.90 – 0.82 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 153.3, 147.2, 145.6, 135.0, 134.6, 132.8, 131.4, 128.6, 128.5, 128.3, 127.0, 124.0, 123.7, 117.5, 90.5, 83.2, 69.7, 57.0, 45.2, 39.4, 38.2, 37.8, 36.4, 33.5, 30.0, 26.0, 24.1, 24.0, 19.5, 18.6, 18.5.

HRMS (ESI) m/z calcd for C₃₆H₄₁NNaO₄S [M+Na]⁺ 606.2649, found 606.2650. enzyl (3-cyclohexylpropyl)(((4-propylphenyl)ethynyl)sulfonyl)carbamate (1aa)

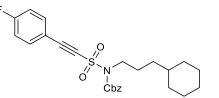

Prepared according to GP2 starting from *N*-(3-cyclohexylpropyl)-2-(4propylphenyl)ethyne-1-sulfonamide (1.04 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1aa** as a white solid in 80% yield (1.16 g). **TLC** $R_f = 0.25$ (PE:EA = 20:1). mp 109–111 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 7.34 – 7.27 (m, 5H), 7.19 – 7.13 (m, 2H), 5.33 (s, 2H), 3.83 (t, *J* = 7.6 Hz, 2H), 2.61 (t, *J* = 7.6 Hz, 2H), 1.78 – 1.71 (m, 2H), 1.69 – 1.59 (m, 7H), 1.24 – 1.10 (m, 6H), 0.93 (t, *J* = 7.3 Hz, 3H), 0.88 – 0.78 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.2, 147.2, 134.8, 132.9, 128.9, 128.6, 128.5, 128.2, 114.7, 90.9, 82.9, 69.3, 48.6, 38.1, 37.2, 34.1, 33.2, 26.8, 26.6, 26.3, 24.2, 13.7.

HRMS (**ESI**) m/z calcd for C₂₈H₃₅NNaO₄S [M+Na]⁺ 504.2179, found 504.2182.

Benzyl (((4-(*tert*-butyl)phenyl)ethynyl)sulfonyl)(3-cyclohexylpropyl)carbamate (1ab)

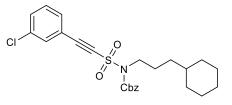


Prepared according to GP2 starting from 2-(4-(tert-butyl)phenyl)-*N*-(3-cyclohexylpropyl)ethyne-1-sulfonamide (1.08 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1ab** as a yellow oil in 76% yield (1.13 g). **TLC** $R_f = 0.25$ (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 7.39 – 7.30 (m, 7H), 5.33 (s, 2H), 3.84 (t, *J* = 7.6 Hz, 2H), 1.78 – 1.70 (m, 2H), 1.68 – 1.60 (m, 5H), 1.32 (s, 9H), 1.24 – 1.10 (m, 6H), 0.88 – 0.80 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 155.5, 152.2, 134.8, 132.8, 128.6, 128.5, 128.2, 125.7, 114.5, 90.9, 82.8, 69.3, 48.6, 37.2, 35.2, 34.1, 33.2, 31.0, 26.8, 26.6, 26.3.

HRMS (ESI) m/z calcd for C₂₉H₃₇NNaO₄S [M+Na]⁺ 518.2336, found 518.2343. Benzyl (3-cyclohexylpropyl)(((4-fluorophenyl)ethynyl)sulfonyl)carbamate (1ac)

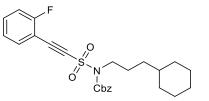

Prepared according to GP2 starting from *N*-(3-cyclohexylpropyl)-2-(4-fluorophenyl)ethyne-1-sulfonamide (0.97 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1ac** as a pale yellow solid in 55% yield (0.75 g). **TLC** $R_f = 0.2$ (PE:EA = 20:1). mp 107–109 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.38 – 7.34 (m, 2H), 7.33 – 7.31 (m, 3H), 7.07 – 7.02 (m, 2H), 5.33 (s, 2H), 3.83 (t, *J* = 7.4 Hz, 2H), 1.77 – 1.71 (m, 2H), 1.68 – 1.63 (m, 5H), 1.23 – 1.17 (m, 4H), 1.15 – 1.06 (m, 2H), 0.88 – 0.79 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 164.4 (d, J = 256.3 Hz), 152.1, 135.2 (d, J = 9.2 Hz), 134.7, 128.7, 128.6, 128.3, 116.3 (d, J = 22.6 Hz), 113.7 (d, J = 3.7 Hz), 89.0, 83.2, 69.4, 48.6, 37.2, 34.1, 33.2, 26.8, 26.6, 26.3.

¹⁹**F NMR** (377 MHz, CDCl₃) δ 104.3.

HRMS (ESI) m/z calcd for C₂₅H₂₈FNNaO₄S [M+Na]⁺ 480.1615, found 480.1620. Benzyl (((3-chlorophenyl)ethynyl)sulfonyl)(3-cyclohexylpropyl)carbamate (1ad)

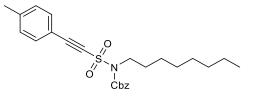

Prepared according to GP2 starting from 2-(3-chlorophenyl)-*N*-(3-cyclohexylpropyl)ethyne-1-sulfonamide (1.02 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1ad** as a yellow oil in 38% yield (0.54 g). **TLC** $R_f = 0.2$ (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 3H), 7.34 – 7.31 (m, 3H), 7.31 – 7.23 (m, 3H), 5.34 (s, 2H), 3.84 (t, *J* = 7.6 Hz, 2H), 1.78 – 1.71 (m, 2H), 1.69 – 1.64 (m, 5H), 1.23 – 1.10 (m, 6H), 0.88 – 0.80 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.0, 134.7, 134.6, 132.5, 131.9, 130.9, 130.0, 128.7, 128.7, 128.3, 119.3, 87.9, 84.0, 69.5, 48.6, 37.2, 34.1, 33.3, 26.8, 26.6, 26.3.

HRMS (ESI) m/z calcd for $C_{25}H_{28}Cl^{35}NNaO_4S$ [M+Na]⁺ 496.1320, found 496.1322. $C_{25}H_{28}Cl^{37}NNaO_4S$ [M+Na]⁺ 498.1290, found 498.1294.

Benzyl (3-cyclohexylpropyl)(((2-fluorophenyl)ethynyl)sulfonyl)carbamate (1ae)

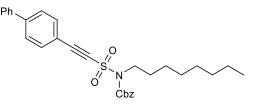

Prepared according to GP2 starting from *N*-(3-cyclohexylpropyl)-2-(2-fluorophenyl)ethyne-1-sulfonamide (0.97 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1ae** as a pale yellow oil in 36% yield (0.50 g). **TLC** R_f = 0.2 (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 1H), 7 .44 – 7.40 (m, 2H), 7.37 – 7.27 (m, 4H), 7.19 – 7.08 (m, 2H), 5.34 (s, 2H), 3.85 (t, *J* = 7.6 Hz, 2H), 1.78 – 1.72 (m, 2H), 1.68 – 1.61 (m, 5H), 1.26 – 1.11 (m, 6H), 0.89 – 0.79 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.6 (d, J = 258.5 Hz), 152.1, 134.7, 134.4, 133.7 (d, J = 8.2 Hz), 128.6, 128.5, 128.2, 124.4 (d, J = 3.8 Hz), 116.0 (d, J = 20.0 Hz), 106.8 (d, J = 15.3 Hz), 87.7, 83.7, 69.4, 48.7, 37.2, 34.1, 33.2, 26.7, 26.6, 26.3.

¹⁹**F NMR** (377 MHz, CDCl₃) δ 106.1.

HRMS (ESI) m/z calcd for $C_{25}H_{28}FNNaO_4S$ [M+Na]⁺ 480.1615, found 480.1617. Benzyl octyl((*p*-tolylethynyl)sulfonyl)carbamate (1af)

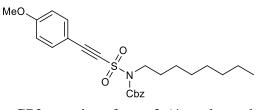

Prepared according to GP2 starting from *N*-octyl-2-(*p*-tolyl)ethyne-1-sulfonamide (0.92 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1af** as a yellow oil in 89% yield (1.18 g). **TLC** R_f = 0.25 (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 2H), 7.29 – 7.20 (m, 3H), 7.19 – 7.14 (m, 2H), 7.09 – 7.01 (m, 2H), 5.24 (s, 2H), 3.77 (t, *J* = 7.6 Hz, 2H), 2.29 (s, 3H), 1.68 – 1.59 (m, 2H), 1.24 – 1.09 (m, 10H), 0.77 (t, *J* = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 152.2, 142.5, 134.8, 132.8, 129.5, 128.6, 128.5, 128.2, 114.4, 90.8, 82.9, 69.3, 48.3, 31.8, 29.4, 29.2, 29.1, 26.6, 22.6, 21.8, 14.1.

HRMS (**ESI**) m/z calcd for C₂₅H₃₁NNaO₄S [M+Na]⁺ 464.1866, found 464.1869.

Benzyl (([1,1'-biphenyl]-4-ylethynyl)sulfonyl)(octyl)carbamate (1ag)

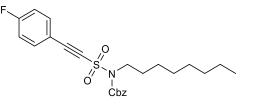

Prepared according to GP2 starting from 2-([1,1'-biphenyl]-4-yl)-N-octylethyne-1-

sulfonamide (1.11 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1ag** as a yellow solid in 82% yield (1.24 g). **TLC** R_f = 0.25 (PE:EA = 20:1). mp 40–42 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 – 7.54 (m, 4H), 7.50 – 7.39 (m, 7H), 7.35 – 7.27 (m, 3H), 5.35 (s, 2H), 3.88 (t, *J* = 7.5 Hz, 2H), 1.79 – 1.70 (m, 2H), 1.35 – 1.20 (m, 10H), 0.86 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.2, 144.4, 139.5, 134.8, 133.4, 129.1, 128.7, 128.6, 128.5, 128.2, 127.3, 127.2, 116.2, 90.3, 83.8, 69.4, 48.4, 31.8, 29.5, 29.2, 29.2, 26.6, 22.7, 14.1.

HRMS (ESI) m/z calcd for C₃₀H₃₃NNaO₄S [M+Na]⁺ 526.2023, found 526.2024. **Benzyl (((4-methoxyphenyl)ethynyl)sulfonyl)(octyl)carbamate (1ah)**

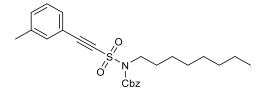

Prepared according to GP2 starting from 2-(4-methoxyphenyl)-*N*-octylethyne-1sulfonamide (0.97 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1ah** as a yellow oil in 89% yield (1.22 g). **TLC** $R_f = 0.25$ (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 2H), 7.36 – 7.25 (m, 5H), 6.88 – 6.79 (m, 2H), 5.33 (s, 2H), 3.85 (t, *J* = 7.2 Hz, 2H), 3.83 (s, 3H), 1.77 – 1.69 (m, 2H), 1.40 – 1.16 (m, 10 H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.3, 152.2, 134.8, 128.6, 128.5, 128.2, 114.4, 109.2, 91.3, 82.6, 69.3, 55.5, 48.3, 31.8, 29.4, 29.2, 29.1, 26.6, 22.6, 14.1.

HRMS (ESI) m/z calcd for $C_{25}H_{31}NNaO_5S$ [M+Na]⁺ 480.1815, found 480.1819.

Benzyl (((4-fluorophenyl)ethynyl)sulfonyl)(octyl)carbamate (1ai)

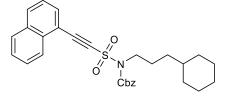

Prepared according to GP2 starting from 2-(4-fluorophenyl)-*N*-octylethyne-1sulfonamide (0.93 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1ai** as a pale yellow oil in 30% yield (0.40 g). **TLC** $R_f = 0.2$ (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2H), 7.36 – 7.29 (m, 5H), 7.07 – 7.01 (m, 2H), 5.34 (s, 2H), 3.86 (t, *J* = 7.6 Hz, 2H), 1.77 – 1.68 (m, 2H), 1.31 – 1.22 (m, 10H), 0.86 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.4 (d, J = 256.3 Hz), 152.1, 135.2 (d, J = 9.1 Hz),

134.8, 128.6, 128.6, 128.2, 116.3 (d, J = 22.6 Hz), 113.8 (d, J = 3.5 Hz), 89.0, 83.2, 69.4, 48.3, 31.7, 29.4, 29.1, 29.1, 26.6, 22.6, 14.0. ¹⁹**F NMR** (377 MHz, CDCl₃) δ 104.3.

HRMS (ESI) m/z calcd for $C_{24}H_{28}FNNaO_4S$ [M+Na]⁺ 468.1615, found 468.1618. Benzyl octyl((*m*-tolylethynyl)sulfonyl)carbamate (1aj)

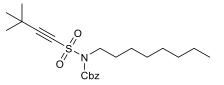


Prepared according to GP2 starting from N-octyl-2-(*m*-tolyl)ethyne-1-sulfonamide (0.92 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1aj** as a yellow oil in 34% yield (0.45 g). **TLC** $R_f = 0.25$ (PE:EA = 20:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.33 – 7.22 (m, 5H), 7.22 – 7.17 (m, 2H), 5.34 (s, 2H), 3.86 (t, *J* = 7.6 Hz, 2H), 2.32 (s, 3H), 1.77 – 1.69 (m, 2H), 1.33 – 1.21 (m, 10H), 0.86 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.2, 138.6, 134.8, 133.2, 132.5, 130.0, 128.6, 128.6, 128.5, 128.2, 117.4, 90.5, 82.9, 69.4, 48.3, 31.8, 29.4, 29.2, 29.1, 26.6, 22.6, 21.1, 14.1.

HRMS (ESI) m/z calcd for C₂₅H₃₁NNaO₄S [M+Na]⁺ 464.1866, found 464.1869. Benzyl (3-cyclohexylpropyl)((naphthalen-1-ylethynyl)sulfonyl)carbamate (1ak)

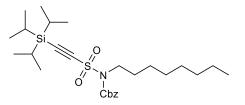

Prepared according to GP2 starting from *N*-(3-cyclohexylpropyl)-2-(naphthalen-1-yl)ethyne-1-sulfonamide (1.07 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1ak** as a yellow oil in 81% yield (1.19 g). **TLC** R_f = 0.25 (PE:EA = 20:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.98 (d, *J* = 8.3 Hz, 1H), 7.88 (dd, *J* = 7.3, 1.9 Hz, 1H), 7.64 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.46 – 7.38 (m, 3H), 7.25 – 7.22 (m, 3H), 5.35 (s, 2H), 3.90 (t, *J* = 7.6 Hz, 2H), 1.83 – 1.75 (m, 2H), 1.69 – 1.59 (m, 5H), 1.26 – 1.22 (m, 2H), 1.21 – 1.14 (m, 2H), 1.14 – 1.03 (m, 2H), 0.87 – 0.77 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 152.2, 134.7, 133.4, 133.3, 132.9, 132.4, 128.6, 128.6, 128.5, 128.1, 127.2, 125.4, 125.0, 115.1, 89.1, 87.7, 69.4, 48.7, 37.3, 34.1, 33.2, 26.8, 26.6, 26.3.

HRMS (ESI) m/z calcd for C₂₉H₃₁NNaO₄S [M+Na]⁺ 512.1866, found 512.1863.

Benzyl ((3,3-dimethylbut-1-yn-1-yl)sulfonyl)(octyl)carbamate (1al)



Prepared according to GP2 starting from 3,3-dimethyl-*N*-octylbut-1-yne-1-sulfonamide (0.82 g, 3.0 mmol), benzyl chloroformate (0.47 mL, 3.3 mmol), DMAP (3.7 mg, 0.03 mmol) and Et₃N (1.04 mL, 7.5 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 30/1), giving the product **1al** as a pale yellow oil in 55% yield (0.67 g). **TLC** R_f = 0.32 (PE:EA = 30:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.38 – 7.33 (m, 3H), 5.31 (s, 2H), 3.80 (t, *J* = 7.6 Hz, 2H), 1.72 – 1.65 (m, 2H), 1.31 – 1.25 (m, 10H), 1.16 (s, 9H), 0.87 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.2, 134.9, 128.6, 128.5, 128.1, 100.5, 74.7, 69.2, 48.2, 31.8, 29.2, 29.2, 29.1, 27.7, 26.6, 22.6, 14.1.

HRMS (ESI) m/z calcd for C₂₂H₃₃NNaO₄S [M+Na]⁺ 430.2023 found 430.2018. Benzyl octyl(((triisopropylsilyl)ethynyl)sulfonyl)carbamate (1am)

Prepared according to GP2 starting from *N*-octyl-2-(triisopropylsilyl)ethyne-1sulfonamide (2.58 g, 6.9 mmol), benzyl chloroformate (1.08 mL, 7.6 mmol), DMAP (8.5 mg, 0.07 mmol) and Et₃N (2.39 mL, 17.3 mmol). The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1), giving the product **1am** as a yellow oil in 90% yield (3.15 g). **TLC** R_f = 0.60 (PE:EA = 20:1).


¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.31 (m, 5H), 5.29 (s, 2H), 3.82 (t, *J* = 7.6 Hz, 2H), 1.74 – 1.65 (m, 2H), 1.31 – 1.22 (m, 10H), 1.07 – 0.99 (m, 21H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.1, 134.7, 128.6, 128.5, 127.9, 97.8, 96.5, 69.4, 48.2, 31.8, 29.1, 26.6, 22.6, 18.3, 14.1, 10.8.

HRMS (ESI) m/z calcd for C₂₇H₄₅NNaSiO₄S [M+Na]⁺ 530.2731, found 530.2734.

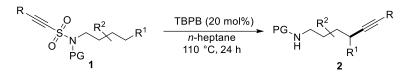
4. Optimization of the reaction conditions and control experiments

4.1 Screenings of radical initiators

[a] Reaction conditions: **1a** (0.1 mmol) and initiator (20 mol%) in heptane (0.5 mL) were stirred at the indicated temperature for 24 h under N₂. [b] Yields were determined by ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

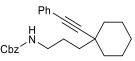
4.2 Screenings of solvents

	Ph S S N Cbz 1a	TBPB (20 mol%) solvent, 110 °C → H Cbz N	2a
Entry	Eolvent	Initiator	Yield (%)
1	EtOAc	TBPB	67
2	MeCN	TBPB	55
3	toluene	TBPB	53
4	DMF	TBPB	N.D.
5	THF	TBPB	54
6	DCE	TBPB	70
7	DME	TBPB	56
8	DCM	TBPB	57
9	chlorobenzene	TBPB	52


[a] Reaction conditions: **1a** (0.1 mmol) and TBPB (20 mol%) in solvent (0.5 mL) were stirred at 110 °C for 24 h under N₂. [b] Yields were determined by ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

4.3 Screenings of reaction temperature and initiator loading

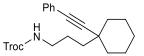
Ph O O' O					
Entry ^a	Initiator loading (mol%)	Temp (°C)	Yield $(\%)^b$		
1	20	80	15		
2	20	100	72		
3	20	120	73		
4	20	140	72		
5	10	110	62		
6	30	110	49		
7	50	110	47		


[a] Reaction conditions: **1a** (0.1 mmol) and initiator (x mol %) in *n*-heptane (0.5 mL) were stirred at the indicated temperature for 24 h under N₂. [b] Yields were determined by ¹H NMR analysis of the crude product using 1,3,5-trimethoxybenzene as an internal standard.

5. General procedure and characterization data for the alkynylation products GP3.

To a solution of *N*-protected ethynesulfonamides **1** (0.20 mmol, 1.0 equiv) in 1.0 mL of heptane under argon was added *tert*-butyl peroxybenzoate (0.04 mmol, 20 mol%). The reaction mixture was stirred at 110 °C for 24 hours. The product was purified by flash column chromatography on silica gel with *n*-pentane/ethyl ether as an eluent to give the corresponding product **2**.

Benzyl (3-(1-(phenylethynyl)cyclohexyl)propyl)carbamate (2a)



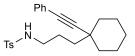
Prepared according to GP3 starting from benzyl (3cyclohexylpropyl)((phenylethynyl)sulfonyl)carbamate (87.9 mg, 0.2 mmol) and *tert*butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2a** as a yellow oil in 88% yield (66.1 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.30 (m, 2H), 7.30 – 7.25 (m, 5H), 7.20 – 7.18 (m, 3H), 5.02 (s, 2H), 4.71 (brs, 1H), 3.21 – 3.14 (m, 2H), 1.79 – 1.72 (m, 2H), 1.71 – 1.57 (m, 5H), 1.55 – 1.52 (m, 1H), 1.43 – 1.37 (m, 2H), 1.25 – 1.02 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 136.7, 131.6, 128.5, 128.2, 128.1, 128.1, 127.5, 123.6, 95.0, 83.5, 66.6, 41.5, 40.1, 37.9, 37.0, 26.2, 25.1, 23.7.

HRMS (ESI) m/z calcd for C₂₂H₂₅NNaO₂ [M+Na]⁺ 398.2091, found 398.2092. 2,2,2-Trichloroethyl (3-(1-(phenylethynyl)cyclohexyl)propyl)carbamate (2b)

Prepared according to GP3 starting from 2,2,2-trichloroethyl (3-cyclohexylpropyl)((phenylethynyl)sulfonyl)carbamate (96.2 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2b** as a yellow oil in 46% yield (38.3 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

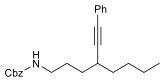

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 – 7.39 (m, 2H), 7.29 – 7.26 (m, 3H), 5.02 (t, *J* = 6.3 Hz, 1H), 4.72 (s, 2H), 3.32 – 3.26 (m, 2H), 1.87 – 1.77 (m, 4H), 1.73 – 1.66 (m, 3H), 1.64 – 1.59 (m, 2H), 1.52 – 1.47 (m, 2H), 1.24 – 1.15 (m, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 154.6, 131.6, 128.2, 127.5, 124.0, 95.7, 94.9, 83.6, 74.5, 41.7, 40.0, 38.0, 37.0, 26.2, 25.0, 23.2.

HRMS (ESI) m/z calcd for $C_{20}H_{24}Cl^{35}_{3}NNaO_2$ [M+Na]⁺ 438.0765, found 438.0768. $C_{20}H_{24}Cl^{35}_{2}Cl^{37}NNaO_2$ [M+Na]⁺ 440.0735, found 440.0738. $C_{20}H_{24}Cl^{35}Cl^{37}_{2}NNaO_2$

 $[M+Na]^+$ 442.0706, found 442.0706. $C_{20}H_{24}Cl^{37}{}_3NNaO_2\ [M+Na]^+$ 444.0676, found 438.0782.

4-Methyl-N-(3-(1-(phenylethynyl)cyclohexyl)propyl)benzenesulfonamide (2c)

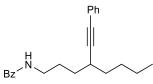


Prepared according to GP3 starting from *N*-(3-cyclohexylpropyl)-4-methyl-*N*-((phenylethynyl)sulfonyl)benzenesulfonamide (91.9 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2c** as a white solid in 59% yield (46.7 mg). **TLC** R_f = 0.20 (PE:EA = 10:1). mp 153–155 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 7.77 – 7.70 (m, 2H), 7.40 – 7.32 (m, 2H), 7.31 – 7.23 (m, 5H), 4.71 (t, *J* = 6.2 Hz, 1H), 3.08 – 2.92 (m, 2H), 2.38 (s, 3H), 1.77 – 1.62 (m, 7H), 1.60 – 1.54 (m, 2H), 1.43 – 1.37 (m, 2H), 1.17 – 1.08 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.3, 137.1, 131.6, 129.7, 128.2, 127.5, 127.1, 124.0, 94.8, 83.6, 43.7, 39.9, 37.9, 36.8, 26.2, 24.8, 23.2, 21.5.

HRMS (**ESI**) m/z calcd for C₂₄H₂₉NNaO₂S [M+Na]⁺ 418.1811, found 418.1819.

Benzyl (4-(phenylethynyl)octyl)carbamate (2d)

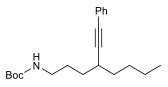

Prepared according to GP3 starting from benzyl octyl((phenylethynyl)sulfonyl)carbamate (85.5 mg, 0.2 mmol) and tert-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2d** as a yellow oil in 63% yield (45.8 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.29 (m, 2H), 7.28 – 7.25 (m, 4H), 7.25 – 7.22 (m, 1H), 7.20 – 7.16 (m, 3H), 5.02 (s, 2H), 4.74 (brs, 1H), 3.21 – 3.13 (m, 2H), 2.49 – 2.42 (m, 1H), 1.75 – 1.65 (m, 1H), 1.61 – 1.52 (m, 1H), 1.48 – 1.40 (m, 5H), 1.36 – 1.21 (m, 3H), 0.84 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 136.7, 131.6, 128.5, 128.2, 128.1, 128.1, 127.6, 124.0, 93.1, 82.2, 66.6, 41.0, 35.0, 32.3, 32.1, 29.7, 28.0, 22.6, 14.1.

HRMS (ESI) m/z calcd for $C_{24}H_{29}NNaO_2$ [M+Na]⁺ 386.2091, found 386.2094.

N-(4-(Phenylethynyl)octyl)benzamide (2e)

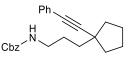

Prepared according GP3 starting N-octyl-Nto from ((phenylethynyl)sulfonyl)benzamide (79.5 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 µL, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2e** as yellow oil in 54% yield (36.0 mg). **TLC** $R_f = 0.40$ (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.75 – 7.52 (m, 2H), 7.46 – 7.34 (m, 1H), 7.32 – 7.20 (m, 4H), 7.21 – 6.99 (m, 3H), 6.25 (brs, 1H), 3.50 – 3.32 (m, 2H), 2.58 – 2.38 (m, 1H), 1.83 – 1.68 (m, 2H), 1.61 – 1.49 (m, 2H), 1.46 – 1.42 (m, 2H), 1.37 – 1.31 (m, 1H), 1.31 – 1.22 (m, 2H), 1.20 – 1.16 (m, 1H), 0.84 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 167.6, 134.8, 131.6, 131.3, 128.5, 128.2, 127.6, 126.9, 123.9, 93.2, 82.2, 40.0, 35.0, 32.5, 32.2, 29.7, 27.0, 22.6, 14.1.

HRMS (**ESI**) m/z calcd for C₂₃H₂₇NNaO [M+Na]⁺ 356.1985, found 356.1987.

tert-Butyl (4-(phenylethynyl)octyl)carbamate (2f)



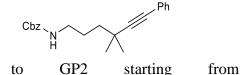
Prepared according to GP3 starting from *tert*-butyl octyl((phenylethynyl)sulfonyl)carbamate (78.7 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2f** as a yellow oil in 54% yield (35.6 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

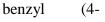
¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 7.22 – 7.18 (m, 3H), 4.49 (brs, 1H), 3.13 – 3.05 (m, 2H), 2.50 – 2.41 (m, 1H), 1.76 – 1.61 (m, 2H), 1.60 – 1.54 (m, 1H), 1.48 – 1.43 (m, 4H), 1.37 (s, 9H), 1.31 – 1.24 (m, 2H), 1.21 – 1.15 (m, 1H), 0.85 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.0, 131.6, 128.2, 127.5, 124.0, 93.2, 82.1, 79.1, 40.5, 35.0, 32.3, 32.1, 29.6, 28.4, 28.1, 22.6, 14.1.

HRMS (ESI) m/z calcd for C₂₁H₃₁NNaO₂ [M+Na]⁺ 352.2247, found 352.2255. Benzyl (3-(1-(phenylethynyl)cyclopentyl)propyl)carbamate (2g)

Prepared according to GP3 starting from benzyl (3cyclopentylpropyl)((phenylethynyl)sulfonyl)carbamate (85.1 mg, 0.2 mmol) and *tert*butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2g** as a pale yellow solid in 88% yield (63.6 mg). **TLC** R_f = 0.40 (PE:EA = 10:1). mp 94–96 °C.

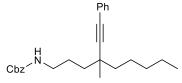

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 6H), 7.31 – 7.25 (m, 2H), 7.24 – 7.22 (m, 2H), 5.09 (s, 2H), 4.86 (brs, 1H), 3.28 – 3.20 (m, 2H), 2.00 – 1.93 (m, 2H), 1.87 – 1.81 (m, 2H), 1.78 – 1.72 (m, 2H), 1.70 – 1.63 (m, 2H), 1.58 – 1.49 (m, 4H).


¹³C NMR (101 MHz, CDCl₃) δ 156.5, 136.7, 131.6, 128.5, 128.2, 128.1, 128.1, 127.5, 124.1, 96.8, 81.3, 66.6, 43.0, 41.4, 40.2, 37.9, 27.2, 24.2.

HRMS (ESI) m/z calcd for $C_{24}H_{27}NNaO_2$ [M+Na]⁺ 384.1934, found 384.1939. **Benzyl (4,4-dimethyl-6-phenylhex-5-yn-1-yl)carbamate (2h)**

Prepared

according

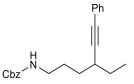

methylpentyl)((phenylethynyl)sulfonyl)carbamate (80.0 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2h** as a yellow oil in 74% yield (49.6 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.26 (m, 6H), 7.22 – 7.13 (m, 4H), 5.02 (s, 2H), 4.73 (brs, 1H), 3.21 – 3.15 (m, 2H), 1.69 – 1.62 (m, 2H), 1.44 – 1.39 (m, 2H), 1.20 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 136.7, 131.6, 128.5, 128.2, 128.1, 128.1, 127.6, 123.8, 96.8, 80.7, 66.6, 41.4, 40.4, 31.5, 29.3, 26.2.

HRMS (ESI) m/z calcd for C₂₂H₂₅NNaO₂ [M+Na]⁺ 358.1777, found 358.1775.

Benzyl (4-methyl-4-(phenylethynyl)nonyl)carbamate (2i)

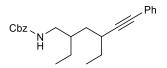

Prepared according to GP3 starting from benzyl (4methylnonyl)((phenylethynyl)sulfonyl)carbamate (91.1 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2i** as a yellow oil in 86% yield (67.3 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 6H), 7.33 – 7.30 (m, 1H), 7.27 – 7.24 (m, 3H), 5.10 (s, 2H), 4.79 (brs, 1H), 3.29 – 3.21 (m, 2H), 1.76 – 1.67 (m, 2H), 1.55 – 1.49 (m, 2H), 1.48 – 1.38 (m, 4H), 1.36 – 1.28 (m, 4H), 1.22 (s, 3H), 0.90 (t, *J* = 7.0 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.4, 136.7, 131.6, 128.5, 128.2, 128.1, 127.5, 124.0, 96.1, 81.7, 66.6, 41.8, 41.5, 38.7, 35.2, 32.3, 26.5, 25.7, 24.6, 22.6, 14.1.

HRMS (ESI) m/z calcd for C₂₆H₃₃NNaO₂ [M+Na]⁺ 414.2404, found 414.2404.

Benzyl (4-ethyl-6-phenylhex-5-yn-1-yl)carbamate (2j)

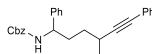

Prepared according to GP3 starting from benzyl hexyl((phenylethynyl)sulfonyl)carbamate (79.9 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2j** as a yellow oil in 71% yield (50.9 mg). **TLC** R_f = 0.35 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.37 (m, 2H), 7.36 – 7.33 (m, 4H), 7.33 – 7.27 (m, 3H), 7.26 – 7.24 (m, 1H), 5.10 (s, 2H), 4.79 (brs, 1H), 3.30 – 3.22 (m, 2H), 2.53 – 2.43 (m, 1H), 1.82 – 1.74 (m, 1H), 1.71 – 1.64 (m, 1H), 1.58 – 1.51 (m, 4H), 1.05 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.4, 136.6, 131.6, 128.5, 128.2, 128.1, 127.6, 123.9, 92.9, 82.3, 66.6, 41.0, 33.8, 31.9, 28.3, 28.0, 11.9.

HRMS (ESI) m/z calcd for C₂₂H₂₅NNaO₂ [M+Na]⁺ 358.1777, found 358.1777.

Benzyl (2,4-diethyl-6-phenylhex-5-yn-1-yl)carbamate (2k)

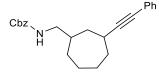


Prepared according to GP3 starting from benzyl (2ethylhexyl)((phenylethynyl)sulfonyl)carbamate (85.5 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2k** as a yellow oil in 68% yield (49.4 mg, 1.3:1 dr). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃, mixture of diastereoisomers) δ 7.33 – 7.28 (m, 2H), 7.28 – 7.21 (m, 5H), 7.20 – 7.14 (m, 3H), 5.01 (s, 2H, major diastereoisomer), 5.00 (s, 2H, minor diastereoisomer), 4.80 (brs, 1H), 3.26 – 3.07 (m, 2H), 2.57 – 2.39 (m, 1H), 1.74 – 1.66 (m, 1H), 1.51 – 1.38 (m, 3H), 1.36 – 1.21 (m, 3H), 1.02 – 0.94 (m, 3H), 0.88 – 0.82 (m, 3H).

¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) δ 156.6, 136.7, 131.6, 131.6, 128.5, 128.2, 128.1, 128.1, 127.6, 123.9, 123.9, 93.2, 93.1, 82.4, 82.3, 66.6, 44.2, 43.4, 38.2, 38.1, 37.0, 36.7, 32.1, 31.7, 28.9, 28.9, 28.8, 28.8, 25.1, 23.9, 11.9, 11.2, 10.7.

HRMS (ESI) m/z calcd for $C_{24}H_{29}NNaO_2$ [M+Na]⁺ 386.2091, found 386.2092. Benzyl (4-methyl-1,6-diphenylhex-5-yn-1-yl)carbamate (2l)

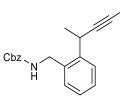


Prepared according to GP3 starting from benzyl ((phenylethynyl)sulfonyl)(1-phenylpentyl)carbamate (92.3 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2l** as a pale yellow solid in 78% yield (62.0 mg, 1.1:1 dr). **TLC** R_f = 0.30 (PE:EA = 10:1). mp 133–135 °C.

¹**H** NMR (400 MHz, CDCl₃, mixture of diastereoisomers) δ 7.38 – 7.23 (m, 15H), 5.13 – 5.00 (m, 3H), 4.82 – 4.64 (m, 1H), 2.70 – 2.59 (m, 1H), 2.09 – 1.88 (m, 2H), 1.59 – 1.38 (m, 2H), 1.25 – 1.18 (m, 3H).

¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) δ 155.8, 142.6, 136.5, 131.6, 128.7, 128.7, 128.5, 128.2, 127.6, 127.5, 127.4, 126.5, 126.3, 123.8, 93.9, 81.3, 66.8, 55.5, 55.2, 34.7, 34.4, 33.5, 33.4, 26.5, 26.3, 21.2, 21.1.

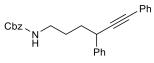
HRMS (ESI) m/z calcd for C₂₇H₂₇NNaO₂ [M+Na]⁺ 420.1934, found 420.1939. **Benzyl ((3-(phenylethynyl)cycloheptyl)methyl)carbamate (2m)**



Prepared according to GP3 starting from benzyl (3cycloheptylpropyl)((phenylethynyl)sulfonyl)carbamate (85.1 mg, 0.2 mmol) and *tert*butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2m** as a yellow oil in 37% yield (26.8 mg, 1.2:1 dr). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃, mixture of diastereoisomers) δ 7.38 – 7.23 (m, 10H), 5.14 – 5.03 (m, 2H), 5.00 – 4.88 (m, 1H, minor diastereoisomer), 4.88 – 4.76 (m, 1H, major diastereoisomer), 3.15 – 2.96 (m, 3H), 2.07 – 1.89 (m, 2H), 1.81 – 1.61 (m, 5H), 1.59 – 1.43 (m, 3H), 1.30 – 1.20 (m, 1H).

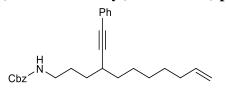
¹³C NMR (101 MHz, CDCl₃, mixture of diastereoisomers) δ 156.6, 156.6, 136.7, 136.7, 131.6, 131.5, 128.6, 128.5, 128.3, 128.2, 128.2, 128.1, 128.1, 128.1, 127.5, 127.5, 124.0, 95.1, 94.0, 81.7, 80.7, 66.7, 66.7, 47.6, 47.4, 38.8, 37.2, 36.3, 35.2, 34.4, 32.0, 31.6, 31.2, 29.4, 26.8, 25.9, 25.6, 25.6.


HRMS (ESI) m/z calcd for $C_{24}H_{27}NNaO_2$ [M+Na]⁺ 384.1934, found 384.1930. Benzyl (2-(4-phenylbut-3-yn-2-yl)benzyl)carbamate (2n)

Prepared according to GP3 starting from benzyl (2ethylbenzyl)((phenylethynyl)sulfonyl)carbamate (86.7 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2n** as a pale yellow solid in 69% yield (51.0 mg). **TLC** R_f = 0.40 (PE:EA = 10:1). mp 139–141 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 1H), 7.42 – 7.36 (m, 2H), 7.35 – 7.26 (m, 7H), 7.26 – 7.19 (m, 4H), 5.21 – 5.13 (m, 1H), 5.11 (s, 2H), 4.56 – 4.42 (m, 2H), 4.20 (q, *J* = 7.0 Hz, 1H), 1.56 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.2, 141.5, 136.5, 134.8, 131.6, 129.4, 128.6, 128.5, 128.2, 128.1, 128.1, 127.9, 127.6, 127.2, 123.5, 92.8, 82.0, 66.9, 42.7, 28.6, 23.5. HRMS (ESI) m/z calcd for C₂₅H₂₃NNaO₂ [M+Na]⁺ 392.1621, found 392.1623.

Benzyl (4,6-diphenylhex-5-yn-1-yl)carbamate (20)


Prepared according to GP3 starting from benzyl (4phenylbutyl)((phenylethynyl)sulfonyl)carbamate (89.5 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **20** as a yellow oil in 63% yield (48.3 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 – 7.38 (m, 4H), 7.36 – 7.32 (m, 6H), 7.31 – 7.28 (m, 3H), 7.27 – 7.25 (m, 2H), 5.09 (s, 2H), 4.77 (brs, 1H), 3.81 (t, *J* = 7.2 Hz, 1H), 3.30 – 3.20 (m, 2H), 1.89 – 1.81 (m, 2H), 1.77 – 1.65 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 141.7, 136.6, 131.7, 128.6, 128.5, 128.4, 128.4, 128.2, 128.1, 127.9, 127.5, 126.9, 90.9, 83.7, 66.7, 40.7, 38.0, 35.6, 27.9.

HRMS (ESI) m/z calcd for C₂₆H₂₅NNaO₂ [M+Na]⁺ 406.1777, found 406.1779.

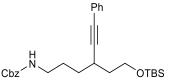
Benzyl (4-(phenylethynyl)undec-10-en-1-yl)carbamate (2p)

Prepared according to GP3 starting from benzyl ((phenylethynyl)sulfonyl)(undec-10en-1-yl)carbamate (93.5 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2p** as a yellow oil in 46% yield (37.1 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 6H), 7.32 – 7.30 (m, 1H), 7.28 – 7.24 (m, 3H), 5.91 – 5.68 (m, 1H), 5.09 (s, 2H), 5.06 – 4.86 (m, 2H), 4.79 (brs, 1H), 3.29 – 3.20 (m, 2H), 2.59 – 2.47 (m, 1H), 2.11 – 1.98 (m, 2H), 1.82 – 1.68 (m, 2H), 1.57 – 1.47 (m, 5H), 1.47 – 1.29 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 139.1, 136.7, 131.6, 128.5, 128.2, 128.1, 128.1, 127.6, 123.9, 114.3, 93.1, 82.2, 66.6, 41.0, 35.2, 33.8, 32.3, 32.1, 29.0, 28.8, 28.0, 27.3.

HRMS (ESI) m/z calcd for $C_{27}H_{33}NNaO_2$ [M+Na]⁺ 426.2404, found426.2404. Benzyl (4-(2-chloroethyl)-6-phenylhex-5-yn-1-yl)carbamate (2q)


Prepared according to GP2 starting from benzyl (4chlorobutyl)((phenylethynyl)sulfonyl)carbamate (86.8 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2q** as a yellow oil in 48% yield (35.5 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

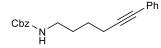
¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.29 (m, 2H), 7.29 – 7.27 (m, 3H), 7.26 – 7.22 (m, 2H), 7.22 – 7.16 (m, 3H), 5.03 (s, 2H), 4.72 (brs, 1H), 3.67 (t, *J* = 6.6 Hz, 2H), 3.24 – 3.13 (m, 2H), 2.82 – 2.69 (m, 1H), 1.94 – 1.80 (m, 2H), 1.77 – 1.68 (m, 1H), 1.69 – 1.60 (m, 1H), 1.53 – 1.44 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.4, 136.6, 131.6, 128.5, 128.3, 128.1, 127.9, 123.3, 90.8, 83.2, 66.7, 43.0, 40.8, 38.0, 32.0, 29.7, 27.9.

HRMS (ESI) m/z calcd for $C_{22}H_{24}Cl^{35}NNaO_2$ [M+Na]⁺ 392.1387, found 392.1384. $C_{22}H_{24}Cl^{37}NNaO_2$ [M+Na]⁺ 394.1358, found 394.1368.

Benzyl (4-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)-6-phenylhex-5-yn-1-yl)carbamate (2r)

Prepared according to GP3 starting from benzyl (6-((*tert*-butyldimethylsilyl)oxy)hexyl)((phenylethynyl)sulfonyl)carbamate (105.9 mg, 0.2

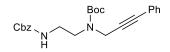

mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2r** as a yellow oil in 59% yield (55.0 mg). **TLC** R_f = 0.30 (PE:EA = 10:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 5H), 7.32 – 7.24 (m, 5H), 5.09 (s, 2H), 4.81 (brs, 1H), 3.83 – 3.79 (m, 2H), 3.30 – 3.23 (m, 2H), 2.79 – 2.72 (m, 1H), 1.85 – 1.70 (m, 3H), 1.63 – 1.45 (m, 3H), 0.90 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 136.7, 131.6, 128.5, 128.2, 128.1, 128.1, 127.6, 123.8, 92.4, 82.4, 66.6, 61.0, 41.0, 38.2, 32.3, 28.5, 28.0, 26.0, 18.4, -5.2, -5.3.

HRMS (ESI) m/z calcd for $C_{28}H_{39}NNaO_3Si [M+Na]^+ 488.2591$, found 488.2595.

Benzyl (6-phenylhex-5-yn-1-yl)carbamate (2s)

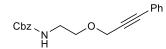


Prepared according to GP3 starting from benzyl butyl((phenylethynyl)sulfonyl)carbamate (74.3 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2s** as a pale yellow oil in 20% yield (12.3 mg). **TLC** R_f = 0.20 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 6H), 7.33 – 7.30 (m, 1H), 7.29 – 7.26 (m, 3H), 5.10 (s, 2H), 4.79 (brs, 1H), 3.30 – 3.23 (m, 2H), 2.44 (t, *J* = 6.5 Hz, 2H), 1.72 – 1.63 (m, 4H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.4, 136.6, 131.6, 128.5, 128.2, 128.1, 127.6, 123.8, 89.6, 81.1, 66.7, 40.6, 29.2, 25.8, 19.1.

HRMS (ESI) m/z calcd for C₂₀H₂₁NNaO₂ [M+Na]⁺ 330.1464, found 330.1467. *tert*-Butyl (2-(((benzyloxy)carbonyl)amino)ethyl)(3-phenylprop-2-yn-1-yl)carbamate (2t)

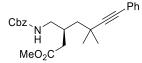

Prepared according to GP3 starting from tert-butyl (2-((*N*-((benzyloxy)carbonyl)-2-phenylethynyl)sulfonamido)ethyl)(methyl)carbamate (94.5 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 2/1), giving the product **2t** as a yellow oil in 57% yield (46.5 mg). **TLC** R_f = 0.10 (PE:EA = 5:1).

¹**H** NMR (400 MHz, CDCl₃, mixture of ratomers) δ 7.62 – 7.51 (m, 1H), 7.42 – 7.39 (m, 1H), 7.36 – 7.31 (m, 6H), 7.30 – 7.26 (m, 2H), 6.12 (brs, 1H, minor ratomer), 5.36 (brs, 1H, major ratomer), 5.08 (s, 2H), 4.33 – 4.15 (m, 2H), 3.55 – 3.51 (m 1H), 3.47 – 3.43 (m, 1H), 3.43 – 3.31 (m, 2H), 1.49 – 1.45 (m, 9H).

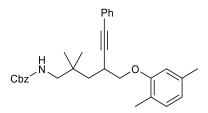
¹³C NMR (101 MHz, CDCl₃, mixture of ratomers) δ 169.7, 156.6, 137.4, 136.6, 133.3, 131.8, 130.1, 129.9, 128.9, 128.5, 128.4, 128.3, 128.0, 126.5, 122.6, 84.9, 80.8, 80.5, 66.7, 46.8, 46.4, 39.9, 38.2, 28.4, 28.4.

HRMS (ESI) m/z calcd for C₂₄H₂₈N₂NaO₄ [M+Na]⁺ 431.1941, found 431.1944.

Benzyl (2-((3-phenylprop-2-yn-1-yl)oxy)ethyl)carbamate (2u)



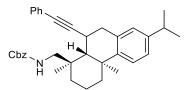
Prepared according to GP3 starting from benzyl (2methoxyethyl)((phenylethynyl)sulfonyl)carbamate (74.7 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2u** as a pale yellow solid in 60% yield (37.1 mg). **TLC** R_f = 0.25 (PE:EA = 10:1). mp 42–44 °C.


¹**H** NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 2H), 7.39 – 7.26 (m, 8H), 5.21 (brs, 1H), 5.09 (s, 2H), 4.37 (s, 2H), 3.67 (t, *J* = 5.1 Hz, 2H), 3.50 – 3.40 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.5, 136.6, 131.8, 128.6, 128.5, 128.3, 128.1, 122.4, 86.6, 84.7, 68.9, 66.7, 59.1, 40.9.

HRMS (ESI) m/z calcd for $C_{19}H_{19}NNaO_3$ [M+Na]⁺ 332.1257, found 332.1263. **Methyl** (S)-3-((((benzyloxy)carbonyl)amino)methyl)-5,5-dimethyl-7-phenylhept-6-ynoate (2v)

Prepared according to GP2 starting from methyl (*R*)-3-(((*N*-((benzyloxy)carbonyl)-2-phenylethynyl)sulfonamido)methyl)-5-methylhexanoate (94.2 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 1/1), giving the product **2v** as a yellow solid in 39% yield (31.8 mg). **TLC** R_f = 0.50 (PE:EA = 4:1). mp 57–59 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 7H), 7.27 – 7.20 (m, 3H), 5.11 (brs, 1H), 5.08 (s, 2H), 3.62 (s, 3H), 3.48 – 3.39 (m, 1H), 3.34 – 3.25 (m, 1H), 2.63 – 2.53 (m, 1H), 2.47 – 2.39 (m, 1H), 2.38 – 2.31 (m, 1H), 1.58 – 1.43 (m, 2H), 1.31 (s, 6H). ¹³C **NMR** (101 MHz, CDCl₃) δ 173.3, 156.7, 136.6, 131.5, 128.5, 128.2, 128.1, 128.1, 127.7, 123.5, 96.7, 81.2, 66.7, 51.6, 45.2, 44.5, 38.2, 33.3, 31.0, 30.2, 29.5. **HRMS (ESI)** m/z calcd for C₂₅H₂₉NNaO₄ [M+Na]⁺ 430.1989, found 430.1990. **Benzyl** (4-((2,5-dimethylphenoxy)methyl)-2,2-dimethyl-6-phenylhex-5-yn-1-yl)carbamate (2w)

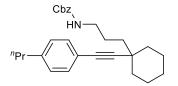

Prepared according to GP2 starting from methyl benzyl (5-(2,5-dimethylphenoxy)-2,2-dimethylpentyl)((phenylethynyl)sulfonyl)carbamate (106.7 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2w** as a yellow oil in 25% yield (23.5 mg, *rr* = 1.1:1). **TLC** R_f = 0.30 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃, mixture of regioisomers) δ 7.46 – 7.20 (m, 10H), 7.03 – 6.97 (m, 1H), 6.70 – 6.59 (m, 2H), 5.13 – 5.07 (m, 2H), 4.80 (brs, 1H), 4.12 – 3.85 (m, 1H), 3.26 – 3.17 (m, 1H), 3.12 – 3.00 (m, 2H), 2.31 (s, 3H, major regioisomer), 2.31 (s, 3H, minor regioisomer), 2.19 (s, 3H, major regioisomer), 2.16 (s, 3H, minor regioisomer), 1.78 – 1.68 (m, 2H), 1.04 (s, 3H, major regioisomer), 1.03 (s, 3H, minor regioisomer), 0.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃, mixture of regioisomers) δ 157.0, 156.8, 156.8, 156.5, 136.6, 136.5, 131.5, 130.5, 130.3, 128.5, 128.5, 128.3, 128.1, 128.1, 128.0, 123.7, 123.6, 123.2, 121.3, 120.7, 112.3, 112.1, 91.0, 82.9, 71.0, 68.3, 66.7, 66.7, 50.9, 50.3, 41.3, 35.8, 34.9, 34.2, 29.7, 28.5, 26.1, 25.2, 24.8, 24.1, 21.4, 21.4, 15.9, 15.8.

HRMS (ESI) m/z calcd for C₃₁H₃₅NNaO₃ [M+Na]⁺ 492.2509, found 492.2508.

Benzyl (((1*R*,4a*S*,10a*R*)-7-isopropyl-1,4a-dimethyl-10-(phenylethynyl)-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)carbamate (2x)

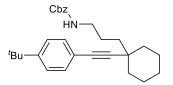

Prepared according to GP2 starting from benzyl (((1*R*,4a*S*,10a*R*)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-

yl)methyl)((phenylethynyl)sulfonyl)carbamate (116.8 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2x** as a yellow oil in 48% yield (49.9 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 3H), 7.27 – 7.25 (m, 2H), 7.24 – 7.20 (m, 3H), 7.18 – 7.12 (m, 3H), 7.07 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.98 (d, *J* = 2.0 Hz, 1H), 5.50 (dd, *J* = 10.0, 4.4 Hz, 1H), 5.09 (d, *J* = 12.3 Hz, 1H), 4.93 (d, *J* = 12.3 Hz, 1H), 3.48 – 3.39 (m, 2H), 3.28 – 3.20 (m, 2H), 2.98 (dd, *J* = 15.8, 3.6 Hz, 1H), 2.89 – 2.82 (m, 1H), 2.21 – 2.16 (m, 1H), 1.80 – 1.74 (m, 1H), 1.69 – 1.67 (m, 1H), 1.57 – 1.49 (m, 2H), 1.47 – 1.40 (m, 2H), 1.25 (s, 3H), 1.23 (d, *J* = 2.8 Hz, 6H), 1.12 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.0, 147.1, 146.3, 136.7, 133.9, 131.4, 128.4, 128.3, 127.9, 127.9, 126.7, 124.5, 123.2, 122.3, 96.4, 81.5, 66.5, 51.5, 49.2, 39.3, 38.5, 38.2, 36.8, 36.7, 33.6, 25.6, 24.1, 24.1, 22.4, 19.6, 18.2.

HRMS (ESI) m/z calcd for $C_{36}H_{41}NNaO_2$ [M+Na]⁺ 542.3030, found 542.3037. Benzyl (3-(1-((4-propylphenyl)ethynyl)cyclohexyl)propyl)carbamate (2aa)

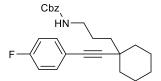

Prepared according to GP3 starting from benzyl (3-cyclohexylpropyl)(((4propylphenyl)ethynyl)sulfonyl)carbamate (96.3 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2aa** as a yellow oil in 79% yield (66.0 mg). **TLC** $R_f = 0.40$ (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.25 (m, 7H), 7.13 – 6.99 (m, 2H), 5.09 (s, 2H), 4.80 (brs, 1H), 3.30 – 3.15 (m, 2H), 2.55 (t, *J* = 7.6 Hz, 2H), 1.88 – 1.78 (m, 2H), 1.78 – 1.69 (m, 4H), 1.69 – 1.64 (m, 2H), 1.64 – 1.52 (m, 4H), 1.50 – 1.42 (m, 2H), 1.21 – 1.14 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl3) δ 156.4, 142.3, 136.7, 131.5, 128.5, 128.4, 128.1, 128.1, 121.3, 94.2, 83.5, 66.6, 41.5, 40.2, 38.0, 37.9, 37.0, 26.3, 25.1, 24.4, 23.2, 13.7.

HRMS (ESI) m/z calcd for C₂₈H₃₅NNaO₂ [M+Na]⁺ 440.2560, found 440.2567.

Benzyl (3-(1-((4-(*tert*-butyl)phenyl)ethynyl)cyclohexyl)propyl)carbamate (2ab)


Prepared according to GP3 starting from benzyl (((4-(*tert*-butyl)phenyl)ethynyl)sulfonyl)(3-cyclohexylpropyl)carbamate (99.1 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2ab** as a yellow oil in 84% yield (72.5 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

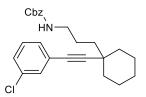
¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 9H), 5.09 (s, 2H), 4.78 (brs, 1H), 3.29 – 3.18 (m, 2H), 1.88 – 1.63 (m, 8H), 1.49 – 1.43 (m, 2H), 1.31 – 1.25 (m, 10H), 1.22 – 1.14 (m, 3H).

¹³**C NMR** (101 MHz, CDCl3) δ 156.4, 150.7, 136.7, 131.3, 128.5, 128.1, 128.1, 125.2, 121.1, 94.3, 83.5, 66.6, 41.5, 40.1, 38.0, 37.0, 34.7, 31.2, 26.3, 25.1, 23.2.

HRMS (ESI) m/z calcd for C₂₉H₃₇NO₂ [M+Na]⁺ 454.2717, found 454.2725.

Benzyl (3-(1-((4-fluorophenyl)ethynyl)cyclohexyl)propyl)carbamate (2ac)

Prepared according to GP3 starting from benzyl (3-cyclohexylpropyl)(((4-fluorophenyl)ethynyl)sulfonyl)carbamate (91.5 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2ac** as a pale yellow oil in 66% yield (51.9 mg). **TLC** R_f = 0.30 (PE:EA = 10:1).

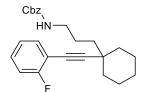

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 7H), 6.99 – 6.92 (m, 2H), 5.09 (s, 2H), 4.82 (brs, 1H), 3.29 – 3.20 (m, 2H), 1.84 – 1.78 (m, 2H), 1.77 – 1.67 (m, 5H), 1.64 – 1.58 (m, 2H), 1.49 – 1.43 (m, 2H), 1.24 – 1.13 (m, 3H).

¹³**C** NMR (101 MHz, CDCl₃) δ 162.0 (d, J = 249.0 Hz), 156.4, 136.7, 133.3 (d, J = 8.2 Hz), 128.5, 128.1, 120.1 (d, J = 3.4 Hz), 115.3 (d, J = 22.1 Hz), 94.7, 82.4, 66.6, 41.5, 40.1, 37.9, 36.9, 26.2, 25.1, 23.2.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -112.5.

HRMS (ESI) m/z calcd for C₂₅H₂₈FNNaO₂ [M+Na]⁺ 416.1996, found 416.1999.

Benzyl (3-(1-((3-chlorophenyl)ethynyl)cyclohexyl)propyl)carbamate (2ad)

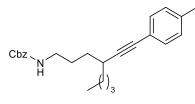

Prepared according to GP3 starting from benzyl (((3-chlorophenyl)ethynyl)sulfonyl)(3-cyclohexylpropyl)carbamate (94.8 mg, 0.2 mmol)and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2ad** as a yellow oil in 70% yield (57.4 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.37 (m, 1H), 7.36 – 7.31 (m, 5H), 7.26 – 7.17 (m, 3H), 5.10 (s, 2H), 4.81 (brs, 1H), 3.27 – 3.21 (m, 2H), 1.84 – 1.79 (m, 2H), 1.75 – 1.67 (m, 4H), 1.65 – 1.57 (m, 3H), 1.49 – 1.44 (m, 2H), 1.23 – 1.15 (m, 3H).

¹³**C NMR** (101 MHz, CDCl3) δ 156.4, 136.7, 134.0, 131.5, 129.7, 129.4, 128.5, 128.1, 128.1, 127.8, 125.8, 96.5, 82.3, 66.6, 41.5, 40.0, 37.8, 37.0, 26.2, 25.1, 23.2.

HRMS (ESI) m/z calcd for $C_{25}H_{28}Cl^{35}NNaO_2$ [M+Na]⁺ 432.1701, found 432.1703. $C_{25}H_{28}Cl^{37}NNaO_2$ [M+Na]⁺ 434.1671, found 434.1675.

Benzyl (3-(1-((2-fluorophenyl)ethynyl)cyclohexyl)propyl)carbamate (2ae)

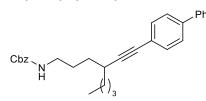


Prepared according to GP3 starting from benzyl (3-cyclohexylpropyl)(((2-fluorophenyl)ethynyl)sulfonyl)carbamate (91.5 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2ae** as a pale yellow oil in 74% yield (58.2 mg). **TLC** R_f = 0.30 (PE:EA = 10:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.27 (m, 6H), 7.25 – 7.18 (m, 1H), 7.08 – 6.97 (m, 2H), 5.10 (s, 2H), 4.79 (brs, 1H), 3.30 – 3.16 (m, 2H), 1.88 – 1.81 (m, 2H), 1.79 – 1.67 (m, 5H), 1.65 – 1.56 (m, 2H), 1.52 – 1.44 (m, 2H), 1.26 – 1.12 (m, 3H).

¹³**C NMR** (101 MHz, CDCl3) δ 162.9 (d, J = 251.1 Hz), 156.4, 136.7, 133.4, 133.4, 129.1 (d, J = 7.8 Hz), 128.5, 128.1 (d, J = 3.5 Hz), 123.8, 123.7, 115.3 (d, J = 21.2 Hz), 112.5 (d, J = 15.9 Hz), 100.7, 66.6, 41.5, 40.0, 37.9, 37.3, 26.2, 25.1, 23.2. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -110.6.

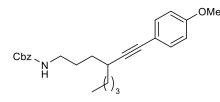
HRMS (ESI) m/z calcd for $C_{25}H_{28}FNNaO_2$ [M+Na]⁺ 416.1996, found 416.1996. **Benzyl (4-(***p***-tolylethynyl)octyl)carbamate (2af)**



tolylethynyl)sulfonyl)carbamate (88.2 mg, 0.2 mmol) and tert-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2af** as yellow oil in 67% yield (50.6 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 5H), 7.27 (d, *J* = 7.8 Hz, 2H), 7.07 (d, *J* = 7.8 Hz, 2H), 5.09 (s, 2H), 4.80 (brs, 1H), 3.29 – 3.19 (m, 2H), 2.56 – 2.48 (m, 1H), 2.32 (s, 3H), 1.82 – 1.73 (m, 1H), 1.69 – 1.64 (m, 1H), 1.55 – 1.46 (m, 5H), 1.40 – 1.27 (m, 3H), 0.91 (t, *J* = 7.2 Hz, 3H).

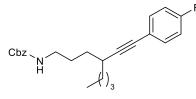
¹³C NMR (101 MHz, CDCl₃) δ 156.4, 137.5, 136.7, 131.5, 128.9, 128.5, 128.1, 120.9, 92.3, 82.2, 66.6, 41.0, 35.0, 32.3, 32.1, 29.7, 28.0, 22.6, 21.4, 14.1.


HRMS (ESI) m/z calcd for C₂₅H₃₁NNaO₂ [M+Na]⁺ 400.2247, found 400.2253. **Benzyl (4-([1,1'-biphenyl]-4-ylethynyl)octyl)carbamate (2ag)**

Prepared according GP2 starting from benzyl (([1,1'-biphenyl]-4to (100.7 ylethynyl)sulfonyl)(octyl)carbamate mg, 0.2 mmol) and *tert*-butvl peroxybenzoate (7.6 µL, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2ag** as yellow solid in 75% yield (65.9 mg). **TLC** $R_f = 0.40$ (PE:EA = 10:1). mp 146–148 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7. 59 – 7.55 (m, 2H), 7. 53 – 7.49 (m, 2H), 7.48 – 7.37 (m, 5H), 7.36 – 7.31 (m, 5H), 5.10 (s, 2H), 4.80 (brs, 1H), 3.30 – 3.22 (m, 2H), 2.59 - 2.52 (m, 1H), 1.83 - 1.75 (m, 1H), 1.72 - 1.60 (m, 2H), 1.57 - 1.49 (m, 5H), 1.42 -1.34 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 140.5, 140.3, 136.7, 132.0, 128.8, 128.5, 128.1, 127.5, 127.0, 126.9, 122.9, 93.9, 82.0, 66.6, 41.0, 35.0, 32.3, 32.2, 29.7, 28.0, 22.6, 14.1.

HRMS (ESI) m/z calcd for $C_{30}H_{33}NNaO_2$ [M+Na]⁺ 462.2404, found 462.2408. Benzyl (4-((4-methoxyphenyl)ethynyl)octyl)carbamate (2ah)

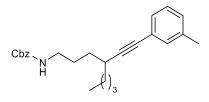


Prepared according to GP2 starting from benzyl (((4-methoxyphenyl)ethynyl)sulfonyl)(octyl)carbamate (91.5, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2ah** as a yellow solid in 65% yield (51.2 mg). **TLC** R_f = 0.20 (PE:EA = 5:1). mp 55–57 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 5H), 7.32 – 7.30 (m, 2H), 6.82 – 6.77 (m, 2H), 5.09 (s, 2H), 4.80 (brs, 1H), 3.79 (s, 3H), 3.28 – 3.18 (m, 2H), 2.54 – 2.48 (m, 1H), 1.80 – 1.72 (m, 1H), 1.71 – 1.65 (m, 1H), 1.55 – 1.47 (m, 5H), 1.42 – 1.30 (m,

3H), 0.92 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.0, 156.4, 136.7, 132.9, 128.5, 128.1, 116.1, 113.8, 91.5, 81.8, 66.6, 55.3, 41.0, 35.1, 32.3, 32.1, 29.7, 28.0, 22.6, 14.1.
HRMS (ESI) m/z calcd for C₂₅H₃₁NNaO₃ [M+Na]⁺ 416.2196, found 416.2201.
Benzyl (4-((4-fluorophenyl)ethynyl)octyl)carbamate (2ai)

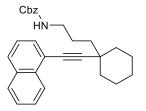

Prepared according to GP3 starting from benzyl (((4-fluorophenyl)ethynyl)sulfonyl)(octyl)carbamate (89.0 mg, 0.2 mmol) and tert-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2ai** as a pale yellow oil in 46% yield (35.1 mg). **TLC** R_f = 0.30 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 7H), 6.98 – 6.93 (m, 2H), 5.10 (s, 2H), 4.78 (brs, 1H), 3.28 – 3.21 (m, 2H), 2.55 – 2.48 (m, 1H), 1.80 – 1.73 (m, 1H), 1.70 – 1.62 (m, 2H), 1.58 – 1.51 (m, 2H), 1.50 – 1.46 (m, 2H), 1.41 – 1.28 (m, 3H), 0.92 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (101 MHz, CDCl₃) δ 162.0 (d, J = 249.0 Hz), 156.4, 136.6, 133.3 (d, J = 8.3 Hz), 128.5, 128.1, 120.0 (d, J = 3.8 Hz), 115.4 (d, J = 21.9 Hz), 92.7, 81.1, 66.6, 41.0, 34.9, 32.2, 32.1, 29.6, 28.0, 22.6, 14.1.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -112.3.

HRMS (ESI) m/z calcd for $C_{24}H_{28}FNNaO_2$ [M+Na]⁺ 404.1996, found 404.1997. **Benzyl (4-(***m***-tolylethynyl)octyl)carbamate (2aj)**

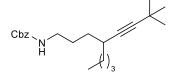


Prepared according to GP3 starting from benzyl octyl((*m*-tolylethynyl)sulfonyl)carbamate (88.3 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2aj** as a pale yellow oil in 48% yield (36.2 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 7.23 – 7.13 (m, 3H), 7.09 – 7.03 (m, 1H), 5.09 (s, 2H), 4.81 (brs, 1H), 3.31 – 3.16 (m, 2H), 2.58 – 2.46 (m, 1H), 2.30 (s, 3H), 1.85 – 1.73 (m, 1H), 1.70 – 1.62 (m, 1H), 1.57 – 1.46 (m, 5H), 1.42 – 1.27 (m, 3H), 0.92 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 137.8, 136.7, 132.2, 128.6, 128.5, 128.4, 128.1, 123.7, 92.7, 82.3, 66.6, 41.0, 35.0, 32.3, 32.1, 29.6, 28.0, 22.6, 21.2, 14.1.

HRMS (ESI) m/z calcd for C₂₅H₃₁NNaO₂ [M+Na]⁺ 400.2247, found 400.2248.

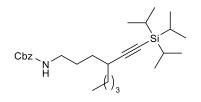


Prepared according to GP3 starting from benzyl (3-cyclohexylpropyl)((naphthalen-1-ylethynyl)sulfonyl)carbamate (97.9 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2ak** as a pale yellow oil in 61% yield (51.9 mg). **TLC** R_f = 0.40 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.3 Hz, 1H), 7.83 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.77 (d, *J* = 8.2 Hz, 1H), 7.62 (d, *J* = 7.1 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.41 – 7.27 (m, 6H), 5.09 (s, 2H), 4.78 (brs, 1H), 3.33 – 3.23 (m, 2H), 1.98 – 1.92 (m, 2H), 1.90 – 1.79 (m, 4H), 1.79 – 1.64 (m, 4H), 1.61 – 1.59 (m, 1H), 1.33 – 1.22 (m, 3H).

¹³**C NMR** (101 MHz, CDCl3) δ 156.4, 136.7, 133.5, 133.3, 130.2, 128.5, 128.3, 128.1, 127.9, 126.6, 126.2, 125.3, 121.8, 100.2, 81.4, 66.6, 41.6, 40.3, 38.1, 37.5, 26.3, 25.3, 23.4.

HRMS (ESI) m/z calcd for $C_{29}H_{31}NNaO_2$ [M+Na]⁺ 448.2247, found 448.2245. Benzyl (4-butyl-7,7-dimethyloct-5-yn-1-yl)carbamate (2al)



Prepared according to GP3 starting from benzyl ((3,3-dimethylbut-1-yn-1-yl)sulfonyl)(octyl)carbamate (81.5 mg, 0.2 mmol) and *tert*-butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2al** as a colorless oil in 65% yield (44.7 mg). **TLC** R_f = 0.35 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 5H), 5.09 (s, 2H), 4.78 (brs, 1H), 3.25 – 3.18 (m, 2H), 2.30 – 2.19 (m, 1H), 1.42 – 1.24 (m, 10H), 1.18 (s, 9H), 0.89 (t, *J* = 6.9 Hz, 3H).

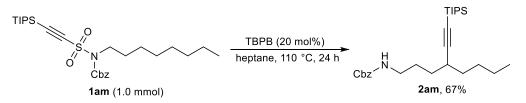
¹³**C NMR** (101 MHz, CDCl3) δ 156.4, 136.7, 128.5, 128.1, 128.1, 90.6, 81.3, 66.6, 41.0, 35.3, 32.5, 31.5, 31.3, 29.5, 27.8, 27.3, 22.5, 14.1.

HRMS (ESI) m/z calcd for C₂₂H₃₃NNaO₂ [M+Na]⁺ 366.2404, found 366.2408. **Benzyl (4-((triisopropylsilyl)ethynyl)octyl)carbamate (2am)**

Prepared according to GP2 starting from benzyl octyl(((triisopropylsilyl)ethynyl)sulfonyl)carbamate (101.6 mg, 0.2 mmol) and *tert*-

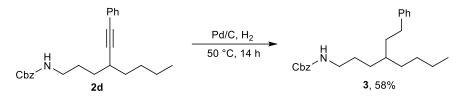
butyl peroxybenzoate (7.6 μ L, 0.04 mmol). The residue was purified by column chromatography (petroleum ether/diethyl ether = 4/1), giving the product **2am** as a yellow oil in 74% yield (65.7 mg). **TLC** R_f = 0.40 (PE:EA = 20:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 5.09 (s, 2H), 4.76 (brs, 1H), 3.26 – 3.16 (m, 2H), 2.41 – 2.31 (m, 1H), 1.80 – 1.68 (m, 1H), 1.66 – 1.57 (m, 1H), 1.51 – 1.25 (m, 8H), 1.09 – 0.99 (m, 21H), 0.89 (t, *J* = 7.2 Hz, 3H).


¹³**C NMR** (101 MHz, CDCl₃) δ 156.4, 136.7, 128.5, 128.1, 128.1, 112.1, 81.4, 66.6, 40.9, 35.0, 32.4, 32.3, 29.5, 27.8, 22.5, 18.7, 14.0, 11.3.

HRMS (ESI) m/z calcd for C₂₇H₄₅NNaSiO₂ [M+Na]⁺ 466.3112, found 466.3114.

6. Scale-up reaction


A dry flask equipped with a stirring bar was charged with benzyl octyl((phenylethynyl)sulfonyl)carbamate **1d** (427.0 mg, 1.0 mmol). It was capped with a rubber septum, evacuated and backfilled with N₂. Then, heptane (10.0 mL) and *tert*-butyl peroxybenzoate (38 μ L, 0.2 mmol) was added. The reaction mixture was stirred at 110 °C for 24 h. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (petroleum ether/diethyl ether = 4/1) to afford the benzyl (4-(phenylethynyl)octyl)carbamate **2d** in 71% yield (257.0 mg).

A dry flask equipped with a stirring bar was charged with benzyl octyl(((triisopropylsilyl)ethynyl)sulfonyl)carbamate **1am** (507.8 mg, 1.0 mmol). It was capped with a rubber septum, evacuated and backfilled with N₂. Then, heptane (10 mL) and *tert*-butyl peroxybenzoate (38 μ L, 0.2 mmol) was added. The reaction mixture was stirred at 110 °C for 24 h. The solvent was removed in vacuo, and the residue was purified by silica gel column chromatography (petroleum ether/diethyl ether = 4/1) to afford the benzyl (4-((triisopropylsilyl)ethynyl)octyl)carbamate **2am** in 67% yield (297.3 mg).

7. Synthetic transformations of the alkynylated products

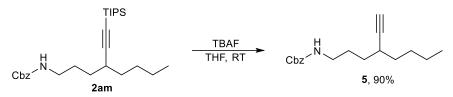
7.1 Hydrogenation


A mixture of benzyl (4-(phenylethynyl)octyl)carbamate **2d** (72.6 mg, 0.2 mmol) and Pd/C (10 w/w%, 30 mg) in EtOAc (1.0 mL) was stirred under a hydrogen atmosphere at 50 °C for 14 h. The catalyst was filtered through celite, and the filtrate was concentrated in vacuo to yield benzyl (4-phenethyloctyl)carbamate **3** in 58% yield (42.5 mg) as yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 – 7.26 (m, 4H), 7.24 – 7.20 (m, 1H), 7.20 – 7.15 (m, 2H), 7.10 – 7.05 (m, 3H), 5.02 (s, 2H), 4.67 (brs, 1H), 3.13 – 3.06 (m, 2H), 2.51 – 2.45 (m, 2H), 1.49 – 1.43 (m, 2H), 1.43 – 1.37 (m, 2H), 1.25 – 1.17 (m, 9H), 0.84 – 0.80 (t, *J* = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 156.4, 143.0, 136.7, 128.5, 128.3, 128.3, 128.1, 128.1, 125.6, 66.6, 41.5, 36.9, 35.5, 33.1, 33.0, 30.5, 28.8, 27.1, 23.1, 14.2.

HRMS (ESI) m/z calcd for C₂₄H₃₃NNaO₂ [M+Na]⁺ 390.2403, found 390.2401.


7.2 Synthesis of benzyl (4-(2-oxo-2-phenylethyl)octyl)carbamate

To a stirred solution of benzyl (4-(phenylethynyl)octyl)carbamate **2d** (56.0 mg, 0.15 mmol) in 2,2,2-trifluoroethan-1-ol (TFE, 1.0 mL) was added H₂O (54 μ L, 3.0 mmol, 20 equiv.) and trifluoromethanesulfonic acid (TfOH, 2.7 μ L, 0.03 mmol, 20 mol%) at room temperature and the mixture was stirred at 60 °C for 24 h. Then, the mixture was transferred into a 50.0 mL separating funnel which contained 10.0 mL of sat. NaHCO₃ and extracted twice by DCM (10.0 mL each). The combined organic layers were dried by MgSO₄. After filtration, the filtrate was concentrated under reduced pressure to give the crude product, which was purified by flash chromatography on silica gel (EtOAc : pentane = 1:10) to give benzyl (4-(2-oxo-2-phenylethyl)octyl)carbamate **4** in 82% yield (46.9 mg) as a colorless oil. **TLC** R_f = 0.30 (PE:EA = 10:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 – 7.90 (m, 2H), 7.58 – 7.52 (m, 1H), 7.48 – 7.43 (m, 2H), 7.37 – 7.27 (m, 5H), 5.09 (s, 2H), 4.88 (brs, 1H), 3.23 – 3.12 (m, 2H), 2.96 – 2.80 (m, 2H), 2.15 – 2.06 (m, 1H), 1.57 – 1.47 (m, 2H), 1.38 – 1.26 (m, 8H), 0.90 – 0.85 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 200.4, 156.4, 137.4, 136.7, 132.9, 128.6, 128.5, 128.1, 66.6, 43.3, 41.2, 33.7, 33.7, 31.1, 28.9, 27.1, 22.9, 14.1. **HRMS (ESI)** m/z calcd for C₂₄H₃₁NNaO₃ [M+Na]⁺ 404.2196, found 404.2197.

7.3 Synthesis of ethyl 4-(4-(1-(((benzyloxy)carbonyl)amino)octan-4-yl)-1H-1,2,3-triazol-1-yl)butanoate^[6]

To a stirred solution of benzyl (4-((triisopropylsilyl)ethynyl)octyl)carbamate (443.7 mg, 1.0 mmol) in anhydrous THF (5.0 mL) at 0 °C was added dropwise a solution of TBAF in THF (2.0 mL, 1M in THF, 2 mmol). After the addition was complete, the mixture was warmed to room temperature and stirred for 16 h. Sat. aq. NH₄Cl (10 mL) was added to the mixture and extracted with Et₂O (3 × 5.0 mL). The combined organic extracts were successively washed with 1 M HCl (2.0 mL), water (10.0 mL), brine (10.0 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc : pentane = 1:10) to afford benzyl (4-ethynyloctyl)carbamate **5** in 90% yield (258.7 mg). **TLC** R_f = 0.3 (PE:EA = 10:1).

¹**H** NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.40 – 7.26 (m, 5H), 5.09 (s, 2H), 4.79 (brs, 1H), 3.27 – 3.15 (m, 2H), 2.37 – 2.27 (m, 1H), 2.09 – 1.99 (m, 1H), 1.80 – 1.70 (m, 1H), 1.65 – 1.55 (m, 1H), 1.51 – 1.29 (m, 8H), 0.90 (t, *J* = 7.1 Hz, 3H).

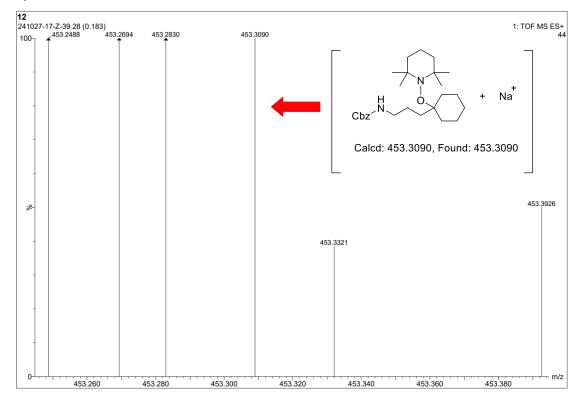
¹³C NMR (101 MHz, CDCl₃, mixture of rotamers) δ 156.4, 136.6, 128.5, 128.1, 128.1, 87.6, 69.6, 66.6, 40.9, 34.7, 32.0, 31.3, 29.4, 27.8, 22.5, 14.1.

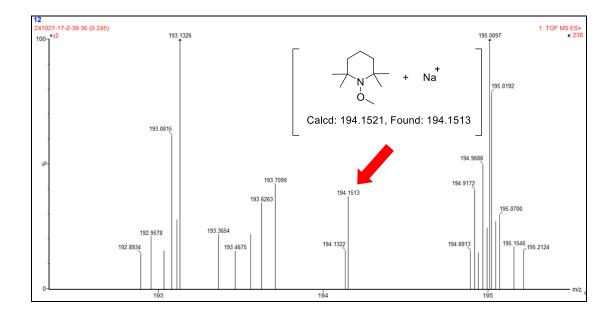
HRMS (ESI) m/z calcd for C₁₈H₂₅NNaO₂ [M+Na]⁺ 310.1777, found 310.1782.

A suspension of benzyl (4-ethynyloctyl)carbamate **5** (57.5 mg, 0.2 mmol), CuI (1.9 mg, 0.01 mmol), DIPEA (0.18 mL, 5 mmol), and ethyl 4-azidobutanoate (31.4 mg, 0.2 mmol) was heated through a heating block in CH₂Cl₂ (2.0 mL) for 24 h, after which time the typical IR band for azide (2095 cm⁻¹) had completely disappeared. The precipitate was filtered, washed with methanol, and dried under vacuum to yield ethyl 4-(4-(1-(((benzyloxy)carbonyl)amino)octan-4-yl)-1H-1,2,3-triazol-1-yl)butanoate as a colorless oil **6** in 95% yield (84.4 mg). **TLC** R_f = 0.10 (PE:EA = 2:1).

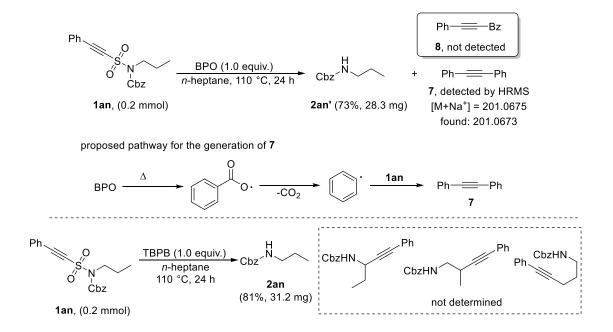
¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 7.25 (s, 1H), 5.07 (s, 2H), 4.96 (brs, 1H), 4.41 – 4.32 (m, 2H), 4.13 (q, J = 7.1 Hz, 2H), 3.19 – 3.08 (m, 2H), 2.83 – 2.73 (m, 1H), 2.35 – 2.28 (m, 2H), 2.23 – 2.18 (m, 2H), 1.71 – 1.58 (m, 4H), 1.49 – 1.37 (m, 2H), 1.30 – 1.14 (m, 7H), 0.84 (t, J = 7.2 Hz, 3H).

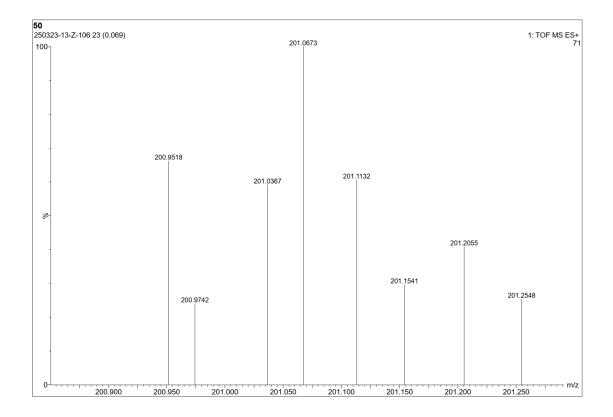
¹³**C NMR** (101 MHz, CDCl₃) δ 172.4, 156.4, 151.7, 136.7, 128.5, 128.1, 120.5, 66.5, 60.7, 49.1, 41.0, 36.5, 35.1, 32.4, 30.8, 29.4, 27.7, 25.5, 22.7, 14.2, 14.0.

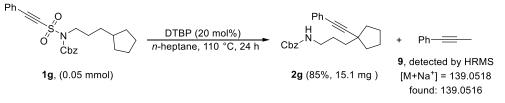

HRMS (ESI) m/z calcd for C₂₄H₃₆N₄NaO₄ [M+Na]⁺ 467.2629, found 467.2629

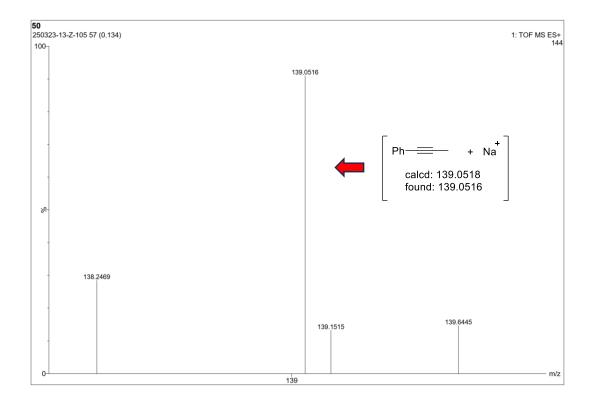

8. Control experiments

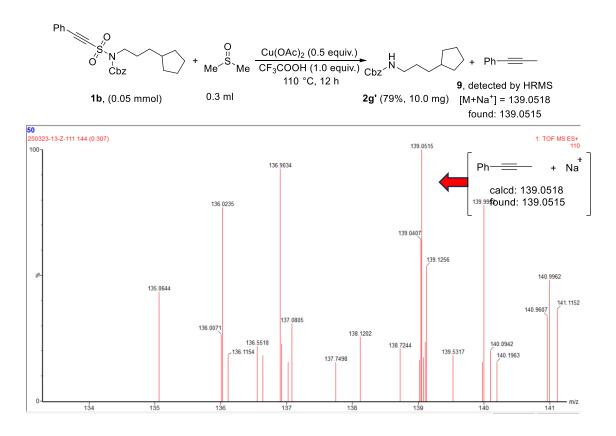
8.1 Radical trapping experiments


The radical scavenger TEMPO (2,2,6,6 tetromethyl-1-piperidinyloxy, 3.0 equiv) was added under the standard conditions. After 24 h, no desired product was observed by TLC, indicating that the reaction was completely inhibited. The mixture was detected by HRMS (see below).




8.2 Control experments


We performed the reaction of **1an** by using BPO as the initiator. After 24 h,the redutive **2an'** was generated. The mixture was detected by HRMS (see below), indicating that phenyl radical initiate the radical chain by using BPO as the initiator. We conducted the reaction of N-propyl derived ethynylsulfonamide **1an** by using 1.0 equivalents of tert-butyl peroxybenzoate (TBPB). However, we did observe any alkylated products.



We used ethynylsulfonamide (**1g**) as the substrate, and di-tert-butyl peroxide (DTBP) was used as the initiator instead of TBPB. The target **2g** was isolated in 85% yield. When the reaction mixture was directly detected by HRMS (parallel experiment), prop-1-yn-1-ylarene **9** (HRMS (ESI) m/z calcd for C₉H₈Na [M+Na]+ 139.0518, found 139.0516) was observed.

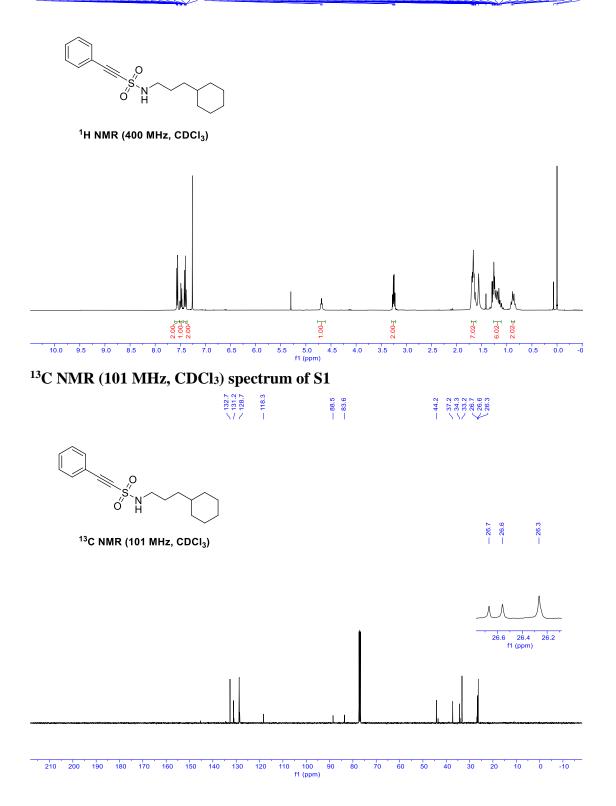
Then we performed the reaction of ethynylsulfonamide (**1g**) under Tan's methyl radical generation condition (*Chem. Commun.*, 2015, **51**, 1823) and found that the reductive carbamate **2g'** was formed in 79% yield, along with the observation of prop-1-yn-1-ylarene **9** by HRMS.

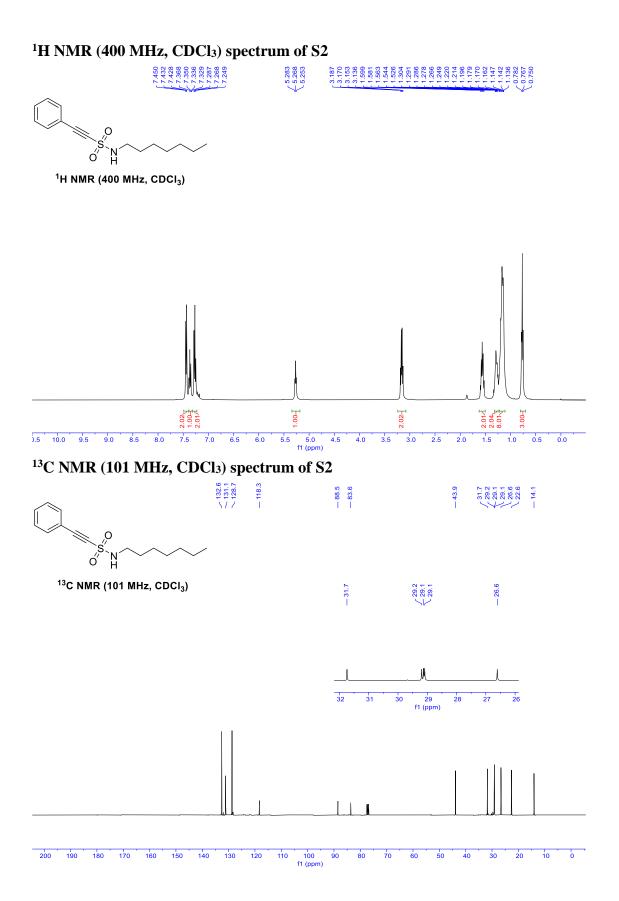
9 References

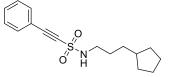
[1] Q. P. Hu, J. Cheng, Y. Wang, J. Shi, B. Q. Wang, P. Hu, K. Q. Zhao and F. Pan. *Org. Lett.* 2021, **23**, 4457.

[2] T. Utsumi, K. Noda, D. Kawauchi, H. Ueda and H. Tokuyama. *Adv. Synth. Catal.* 2020, **362**, 3583.

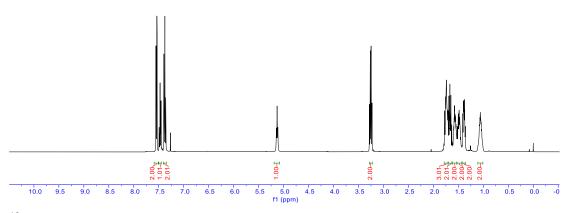
[3] L. Steemers, M. J. Wanner, M. Lutz, H. Hiemstra and J. H. van. Maarseveen. *Nat Commun.* 2017, **8**, 15392.

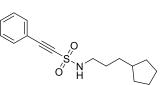

[4] E. Palomo, A. K. Sharma, Z. F. Wang, L. Y. Jiang, F. Maseras and M. G. Suero. J. Am. Chem. Soc. 2023, 145, 4975.


[5] S. Y. Meng, W. T. Guo, J. Liu, J. Zheng and Q. R. Wang. *ChemistrySelect* 2022, **7**, e202202760.

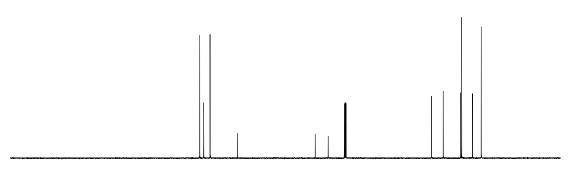

[6] S. Jain and O. Reiser. ChemSusChem. 2008, 1, 534.

10. NMR spectra of the starting materials and products

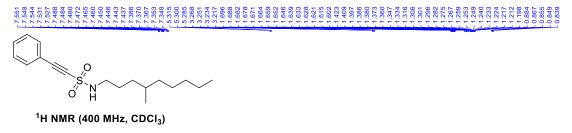

¹H NMR (400 MHz, CDCl₃) spectrum of S1

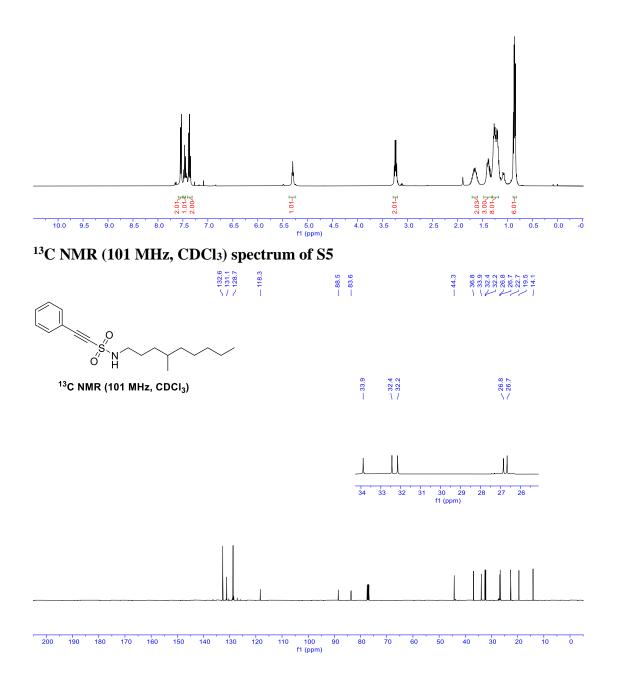


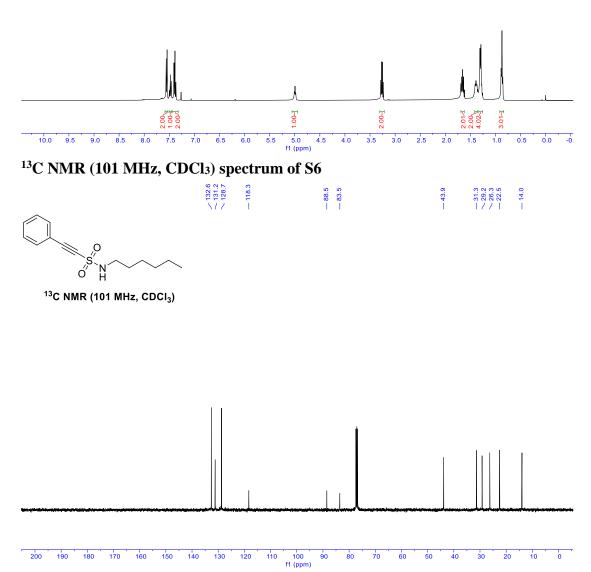
¹H NMR (400 MHz, CDCI₃)

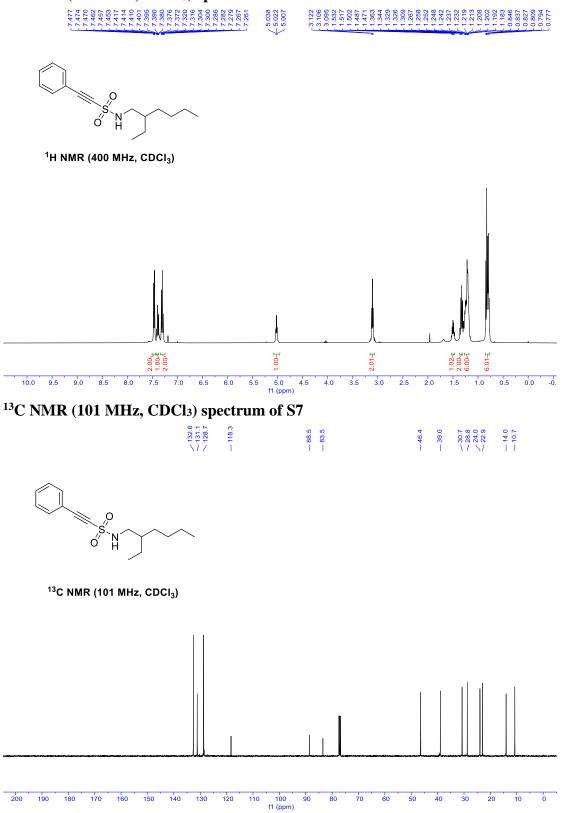


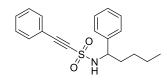
¹³C NMR (101 MHz, CDCl₃) spectrum of S3


¹³C NMR (101 MHz, CDCl₃)

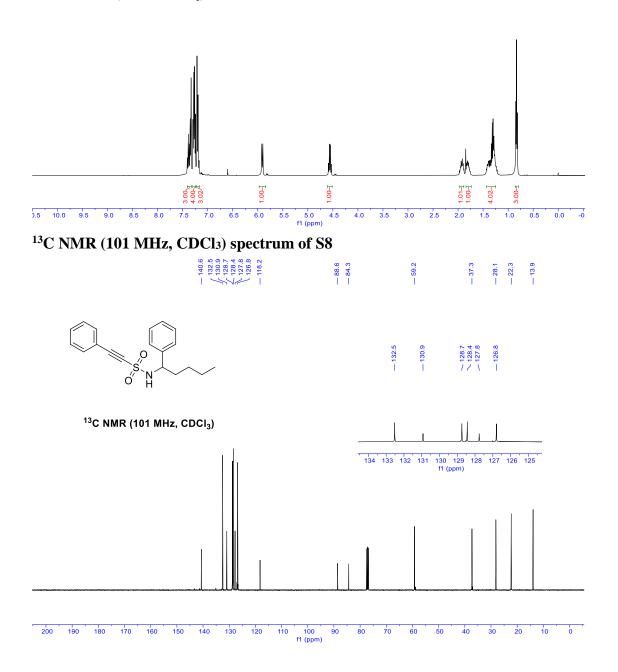


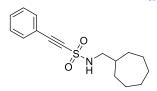



f1 (ppm) 130 120

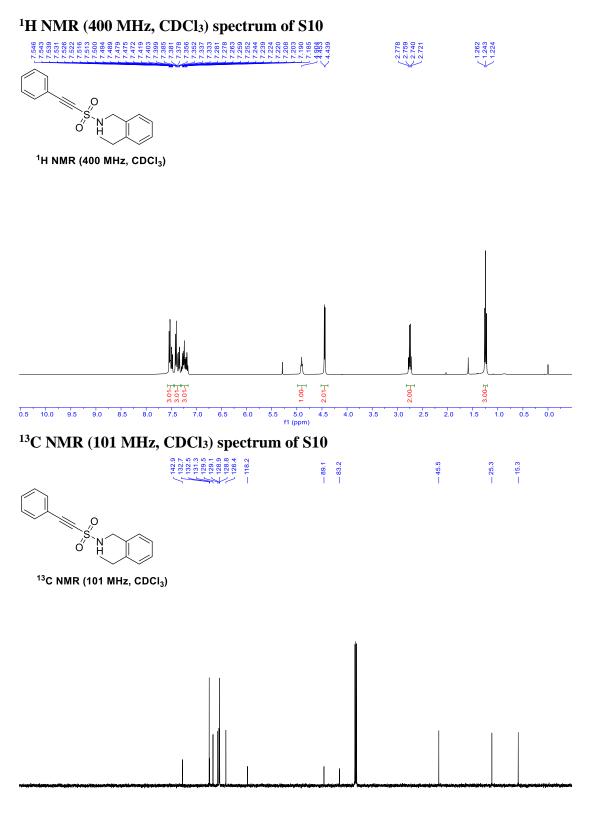


 5,010
 4,4,994
 4,4,994
 4,4,994
 4,4,994
 4,2,267
 3,2287
 3,2287
 3,2285
 3,2285
 3,2285
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1658
 4,1538
 4,1538
 4,1538
 4,1538
 4,1538
 4,1538
 4,1538
 4,1538
 4,1538
 4,1538
 4,1538
 4,1538
 4,1538
 4,1538
 4,1336
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1336
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338
 4,1338</l 0 \$. 0 `N H ¹H NMR (400 MHz, CDCl₃)

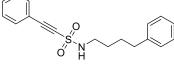



7, 1410 7, 1410 7, 1410 7, 1410 7, 1410 7, 1410 7, 1410 7, 1410 7, 1410 7, 1410 7, 1410 7, 1410 7, 1410 1, 141

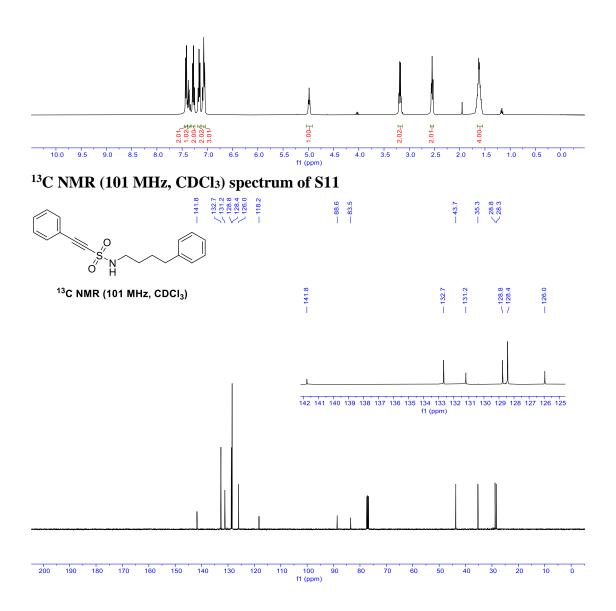

¹H NMR (400 MHz, CDCl₃)

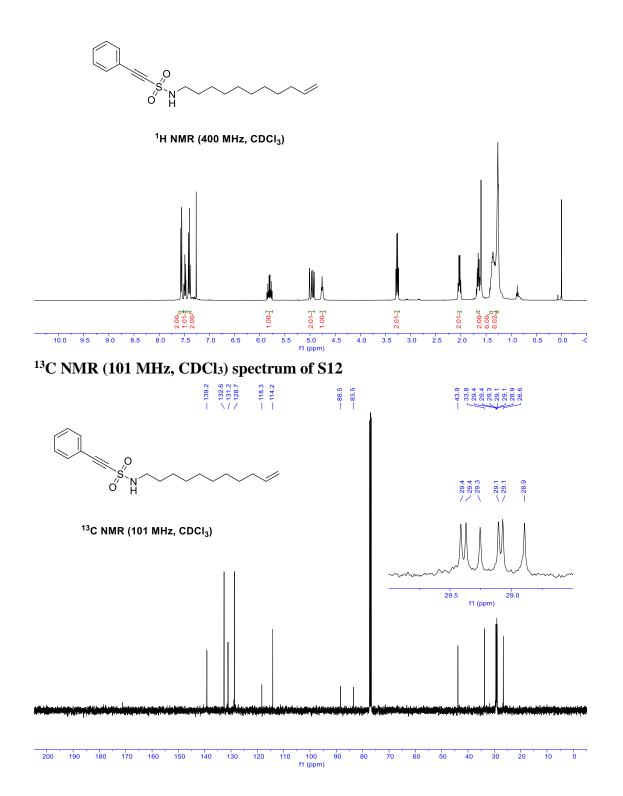

77 566 77 566 77 567 75 561 75 561 75 561 77 551 77 551 77 551 77 567

¹H NMR (400 MHz, CDCl₃)

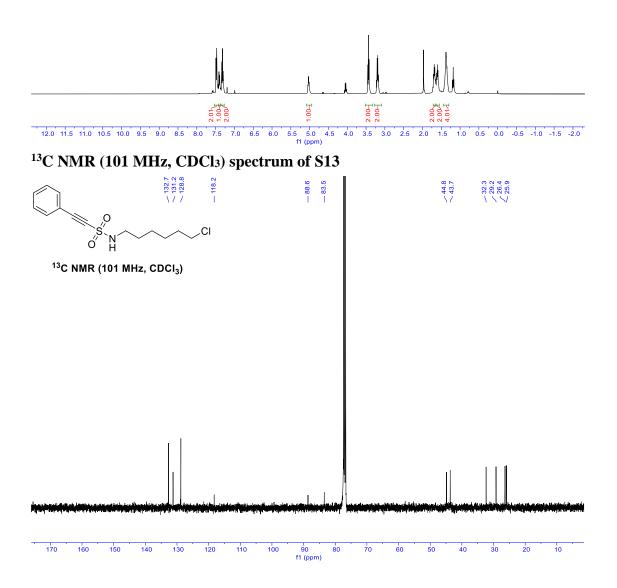


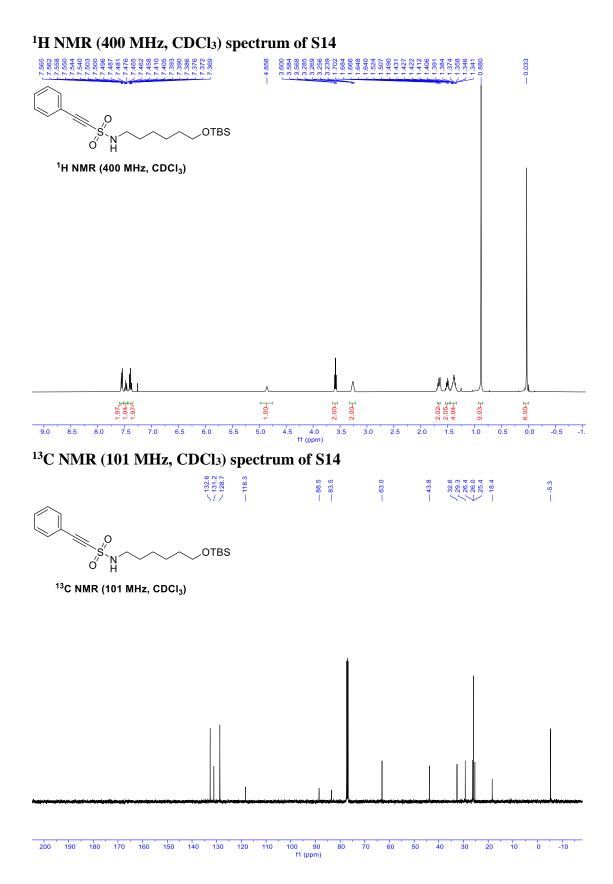
200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 90 80 70 60 50 40 30 20 10 0




160 150 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

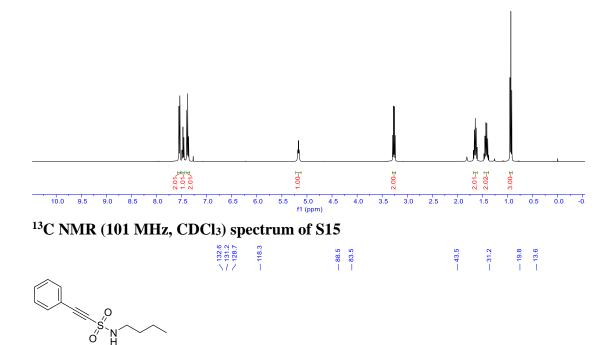


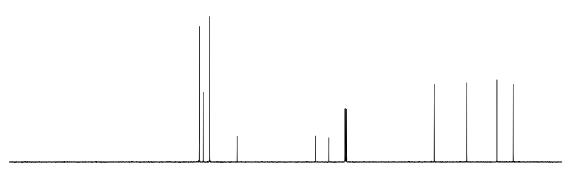


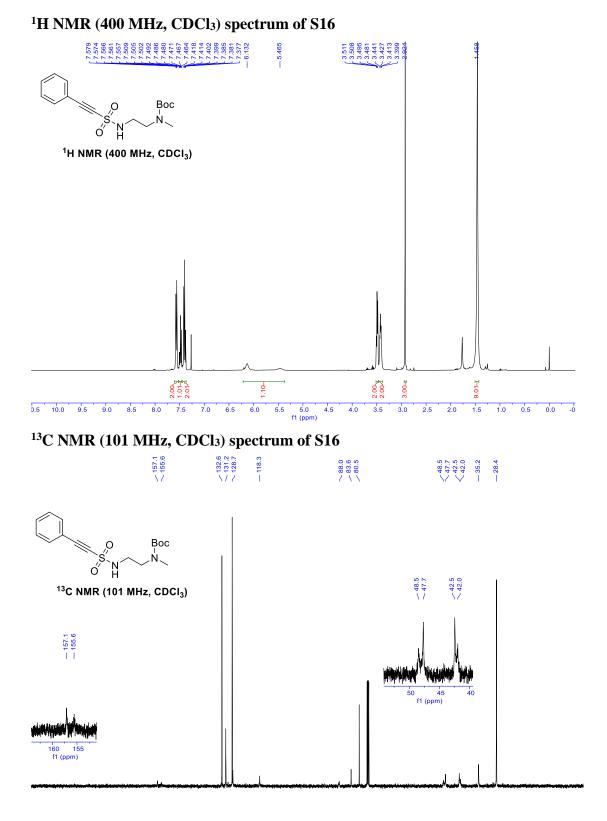
524 490	Ň	ιõ.	÷.	÷	ŝ.	÷.	iÔ.	m.	-	õ	÷.
22											

5.045 5.030 5.015 _CI

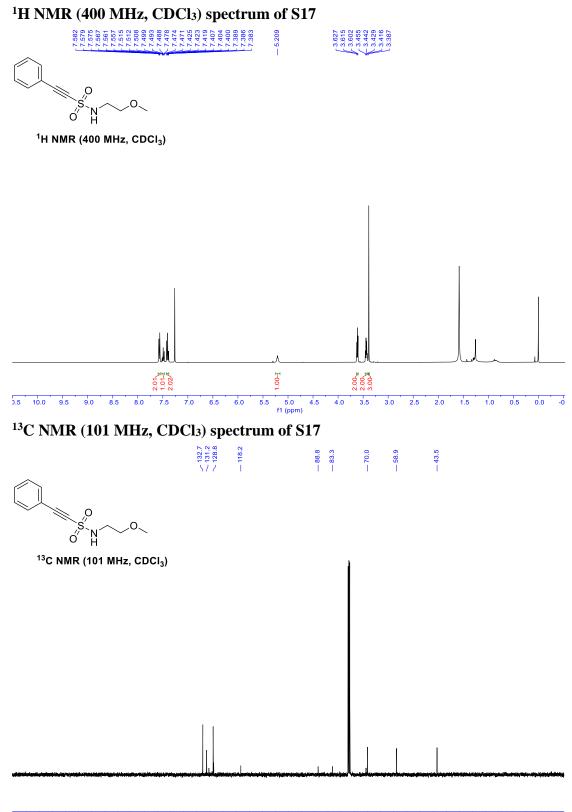
¹H NMR (400 MHz, CDCl₃)



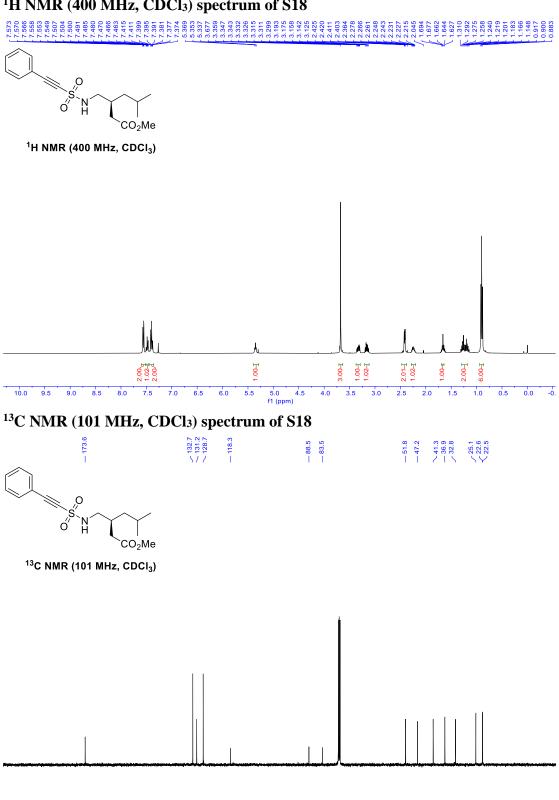

 3.230 3.275 3.275 3.275 3.275 3.275 1.682

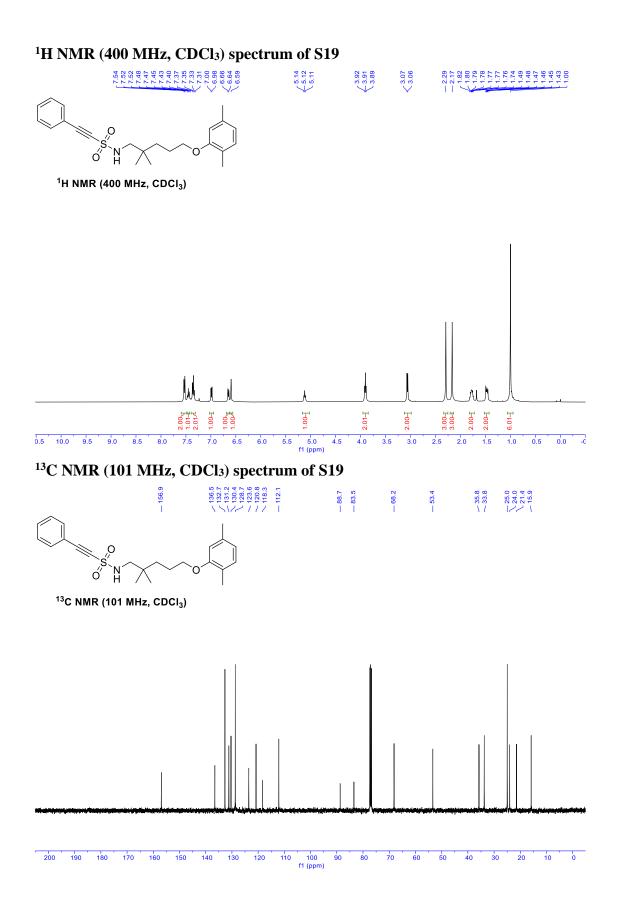

, o s o' H

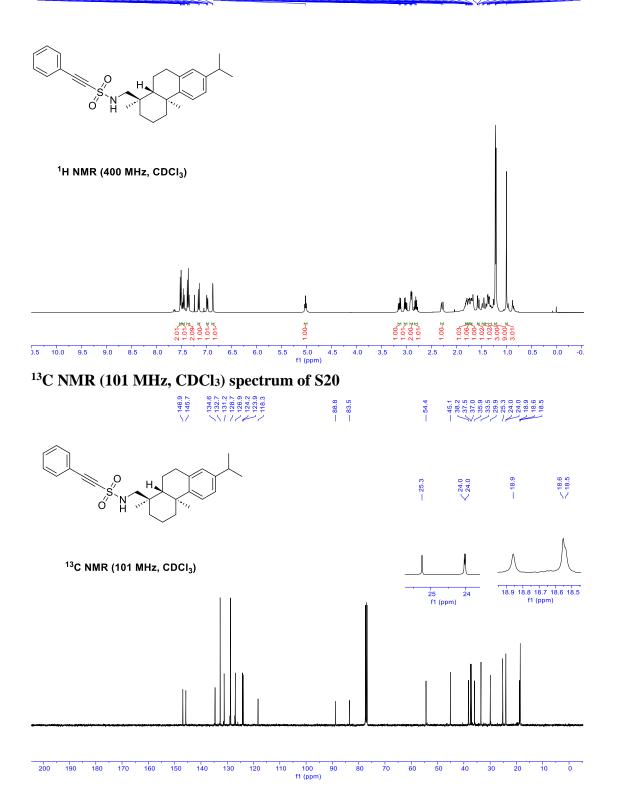
¹H NMR (400 MHz, CDCl₃)



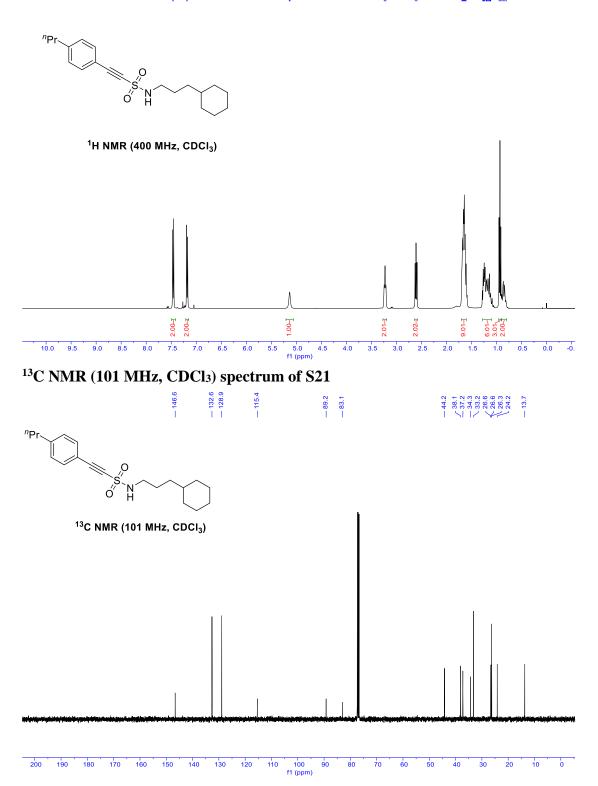
¹³C NMR (101 MHz, CDCl₃)

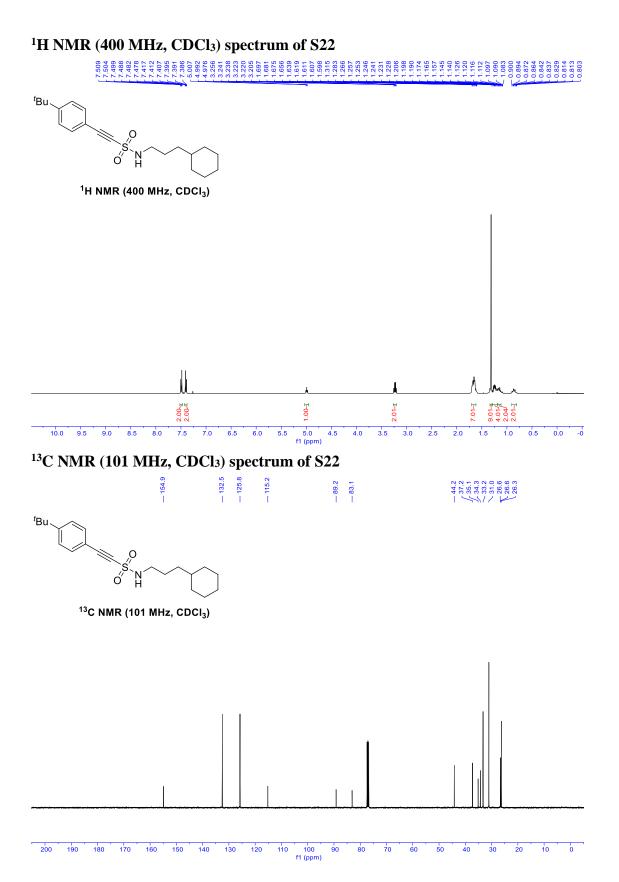



140 130 120 110 100 f1 (ppm)

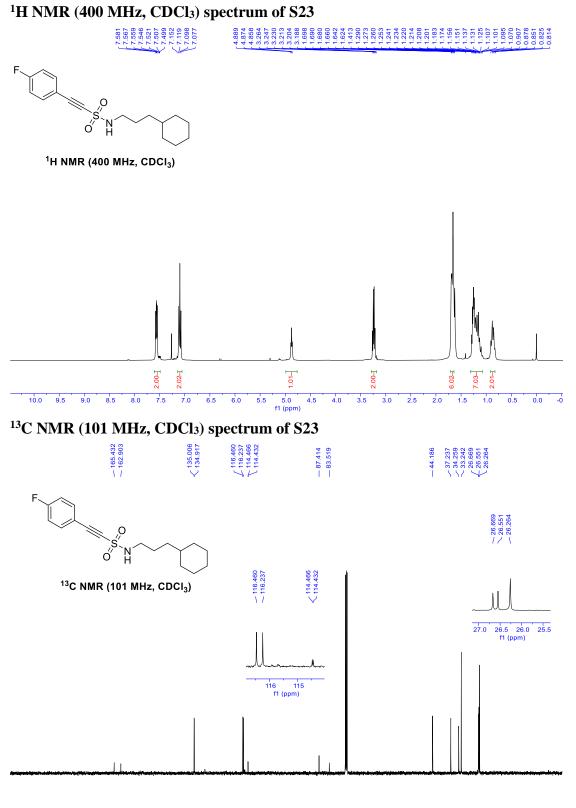


 f1 (ppm)

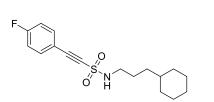



S75

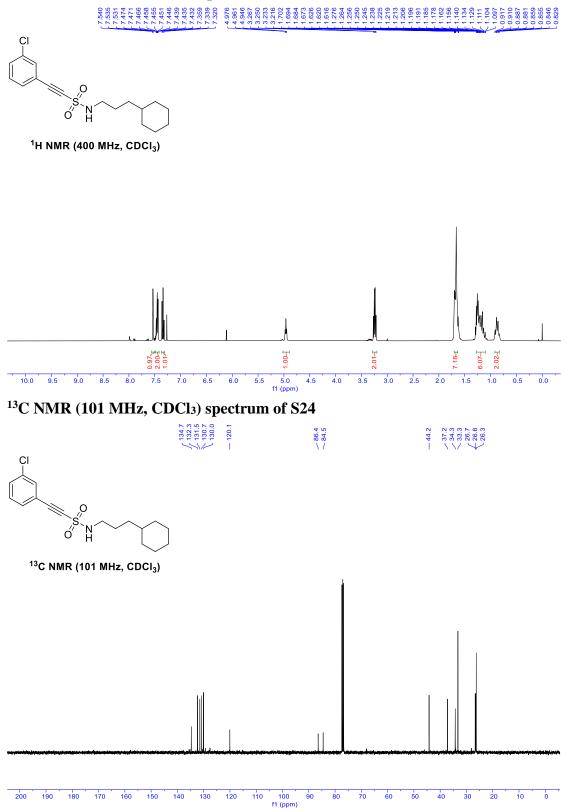
77 5523 77 5519 77 5511 77 5511 77 5517 77 5517 77 5517 77 5517 77 5517 77 5517 77 5517 77 5517 77 552 77 5555 77 5555 77 5555 77 5555 77 5555 77 5555 77 5555 77

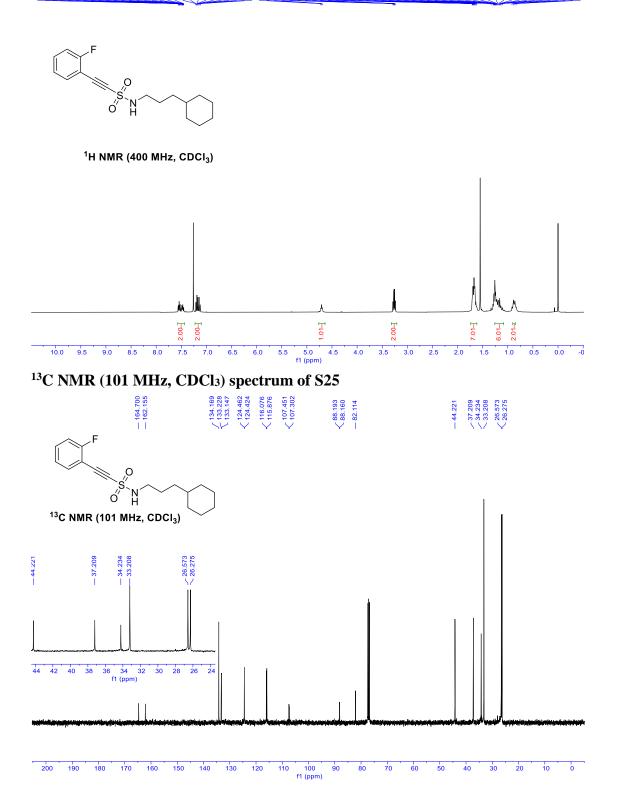


7,4470 7,1171 7,1171 7,1171 7,1171 7,1171 7,1171 7,1171 7,1172 7,

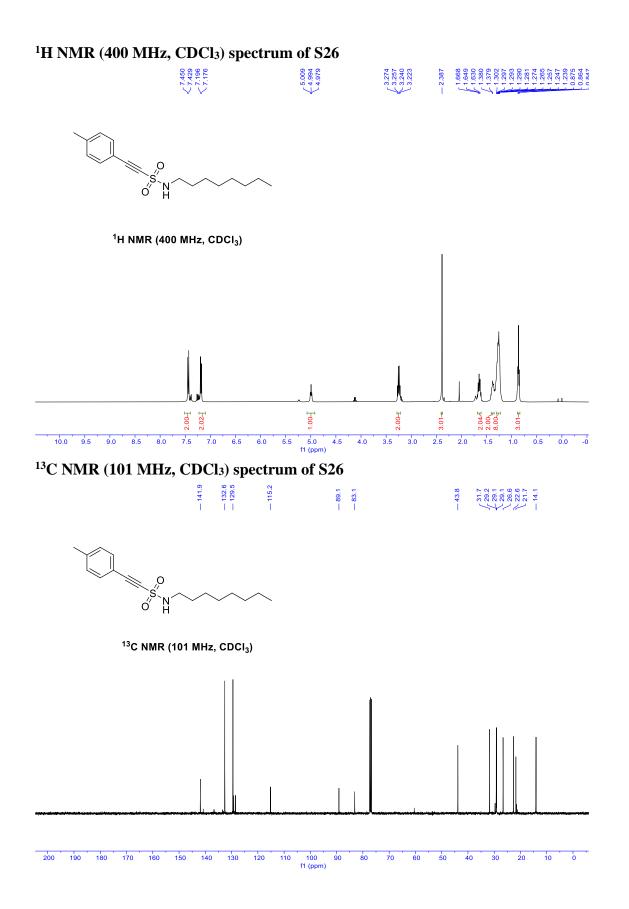


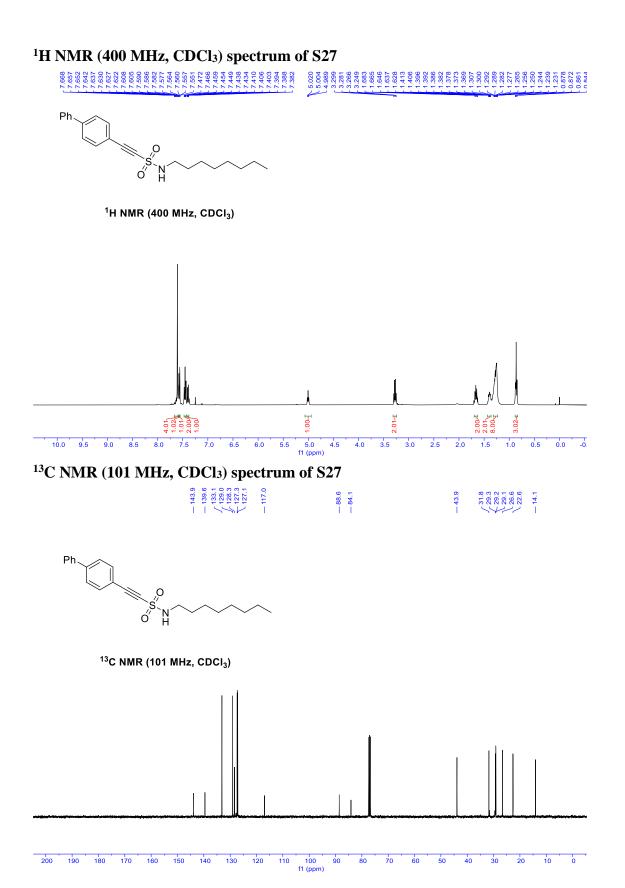
S78


f1 (ppm)

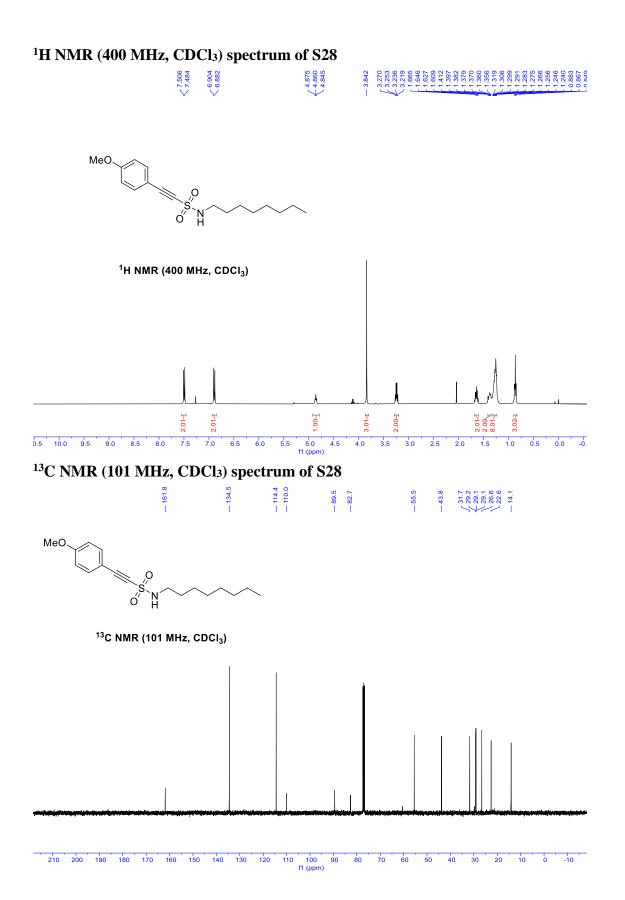

¹⁹F NMR (377 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2; f1 (ppm)

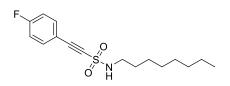

7,583 7,583 7,583 7,587 7,587 7,587 7,587 7,587 7,587 7,587 7,587 7,587 7,587 7,587 7,587 7,587 7,587 7,587 7,758 7,775 7,748 7,749

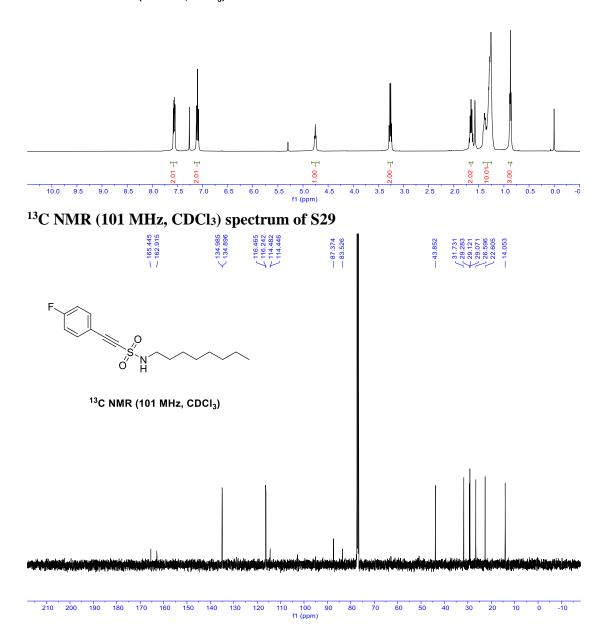


F Í ő

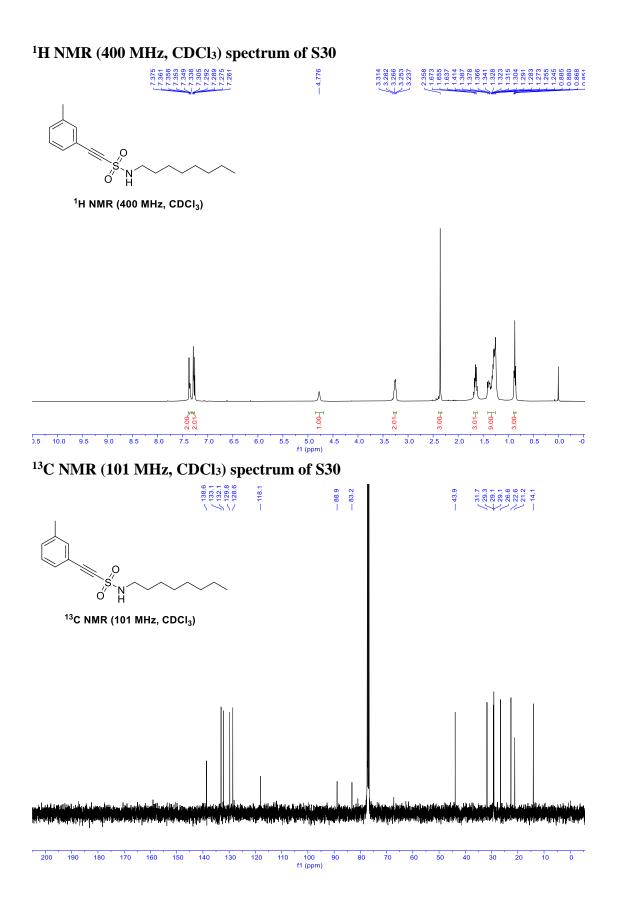

¹⁹F NMR (377 MHz, CDCl₃)

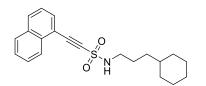
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)



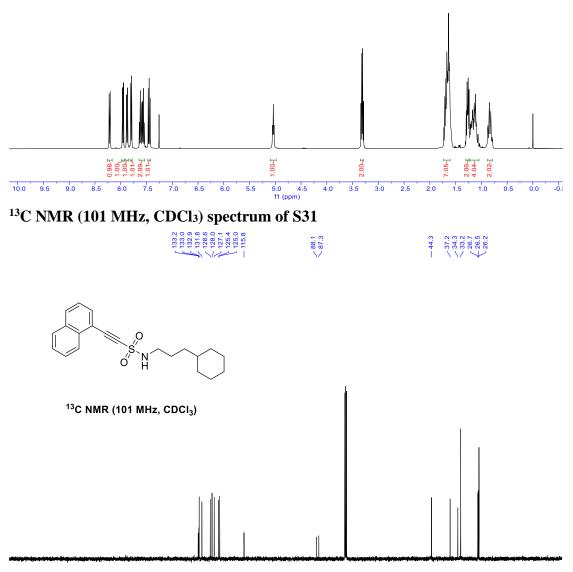

S85

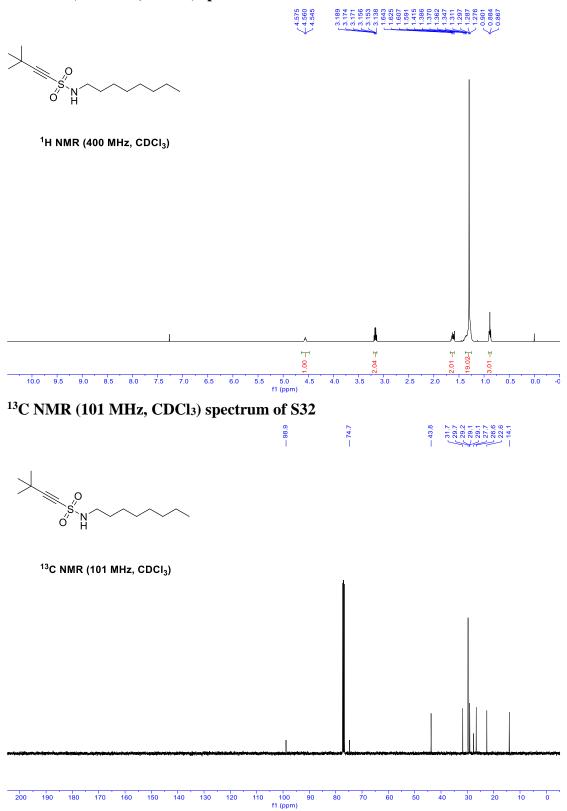
7.587 7.582 7.569 7.569 7.564 7.554 7.130 7.130 7.130 7.116 7.116 7.116 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101

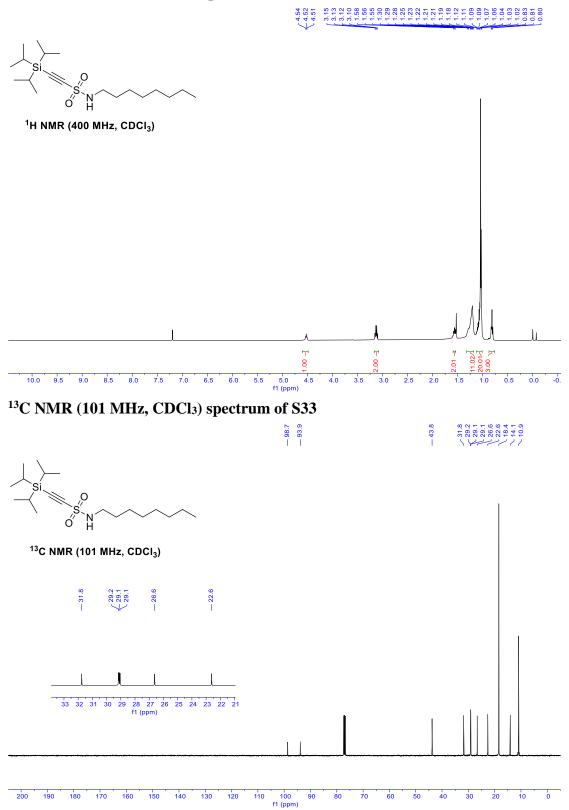

¹H NMR (400 MHz, CDCl₃)


ò Ó Ő `N H

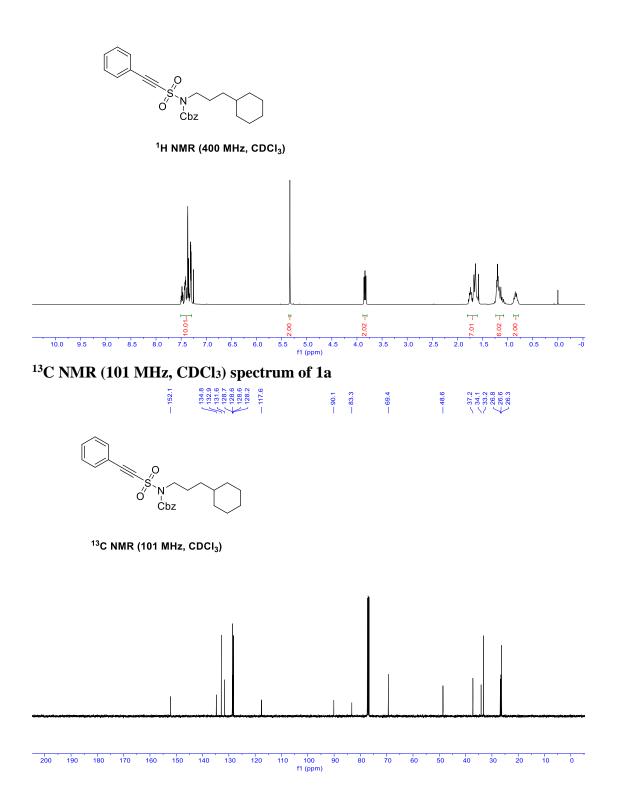
¹⁹F NMR (377 MHz, CDCl₃)

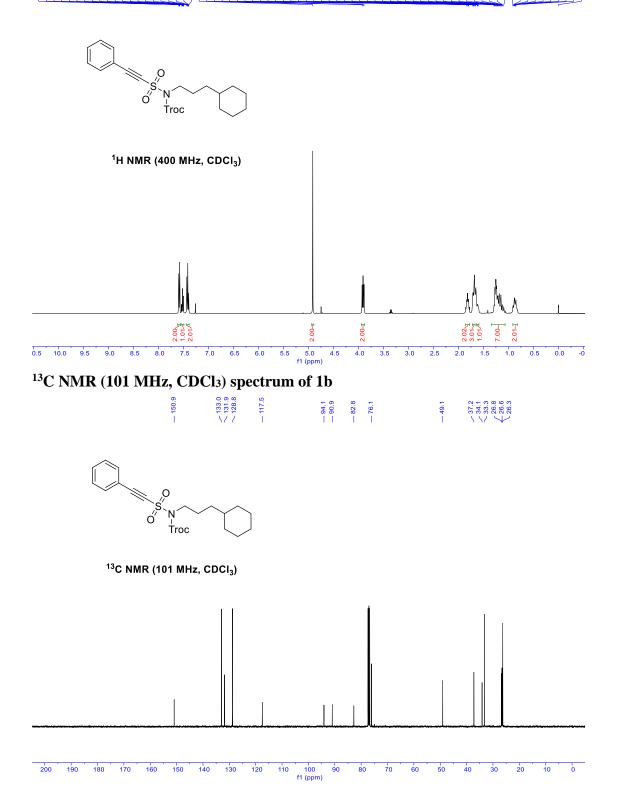

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

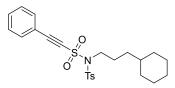

8,225 8,225 8,225 7,386 7,7386 7,1417 1,1416

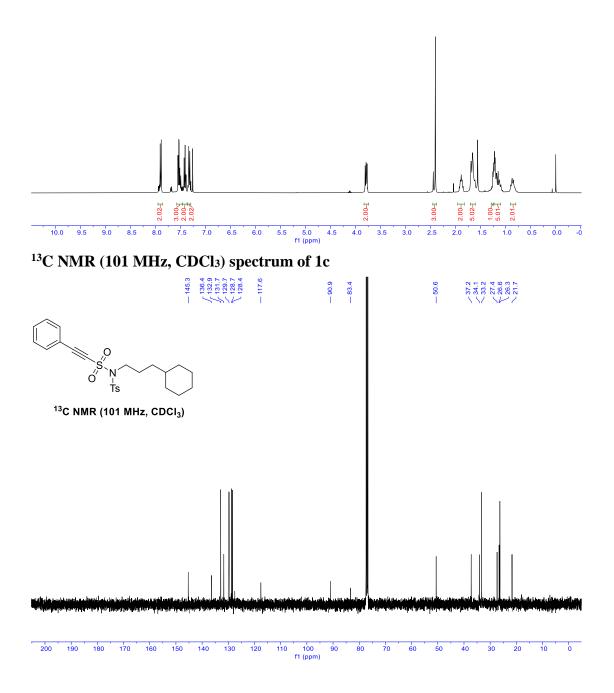


¹H NMR (400 MHz, CDCI₃)



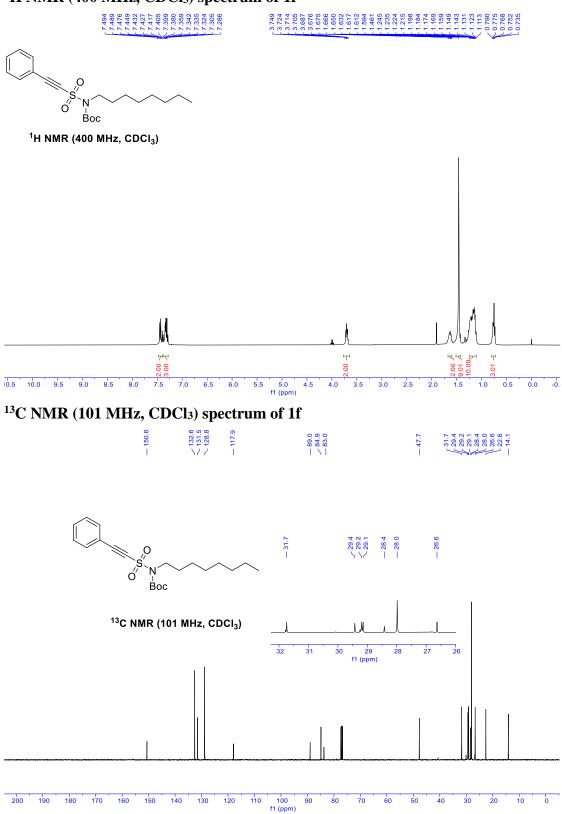

200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 90 80 70 60 50 40 30 20 10 0




7,7,500 7,7,501 7,4187 7,4487 7,4487 7,4487 7,4487 7,4487 7,4487 7,4487 7,44877,4487 7,44877777777777777777777777

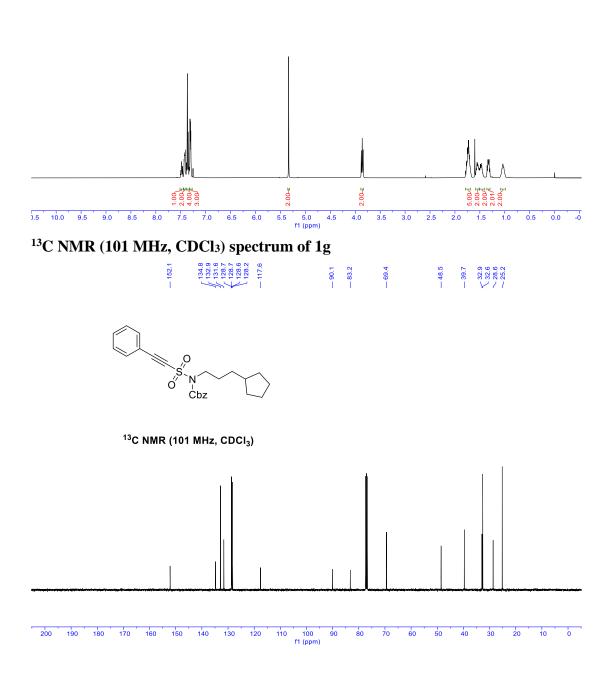
¹H NMR (400 MHz, CDCl₃)

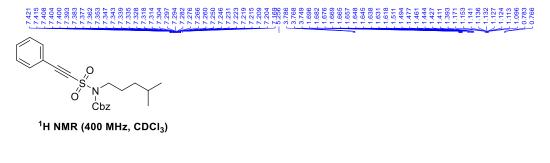
¹H NMR (400 MHz, CDCl₃) spectrum of 1d 7.382 7.376 7.368 7.368 7.368 7.353 7.353 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.335 7.335 7.335 7.335 7.335 7.335 7.335 7.335 7.335 7.335 7.335 7.335 7.335 7.335 7.335 7.335 7.337 7.325 7.737 7.325 7.737 7.325 7.737 7.325 7.7377 7.7377 7.7377 7.7377 7.7377 7.7377 7.7377 7.7377 $\left(\begin{array}{c} 3.783 \\ 3.764 \\ 3.745 \end{array} \right)$ - 5.221 ó Ċbz ¹H NMR (400 MHz, CDCl₃) Ч 8 17 00 10.00-2.01 3.00 3.00 3.01 10.0 5.0 f1 (ppm) -0 9.5 9.0 6.5 3.0 0.0 8.5 8.0 7.5 7.0 6.0 5.5 4.5 4.0 3.5 2.5 2.0 1.5 1.0 0.5 ¹³C NMR (101 MHz, CDCl₃) spectrum of 1d - 152.1 134.8 132.8 132.8 131.7 131.7 128.7 128.7 128.6 128.7 128.6 128.7 128.6 128.7 128.6 128.7 128.7 128.7 -- 69.4 31.8 29.4 29.1 29.1 22.6 22.6 - 83.3 - 90.1 O --- 26.6 - 31.8 29.4 29.2 29.1 ó N Ċbz ¹³C NMR (101 MHz, CDCl₃) 29 f1 (ppm) 31 28 30 27

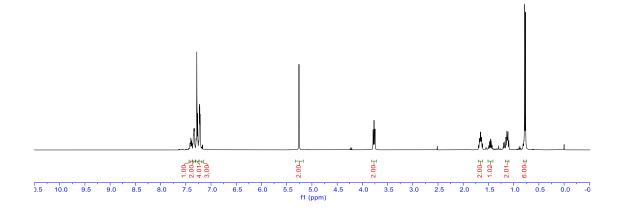

90 80 70 60 50 40 30 20 10

0

200 190 180

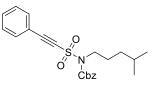

170 160 150 140 130 120 110 100 f1 (ppm)


¹H NMR (400 MHz, CDCl₃) spectrum of 1e 7,522 7,517 7,517 7,517 7,517 7,517 7,509 7,509 7,496 7,496 7,475 7,375 7,337 7,337 7,337 7,337 7,337 7,336 7,337 7,337 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,336 7,337 7,336 7,336 7,336 7,336 7,336 7,336 7,336 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,336 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,347 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,337 7,347 $\sqrt{\frac{3.812}{3.793}}$ 1.720 1.722 1.663 1.665 1.665 1.666 1.201 1.201 1.181 1.181 1.181 1.170 1.170 1.153 0.808 0.808 0.773 0 ്ട N Β̈́z ¹H NMR (400 MHz, CDCl₃) Ч 8 10.00H 8.0 7.5 7.0 6.5 6.0 3.00 5.0 f1 (ppm) 10.0 9.5 3.0 0.0 -0 9.0 8.5 5.5 4.5 4.0 3.5 2.5 2.0 1.5 1.0 0.5 ¹³C NMR (101 MHz, CDCl₃) spectrum of 1e - 171.3 132.9 132.4 132.4 131.8 128.9 128.9 128.9 128.4 --- 48.9 31.7 29.1 29.0 28.8 28.8 22.6 14.1 - 91.1 - 83.2 - 31.7 29.1 29.0 28.8 0 'N Bz ¹³C NMR (101 MHz, CDCl₃) 31 30 29 f1 (ppm) 27 28 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 90 80 70 60 50 40 30 20 10 0

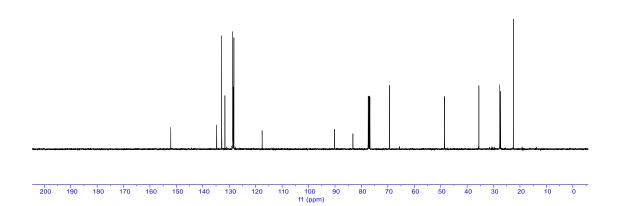


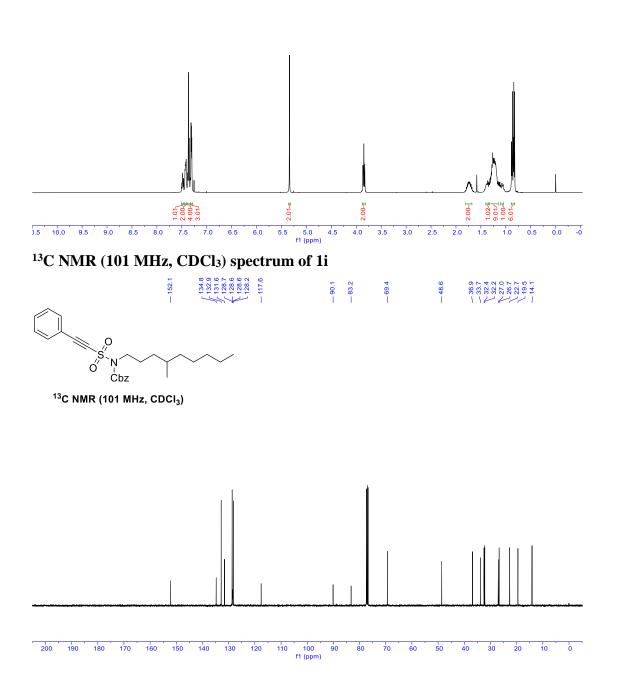
O S N Cbz

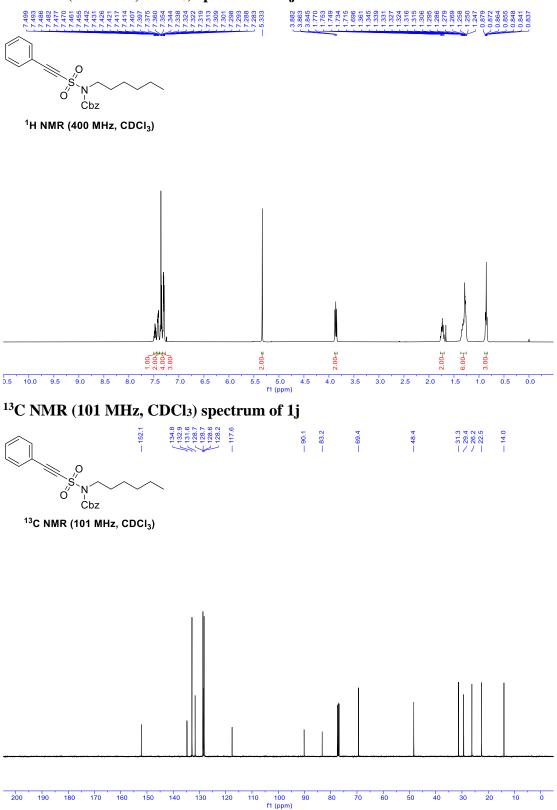
¹H NMR (400 MHz, CDCl₃)

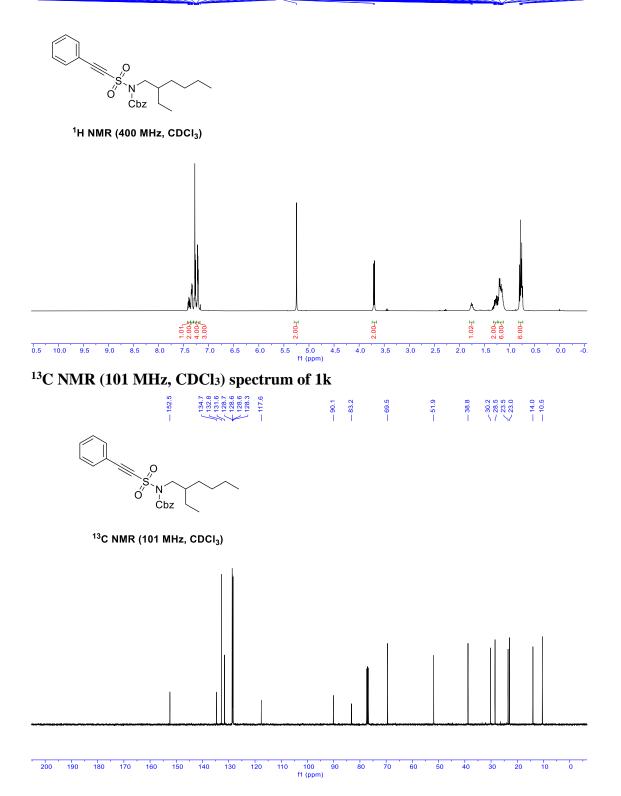


¹³C NMR (101 MHz, CDCl₃) spectrum of 1h

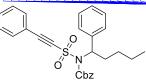


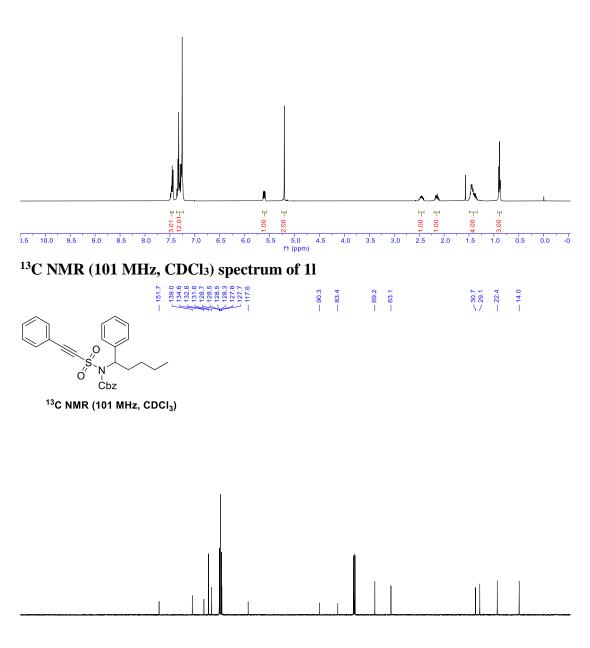


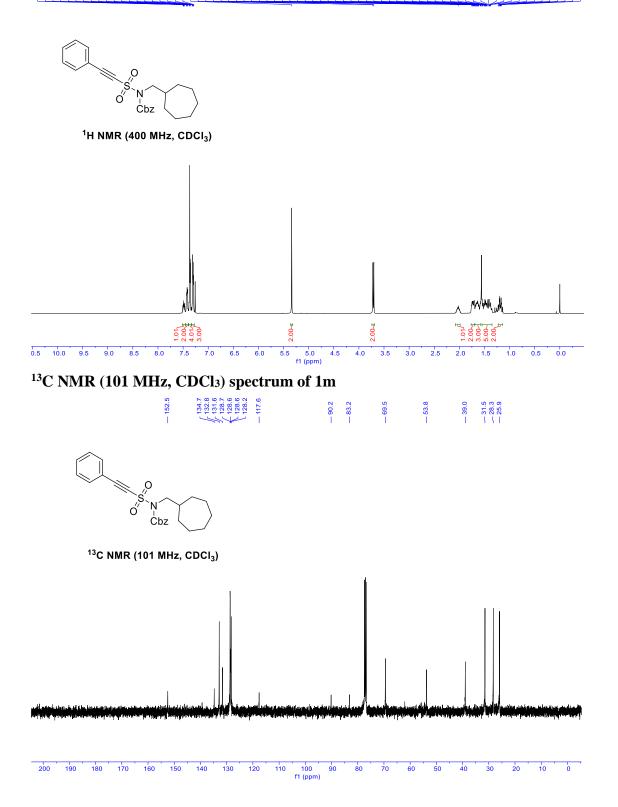

¹³C NMR (101 MHz, CDCl₃)


 \cap ó ćbz

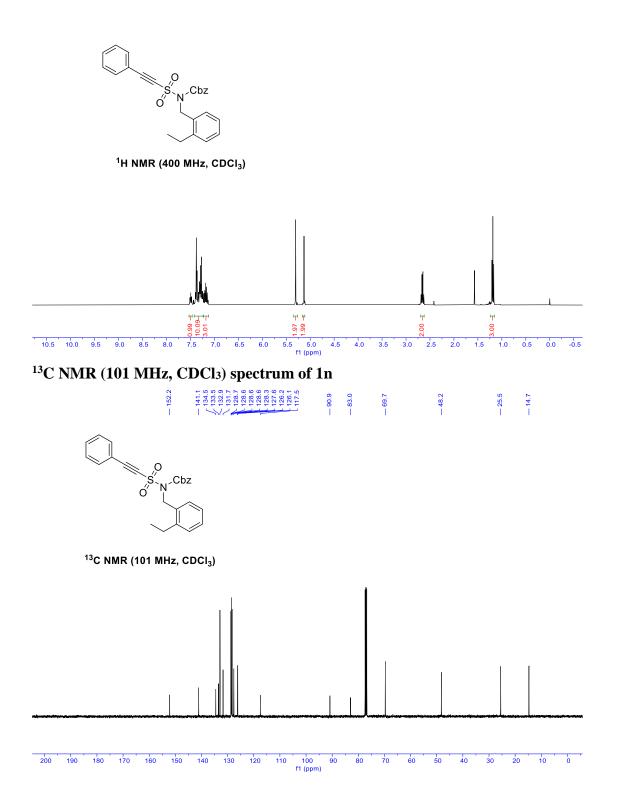
¹H NMR (400 MHz, CDCl₃)

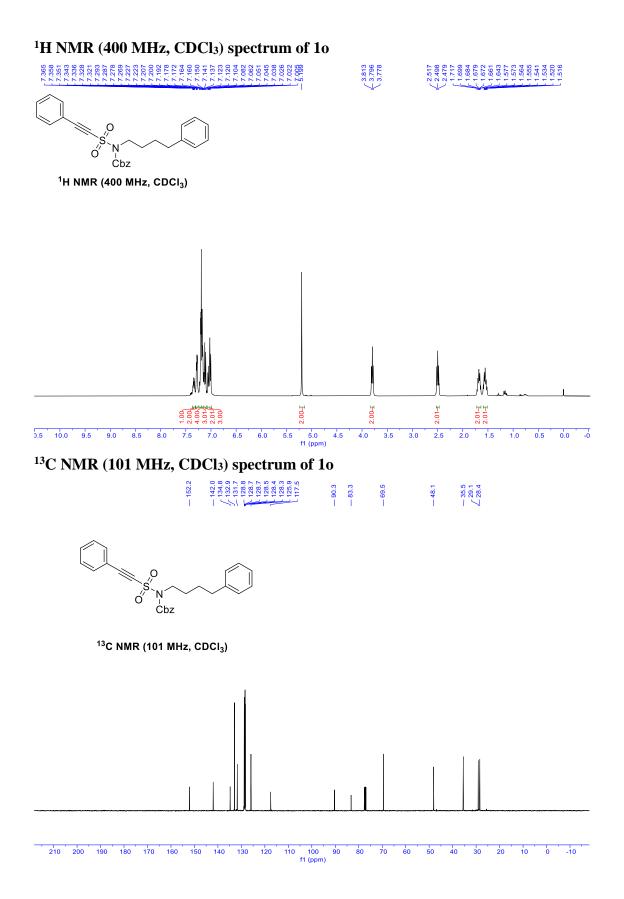


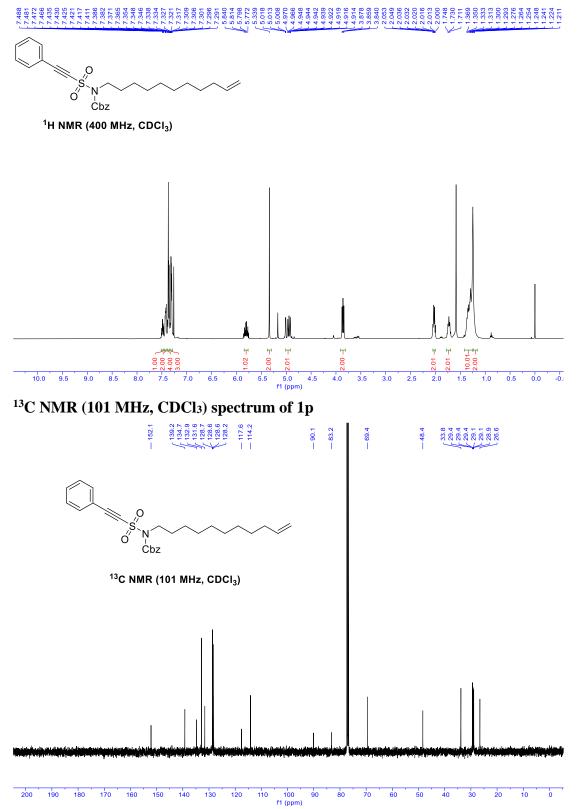

7,7,418 7,7,418 7,7,340 7,7,340 7,7,340 7,7,340 7,7,340 7,7,340 7,7,340 7,7,341 7,7,341 7,7,341 7,341 7,341 7,341 7,341 7,341 7,341 7,341 7,271 7,2717

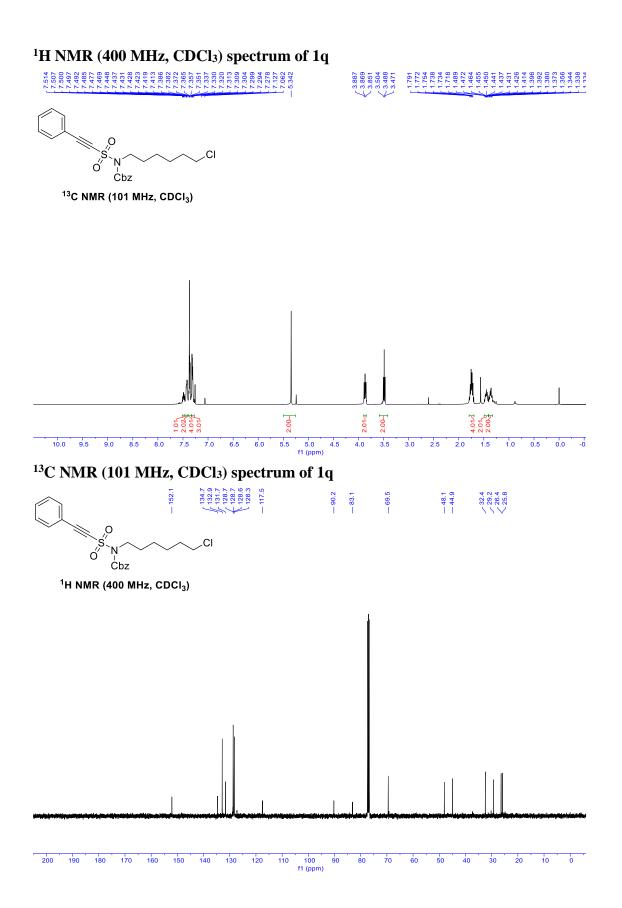


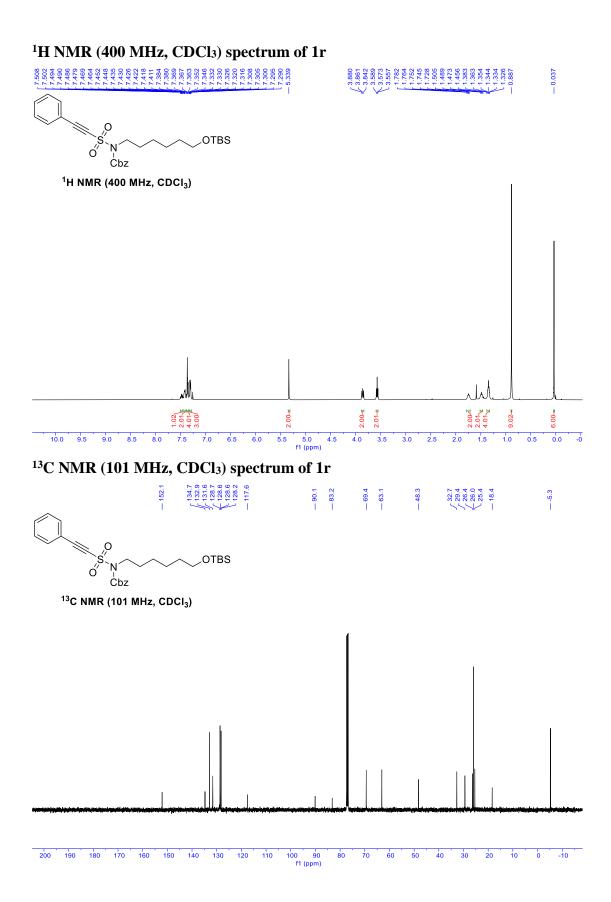
¹H NMR (400 MHz, CDCI₃)

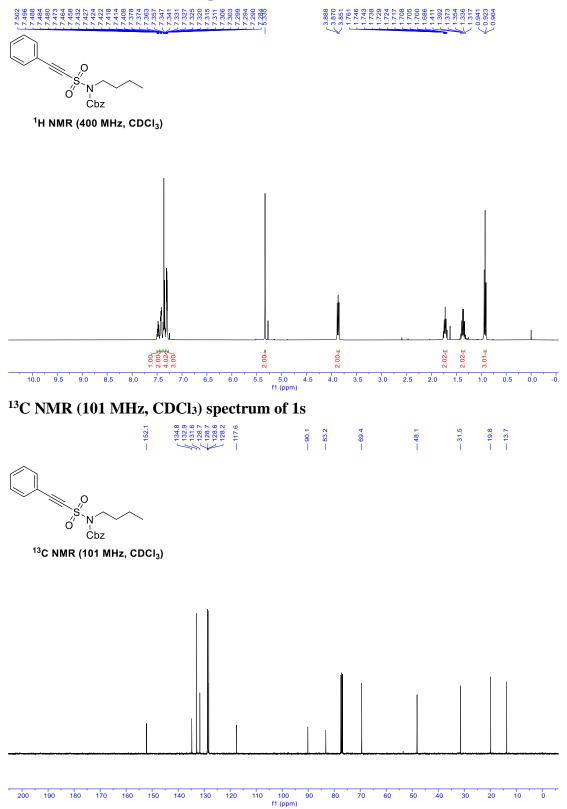


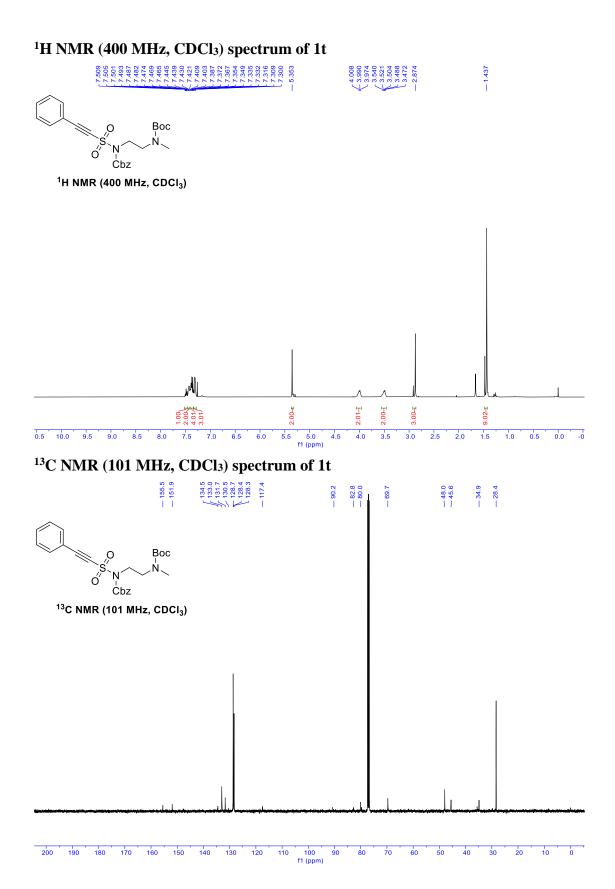

f1 (ppm)

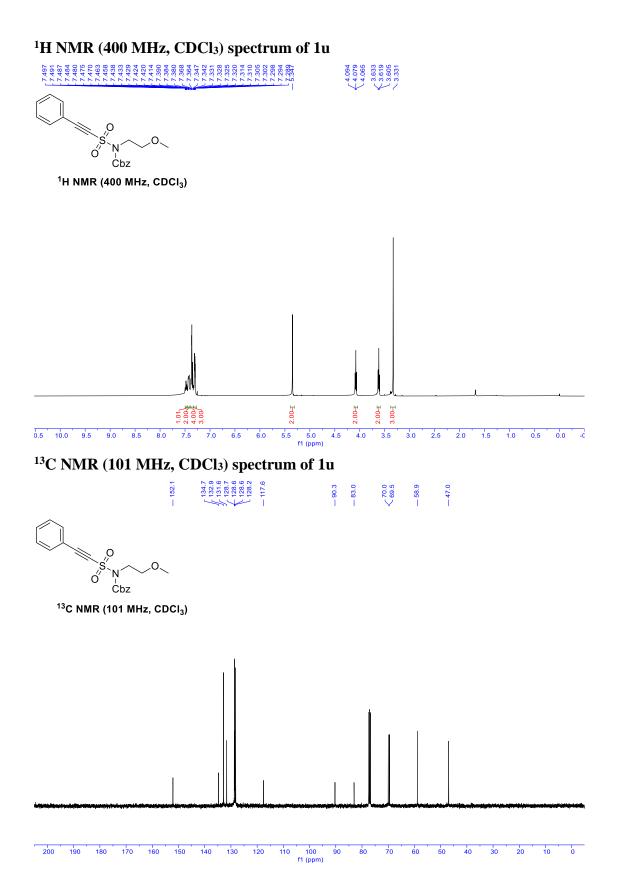

7, 5,01 7, 7,501 7,489 7,489 7,489 7,479 7,479 7,479 7,479 7,479 7,479 7,479 7,479 7,739 7,739 7,739 7,335 7,339 7,337 7,339 7,439 7,439 7,439 7,439 7,449 7



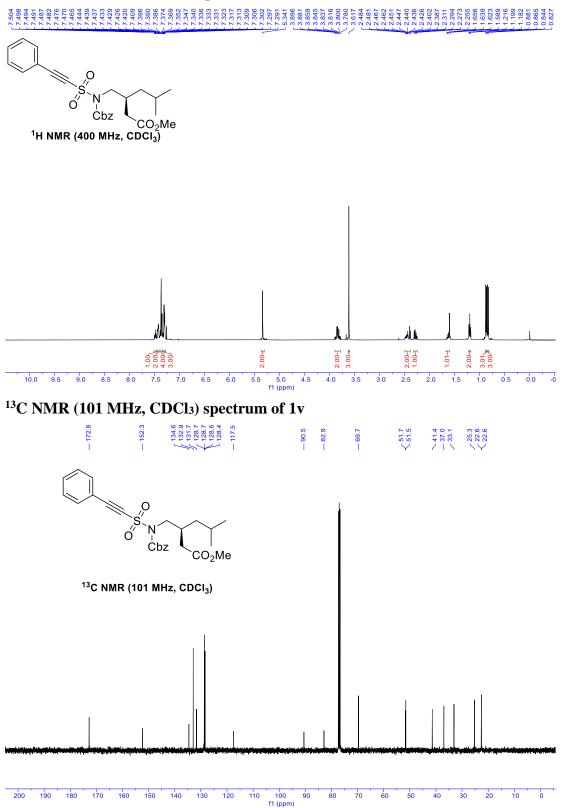

7.508
7.508
7.508
7.508
7.508
7.501
7.501
7.501
7.501
7.492
7.492
7.492
7.493
7.493
7.405
7.405
7.405
7.405
7.405
7.405
7.405
7.405
7.405
7.405
7.405
7.405
7.405
7.405
7.405
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.501
7.

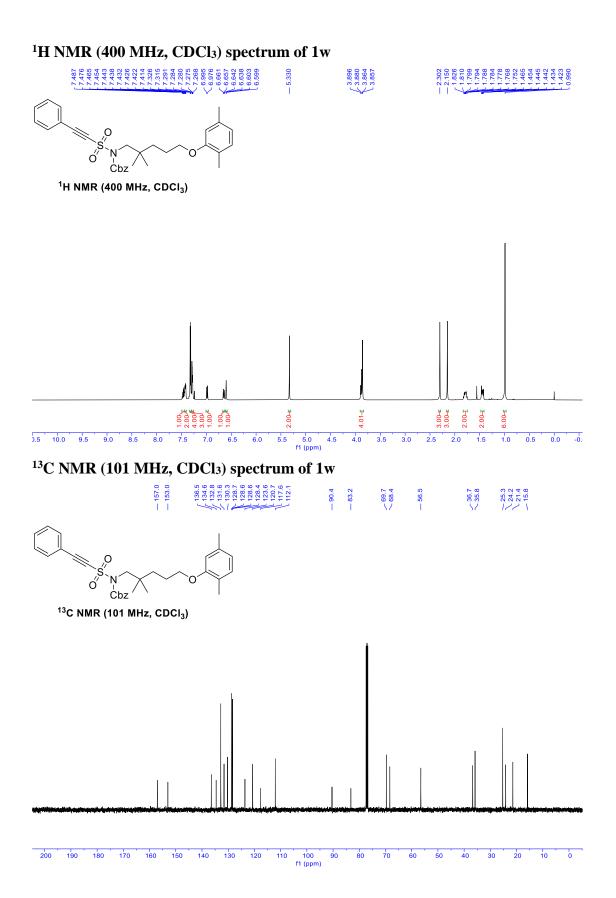






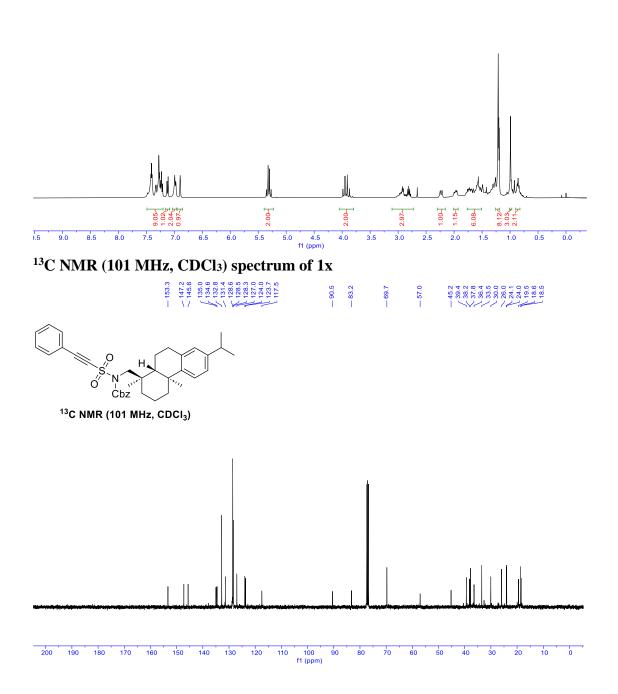
¹H NMR (400 MHz, CDCl₃) spectrum of 1s

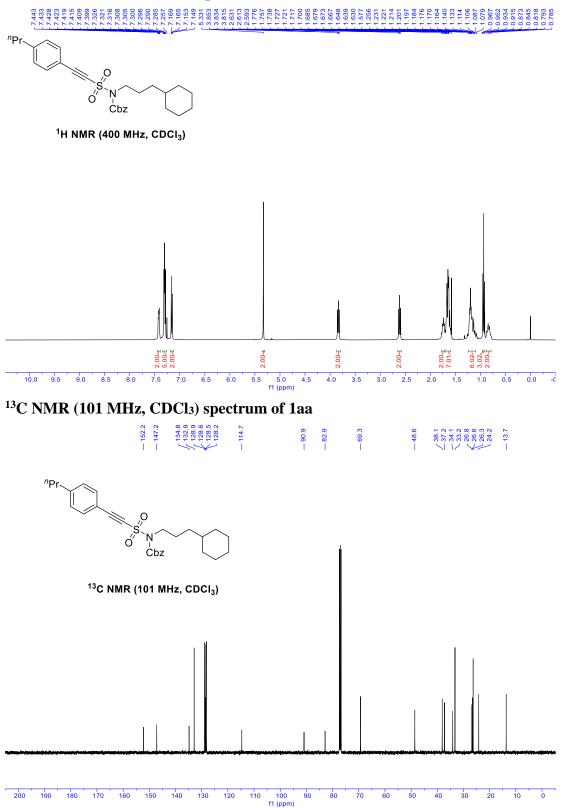




S112

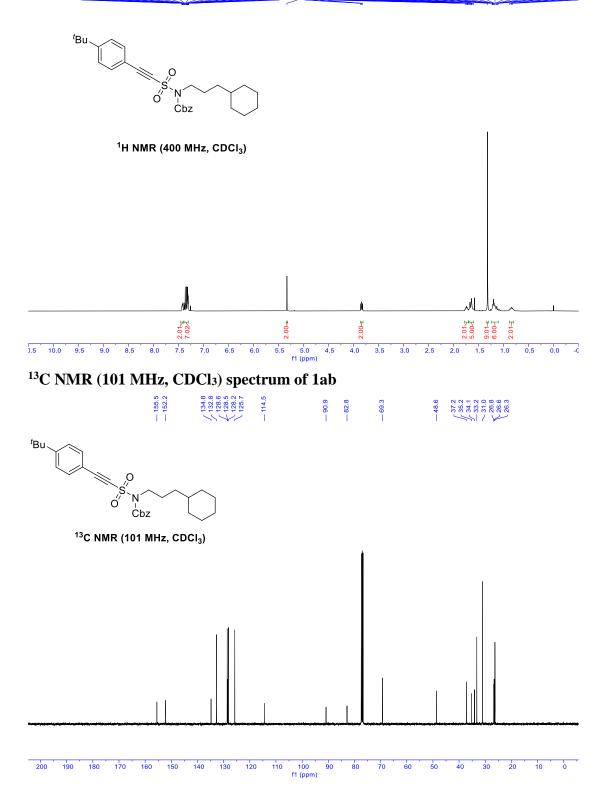
¹H NMR (400 MHz, CDCl₃) spectrum of 1v



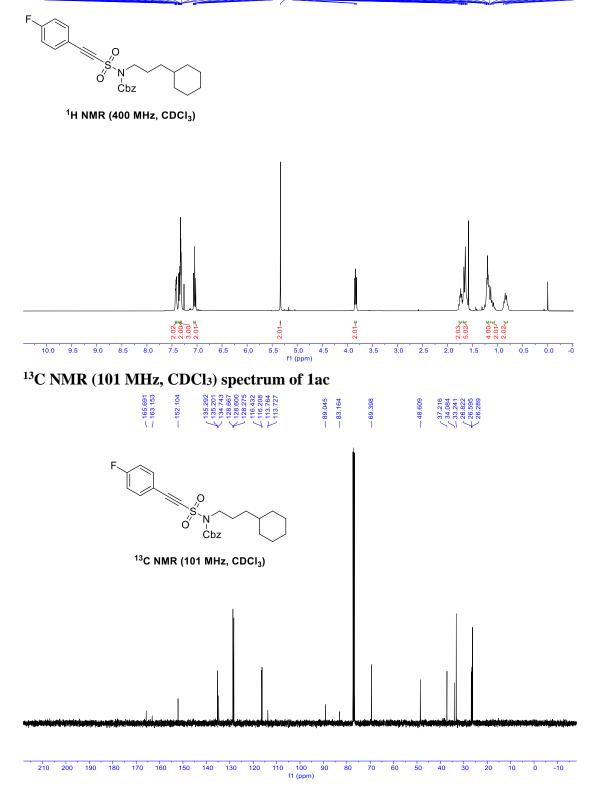

¹H NMR (400 MHz, CDCl₃) spectrum of 1x

C ő N Ċbz

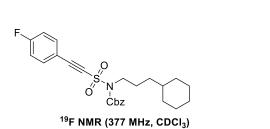
¹H NMR (400 MHz, CDCI₃)



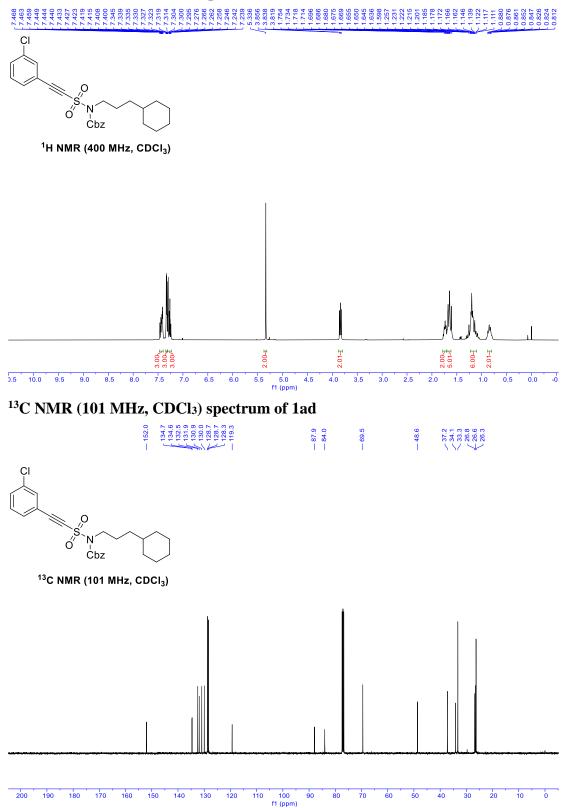
¹H NMR (400 MHz, CDCl₃) spectrum of 1aa



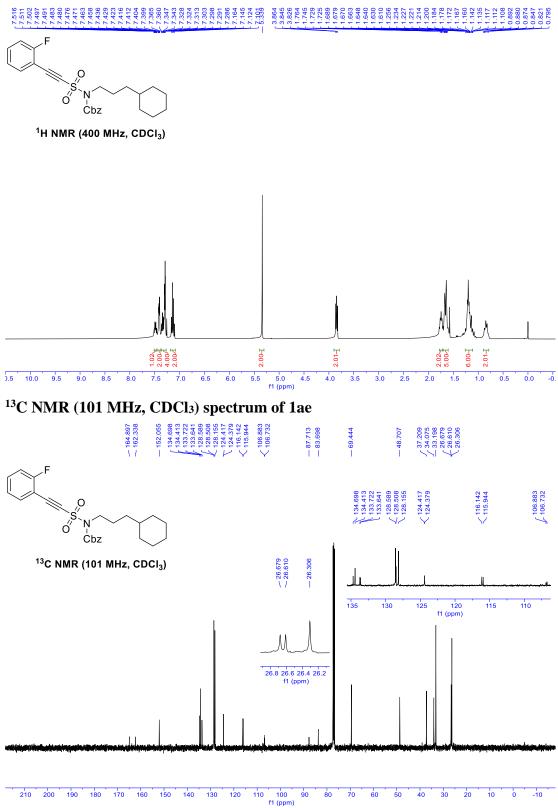
¹H NMR (400 MHz, CDCl₃) spectrum of 1ab


77,7432 77,7435 77,7435 77,7435 77,7435 77,7435 77,7435 77,7339 77,7339 77,7339 77,7339 77,7339 77,7339 77,7331 77,7331 77,7331 77,7331 77,7332 72,7332 72,733

¹H NMR (400 MHz, CDCl₃) spectrum of 1ac



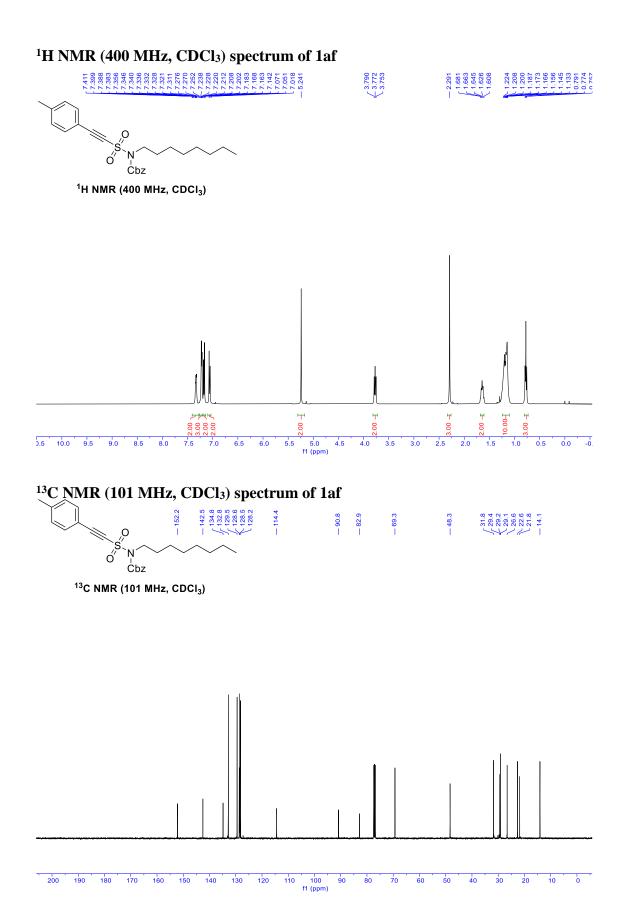
¹⁹F NMR (377 MHz, CDCl₃) spectrum of 1ac



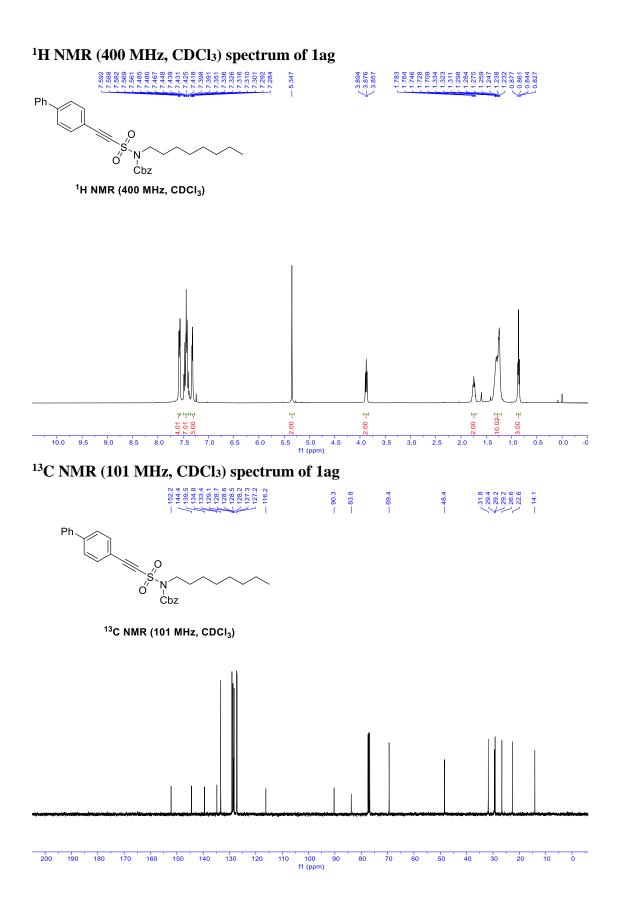
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2; f1 (ppm)

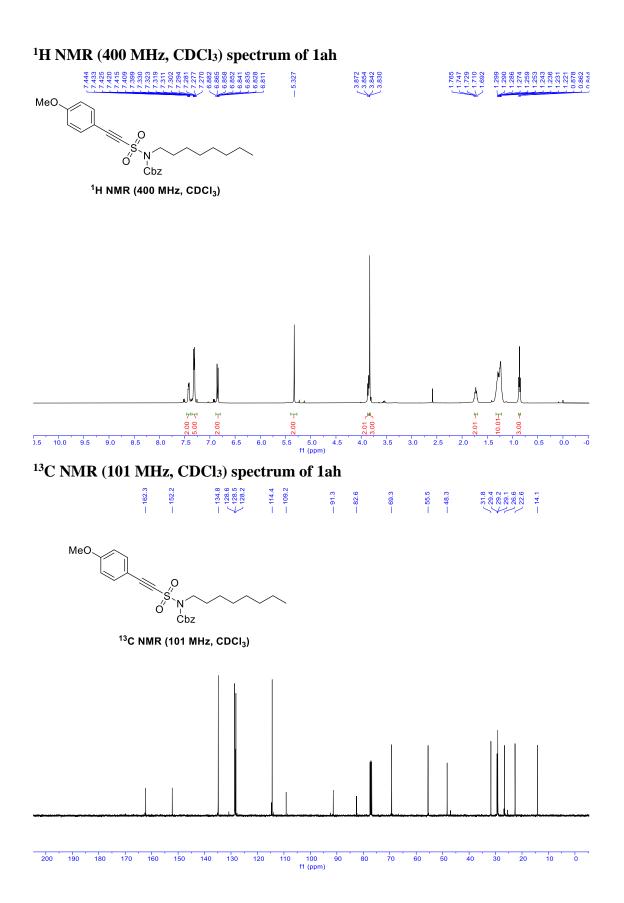
¹H NMR (400 MHz, CDCl₃) spectrum of 1ad

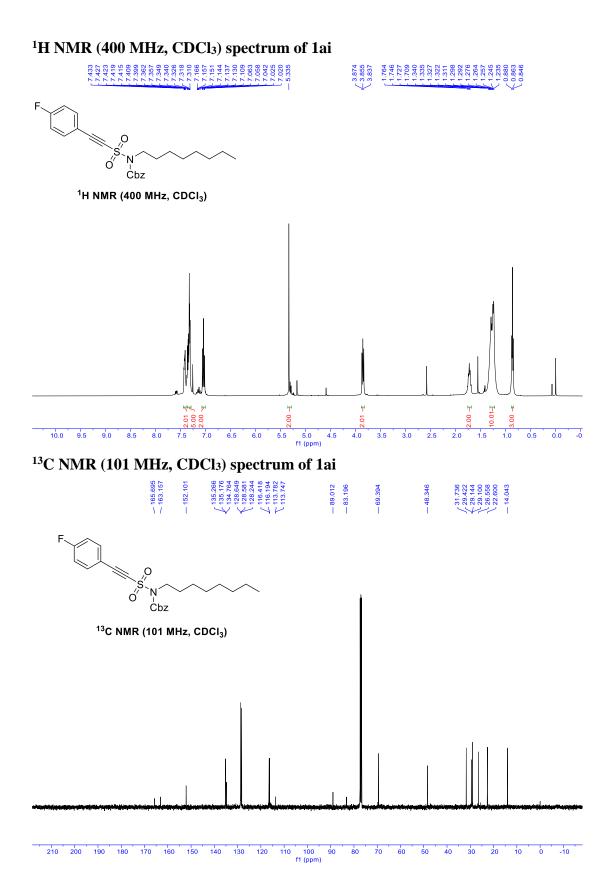
¹H NMR (400 MHz, CDCl₃) spectrum of 1ae



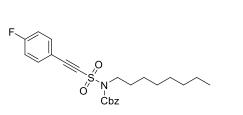
¹⁹F NMR (377 MHz, CDCl₃) spectrum of 1ae

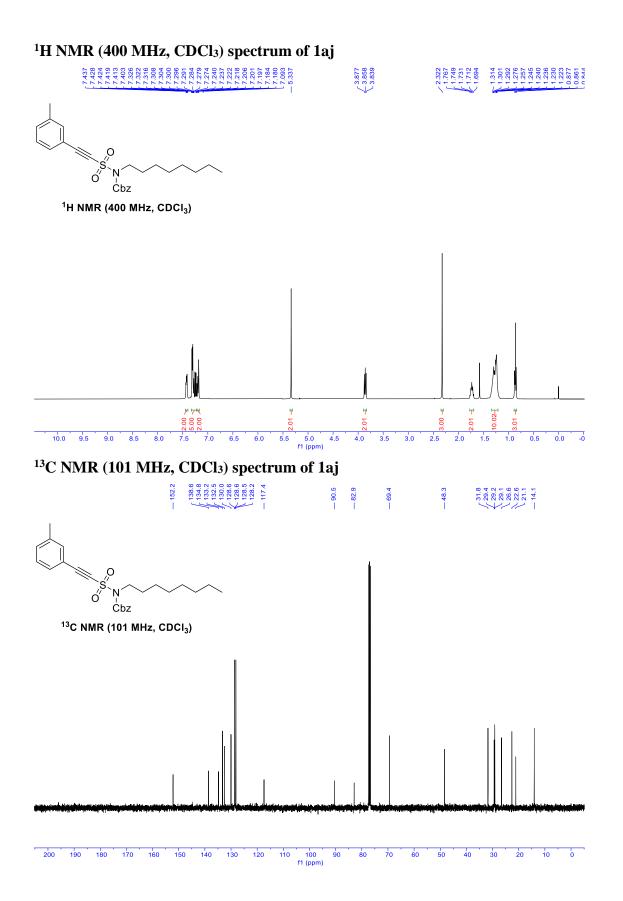

N Ċbz


¹⁹F NMR (377 MHz, CDCl₃)

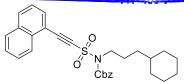

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

S124

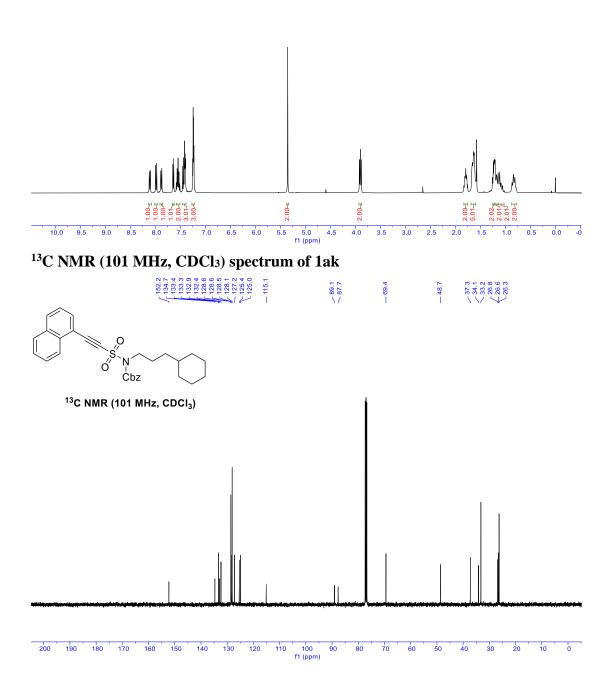


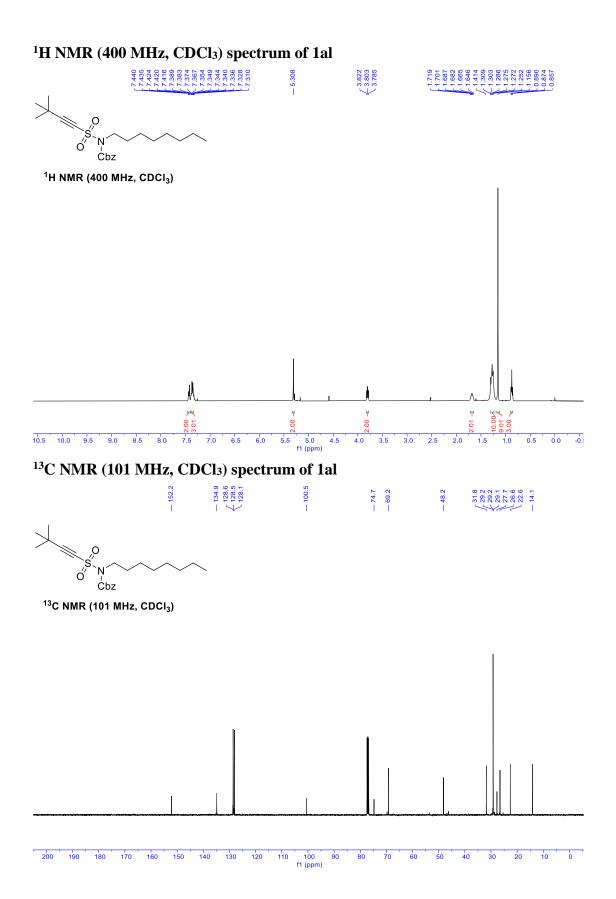


¹⁹F NMR (377 MHz, CDCl₃) spectrum of 1ai

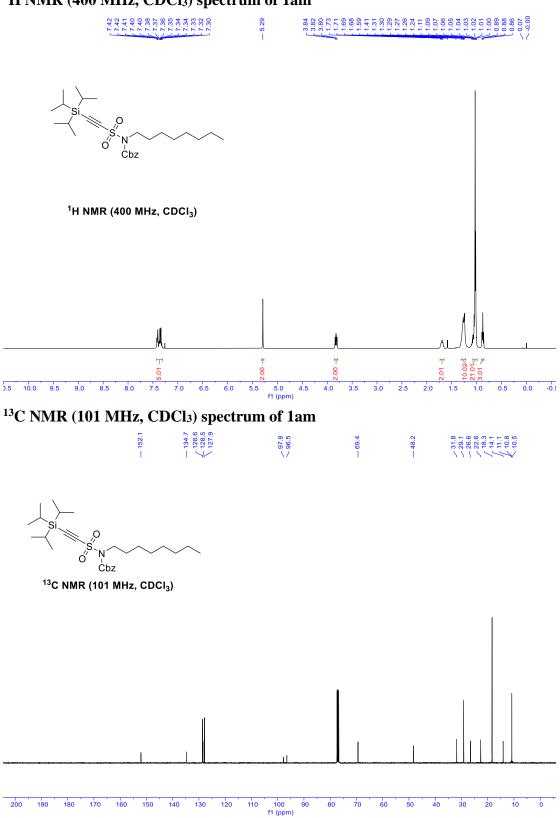

¹⁹F NMR (377 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

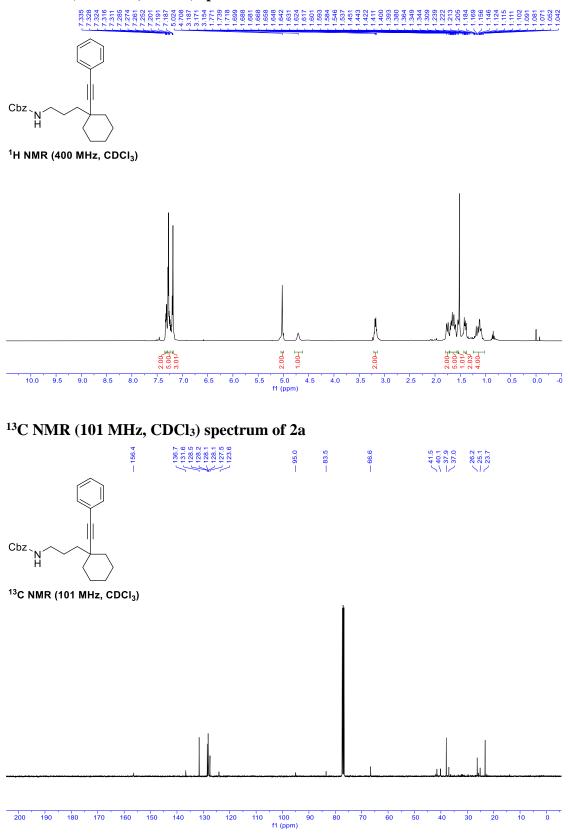


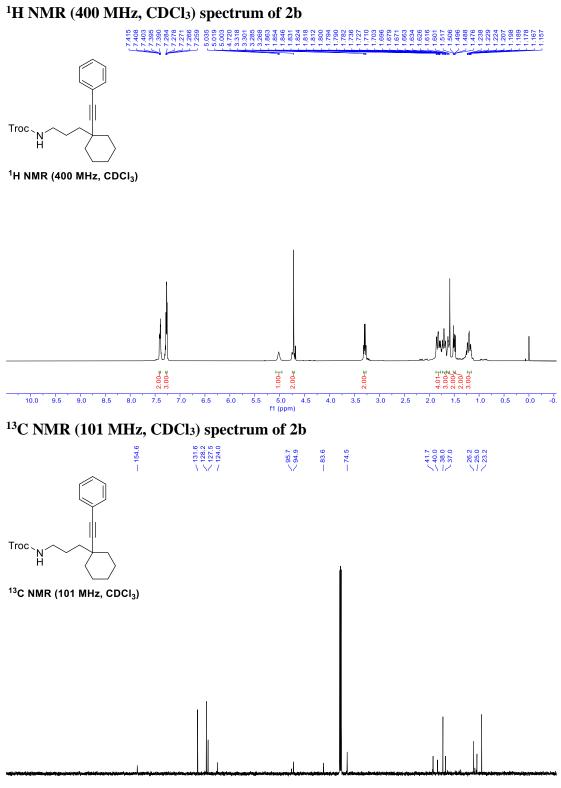

¹H NMR (400 MHz, CDCl₃) spectrum of 1ak

Relation of the second second

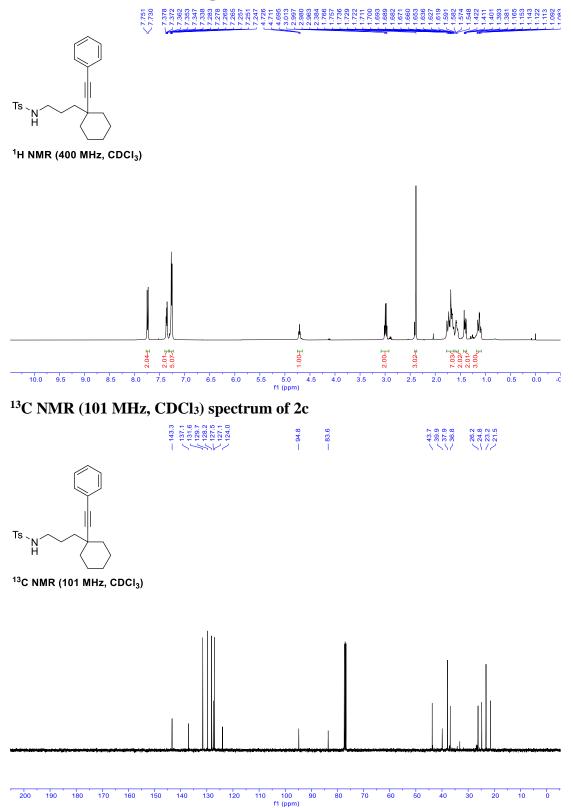


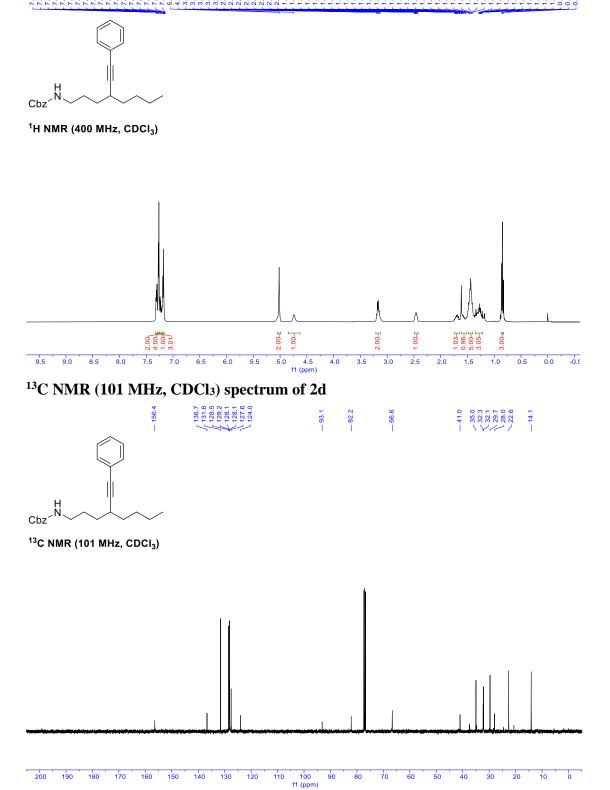
¹H NMR (400 MHz, CDCl₃)



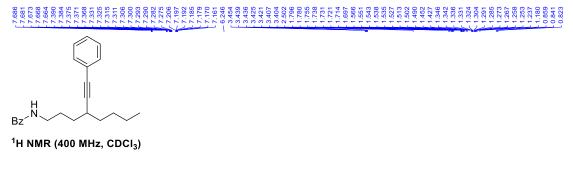


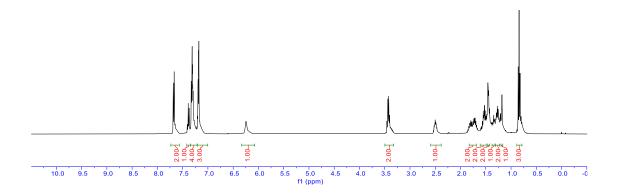
¹H NMR (400 MHz, CDCl₃) spectrum of 1am


¹H NMR (400 MHz, CDCl₃) spectrum of 2a

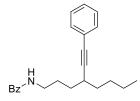


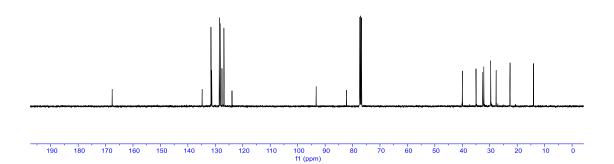
f1 (ppm)

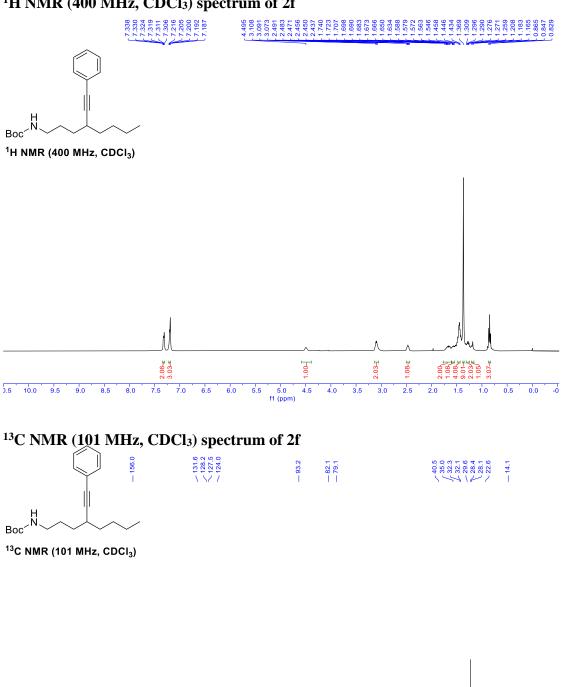

¹H NMR (400 MHz, CDCl₃) spectrum of 2c

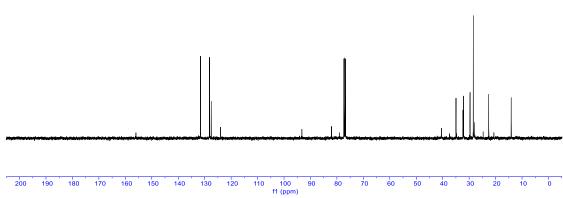


¹H NMR (400 MHz, CDCl₃) spectrum of 2d

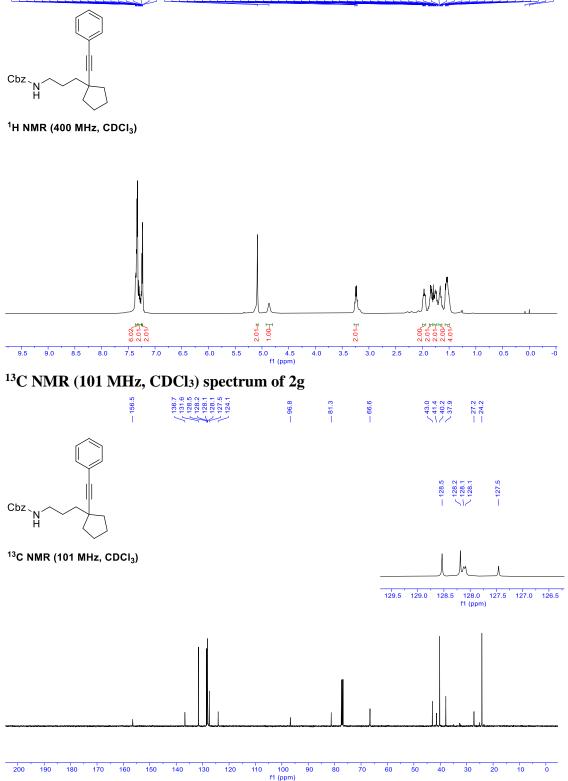

¹H NMR (400 MHz, CDCl₃) spectrum of 2e

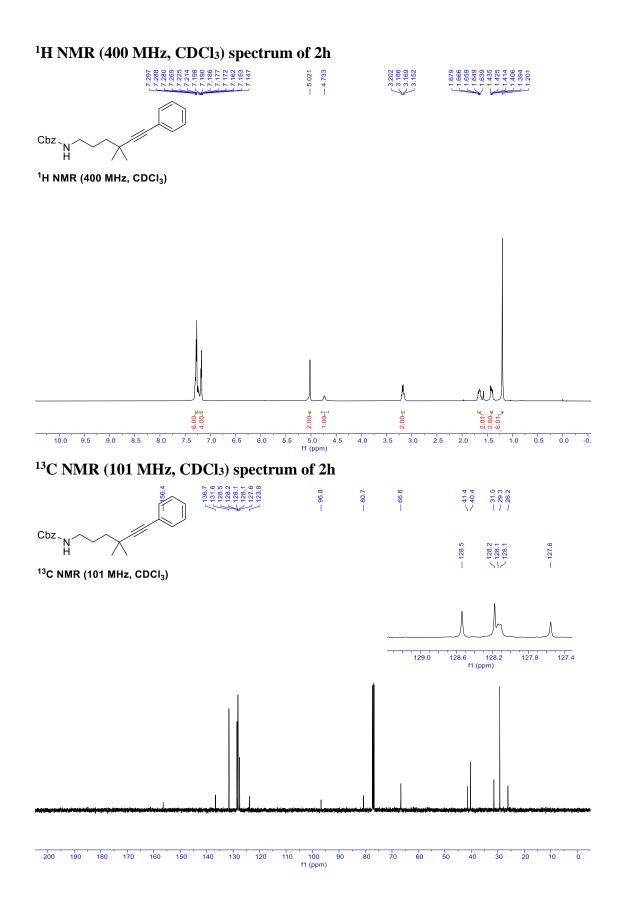



¹³C NMR (101 MHz, CDCl₃) spectrum of 2e

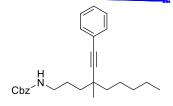


¹³C NMR (101 MHz, CDCl₃)

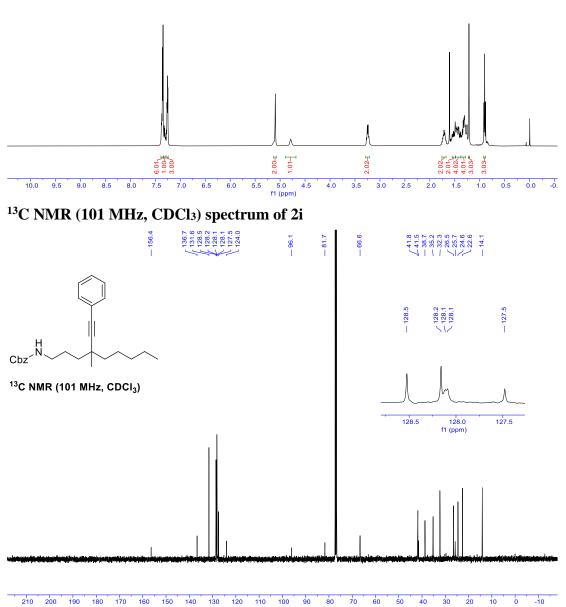


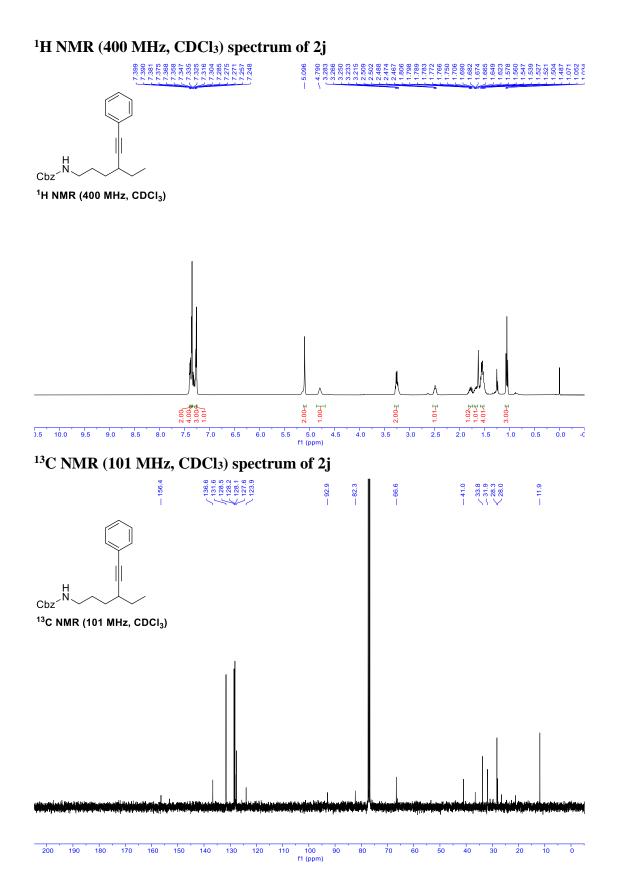


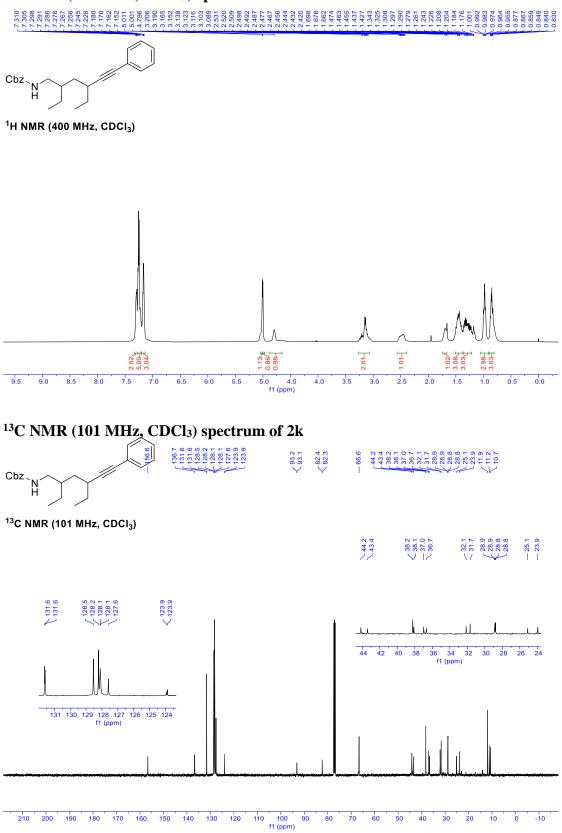
¹H NMR (400 MHz, CDCl₃) spectrum of 2f



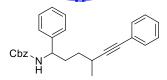
¹H NMR (400 MHz, CDCl₃) spectrum of 2g

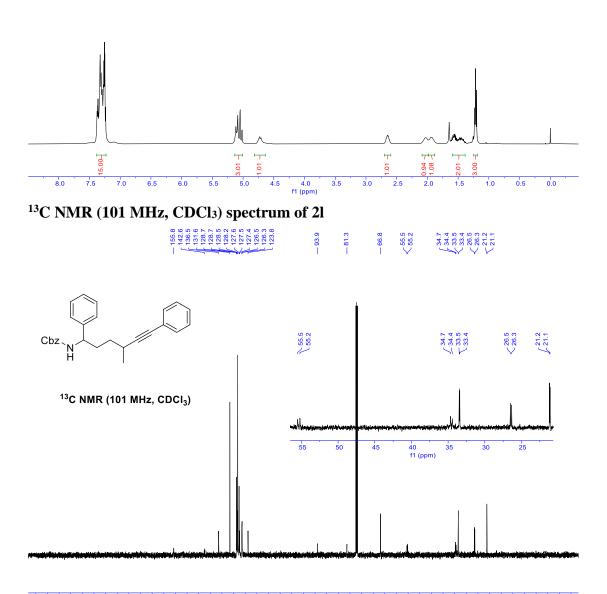



¹H NMR (400 MHz, CDCl₃) spectrum of 2i


¹H NMR (400 MHz, CDCl₃)

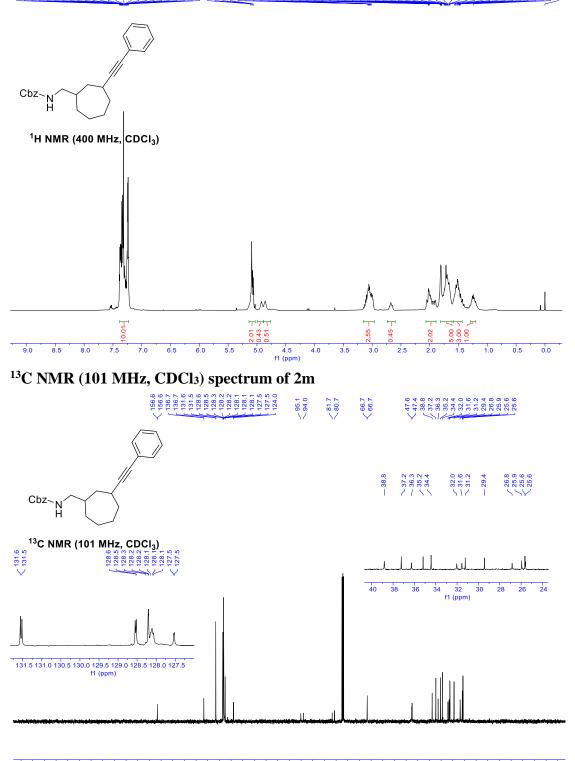
110 100 f1 (ppm)


¹H NMR (400 MHz, CDCl₃) spectrum of 2k

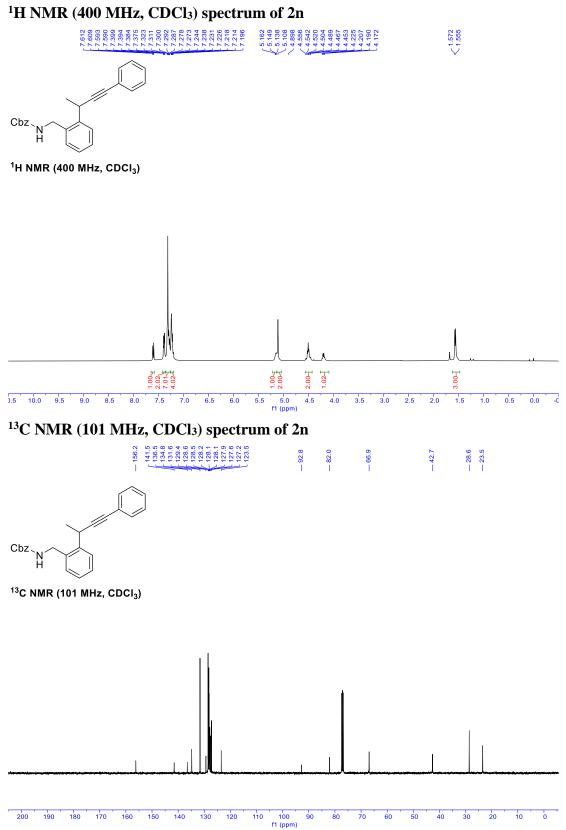

S143

¹H NMR (400 MHz, CDCl₃) spectrum of 2l

77 2385 77 2385 77 2385 77 2385 77 2385 77 2385 77 2385 77 2385 77 2387 77 2587 77 2587 77 2587 77 2585 78 25855 78 25855 78 25855 78 25855 78 25855 78 25855 78 258

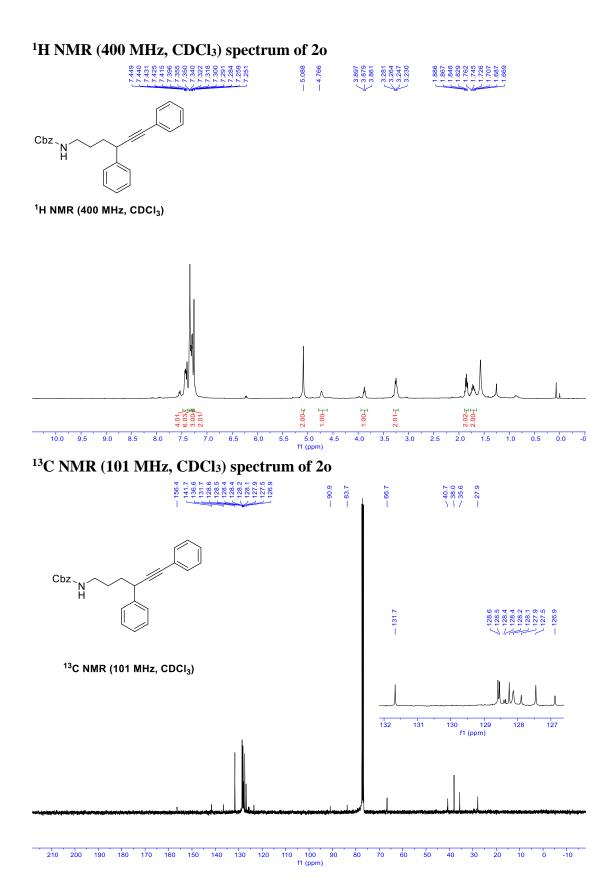


¹H NMR (400 MHz, CDCl₃)

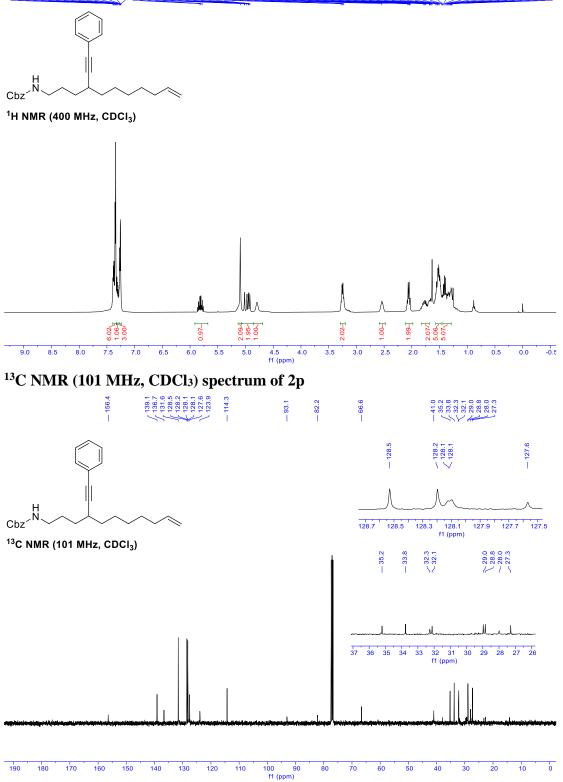


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

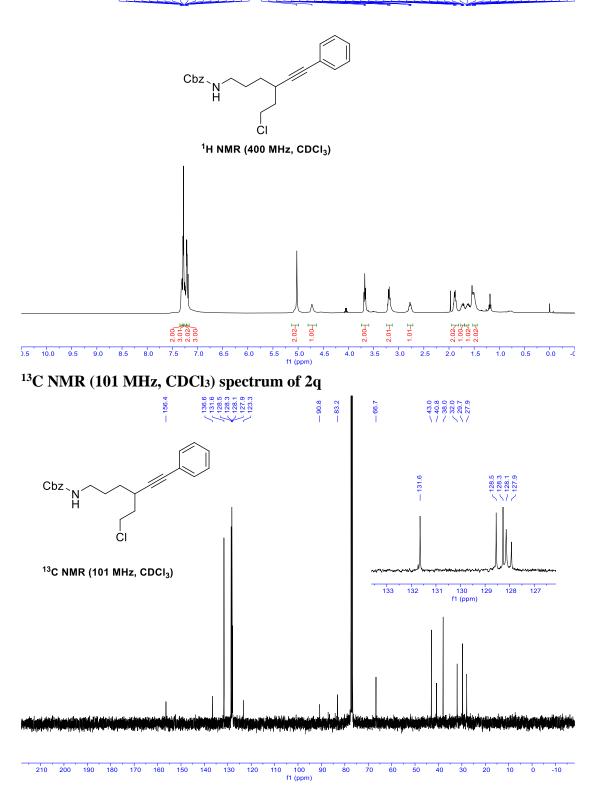
¹H NMR (400 MHz, CDCl₃) spectrum of 2m



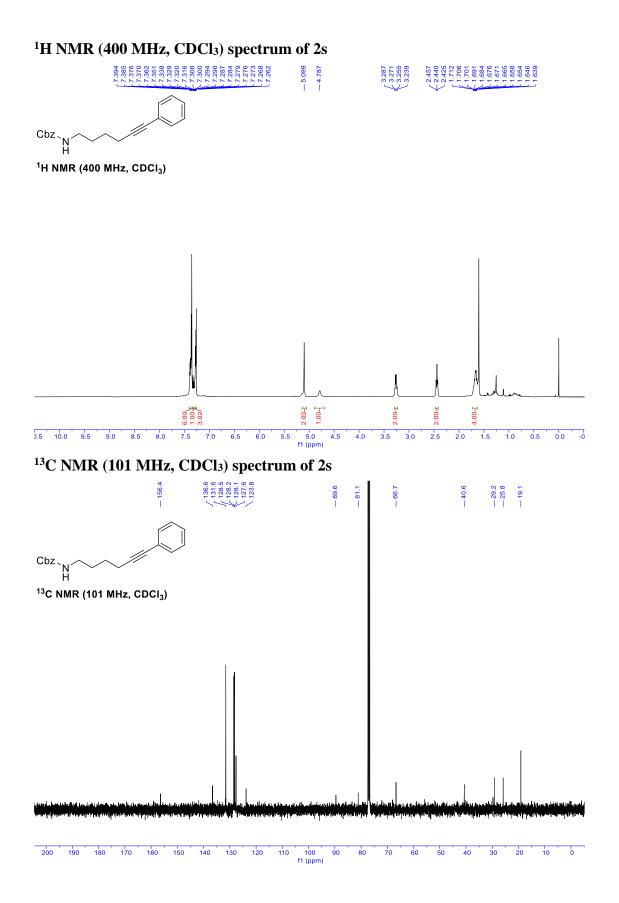
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

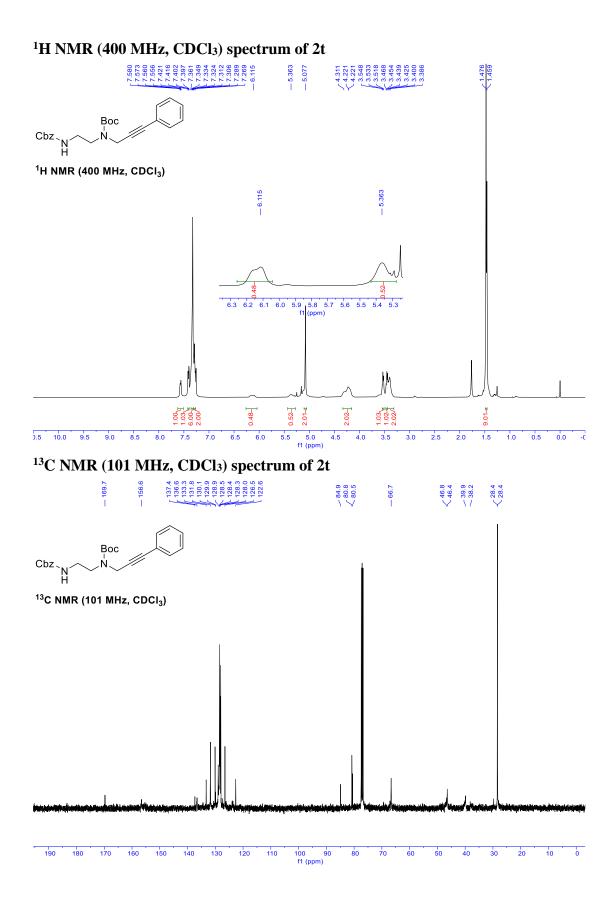


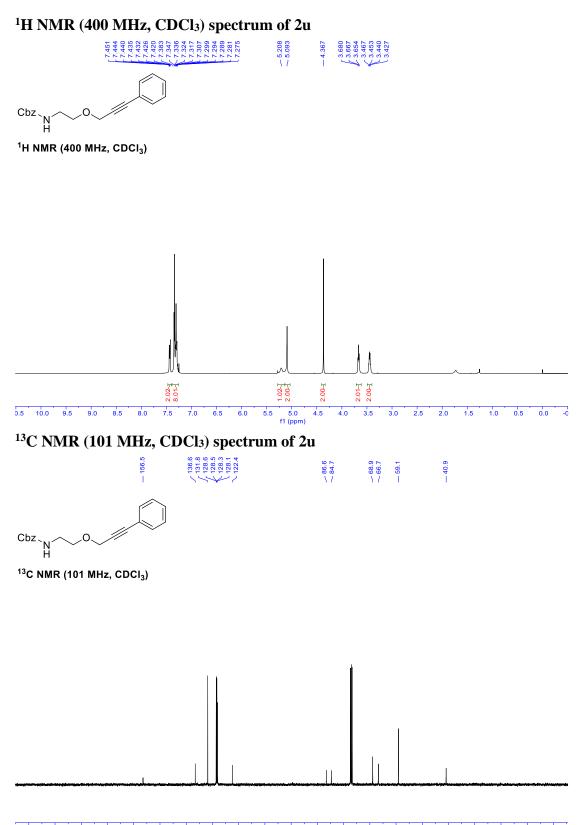
S146

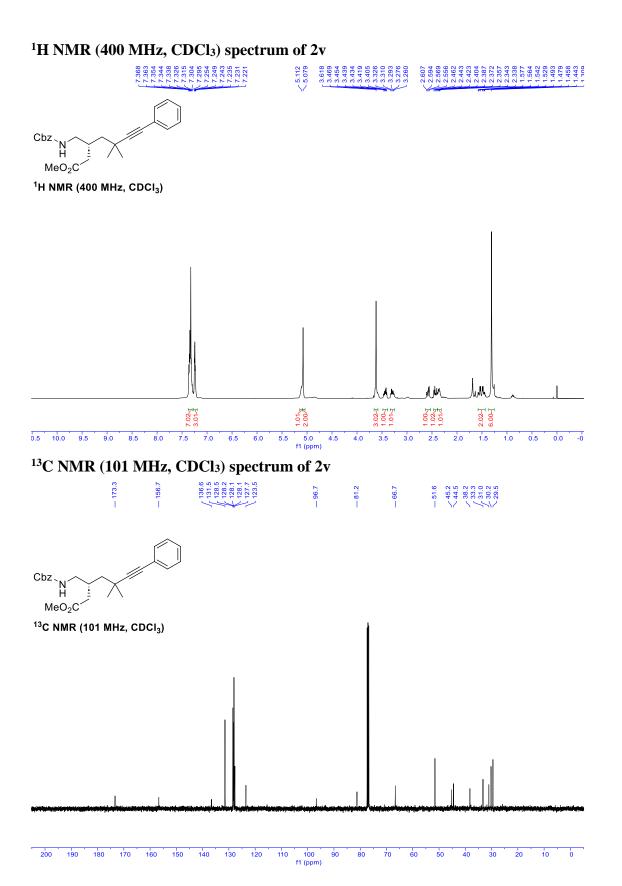

¹H NMR (400 MHz, CDCl₃) spectrum of 2p

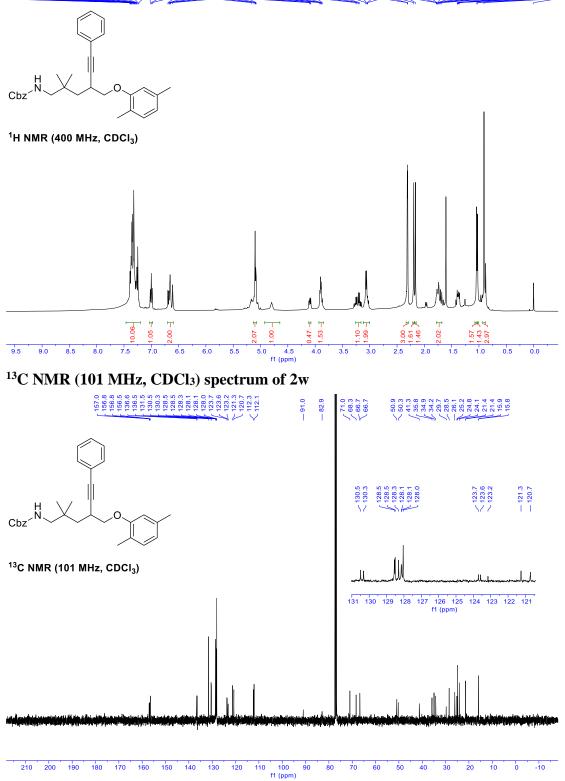

77, 7382, 77, 7382, 77, 7382, 77, 7382, 77, 7382, 77, 7382, 77, 7382, 77, 7382, 77, 7382, 77, 7382, 77, 7382, 77, 7382, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 77, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284, 74, 7284,


¹H NMR (400 MHz, CDCl₃) spectrum of 2q

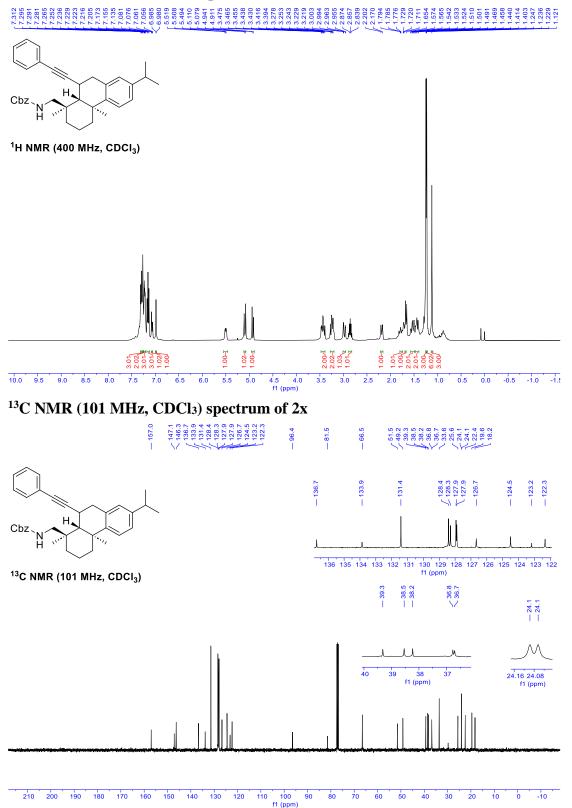

7,345 7,731 7,731 7,731 7,731 7,732 7,733 7,7239 7,7239 7,7239 7,7239 7,7229 7,



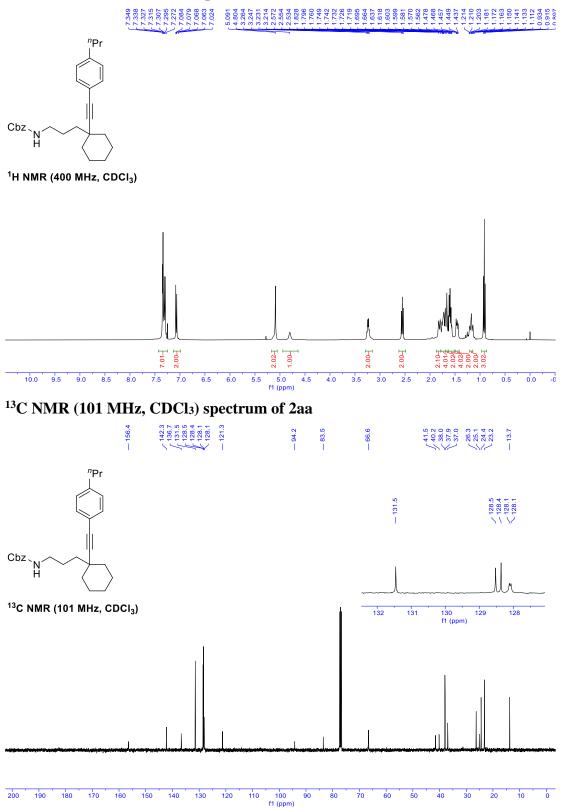

¹H NMR (400 MHz, CDCl₃) spectrum of 2r

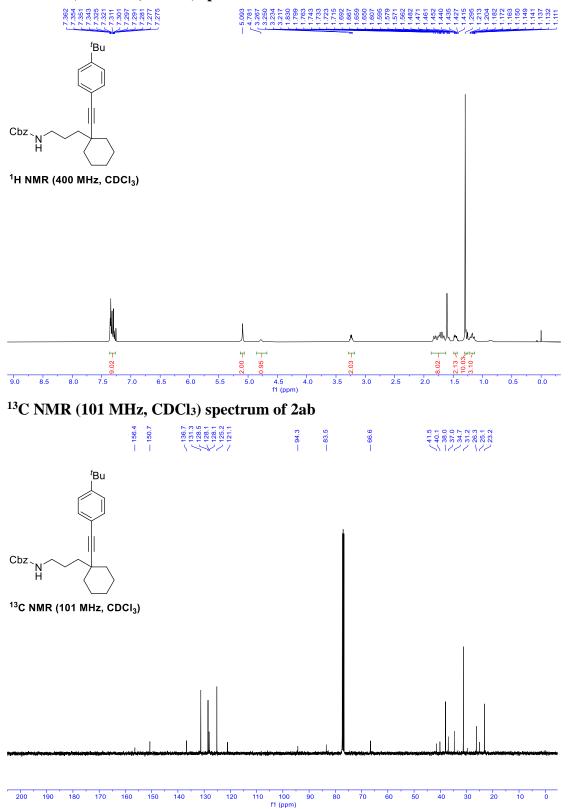


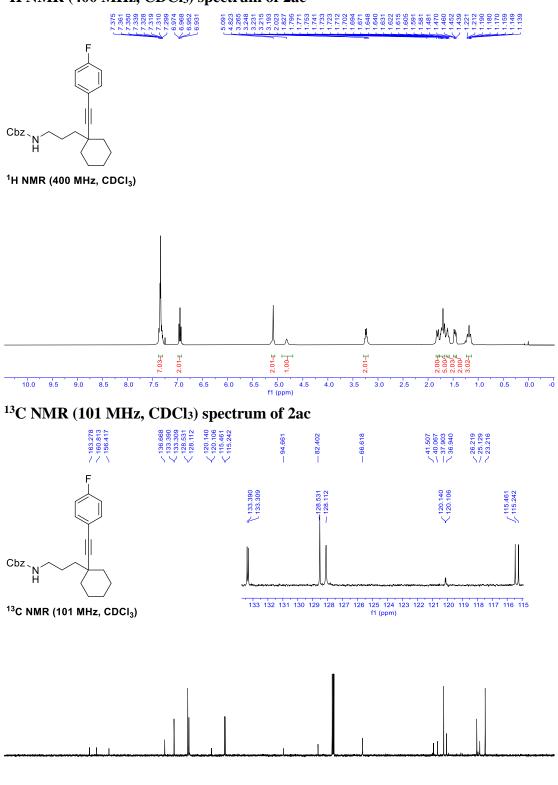
160 150 140 130 120 110 100 f1 (ppm)



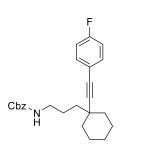
¹H NMR (400 MHz, CDCl₃) spectrum of 2w



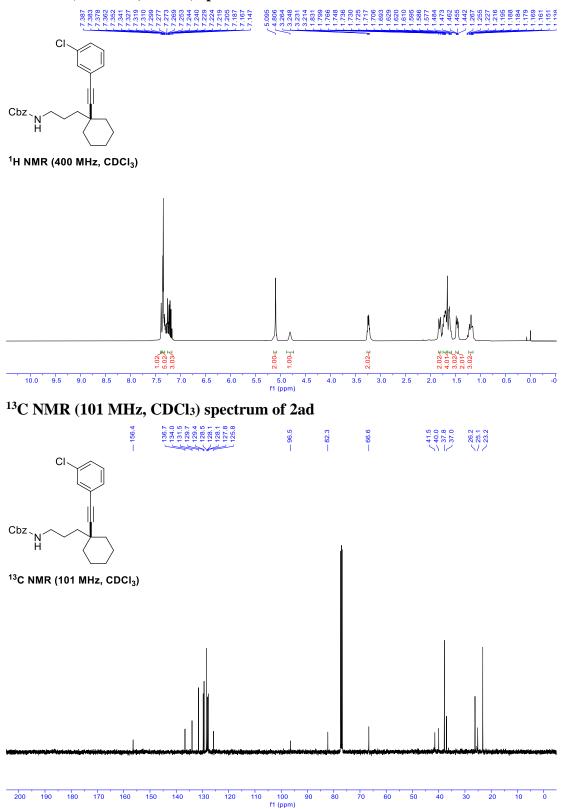

¹H NMR (400 MHz, CDCl₃) spectrum of 2x


S156

¹H NMR (400 MHz, CDCl₃) spectrum of 2aa

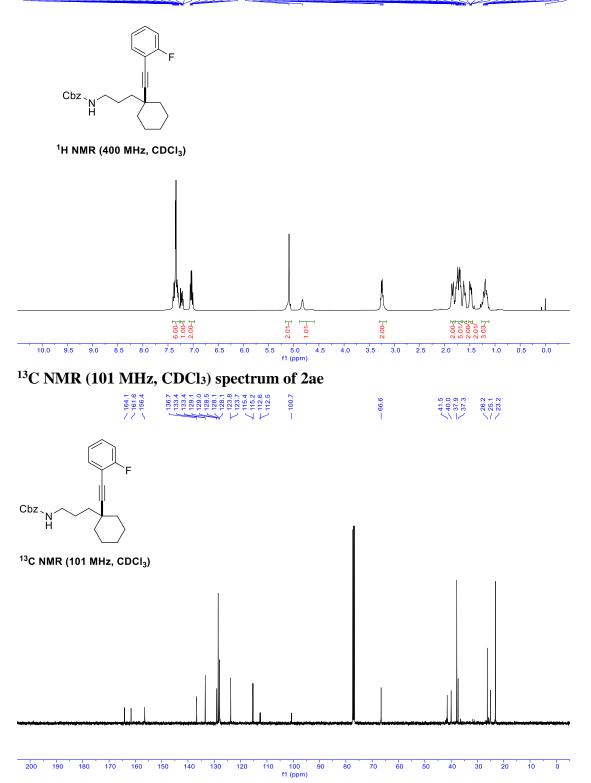

¹H NMR (400 MHz, CDCl₃) spectrum of 2ab

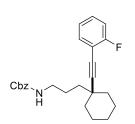
¹H NMR (400 MHz, CDCl₃) spectrum of 2ac



¹⁹F NMR (377 MHz, CDCl₃) spectrum of 2ac

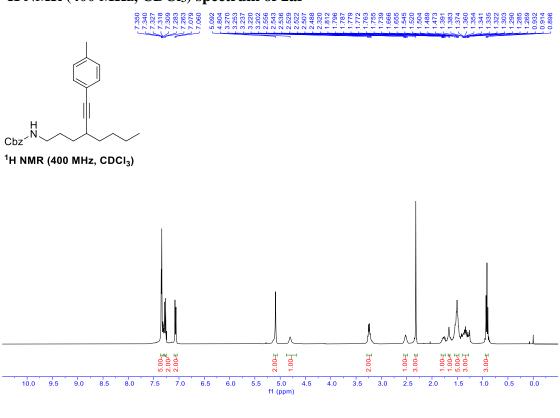
¹⁹F NMR (377 MHz, CDCI₃)

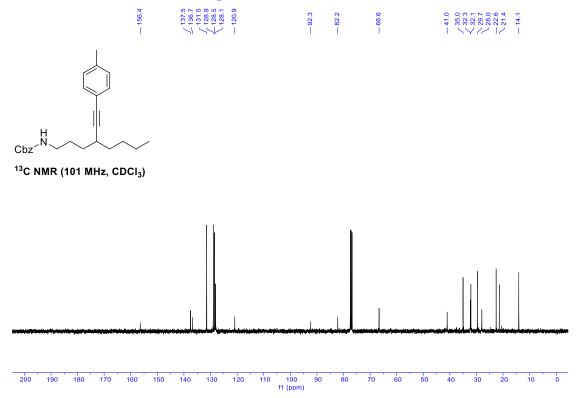

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)


¹H NMR (400 MHz, CDCl₃) spectrum of 2ad

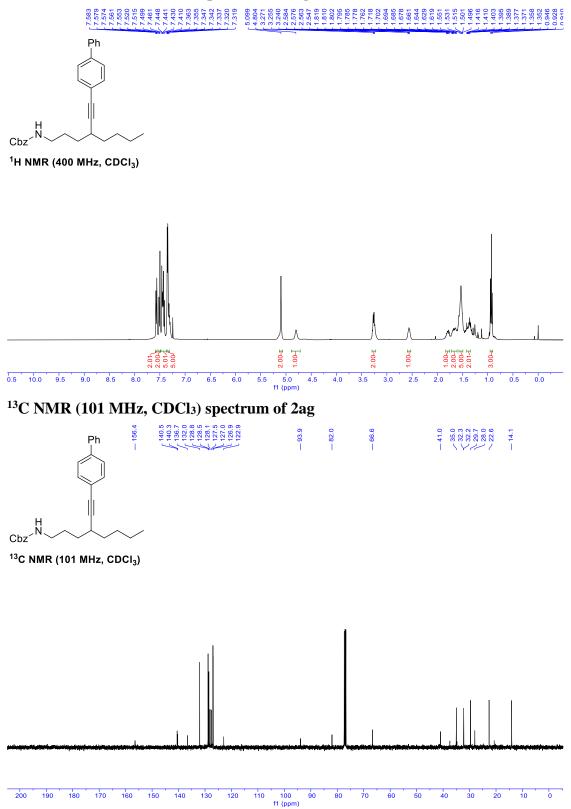
¹H NMR (400 MHz, CDCl₃) spectrum of 2ae

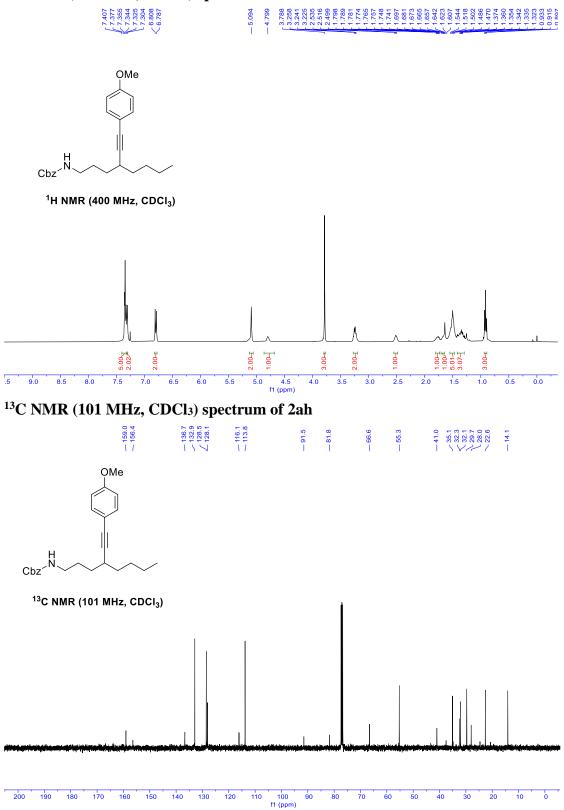
7, 2387 7, 2387 7, 2387 7, 2387 7, 2387 7, 2387 7, 2387 7, 2389 7, 2397 7, 2389 7, 239


¹⁹F NMR (377 MHz, CDCl₃) spectrum of 2ae

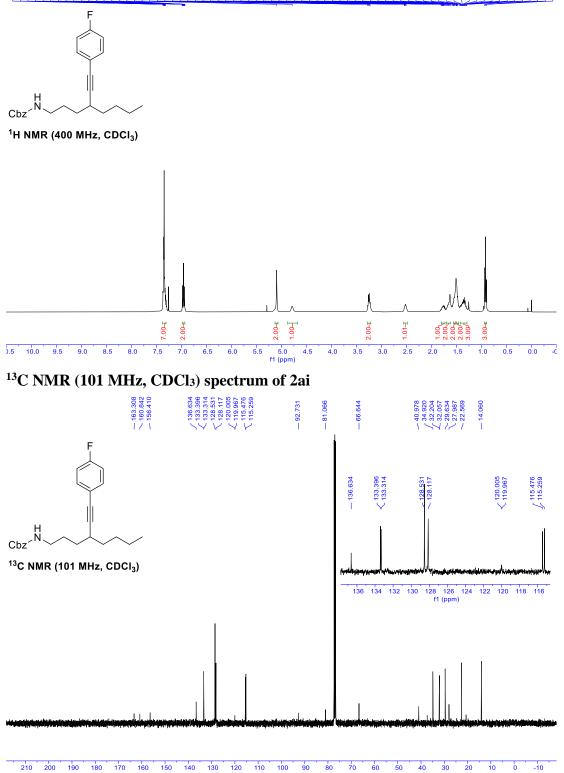

 19 F NMR (377 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

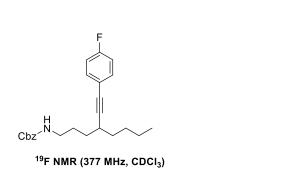

¹H NMR (400 MHz, CDCl₃) spectrum of 2af


¹³C NMR (101 MHz, CDCl₃) spectrum of 2af

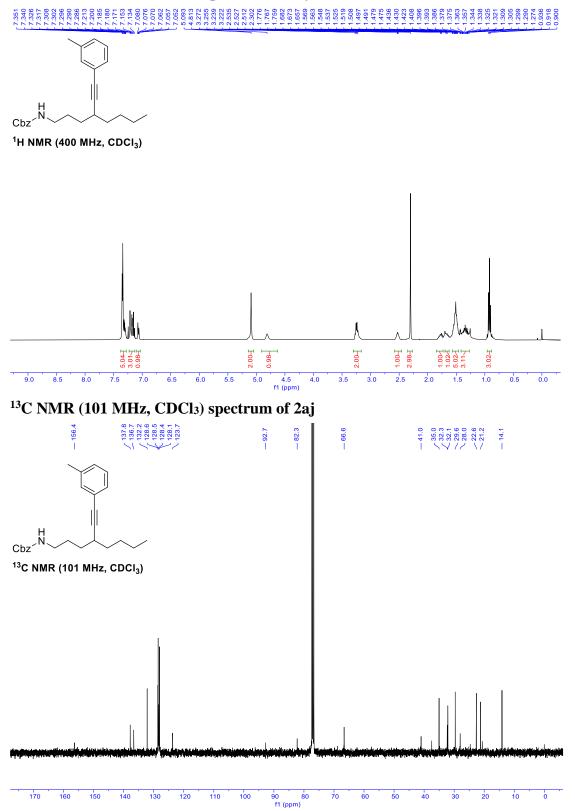
¹H NMR (400 MHz, CDCl₃) spectrum of 2ag



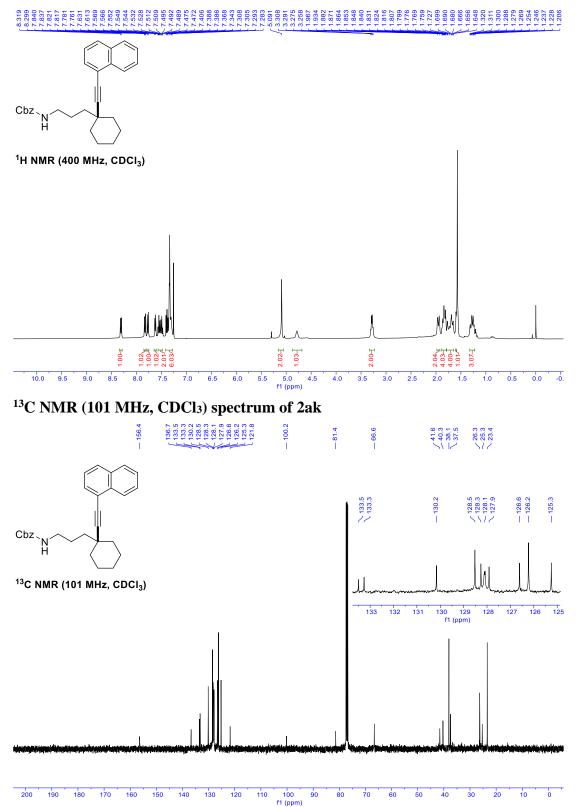
¹H NMR (400 MHz, CDCl₃) spectrum of 2ah

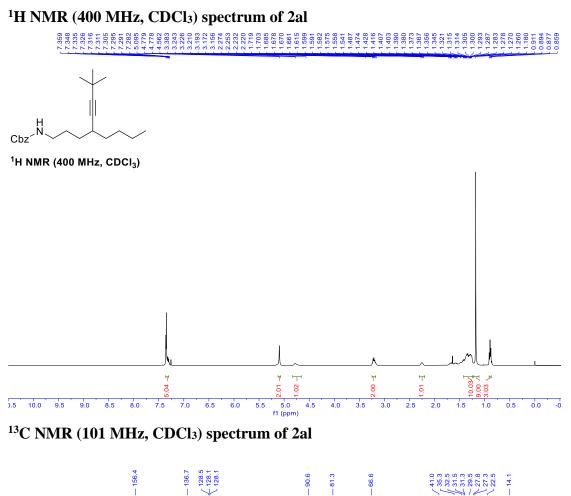

¹H NMR (400 MHz, CDCl₃) spectrum of 2ai

7:368
7:368
7:368
7:37:37
7:335
7:335
7:335
7:335
7:335
7:335
7:335
7:335
7:335
7:335
7:335
7:335
7:335
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:996
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997
6:997

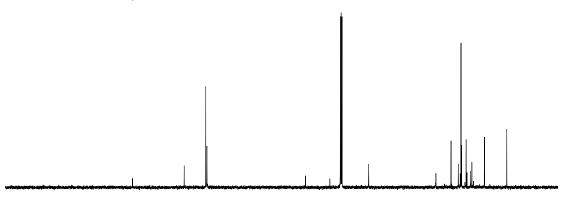

110 100 f1 (ppm)

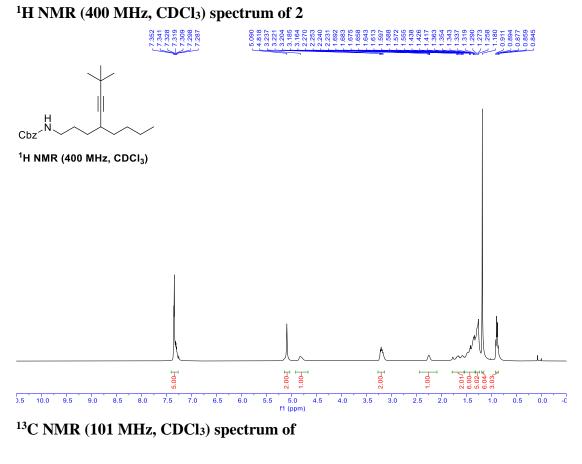
¹⁹F NMR (377 MHz, CDCl₃) spectrum of 2ai

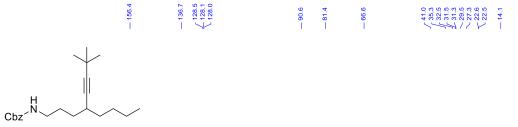



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

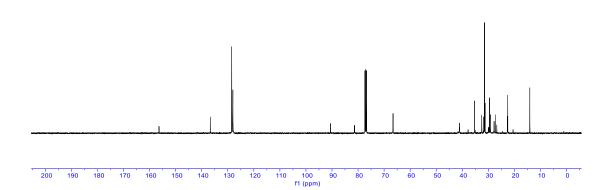
¹H NMR (400 MHz, CDCl₃) spectrum of 2aj


¹H NMR (400 MHz, CDCl₃) spectrum of 2ak



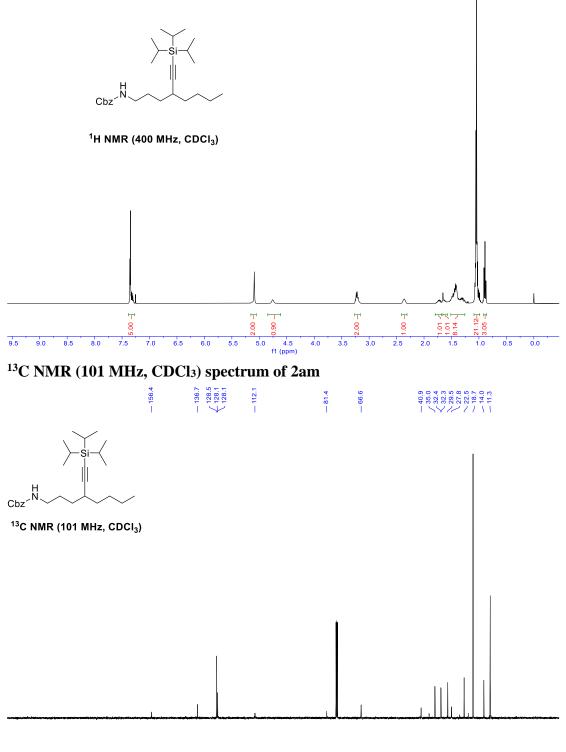

Cbz^Ń

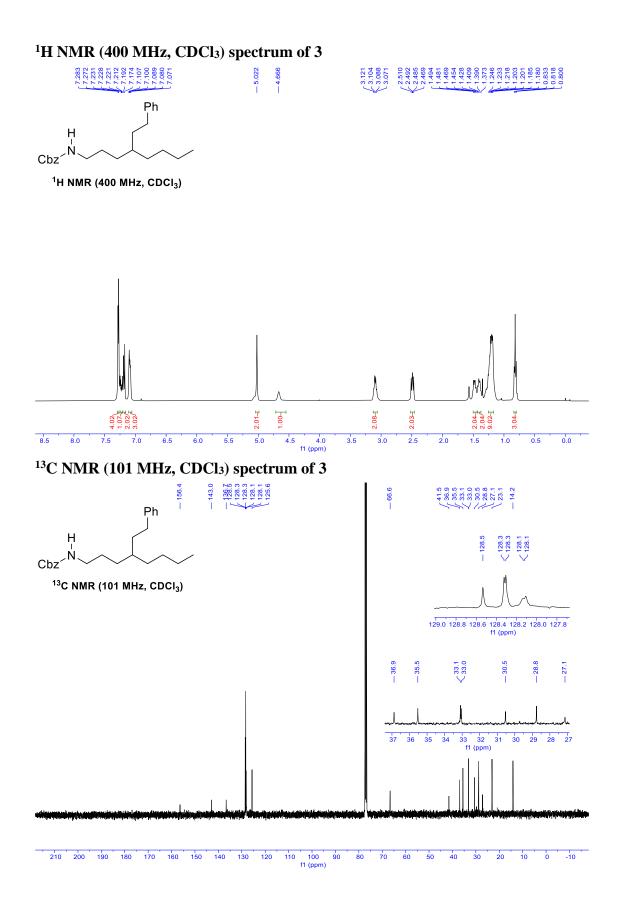
¹³C NMR (101 MHz, CDCl₃)

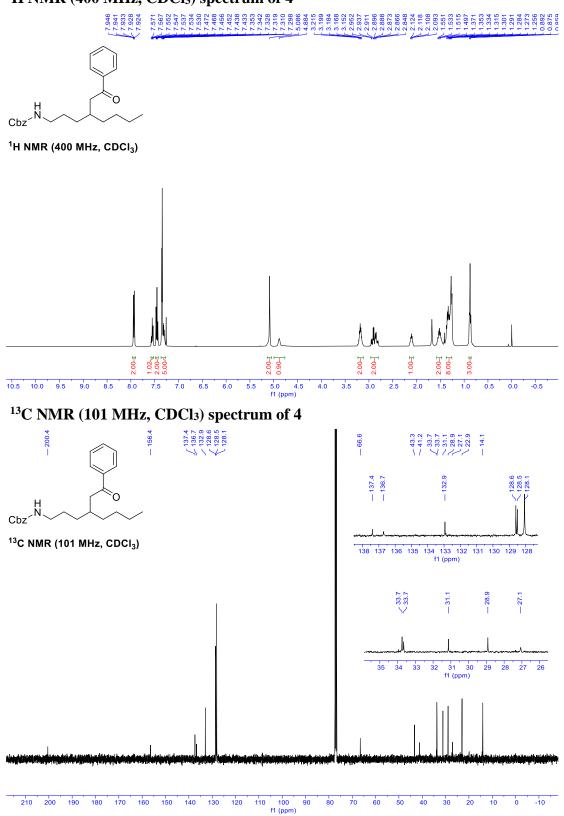


f1 (ppm)

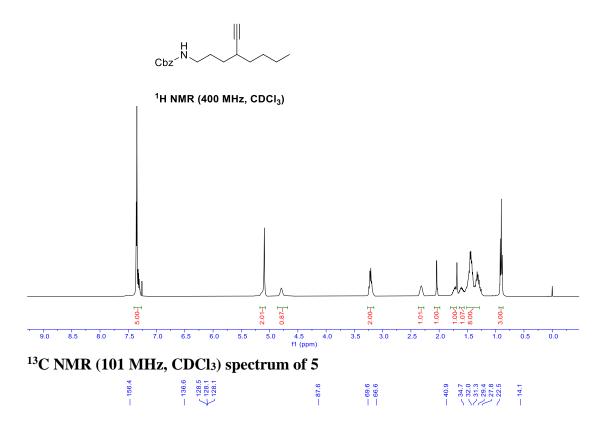




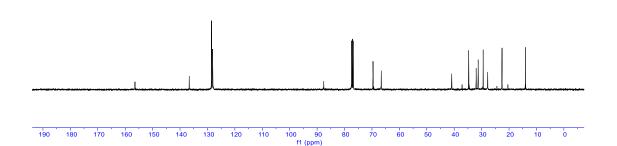

¹³C NMR (101 MHz, CDCl₃)



¹H NMR (400 MHz, CDCl₃) spectrum of 2am

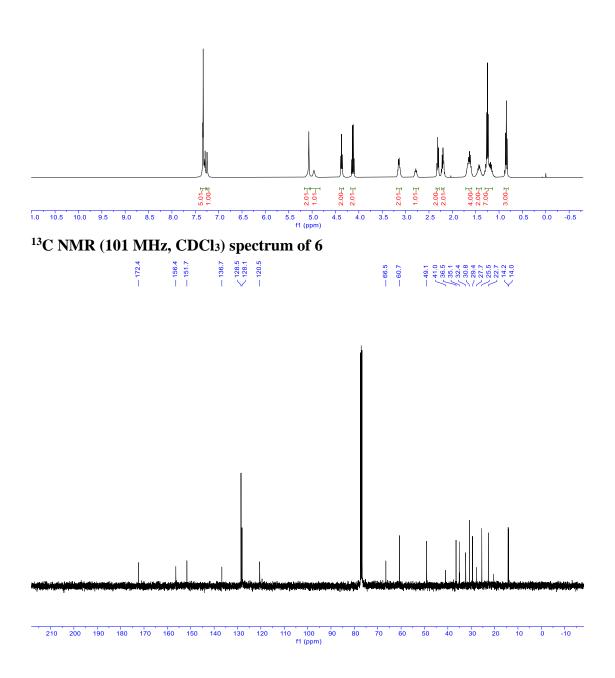


¹H NMR (400 MHz, CDCl₃) spectrum of 4


¹H NMR (400 MHz, CDCl₃) spectrum of 5

7, 338 7, 334 7, 334 7, 334 7, 334 7, 334 7, 334 7, 334 7, 334 7, 334 7, 334 7, 334 7, 334 7, 334 3, 318 3, 328 3, 318 3, 318 3, 318 3, 328 3, 328 3, 318 3, 328 3,

Cbz^{/N}


¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) spectrum of 6

EtOOC N-N N N Cbz

¹H NMR (400 MHz, CDCl₃)

