SUPPORTING INFORMATION

Advances in Oxychalcogenide Materials for Hydrogen Evolution Photocatalysis in Aqueous Media

Sandy Al Bacha^{a,b,c}*, Emma E. McCabe^c*, Houria Kabbour^{a, d}*

^a Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

^b University of Kent, School of Physical Sciences, Canterbury, Kent CT2 7NH, U.K

^c Durham University, Department of Physics, Durham DH1 3LE, U.K.

^d Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel – UMR6502, F-44000, Nantes, France.

Corresponding authors: sandy.albacha@univ-lille.fr, emma.mccabe@durham.ac.uk, houria.kabbour@univ-cnrs-imn.fr

Compounds	Bandgap magnitude & Nature	Semi cond uctio n type	Cation choice	Coordination environment & Anion ratio	Polar units ?	Polar Structure?	H ₂ or O ₂ production ?	Reference
Sr6Cd2Sb6S10O7	Indirect (1.89 eV)	n- type	Sb^{3+}	${f SbS_5}\ {f SbOS_4}\ {f SbO_3}$	Yes	Yes (<i>Cm</i>)	H ₂ & O ₂ (theory)	DOI: 10.1021/acs.inorgchem.2c03040
Sm2Ti2S2O5	Indirect (2 eV)	n- type	Ti ⁴⁺	TiO ₅	Yes	No (<i>I4/mmm</i>)	H ₂ & O ₂ (measured)	DOI : 10.1021/ja0269643

Table S1. Comparison of the different structural and physical properties of Oxysulfide materials

Y ₂ Ti ₂ O ₅ S ₂	- (1.9 eV)	n- type	Ti ⁴⁺	TiO ₅	Yes	No (<i>I4/mmm</i>)	H ₂ & O ₂ (measured)	DOI : 10.1038/s41563-019-0399-z
Layered - LaOInS ₂	Direct (~2.64 eV)	-	In ³⁺	InS ₆	Yes	<i>P</i> 2 ₁ / <i>m</i>	H ₂ & O ₂ (measured)	DOI :10.1039/c7ta04440b DOI :10.1246/c1.2007.854
α - LaOInS ₂	(~2.7 eV)	p- type	In ³⁺	InS5O InS4 InS6	Yes	Pmcn	H ₂ & O ₂ (theory)	DOI : 10.1039/C9CC09797J
La5In3S9O3	(2.60 eV)	p- type	In ³⁺	InS_4	Yes	Pbcm	H ₂ & O ₂ (measured)	DOI : 10.1016/j.jssc.2003.10.012 DOI : 10.1246/cl.2007.854
LaCuOS	Direct (3.2 eV)	p- type	Cu ²⁺	CuS_4	No	P4/nmm	-	DOI : 10.1063/1.1319507
PrCuOS	Direct (3.03 eV)	p- type	Cu ²⁺	CuS_4	No	P4/nmm	-	DOI : 10.1021/cm030175i
NdCuOS	Direct (2.98 eV)	p- type	Cu ²⁺	CuS_4	No	P4/nmm	-	DOI : 10.1021/cm030175i
LaAgOS	Direct (2.50 eV)	p- type	Ag^+	AgS_4	No	P4/nmm	-	DOI: 10.1002/smtd.202201368
LaGaS2O	Indirect (3 eV)	n- type	Ga ³⁺	GaS ₂ O ₂	No	Pmca	Anodic photocurrent under UV light	DOI :10.1021/jp802153t
La3GaS5O	Direct (2.3 eV)	n- type	Ga ³⁺	GaS ₄	No	No (Pnma)	H ₂ or O ₂ Under visible light (measured)	DOI :10.1021/jp802153t
CeInOS ₂	Direct (2.41 eV)	-	In ³⁺	InS ₆	Yes	$P2_{1}/m$	H ₂ (measured)	DOI: 10.1039/c9dt01562k
PrInOS ₂	Direct (2.43 eV)	-	In ³⁺	InS ₆	Yes	$P2_{1}/m$	H ₂ (measured)	DOI : 10.1039/c9dt01562k
La2O2Fe2OS2	Direct (0.19 eV)	-	Fe ²⁺	FeO ₂ S ₄	No	No (<i>I4/mmm</i>)	-	DOI: 10.1103/PhysRevLett.104.216405 DOI: 10.1103/PhysRevB.86.125122
SrZnSO	Direct (3.1 eV)	p- type	Zn ²⁺	ZnS ₃ O	Yes	Yes (<i>P</i> 6 ₃ <i>mc</i>)	H ₂ (theory)	DOI : 10.1016/j.apcatb.2017.12.006

SrZn ₂ S ₂ O	Direct (3.86 eV)	n- type	Zn^{2+}	ZnS ₃ O	Yes	Yes (<i>Pmn</i> 2 ₁)	H ₂ & O ₂ (measured)	DOI: 10.1039/C9DT03699G
CaCoSO	Indirect (0.4 eV)	p- type	Co ²⁺	CoS ₃ O	Yes	Yes (<i>P</i> 6 ₃ <i>mc</i>)	-	DOI : 10.1016/j.materresbull.2017.05.041
CaZnSO	Direct (3.7 eV)	p- type	Zn^{2+}	ZnS ₃ O	Yes	Yes (<i>P</i> 6 ₃ <i>mc</i>)	H ₂ (theory)	DOI: 10.1016/j.apcatb.2017.12.006
BaCoSO	(1.3 eV)	-	Co ²⁺	CoS_2O_2	No	(Cmcm)	-	DOI :10.1103/PhysRevB.100.205130
CaFeSO	Indirect (1.6 eV)	-	Fe ²⁺	FeS ₃ O	Yes	Yes (<i>P</i> 6 ₃ <i>mc</i>)	-	DOI : 10.1103/PhysRevMaterials.1.034406
BaZnSO	Direct (3.9 eV)	-	Zn^{2+}	ZnS_2O_2	No	(Cmcm)	-	DOI :10.1021/ic051240o
BiCuOS	Indirect (1.1 eV)	p- type	Cu ²⁺	CuS ₄	No	P4/nmm	Decomposition of pollutant (CR) aqueous under visible light: 55 % in 70 mins	DOI :10.3390/ma8031043 DOI : 10.3390/ma11030447
BiAgOS	Indirect (1.5 eV)	p- type	Ag^+	AgS_4	No	P4/nmm	-	DOI : 10.1021/acs.chemmater.7b02664
Ln2Ti2S2O5 (Ln = Sm, Gd, Tb, Dy, Ho and Er)	Indirect (2.13-1.94 eV)	-	Ti ⁴⁺	TiSO ₅	Yes	No (<i>I4/mmm</i>)	H ₂ & O ₂ under visible light (measured)	DOI :10.1021/jp036890x
La5Ti2CuS5O7	Indirect (2.02 eV)	p- type	$\begin{array}{c} Ti^{4+} \\ Cu^+ \end{array}$	${ m TiO_4S_2}\ { m TiO_5S}\ { m CuS_4}$	Yes	No (Pnma)	H ₂ & O ₂ (measured)	DOI: 10.1039/c2cp43132g
La5Ti2AgS5O7	Indirect (2.17 eV)	p- type	$\begin{array}{c} Ti^{4+} \\ Ag^+ \end{array}$	$\begin{array}{c} TiO_4S_2\\ TiO_5S\\ AgS_4 \end{array}$	Yes	No (Pnma)	H ₂ & O ₂ (measured)	DOI: 10.1039/c2cp43132g
Sr ₂ Cu ₂ ZnO ₂ S ₂	(2.7 eV)	p- type	$\begin{array}{c} Cu^{2+} \\ Zn^{2+} \end{array}$	CuS_4 ZnO_4	No	No (<i>I4/nmm</i>)	-	DOI :10.1021/cm0105864
Sr2CuGaO3S	(2.6 eV)	p- type	$\begin{array}{c}Cu^{2+}\\Ga^{3+}\end{array}$	CuS_4 GaO ₅	No Yes	P4/nmm	-	DOI: 10.1021/cm0007813
Sr ₂ CuInO ₃ S	(2.3 eV)	p- type	Cu ²⁺ In ³⁺	CuS ₄ InO ₅	No Yes	P4/nmm	-	DOI: 10.1021/cm0007813

Sr ₃ Cu ₂ Sc ₂ O ₅ S ₂	Direct (3.1 eV)	p- type	$\begin{array}{c} Cu^{2+} \\ Sc^{3+} \end{array}$	CuS_4 ScO ₅	No Yes	No (<i>I4/nmm</i>)	-	DOI : 10.1063/1.2817643
La2SnO2S3	- (3 eV)	n- type	Sn ⁴⁺	SnS_4	Yes	No (Pbnm)	-	DOI : 10.1107/S0108270185004978
$\frac{\text{RE}_2\text{M}_2\text{S}_3\text{O}_4 (\text{RE} = \text{Y}, \text{Tm}; \text{M} = \text{Zr}, \text{Hf})}{\text{Tm}; \text{M} = \text{Zr}, \text{Hf}}$	Direct (2.95 - 2.80 - 2.93 eV)	-	M^{4+}	MS_3O_4	No	No (Pbam)	-	DOI : 10.1039/D1CC00351H
Sm ₃ NbS ₃ O ₄	Direct (2.68 eV)	-	$\frac{Sm^{3+}}{Nb^{5+}}$	$[NbS_2O_4]^{7-}$	Yes	Yes (<i>Pna</i> 2 ₁)	-	DOI: 10.1021/acs.inorgchem.1c01634
Gd ₃ NbS ₃ O ₄	Direct (2.74 eV)	-	$\begin{array}{c} Gd^{3+} \\ Nb^{5+} \end{array}$	$[NbS_2O_4]^{7-}$	Yes	Yes (<i>Pna</i> 2 ₁)	-	DOI: 10.1021/acs.inorgchem.1c01634
Dy3NbS3O4	Direct (2.72 eV)	-	$\begin{array}{c} Dy^{3+} \\ Nb^{5+} \end{array}$	$[NbS_3O_4]^{9-}$	No	No (Pnma)	-	DOI: 10.1021/acs.inorgchem.1c01634
A2GeGa2OS6 (A = Ca, Sr)	Indirect (3.15 eV)	-	Ga ³⁺		No	$(P\overline{42}_1m)$	-	DOI: 10.1021/acsami.2c04422
Sr2CdGe2OS6	Indirect (3.62 eV)	-	Cd^{2+}	CdS ₄ GeS ₃ O	No Yes	$(P\overline{42}_1m)$	-	DOI : 10.1021/acsami.2c04422 DOI : 10.1021/acs.chemmater.2c00385
Sr2ZnGe2OS6	Indirect (3.73 eV)	-	Zn ²⁺	ZnS ₄ GeS ₃ O	No Yes	$(P\bar{42}_1m)$	-	DOI : 10.1021/acsami.2c04422 DOI : 10.1021/acs.chemmater.2c00385
Sr2MnGe2OS6	Indirect (3.51 eV)	-	Mn ²⁺	MnS ₄ GeS ₃ O	No Yes	$(P\bar{42}_1m)$	-	DOI : 10.1021/acsami.2c04422 DOI : 10.1021/acs.chemmater.2c00385
LnMGa ₃ S ₆ O (Ln = La, Pr, and Nd; M = Ca and Sr)	Direct (3.21-3.27 eV)	-	$\begin{array}{c} Ln^{3+}\\ M^{2+}\\ Ga^{3+} \end{array}$	(Ln/M)S7O GaS3O GaS4	Yes	$(P\overline{42}_1m)$	-	DOI: 10.1021/acsami.2c11199
Sr2CoGe2OS6	Indirect (2.77 eV)	-	Co ²⁺	CoS_4 Ge_2OS_6	?	$(P\overline{42}_1m)$	-	DOI: 10.1021/acs.inorgchem.2c03283
Ba5Ga2SiO4S6	Direct (4.03 eV)	-	Ba ²⁺ Ga ³⁺	[Ga ₂ SiO ₄ S ₆] clusters made of corner-sharing [SiO ₄] and [GaOS ₃] tetrahedra	?	(Cc)	-	DOI: 10.1021/acs.inorgchem.2c03577
Ba ₂ SnSSi ₂ O ₇ Fresnoite - type	- (> 4.00 eV)	-	$\frac{Ba^{2+}}{Sn^{4+}}$	SnO ₄ S	?	(P4bm)	-	DOI: 10.1039/d2qm00621a

[Sr3VO4][GaS3] 0D	Direct (2.23 eV-DFT)	-	$\begin{array}{c}Ga^{3+}\\V^{5+}\end{array}$	$\begin{array}{ll} Ga^{3+} & [Ga_2Q_6]^{6-} \text{ dimers}, \\ V^{5+} & [VO_4]^{5+} \text{ tetrahedra} \end{array}$		No $(P2_1/c)$	-	DOI: 10.1039/d2qi01160c
[Sr ₃ VO ₄][InS ₃] 1D	Indirect (2.13 eV-DFT)	-	$\begin{matrix} In^{3+} \\ V^{5+} \end{matrix}$	$_{\infty}[InQ_3]^{3-}$ chains, $[VO_4]^{5+}$ tetrahedra		Yes (<i>Pmc</i> 2 ₁)	-	DOI: 10.1039/d2qi01160c
Ae ₃ S[GeOS ₃](Ae=Ba, Sr) Antiperovskite structure	Direct (3.63 eV Ba) (4.10 eV Sr)	-		[GeOS ₃] [SAe ₆]	Yes	Yes (<i>Pca</i> 2 ₁)	-	DOI: 10.1002/advs.202204755
La ₃ NbS ₂ O ₅	(2.13-2.17 eV- sulfurization synthesis) (2.26 eV- solid-state synthesis)	-	La^{3+} Nb ⁵⁺		Yes	No (<i>I4/mmm</i>)	H ₂ (measured)	DOI: 10.1016/S1003-6326(13)62780-6
$\mathbf{Sn}_{2}\mathbf{Nb}_{2}\mathbf{O}_{7-x}\mathbf{S}_{x}$	2.1 eV	n- type	$\frac{Sn^{4+}}{Nb^{5+}}$	Sn ₂ O chains Nb ₂ O ₆ octahedra		No (<i>Fd</i> 3 <i>m</i>)	H ₂ & O ₂ (measured)	DOI: 10.1016/j.jphotochem.2023.114895
ZnO _{0.6} S _{0.4}	Direct 2.03 eV	-	Zn^{2+}					DOI: 10.1016/j.chemosphere.2017.05.112
Zn(Zn,Ni,In)2(O,S)4-x	Direct 2.81 eV (0 mol% Ni) 2.91 eV (5 mol% Ni) 2.90 eV (10 mol% Ni) 2.90 eV (20 mol% Ni)	-	$\frac{Zn^{2+}}{Ni^{2+}}$				H ₂ (measured)	DOI: 10.1021/acsaem.1c03200
(Bi, Ce)2(O, S)3-x	Direct 1.73 eV (0.0 N ₂ H ₄) 1.69 eV (0.2 N ₂ H ₄) 1.66 eV (0.4 N ₂ H ₄) 1.59 eV (0.6 N ₂ H ₄)	n- type	Ce ³⁺ /Ce ⁴⁺		-	No (Pbnm)	H ₂ (measured)	DOI : 10.1039/d2ta09780j

Compounds	Bandgap magnitude & Nature	Semico nductio n type	Cation choice	Coordination environment & Anion ratio	Polar units ?	Polar Structure?	H ₂ or O ₂ production ?	Reference
LaCuOSe	Direct (2.8 eV)	p-type	Cu ²⁺	CuSe ₄	No	P4/nmm	-	DOI : 10.1021/acsaem.2c00590
LaAgOSe	Direct (2.50 eV)	p-type	Ag^+	AgSe ₄	No	P4/nmm	-	DOI: 10.1002/smtd.202201368
BiCuOSe	Indirect (0.8 eV)	p-type	Cu^{2+}	CuSe ₄	No	P4/nmm	Degradation of organic contaminants in solar light	DOI : 10.3390/ma8031043 DOI : 10.3390/ma11030447
CaFeSeO	Indirect (1.8 eV)	n-type	Fe ²⁺	FeSe ₂ O ₂	Yes	(Cmc2 ₁ Pmcn)	-	DOI : 10.1021/acs.chemmater.5b02164 DOI : 10.1021/acs.inorgchem.6b01951
La2CdO2Se2	Direct (3.3 eV)	n-type	$\begin{array}{c}La^{3+}\\Cd^{2+}\end{array}$	La ₄ O CdSe ₄	No	P42/nmc	-	DOI :10.1021/jp048722q
La ₂ O ₂ Fe ₂ OSe ₂	Direct (0.17 eV)	-	Fe ²⁺	FeO_2Se_4	No	No (<i>I4/mmm</i>)	-	DOI: 10.1103/PhysRevLett.104.216405 DOI: 10.1103/PhysRevB.86.125122
Sr6Cd2Sb6Se10O6	Indirect (1.55 eV)	p-type	Sb ³⁺	SbSe₅ SbOSe₄ SbO₃	Yes	Yes (Cm)	-	DOI : 10.1002/anie.202206816
Sr ₂ Sb ₂ Se ₃ O ₂	Direct (1.7 eV)	-	Sb^{3+}	SbOSe4	Yes	$P2_{1}/mc$	-	DOI: 10.1021/acs.chemmater.5b04536
[Sr ₃ VO ₄][GaSe ₃] 0D	Indirect (2.51 eV)	-	$\begin{array}{c}Ga^{3+}\\V^{5+}\end{array}$	$[Ga_2Q_6]^{6-}$ dimers, $[VO_4]^{5+}$ tetrahedra		No $(P2_1/c)$	-	DOI : 10.1039/d2qi01160c
[Sr3VO4][InSe3] 1D	Indirect (2.62 eV)	-	$\begin{matrix} In^{3+} \\ V^{5+} \end{matrix}$	$_{\infty}[InQ_3]^{3-}$ chains, [VO ₄] ⁵⁺ tetrahedra		Yes (<i>Pmc</i> 2 ₁)	-	DOI : 10.1039/d2qi01160c
Ae ₃ Se[GeOSe ₃](Ae=B a, Sr) Antiperovskite structure	Direct (3.52 eV Ba) (3.50 eV Sr)	-		[GeOSe ₃] [SeAe ₆]	Yes	Yes (<i>Pca</i> 2 ₁)	-	DOI: 10.1002/advs.202204755

Table S2. Comparison of the different structural and physical properties of Oxyselenide materials

Compounds	Bandgap magnitude & Nature	Semico nductio n type	Cation choice	Coordination environment & Anion ratio	Polar units ?	Polar Structure?	H ₂ or O ₂ production ?	Reference
BiCuOTe	Indirect (0.5 eV)	p-type	Cu ²⁺	CuTe ₄	No	P4/nmm	-	DOI: 10.1016/j.solidstatesciences.2016.05.012
Ba ₃ Yb ₂ O ₅ Te	Direct (2.2 eV)	-	Yb ³⁺	YbO5	Yes	P4/mmm	-	DOI : 10.1016/j.jssc.2013.04.030
La ₂ O ₂ Te	Indirect (2.7 eV)	-	La ³⁺	La ₄ O	Yes	No (<i>I4/mmm</i>)	-	DOI : 10.1021/acs.inorgchem.2c02287
Pr ₂ O ₂ Te	Indirect (2.6 eV)	-	Pr ³⁺	Pr ₄ O	Yes	No (<i>I4/mmm</i>)	-	DOI: 10.1021/acs.inorgchem.2c02287
Ce ₂ O ₂ Te	Indirect (2.1 eV)	-	Ce ³⁺	Ce ₄ O	Yes	No (<i>I4/mmm</i>)	-	DOI: 10.1021/acs.inorgchem.2c02287
LaCuOTe	Direct (2.4 eV)	p-type	Cu ²⁺	CuTe ₄	No	P4/nmm	-	DOI: 10.1021/acsaem.2c00590

Table S3. Comparison of the different structural and physical properties of Oxytelluride materials

Figure S1 : Estimated band edge positions using the empirical method of (a) Quaternary Oxysulfides and (b) Complex Oxysulfides.

Figure S2 : Estimated band edge positions using the empirical method of (a) Oxyselenides and (b) Oxytellurides.