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Text S1. Computational details 

The ground-state geometry optimization of 2D superlattice perovskites is 

performed by using the density functional theory (DFT) approach, which can be 

implemented with the Vienna Ab initio Simulation Package.1,2 The electronic 

exchange–correlation potential is treated by the Perdew–Burke–Ernzerhof generalized 

gradient approximation.3 The core electrons are described by using the projector 

augmented-wave method4 while the valence electron wave functions are projected onto 

plane-wave basis sets with a kinetic energy cutoff value of 400 eV. The 4 × 4 × 1 

Monkhorst−Pack k-point mesh is adopted to sample the first Brillouin zone. The 

convergence threshold for the residual forces on ions and the energy differences 

between successive electronic self-consistent field cycles are set as 0.01 eV Å-1 and 10-

5 eV, respectively. In these calculations, the van der Waals corrections are taken into 

account by using the semi-empirical DFT-D2 method,5 which is demonstrated to be 

reliable for calculating the lattice parameters and electronic structures in 2D 

perovskites.6 The DFT-relaxed lattice parameters are demonstrated to well match those 

by the Equation of State (EOS) analysis (Fig. S1).  The convergences of the kinetic 

energy cutoff value and k-point sampling are also confirmed, which are shown in Figs. 

S2-S4. Based on the relaxed ground-state geometries, the high-frequency dielectric 

constant is calculated according to the approach of Gajdoš et al.7 Projected density of 

states (PDOS) and frontier orbitals are computed by combining a modified version of 

the HSE06 functional8 which includes 43% Hartree-Fock exchange9 and spin-orbit 

coupling (SOC) corrections. Subsequently, photogenerated electron-hole distributions 

in the lowest-energy excitonic state of the studied 2D superlattice perovskites are 
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achieved by adopting the timed-dependent DFT (TDDFT) method with an optimally-

tuned,10,11 screened and range-separated hybrid (OTSRSH) functional.12-15 Formulated 

with spinor wavefunctions,16 the TDDFT-OTSRSH method can not only capture the 

long-range electron-electron and electron-hole interactions, but treat the SOC 

corrections in solids. The formalism of the TDDFT methods with the OTSRSH 

functional is shown in the text S2.  
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Text S2. Formalism of time-dependent density functional theory method 

Formulated with spinor wavefunctions,16 the following non-Hermitian eigenvalue 

equation is solved to determine the exciton energies and wavefunctions:17 

                                      (
𝑨 𝑩
𝑩∗ 𝑨∗) (

𝑿𝑰

𝒀𝑰
) = 𝜔𝐼 (

𝟏 0
0 −𝟏

) (
𝑿𝑰

𝒀𝑰
)                                (S1) 

where the pseudo-eigenvalue ωI denotes the I-th exciton energy. According to the basis 

of two-component spinor orbitals (ijσ), the matrix elements of A and B are given as: 

                                                 𝐴𝑖𝑗𝜎,𝑘𝑙𝜏 = 𝛿𝑖,𝑘𝛿𝑗,𝑙(𝜀𝑗 − 𝜀𝑖) + 𝐾𝑖𝑗,𝑘𝑙                                   (S2) 

                                                 𝐵𝑖𝑗,𝑘𝑙 = 𝐾𝑖𝑗,𝑙𝑘.                                                 (S3) 

Here, K is the coupling matrix where indices i and k indicate the occupied Kohn-Sham 

(KS) orbitals, and j and l represent the virtual KS orbitals. Based on the assignment 

ansatz of Casida, the many-body wavefunction of an excited state I is expressed as  

                         𝛷𝐼 ≈ ∑
𝑋𝐼,𝑖𝑗𝜎+𝑌𝐼,𝑖𝑗𝜎

√𝜔𝐼
𝑖𝑗𝜎 �̂�𝑗𝜎

† �̂�𝑖𝜎𝛷0 = ∑ 𝑍𝐼,𝑖𝑗𝑖𝑗𝜎 �̂�𝑗𝜎
† �̂�𝑖𝜎𝛷0,                   (S4) 

where 𝑍𝐼,𝑖𝑗 = (𝑋𝐼,𝑖𝑗 + 𝑌𝐼,𝑖𝑗)/√𝜔𝐼, �̂�𝑖𝜎 is the annihilation operator acting on the i-th KS 

orbital with spin 𝜎, and Φ0 is the ground-state many-body wavefunction taken to be the 

single-Slater determinant of the occupied KS orbitals. Based on the many-body 

wavefunctions, the charge density associated with the exciton states is written as18 

                                𝜌𝐼 = ∑ 𝑍𝐼,𝑖𝑗
∗ 𝑍𝐼,𝑖𝑗′𝑖𝑗𝑗′ 𝜙𝑗

∗𝜙𝑗′ − ∑ 𝑍𝐼,𝑖𝑗
∗ 𝑍𝐼,𝑖′𝑗𝑖𝑖′𝑗 𝜙𝑖′

∗ 𝜙𝑖,                     (S5) 

where 𝜙𝑖 is KS orbital.  

To assess a reasonable energy level alignment of frontier orbitals contributed by 

organic spacer layer and inorganic layer in the 2D superlattice perovskites, the 

OTSRSH functional is resorted in this work. Specifically, the Coulomb repulsion 

operator 1/r is divided into a short-range and a long-range part by using the error 
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function 

1

𝑟
=

𝛼+𝛽 erf(𝜇𝑟)

𝑟
+

1−𝛼−𝛽 erf(𝜇𝑟)

𝑟
                                 (S6) 

where r represents the distance between electrons, erf(µr) is the Gaussian error function 

with µ being a range-separation parameter.  The α and β are tunable parameters with α 

determining the contribution from the exact exchange and β controlling the contribution 

from the long-range exchange terms. α and β satisfy the requirement of α + β = 1/ε0 

where ε0 is the scalar dielectric constant of the solid. The anisotropy of the dielectric 

constant is neglected, which is anticipated to little impact our conclusions.19 The Fock-

like exchange and semi-local KS exchange functional are applied to treat the first and 

second term at the right-hand side, respectively. Then, the OTSRSH exchange 

correlation potential is given by15 

 𝑉xc
RSH = 𝛼𝑉Fx + 𝛽𝑉Fx

LR + (1 − 𝛼)𝑉KSx − 𝛽𝑉KSx
LR + 𝑉KSc.          (S7) 

Here, LR represents the long-range terms, Fx labels Fock-like exchange, KSx and KSc 

labels semi-local KS exchange and correlation, respectively. In order to reduce the 

computational cost associated with the Fock-like exchange on large systems, the first-

order perturbation theory to the range-separated hybrid KS Hamiltonian is employed.20 

According to the high-frequency dielectric constant calculated in this work (Fig. S10), 

the set of the parameters (α = 0.07, ε0 = 5 and µ = 0.03) is used for the studied 

(FBTT)2Pb2Br6 perovskites. This is due to that the energy level alignment of 

(FBTT)2Pb2Br6 is reasonably predicted by the DFT-OTSRSH method when compared 

with the experiments21 and is highly consistent with that calculated at the DFT-HSE06 

level of theory when the SOC effect is excluded (Fig. S9). Considering that the high-
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frequency dielectric constants change slightly in the studied systems, these parameters 

are fixed for the studied materials in this work.  
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Table S1. DFT-optimized lattice parameters for the unit cells of the studied A₂Pb₂X₆ (A 

= FBTT, FPT, FNT; X = Cl, Br, I) 2D superlattice perovskites. The values in parenthesis 

denote the lattice parameters which are fitted according to the third-order Brich-

Murnaghan EOS analysis in Fig. S1.22,23 

A2Pb2X6 (A = FBTT, 

FPT, FNT; X = Cl, 

Br, I) 

Bond length (Å) Bond angle (°) 

a b c α β γ 

(FBTT)₂Pb2Cl6 7.81 10.42 30.91 91.75 90.22 91.86 

(FPT)₂Pb2Cl6 7.81 10.42 30.91 91.75 90.22 91.86 

(FNT)₂Pb2Cl6 7.81 10.42 30.91 91.75 90.22 91.86 

(FBTT)₂Pb2Br6 7.91 

(8.05) 

10.52 

(10.82) 

30.94 

(31.56) 

91.87 

(91.82) 

90.47 

(90.95) 

91.99 

(91.76) 

(FPT)₂Pb2Br6 7.91 10.52 30.94 91.87 90.47 91.99 

(FNT)₂Pb2Br6 7.91 10.52 30.94 91.87 90.47 91.99 

(FBTT)₂Pb2I6 8.05 10.76 30.96 92.03 90.54 91.89 

(FPT)₂Pb2I6 8.05 10.76 30.96 92.03 90.54 91.89 

(FNT)₂Pb2I6 8.05 10.76 30.96 92.03 90.54 91.89 
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Table S2. Exciton binding energies (namely the energy differences between 

fundamental gap and optical gap) of four superlattice perovskites with different energy 

level alignments. 

A2Pb2X6 (A = FBTT, FPT; X = Cl, Br, I) Exciton binding energies (eV) 

(FPT)₂Pb2Cl6 0.48 

(FBTT)₂Pb2Br6 0.40 

(FBTT)₂Pb2I6 0.47 

(FPT)₂Pb2I6 0.41 
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Fig. S1 Energy (E) versus volume (V) curve of (FBTT)2Pb2Br6 structure by performing 

third-order Brich-Murnaghan EOS analysis with the expression 𝐸(𝑉) = 𝐸0 +

9𝑉0𝐵0

16
{[(

𝑉0

𝑉
)

2

3 − 1]
3

𝐵0
′ + [(

𝑉0

𝑉
)

2

3 − 1]
2

[6 − 4 (
𝑉0

𝑉
)

2

3
]} . Here, E0 and V0 are the energy 

and volume at equilibrium, B0 is the bulk elastic modulus and 𝐵0
′  is the first derivative 

of the bulk elastic modulus to volume. 
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Fig. S2 Convergence tests for total energies by changing kinetic energy cutoffs and k-

point meshes. (a) Total energies calculated by using four cutoff energies with the 4 × 4 

× 1 k-point mesh. (b) Total energies calculated by sampling the first Brillouin zone with 

four k-point meshes when the cutoff energy is set to be 400 eV.  
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Fig. S3 The PDOS of the (FPT)2Pb2Cl6, (FBTT)2Pb2Br6, (FBTT)2Pb2I6 and (FPT)2Pb2I6 

systems which shown different energy level alignments. These are calculated at the 

HSE06+SOC level of theory with cutoff energies of 450, 500, and 550 eV when the 4 

× 4 × 1 mesh is used, suggesting that the change of cutoff energies does not influence 

the energy level alignments shown in Fig. 2. 
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Fig. S4 The PDOS for the (FPT)2Pb2Cl6, (FBTT)2Pb2Br6, (FBTT)2Pb2I6 and 

(FPT)2Pb2I6 superlattice perovskites. Given the expensive cost of HSE06+SOC level of 

theory, the PBE functional is employed to test the convergence of k-point densities 

which include 4 × 4 × 1, 5 × 5 × 1, 6 × 6 × 1, and 7 × 7 × 1 meshes when the cutoff 

energy is set to be 400 eV. 
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Fig. S5 Schematic diagram of different types of energy level alignments in 2D 

perovskites. 
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Fig. S6 Frontier orbitals of the studied 2D superlattice perovskites in pristine structures. 

The iso-surface value of the frontier orbitals is 3.0 ×10-3 e Å-3. 
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Fig. S7 Energy differences (ΔE = Epristine - Estretched) of ground-state energies between 

pristine and stretched structures of the studied 2D superlattice perovskites. 
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Fig. S8 PDOS calculated at the HSE06+SOC level of theory for the studied 2D 

superlattice perovskites with stretched structures. 
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Fig. S9 PDOS calculated with (a) HSE06 and (b) OTSRSH functionals for 

(FBTT)2Pb2Br6 perovskite. 
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Fig. S10 The calculated high-frequency dielectric constants (ε∞) along a, b and c axis 

for the studied 2D superlattice perovskites. 
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Fig. S11 IPRs of the electron and hole densities according to the frontier orbitals shown 

in Figs. S6 and S13. 
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Fig. S12 Photoexcited e-h densities in the lowest-energy excitonic state of the studied 

2D superlattice perovskites with stretched structures. The electron (hole) densities are 

shown in red (yellow) with the iso-surface value being 3.0 ×10-3 e Å-3. 
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Fig. S13 Frontier orbitals of the studied 2D superlattice perovskites with stretched 

structures. The iso-surface value of the frontier orbitals is 3.0 ×10-3 e Å-3. 
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