Supplementary Information

Nitrogen-Doped Graphene Encapsulating Fe₂N for Enhanced Electrocatalytic

Conversion of Nitrate to Ammonia

Yating Chen, Taiquan Rao, Jiayu Zhan, Lu-Hua Zhang* and Fengshou Yu*

National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China

Experimental section

Materials. Dicyandiamide ($C_2H_4N_4,98\%$) was purchased from Sinopharm Chemical Reagent Co. Ltd. Glucose ($C_6H_{12}O_6$, 99%) was purchased from Macklin. FeCl₃·6H₂O (99%) was purchased from Kermel. Ferric oxide (Fe₂O₃, 98%) was purchased from Macklin. All chemicals were used as received without further purification.

Synthesis of electrocatalysts

Synthesis of Fe₂N@NG: Dicyandiamide and glucose (0.1 g) were combined in mass ratios of 10:1 and subsequently dissolved in 35 mL of deionized water containing 61 mg of FeCl₃·6H₂O, stirring for 12 h to get homogeneous solution. Subsequently, the solution was frozen dried in a freeze dryer with vacuum after freezing by liquid nitrogen. The resultant powders were pyrolyzed at 550 °C for 2 h and 800 °C for 2 h under flowing Ar atmosphere. The heating rate was 4°C/min from 25°C to 550°C and 3°C/min from 550°C to 800°C, with an Ar gas flow rate of 85 mL/min. The powder was treated with NH₃ and held at 900 °C for 30 min. The obtained products were denoted as Fe₂N@NG. The heating rate was 10°C/min from 25°C to 900°C, with a gas flow rate of 25 mL/min.

Synthesis of Fe₂N: Commercial Fe₂O₃ with a particle size identical to that of the synthesized Fe₂N@NG was purchased, followed by heat treatment of the Fe₂O₃ in NH₃ at 900 °C for 30 minutes to ultimately obtain Fe₂N.

Synthesis of NG: The NG samples were synthesized using the same method, excluding the addition of Fe salt.

Synthesis of Fe₂N/NG: The mass fraction of Fe in Fe₂N@NG was measured by Inductively coupled plasma mass spectrometry (ICP-MS) to assess the amount of Fe₂N. The mass ratio of Fe₂N to NG was approximately 2.5:7.5, and the mixture was thoroughly ground using a mortar.

Physical characterization. Transmission electron microscopy (TEM) and high-resolution TEM images were obtained by a FEI Talos F200XG2 AEMC. XRD patterns were recorded on a Rigaku Smart Lab 9 KW

2

with Cu K α radiation (λ = 1.5418 Å), employing a scan rate of 6° min⁻¹ under operational parameters of 40 kV and 40 mA. XPS spectroscopy was performed using a Thermo Scientific K-Alpha with non-monochromatic Al K α x-rays as the excitation source. The binding energy was calibrated using the C 1s peak energy of 284.8 eV and valence spectrum. The Fourier transform infrared (FTIR) transmittance spectra were obtained using a Thermo Scientific Nicolet iS20. Isotope labeling experiments were conducted through ¹H NMR on a Bruker 400 MHz AVANCE NEO spectrometer.

Electrochemical Measurements. The electrochemical measurements were performed in a traditional three electrode H-type electrolysis cell with an electrochemical workstation (CHI 660E). For fabrication of the working electrode, 4.0 mg of Fe₂N@NG powder was uniformly dispersed with 50 μ L of 5 wt% Nafion solution in a mixed solvent system containing 475 μ L ethanol and 475 μ L ultrapure water (18.2 M Ω ·cm), followed by ultrasonication treatment for 30 minutes to achieve homogeneous ink formation. Subsequently, the resultant electrocatalyst ink was dropped to the carbon paper in a uniform layer to maintain a loading of 0.2 mg cm⁻². The nitrate reduction reaction (NO₃RR) was investigated in the H-cell, employing the 1 cm⁻² carbon paper (with catalyst) as the working electrode. A Hg/HgO reference electrode and the platinum wire counter electrode completed the three-electrode system. The catholyte composition comprised 0.5 M Na₂SO₄ with or without variable concentrations of NaNO₃ (0.01-0.5 M).

Calculation of the NH₃ Faradaic Efficiency (FE), and Yield Rate

The FE of electrocatalytic NO₃⁻-NH₃ conversion was calculated as follows:

$$FE = \frac{8 \times V \times C_{NH_3} \times F}{Q}$$

The rate of NH₃ yield rate was calculated using the following equation:

Yield NH₃ =
$$\frac{C_{NH_3} \times V}{17 \times m \times t}$$

where V is the volume of the cathodic electrolyte, C_{NH3} is the measured NH₃ concentration, F is the Faraday constant (96500 C mol⁻¹), Q is the total charge passing the electrode, m is the loading mass of catalysts and t is the reduction time.

The electrochemically active surface area (ECSA) was determined from CV curves at various scan rates within a non-Faraday potential window. The absolute value of capacitance corresponding to the potential in the middle of the CV curve at different sweep rates yields a straight line, with a slope equal to the electrochemical double-layer capacitance (C_{dl}).

The ECSA was calculated using the following equation:

3

$$ECSA = \frac{C_{dl}}{C_{ref}}$$

Where C_{ref} is specific capacitance of a flat surface. We take 40 μ F cm⁻² to be a moderate value for the C_{ref} .

Fig. S1. XPS Survey spectra of $Fe_2N@NG$ and NG.

Fig. S2. UV-vis absorption spectra of the standard solutions containing (a) NH_3 and (c) NO_2^- . The plot of standard curves of (b) NH_3 and (d) NO_2^- .

Fig. S3. The NH_3 yield rate of $Fe_2N@NG$, Fe_2N/NG and NG different potentials.

Fig. S4. H_2 FE of Fe₂N@NG, Fe₂N/NG and NG at different potentials.

Fig. S5. NH_3 current densities at different applied potentials of $Fe_2N@NG$, Fe_2N/NG and NG.

Fig. S7. Double layer capacitance (C_{dl}) of Fe₂N@NG, Fe₂N/NG and NG.

Fig. S8. NH₃ current densities normalized by ECSA of NO₃RR at different applied potentials of Fe₂N@NG, Fe₂N/NG and NG.

Fig. S9. Comparisons of NO₃RR performance of Fe₂N@NG with other reported electrocatalysts.

Fig. S10. Tafel plots of Fe₂N@NG, Fe₂N/NG and NG.

Fig. S12. NO_2^- FE of Fe₂N@NG at different concentrations of NO_3^- .

Fig. S13. (a) Bode phase plots of Fe_2N/NG at different potentials in electrolyte of 0.5 M Na_2SO_4 without NO_3^- or (b) with NO_3^- (c) NG at different potentials in electrolyte of 0.5 M Na_2SO_4 without NO_3^- .

 $\begin{array}{c} \hline & -& -& 0 \\ \hline & -& 0.4 \\ \hline & -& 0.8 \\ \hline & -& 0.6 \\ \hline & -& 0.4 \\ \hline & -& 0.2 \\ \hline & -& 0.5 \\ \hline & -& 0.6 \\ \hline & -& 0.6 \\ \hline & -& 0.7 \\ \hline & -& 0.8 \\ \hline & -& 0.6 \\ \hline & -& 0.7 \\ \hline & -& 0.8 \\ \hline & -& 0.6 \\ \hline & -& 0.7 \\ \hline & -& 0.8 \\ \hline & -& 0.6 \\ \hline & -& 0.7 \\ \hline & -& 0.8 \\ \hline & -& 0.6 \\ \hline & -& 0.7 \\ \hline & -& 0.8 \\ \hline & -& 0.6 \\ \hline & -& 0.7 \\ \hline & -& 0.8 \\ \hline & -& 0.6 \\ \hline & -& 0.8 \\ \hline & -& 0.6 \\ \hline & -& 0.8 \\ \hline & -& 0.6 \\ \hline & -& 0.8 \\ \hline & -& 0.8$

Fig. S15. The ¹H NMR spectra of electrolytes after NO₃RR using ¹⁴NO₃⁻ or ¹⁵NO₃⁻ as the N-source, respectively.

 $NO_3^{\text{-}} \qquad NO_3^{\text{-}}$ Fig. S16. The yield rate of NH_3 with or without NO_3', and without potential.

Fig. S17. Successive recycling test at -0.5 V vs. RHE for Fe₂N@NG.

Table S1. Elemental compositions obtained by ICP-MS of Fe₂N@NG.

Sample	Element	Content (wt %)	
Fe ₂ N@NG	Fe	23.368	

Table S2. Comparison of the C_{dl} and ESCA.

Samples	C _{dl} (mF cm ⁻²)	ESCA
Fe ₂ N@NG	2.71	67.75
Fe ₂ N/NG	11.35	283.75
NG	9.56	239

Table S3. Performance comparison of Fe₂N@NG with the reported catalysts.

Catalysts	Electrolyte	FE (%)	NH₃ Yield Rate	Potential	Ref
			(mmol h ⁻¹ g _{cat} ⁻¹)	(V <i>vs</i> . RHE)	
Fe₂N@NG	0.025 M NaNO₃ + 0.5 M	96.16	618.35	-0.5	This
	Na ₂ SO ₄				work
Co@CC	0.1 M NaOH + 0.1 M	93.4	600	-0.8	1
	NO ₃ -				T
aCu@B-SnS ₂ -x	0.1 M KOH + 0.1MKNO ₃	94.6	550	-0.67	2
Cu@Ni ₂ P-NF	$1 \text{ M KOH} + 20 \text{ mM KNO}_3$	92.4	374.11	-0.4	3
Cu@ZnO NWA	0.1 M KOH + 0.05 M	89.14	354.7	-0.6	4
	KNO₃				4
Cu/JDC	0.1 M NaOH + 0.1 M	93.2	520	-0.6	5
	NO ₂ ⁻				
FeMo-N-C	0.05 M PBS + 0.16 M	93	170	-0.45	6
	NO ₃ -				
MWCNTs	0.1 M KOH + 0.1 M KNO ₃	84.72	237.05	-0.16	7
Ni@JBC-800	0.1 M NaOH + 0.1 M	83.4	242.35	-0.5	8
	NO ₂ ⁻				
CoS ₂ /MoS ₂	0.1 M KOH + 600 ppm	97.07	441.18	-0.25	0
	KNO ₃				Э

References:

1 T. Xie, X. Li, J. Li, J. Chen, S. Sun, Y. Luo, Q. Liu, D. Zhao, C. Xu, L. Xie and X. Sun, Inorg. Chem. 2022, 61, 14195-14200.

- 2 H. Li, Y. Wang, S. Chen, F. Peng and F. Gao, *Small*, 2024, **20**, 2308182.
- 3 M. He, R. Chen, Y. Zhong, H. Li, S. Chen, C. Zhang, S. Deng and F. Gao, *Colloids and Surf. A.*, 2024, 681, 132746.
- 4 A. Feng, Y. Hu, X. Yang, H. Lin, Q. Wang, J. Xu, A. Liu, G. Wu and Q. Li, ACS Catal., 2024, 14, 5911-5923.
- 5 L. Ouyang, L. Yue, Q. Liu, Q. Liu, Z. Li, S. Sun, Y. Luo, A. Ali Alshehri, M. S. Hamdy, Q. Kong and X. Sun, J. Colloid Interface Sci., 2022, 624, 394-399.
- 6 E. Murphy, Y. Liu, I. Matanovic, S. Guo, P. Tieu, Y. Huang, A. Ly, S. Das, I. Zenyuk, X. Pan, E. ACS Catal., 2022, 12, 6651-6662.
- 7 M. Ye, X. Jiang, Y. Zhang, Y. Liu, Y. Liu and L. Zhao, *Nanomaterials*, 2024, **14**, 102.
- 8 Y. Shen, L. Liang, S. Zhang, D. Huang, J. Zhang, S. Xu, C. Liang and W. Xu, Nanoscale, 2022, 10, 1622-1630.
- 9 Z. Tan, F. Du, M. Tong, J. Hu, N. Zhang, S. Huang and C. Guo, Energy Fuels, 2023, 37, 18085-18092.