Electronic Supplementary Information for

Self-Anchored Nickel Co-catalyst on Nitrogen-Doped Carbon Dots for Enhanced Photocatalytic Hydrogen Evolution

Weiqin Yin,‡^a Ganghua Zhou,‡^a Xin Ning,*^a Xiaozhi Wang *^{abc} and Xingwang Zhu *^a

^{a.} College of Environmental Science and Engineering, School of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China.

 ^{b.} Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.
R. China.

^{c.} Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource
Utilization, Nanjing, Jiangsu 210095, P. R. China.

Email: ningxin@yzu.edu.cn, xzwang@yzu.edu.cn, zxw@yzu.edu.cn

‡ These authors contributed equally to this work.

Catalyst preparation

Synthesis of carbon nitride nanosheets (CN)

The graphite-phase carbon nitride nanosheets were prepared using a simple two-step calcination method. First, 10 g of melamine was placed in an alumina crucible and transferred to a muffle furnace, where the temperature was increased to 600°C at a heating rate of 2°C/min and maintained for 2 hours. After natural cooling to room temperature, bulk carbon nitride was obtained. Next, 0.4 g of the bulk carbon nitride was evenly spread in a ceramic boat and transferred to a tube furnace. The temperature was raised to 550°C at a heating rate of 5°C/min and maintained for 6 hours. After natural cooling to room temperature, milky-white carbon nitride nanosheets were obtained, which were simply named CN.

Synthesis of Nitrogen doped carbon dots (NCQDs)

Nitrogen-doped carbon quantum dots (NCQDs) were synthesized via a hydrothermal method using citric acid and urea as the carbon and nitrogen sources. The specific procedure was as follows: 2.1 g of citric acid and 1.8 g of urea were dissolved in 50 mL of deionized water and then transferred into a 100 mL stainless steel autoclave lined with polytetrafluoroethylene (PTFE). The mixture was subjected to hydrothermal treatment at 160°C for 4 hours. After cooling to room temperature, the obtained NCQDs were collected and stored in the dark for further use.

Synthesis of carbon nitride supported Nickel doped carbon dots (CNNiC)

200 mg of the synthesized CN was added to a mixture containing different volumes (0.5, 1, 2 mL) of NCQDs and 0.02 g of hexahydrate nickel nitrate solution (V_{ethanol} : V_{water} = 1:1). After ultrasonic treatment for 30 min, the mixture was stirred for 1 h, then transferred to a high-pressure reactor and subjected to hydrothermal reaction at 160°C for 4 h. The precipitate was collected by centrifugation, washed several times with water and ethanol, and vacuum-dried (60°C) overnight.

Characterization

The morphology of the catalyst was analyzed using a high-resolution transmission electron microscope (HRTEM, FEI Tecnai G2 F20 S-TWIN). The crystalline structure of the catalyst was investigated using an X-ray diffractometer (XRD, Bruker D8 ADVANCE) and a Fourier transform infrared spectrometer (FTIR, Thermo Scientific Nicolet iS50, USA). The surface composition of the catalyst was determined by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific, USA). The photoabsorption properties of the catalyst were recorded using a UV-Vis-NIR spectrophotometer (Agilent Cary5000, USA). The fluorescence characteristics of the catalyst were studied using a steady-state fluorescence spectrometer (PL, Hitachi F7000). The PL lifetime was measured with a transient fluorescence spectrometer (Edinburgh Instruments, FLS980).

Photocatalytic performance evaluation

The photocatalytic hydrogen evolution performance was tested in an online photoreaction system (CEL-SPH2N, Beijing China Education Au-light Co., Ltd., China). Specifically, 10 mg of the prepared photocatalyst was uniformly distributed in a topirradiation two-necked photoreactor (containing 45 mL of deionized water and 5 mL of triethanolamine). Prior to light exposure, the system was evacuated. The reaction temperature was controlled at 6°C using a circulating cooling water system. A 300W xenon lamp (CEL-NP2000) equipped with an AM1.5 filter served as the light source. The produced H₂ were analyzed using a gas chromatograph (GC7920, N₂ carrier) equipped with a thermal conductivity detector (TCD).

Photoelectrochemical tests

Photoelectrochemical tests were carried out on a CHI760E electrochemical workstation (ChenHua Instruments, China) using a three-electrode cell. The working electrode consisted of FTO conductive glass loaded with 2 mg of photocatalyst, while Ag/AgCl and Pt served as the reference and counter electrodes, respectively. A 300W xenon lamp was employed as the light source. A 0.2 M Na₂SO₄ solution was chosen as the electrolyte.

Fig. S1 (a) EDX line-scan and (b) corresponding elemental signal profiles of CNNiC-1 catalyst.

Fig. S2 XRD patterns of prepared catalysts.

Fig. S3 FTIR spectra of prepared catalysts.

Fig. S4 VSM measurement curve for the CNNiC-1 catalyst.

Fig. S5 XPS survey spectra of prepared catalysts.

Fig. S6 High-resolution XPS spectra: (a) C 1s, (b) N 1s, (c) O 1s, and (d) Ni 2p.

 $\label{eq:Fig.S7} \textbf{Fig. S7} (a) \, UV \text{-} Vis \, DRS \ spectra \ of \ as-prepared \ catalysts. (b) \ Tauc \ plot \ and \ (c) \ Mott-Schottky \ curves$

of CN. (d) Band alignment diagram of CNNiC catalyst.

Fig. S8 (a) PL, (b) TRPL, (c) EIS spectra, and (d) transient photocurrent response of CN, CN-Ni, and CNNiC-1 catalysts.

Fig. S9 Water contact angle tests of prepared catalysts.

Fig. S10 CV curves of the CNNiC-1 catalyst at various scan rates (10–50 mV s⁻¹).

Fig. S11 Tafel polarization curves of prepared samples.

Photocatalyst	Reaction solution	Light source	H2 yields (μmol g ⁻¹ h ⁻ ¹)	Ref.
400-4	15 vol.% TEOA	150 W Xe lamp, AM1.5G	4.55	1
CN(T)-7-NP	pure water	150 W Xe lamp, AM1.5	76.8	2
NiS/g-C ₃ N ₄ (0.3 wt%)	10 vol.% TEOA	3 W LED (420 nm)	244	3
CNN-Pt (0.5 wt%)	pure water /methanol	300 W Xe lamp (>420nm)	68.844	4
$NiS_2/g-C_3N_4$ (3 wt%)	10 vol.% lactic acid	3 W LED (> 420 nm)	116.343	5
NiS-LaFeO ₃ /g-C ₃ N ₄	10 vol.% TEOA	300 W Xe lamp (> 400 nm)	121	6
HCN	10 vol.% TEOA	300 W Xe lamp (> 420nm)	392	7
PtSAs-Au _{2.5} /PCN	20 vol.% TEOA	300 W Xe lamp (550 nm)	264	8
Zn-PCN (4.79%)	pure water	300 W Xe lamp (> 420nm)	35.2	9
CNNiC-1	10 vol.% TEOA	300 W Xe lamp, AM1.5	378.87	this work

Table S1 Comparison for H_2 evolution with reported photocatalysts.

References

- D. Baranowska, K. Zielinkiewicz, T. Kedzierski, E. Mijowska and B. Zielinska, *Int. J. Hydrogen Energ.*, 2022, 47, 35666-35679.
- I. F. Silva, S. Roy, P. Kumar, Z. W. Chen, I. F. Teixeira, A. Campos-Mata, L. M. Antônio, L. O. Ladeira, H. O. Stumpf and C. V. Singh, *J. Mater. Chem.A*, 2023, 11, 23330-23341.
- M. Wang, J. Cheng, X. Wang, X. Hong, J. Fan and H. Yu, *Chinese J. Catal.*, 2021, 42, 37-45.
- 4. Y. Zhang, P. Zheng, S. Li, H. Guo, X. Hu, Y. Fang, R. Duan and Q. Chen, *Colloids and Surfaces A: Phys. Eng. Aspect*, 2023, **676**, 132113.
- 5. F. Chen, H. Yang, X. Wang and H. Yu, *Chinese J. Catal.*, 2017, **38**, 296-304.
- 6. K. Xu, H. Xu, G. Feng and J. Feng, *New J. Chem.*, 2017, **41**, 14602-14609.
- C. Wang, Y. Lu, Z. Wang, H. Liao, W. Zhou, Y. He, S. M. Osman, M. An, Y. Asakura and Y. Yamauchi, *Appl. Catal. B: Environ. Energ*, 2024, 350, 123902.
- M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang and Y. Yu, *Nano-Micro Lett.*, 2023, 15, 129.
- 9. D. Zhao, Y. Wang, C.-L. Dong, F. Meng, Y.-C. Huang, Q. Zhang, L. Gu, L. Liu and S. Shen, *Nano-Micro Lett.*, 2022, 14, 223.