Stable GaN-Based Analogues of Thiele's and Chichibabin's Hydrocarbons

Yuqi Jiang,^{†,a} Guo Pan,^{†,a} Ren Zhou,^a Ruihao Huang,^a Dongmei Ran,^a Daqian Xu^{*b} and Yuanting Su^{*a}

^a College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.

^b Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, School of Chemical Engineering, Lanzhou City University, Lanzhou 730070, China.

E-mail: daqianxu@126.com; ytsu@suda.edu.cn;

[†]Y. Jiang and G. Pan contributed equally

Contents

1. Synthesis of compounds 1-4 and their NMR spectra	
2. Crystal structural parameters for compounds 1-4	S9
3. Cyclic votammograms	S14
3. Theoretical calculations	S14
4. References	S26

1. Synthesis of compounds 1-4 and their NMR spectra

General considerations: All experiments were carried out under an argon or nitrogen atmosphere using standard Schlenk or dry glovebox techniques. Solvents were dried over Na metal, K metal, or CaH₂, and were distilled under nitrogen prior to use. Commercially available reagents were purchased from Energy Chemical and used as received. ¹H and ¹³C{¹H} NMR spectra were obtained with a Bruker AVIII 400 MHz BBFO1 spectrometer at 298K. Chemical shifts (δ) are given in p.p.m. Coupling constants *J* are given in Hz. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad signal. UV-vis spectra were recorded on the Lambda 750 spectrometer at room temperature. Element analyses were performed on an ElementarVario EL III instrument. EPR spectra were obtained using JEOL JES-X320 X-band apparatus. Trip₂GaCl (Trip = 2,4,6-triisopropylphenyl) was synthesized according to the literature procedures.^{S1}

Synthesis of compound 1

Trip₂GaCl (1.54 g, 3.0 mmol) was added to the toluene solution of pyrazine (0.12 g, 1.5 mmol) at room temperature. The color of the solution changed from white to yellow and the mixture was stirred at room temperature overnight. After filtration and removal of the solvent, the residue was washed with cooled hexane (5 ml) to afford **1** as a white powder (1.40 g, 85%). ¹H NMR (C₆D₆, 400 MHz, 298 K): δ (ppm) = 8.01 (s, 4H, C*H*=C*H*), 7.12 (s, 8H, Ar-*H*), 3.13 (dt, 8H, (CH₃)₂C*H*), 2.79 (dt, 4H, (CH₃)₂C*H*), 1.29 (d, *J* = 6.2 Hz, 48H, CH(C*H*₃)₂), 1.21 (d, *J* = 6.8 Hz, 24H, CH(C*H*₃)₂). ¹³C {¹H} NMR (C₆D₆, 400 MHz, 298 K): δ 155.11 (Ar-C), 151.19 (Ar-C), 144.87 (Ar-CH), 143.07 (Ar-CH), 121.67 (Ar-CH), 39.20 ((CH₃)₂CH), 34.85 ((CH₃)₂CH), 25.22 ((CH₃)₂CH), 24.21 ((CH₃)₂CH). Elemental analysis for C₆₄H₉₆Cl₂Ga₂N₂(%): Calculated: C 69.64, H 8.77, N 2.54; Found: C 69.95, H 9.01, N 2.34.

Synthesis of compound 2

Trip₂GaCl (1.54 g, 3.0 mmol) was added to the toluene solution of 4,4'-bipyridine (0.23 g, 1.5 mmol) at room temperature. The color of the solution changed from white to yellow and the mixture was stirred at room temperature overnight. After filtration and removal of the solvent, the residue was washed with cooled hexane (5 ml) to afford **2** as a white powder (1.50 g, 84%). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ (ppm) = 8.75 (s, 4H, CH=CH), 7.27 (s, 8H, Ar-H), 6.27 (s, 4H, CH=CH), 3.56 (dt, 8H, (CH₃)₂CH), 2.97-2.82 (dt, 4H, (CH₃)₂CH), 1.27 (dd, *J* = 6.2 Hz, 72H, CH(CH₃)₂). ¹³C{¹H} NMR (C₆D₆, 400 MHz, 298 K): δ 156.18 (Ar-C), 150.00 (Ar-C), 149.15 (Ar-C), 146.97 (Ar-CH), 142.70 (Ar-C), 122.46 (Ar-CH), 121.78 (Ar-CH), 36.46 ((CH₃)₂CH), 34.82 ((CH₃)₂CH), 25.65 ((CH₃)₂CH), 24.36 ((CH₃)₂CH). Elemental analysis for C₇₀H₁₀₀Cl₂Ga₂N₂ (%): Calculated: C 71.26, H 8.54, N 2.37; Found: C 71.57, H 8.83, N 2.15.

Synthesis of compound 3

Potassium graphite (0.30 g, 2.2 mmol) was added to the toluene (60 mL) solution of **1** (1.10 g, 1.0 mmol) at room temperature. The color of the solution changed from yellow to deep red and the mixture was stirred for overnight. After filtration, removal of the solvent under vacuum, the residue was washed with cooled hexane (5 ml) to afford **3** as a deep red powder (0.36 g, 35%). ¹H NMR (C₆D₆, 400 MHz, 298 K): δ (ppm) = 7.10 (s, 8H, Ar-*H*), 4.84 (s, 4H, C*H*=C*H*), 2.99 (dt, 8H, (CH₃)₂C*H*), 2.79 (dt, 4H, (CH₃)₂C*H*), 1.41 (s, 24H, CH(C*H*₃)₂), 1.22 (d, *J* = 7.0 Hz, 48H, CH(C*H*₃)₂). ¹³C{¹H} NMR (C₆D₆, 400 MHz, 298 K): δ 155.57 (Ar-*C*), 150.55 (Ar-*C*), 140.35 (Ar-*C*), 121.03 (Ar-*C*H), 120.24 (Ar-*C*H), 40.25 ((CH₃)₂CH), 34.87 ((CH₃)₂CH), 24.46 ((CH₃)₂CH), 24.29 ((CH₃)₂CH). UV-vis (THF): λ_{max} = 474 nm; Elemental analysis for C₆₄H₉₆Ga₂N₂(%): Calculated: C 74.42, H 9.37, N 2.71; Found: C 74.85, H 9.65, N 2.49.

Synthesis of compound 4

Potassium graphite (0.30 g, 2.2 mmol) was added to the toluene (60 mL) solution of **2** (1.18 g, 1.0 mmol) at -30 °C. The color of the solution changed from yellow to deep

purple and the mixture was stirred for 48h. After slowly warm up to room temperature, filtration, removal of the solvent under vacuum, the residue was washed with cooled hexane (5 ml) to afford **4** as a deep red powder (0.58 g, 56%). ¹H NMR (C₆D₆, 400 MHz, 298 K): δ (ppm) = 7.12 (s, 8H, Ar-*H*), 6.39 (d, *J* = 7.5 Hz, 4H, C*H*=C*H*), 5.47 (d, *J* = 7.5 Hz, 4H, C*H*=C*H*), 2.91 (dt, 8H, (CH₃)₂C*H*), 2.79 (dt, 4H, (CH₃)₂C*H*), 1.30 (s, 24H, CH(C*H*₃)₂), 1.21 (d, *J* = 6.8 Hz, 48H, CH(C*H*₃)₂). ¹³C{¹H} NMR (C₆D₆, 400 MHz, 298 K): δ 155.61 (Ar-C), 151.24 (Ar-C), 139.79 (Ar-C), 132.70 (Ar-CH), 121.35 (Ar-CH), 109.17 (Ar-CH), 40.67 ((CH₃)₂CH), 34.84 ((CH₃)₂CH), 31.96 ((CH₃)₂CH), 24.20 ((CH₃)₂CH). UV-vis (THF): λ_{max} = 558 nm; Elemental analysis for C₇₈H₁₁₆Ga₂N₂O₂ (%): Calculated: C 74.75, H 9.33, N 2.55; Found: C 75.08, H 9.59, N 2.38.

Fig. S2 ${}^{13}C{}^{1H}$ NMR spectrum of 1 in C₆D₆ at 298 K.

Fig. S4 ${}^{13}C{}^{1}H$ NMR spectrum of 2 in C₆D₆ at 298 K.

Fig. S6 ${}^{13}C{}^{1}H$ NMR spectrum of 3 in C₆D₆ at 298 K.

80 70

60 50

40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

2. Crystal structural parameters for compounds 1-4

For the single crystal X-ray structure analyses the crystals were each mounted on a glass capillary in perfluorinated oil and measured in a cold N_2 flow. The data for all compounds were collected on a Bruker D8 CMOS detector at low temperatures. The structures were solved by direct methods and all refined on F^2 with the SHELX-2018/3 software package. The positions of the H atoms were calculated and considered isotropically according to a riding model.

Compounds	1	2	3	4
CCDC	2429370	2429371	2429372	2429373
Formula	$C_{35}H_{55}Br_{0.38}Cl_{0.62}GaN$	$C_{70}H_{100}Cl_{2}Ga_{2}N_{2} \\$	$C_{64}H_{96}Ga_2N_2$	$C_{86}H_{132}Ga_{2}N_{2}O_{4} \\$
Fw	611.46	1179.85	1032.86	1397.36
Crystal syst	monoclinic	tetragonal	triclinic	triclinic
Space group	C2/c	I4 ₁ /a	P-1	P-1
Size, mm ³	$0.22\times0.16\times0.08$	$0.13 \times 0.12 \times 0.10$	$0.18 \times 0.16 \times 0.13$	$0.13{\times}~0.12{\times}0.10$
Τ, Κ	150.0	150.0	150.0	100.00
<i>a</i> , Å	32.7341(19)	18.6669(6)	9.926(5)	9.0948(5)
b, Å	23.0166(13)	18.6669(6)	12.299(11)	12.5381(7)
<i>c,</i> Å	9.2046(6)	39.267(3)	14.106(9)	18.2742(11)
α, deg	90	90	107.74(3)	81.321(2)
β, deg	92.844(2)	90	103.724(19)	80.234(2)
γ, deg	90	90	102.71(3)	73.737(2)
V, Å ³	6926.5(7)	13682.5(12)	1511.8(18)	1959.7(2)
Z	8	8	1	1
$d_{calcd}, g^{\bullet} \mathrm{cm}^{-1}$	1.173	1.146	1.134	1.184
μ , mm ⁻¹	1.302	0.904	0.928	0.737
Reflections	53102	68710	25050	20770
collected	55102	00719	23030	29119
Independent	7973	6037	5328	7175
reflections	1715	0007	3320	1110
[R _{int}]	0.0936	0.1184	0.0934	0.1013
R ₁ [I>2sigma(I)]	0.0492	0.0745	0.0572	0.0603
wR ₂ [I>2sigma(I)]	0.1313	0.1924	0.1530	0.1480
R ₁ [all data]	0.0812	0.1027	0.0742	0.0893
wR ₂ [all data]	0.1567	0.2151	0.1691	0.1699
GOF	1.033	1.054	1.065	1.047
Largest diff. Peak/hole, e•Å ⁻³	0.38/-0.86	2.17/-0.86	0.54/-0.77	0.48/-0.62

 Table S1. Summary of data collection and structure refinement.

Fig. S9 Solid-state structure of 1 with side view. Hydrogen atoms are omitted and ^{*i*}Pr groups are simplified as wireframes for clarity. Thermal ellipsoids are set at the 30% probability level. Selected bond distances (Å) and angles (°): Ga1–C3 2.006(3), Ga1–C18 1.999(3), Ga1–N1 2.150(2), Ga1–C11 2.197(9), N1–C1 1.333(3), C1–C2 1.384(4), C2–N1' 1.335(3), N1–Ga1–C11 94.5(3), C3–Ga1–N1 93.77(10), C3–Ga1–C11 110.4(4), C18–Ga1–N1 103.68(10), C3–Ga1–C18 133.75(11).

Fig. S10 Solid-state structure of **2** with side view. Hydrogen atoms are omitted and ^{*i*}Pr groups are simplified as wireframes for clarity. Thermal ellipsoids are set at the 30% probability level. Selected bond distances (Å) and angles (°): Ga1–C6 1.988(6), Ga1–C21 1.997(6), Ga1–N1 2.099(5), Ga1–C11 2.3413(12), N1–C5 1.344(8), N1–C1 1.324(8), C4–C5 1.366(9), C1–C2 1.388(8), C3–C4 1.390(8), C3–C2 1.390(8), C3–C3' 1.479(11), N1–Ga1–C11 91.21(14), C6–Ga1–N1 121.4(2), C6–Ga1–C11 102.86(16), C21–Ga1–N1 123.81(18), C21–Ga1–C6 116.5(2).

Fig. S11 Solid-state structure of **3** with side view. Hydrogen atoms are omitted and 'Pr groups are simplified as wireframes for clarity. Thermal ellipsoids are set at the 30% probability level. Selected bond distances (Å) and angles (°): Ga1–C3 1.988(7), Ga1–C18 1.973(4), Ga1–N1 1.843(3), N1–C1 1.424(5), C1–C2 1.323(5), C2–N1' 1.415(5), C3–Ga1–N1 113.4(6), C18–Ga1–N1 110.97(14), C3–Ga1–C18 135.4(6).

Fig. S12 Solid-state structure of 4 with side view. Hydrogen atoms are omitted and 'Pr groups are simplified as wireframes for clarity. Thermal ellipsoids are set at the 30% probability level. Selected bond distances (Å) and angles (°): Ga1–C6 1.988(4), Ga1–C21 1.991(4), Ga1–N1 1.915(3), Ga1–O1 2.162(3), N1–C1 1.391(5), N1–C5 1.389(5), C1–C2 1.355(5), C2–C3 1.458(5), C3–C4 1.451(5), C3–C3' 1.372(7), C4–C5 1.347(5), C6–Ga1–N1 123.52(14), C21–Ga1–N1 104.16(13), C6–Ga1–C21 123.32(15).

3. Cyclic voltammograms

Fig. S13. The cyclic voltammograms of (a) 3 and (b) 4 in THF (0.1 M [${}^{n}Bu_{4}N$][PF₆]) measured at a scan rate of 100 mV s⁻¹.

4. Theoretical calculations

The calculations were performed with the Gaussian 16^{S2} program. For gometry optimizations and frequency calculations on the simplified model **3'**,**4'** (THF-free), and **4''** (THF-coordinated), in which the Trip groups were replaced with the phenyls, three electronic states (closed-shell singlet (CS), open-shell singlet (OS), and triplet (T) state) with the (U)BH&HLYP, functional and def2-SVP basis-sets were considered. TD-DFT, NICS, and NBO calculations were conducted under the BH&HLYP/def2-SVP level of theory. The calculated Kohn-Sham orbitals related to the observed transitions are shown in Table S2-S5. To gain further insight into the electronic structures, Multiwfn^{S3} and VMD^{S4} were also used.

DFT calculations reveal significant effects of the bridging framework and THF coordination on their electronic structures. As the bridging framework elongates in **4'** (THF-free bridged form), the HOMO energy rises markedly (+0.68 eV), while the LUMO undergoes a slight decrease (-0.24 eV), reducing the HOMO-LUMO gap from 4.40 eV (**3'**) to 3.48 eV (**4'**). Subsequent THF coordination in **4''** (THF-coordinated) elevates both the HOMO (+0.68 eV) and LUMO (+1.34 eV), restoring the gap to 4.30 eV – a value comparable to **3'**. These computational trends align with experimental observations: the stability of **3** and THF-bound **4** contrasts with the rapid color fading of THF-free **4'** in solution. Additionallly, natural bond orbital (NBO) analyses revealed that the Wiberg bond indexes (WBI) of Ga–N and C_o–C_{o/m} bonds decrease progressively from **3'** to **4'** and further to **4''** (Ga–N: 0.59 \rightarrow 0.53 \rightarrow 0.43; C_o–C_{o/m}: 1.808 \rightarrow 1.741 \rightarrow 1.739), while N–C_o WBI increases from 1.02 (**3'**) to 1.07 (**4'**) and further to 1.08 (**4''**). THF coordination in **4''** reduces Ga–C WBI (0.62 \rightarrow 0.56) while increasing Cp–Cp WBI (1.50 \rightarrow 1.52).

Fig. S13 The LUMO (left, -0.38 eV) and HOMO (right, -4.78 eV) of 3'-CS.

Fig. S14 The LUMO (left, -0.62 eV) and HOMO (right, -4.10 eV) of 4'-CS.

Fig. S15 The LUMO (left, 0.72 eV) and HOMO (right, -3.58 eV) of 4"-CS.

Table S2. Electronic energies (*E* in Hartrees) and relative electronic energies (ΔE_{S-T} in kcal/mol) of compound **3** in closed-shell singlet (CS) and triplet (T) states.

	$E_{\rm CS}$	E_{T}	$\Delta E_{\text{S-T}}$
3'	-5038.055341	-5038.017589	23.69
4'	-5268.713231	-5268.687783	15.97

Table S3. Experimental and calculated bond lengths (avg., Å) of 3 at the (U)BH&HLYP / def2-SVP level.

	Trip C _o	-C _o Trip	
	Ga—N Trip C _o	<mark>N</mark> —Ga −C _o Trip	
	3-Exp.	3'-CS	3'-T
Ga-C _{trip}	1.980(7)	1.959	1.945
Ga–N	1.843(3	1.847	1.903
N–Co	1.420(5)	1.407	1.382
Co–Co	1.323(5)	1.333	1.356
BLA	0.097(5)	0.074	0.026

	Trip C _o -C _m	C _m -C _o	Trip
	Ga – N Č _p – Trip C _o – C _m	$-C_{p}'$ N-	Gá Trip
	4-Exp.	4'-CS	4′-T
Ga–C _{trip}	1.990(4)	1.956	1.948
Ga–N	1.915(3)	1.867	1.896
N–C _o	1.390(5)	1.389	1.380
C _o -C _m	1.351(5)	1.343	1.354
$C_m - C_p$	1.454(5)	1.454	1.429
C _p –C _p	1.372(7)	1.371	1.437
BLA	0.071(5)	0.079	0.050

Table S4. Experimental and calculated bond lengths (avg., Å) of 4 at the (U)BH&HLYP / def2-SVP level.

Table S5. NICS(0), NICS(1) and NICS(1)ZZ values for the bridging rings in 3' and 4'.

Fig. S16. Calculated UV-vis spectrum of 3'-CS

Fig. S17. Calculated UV-vis spectrum of 4'-CS.

Coordinates for the optimized structure

5 -C5 at the blick	IL II /uei2-5 v I	level	
Ga	-3.29680000	0.00000000	0.00000500
С	-4.23303300	1.72076000	-0.04170800
С	-3.71746500	2.88252500	0.54578400
С	-4.42401200	4.07767600	0.52521300
Н	-4.00353100	4.96284100	0.99102800
С	-5.66708300	4.14002300	-0.09040800
С	-6.20160100	3.00151600	-0.67736100
Н	-7.17349100	3.04247000	-1.15800700
С	-5.49296900	1.80733100	-0.64639000
Ν	-1.44962200	-0.00000300	-0.00000400
С	-0.66654600	-1.12960200	0.29943800
Н	-1.20040800	-2.03262400	0.56678500
С	0.66654900	-1.12959900	0.29944000
Н	1.20041300	-2.03262000	0.56678900
С	-4.23303800	-1.72075800	0.04171500
С	-3.71746900	-2.88252400	-0.54577300
С	-4.42402000	-4.07767200	-0.52520800
Н	-4.00353900	-4.96283900	-0.99102000
С	-5.66709700	-4.14001500	0.09040300
С	-6.20161600	-3.00150600	0.67735200
Н	-7.17351000	-3.04245700	1.15799000
С	-5.49297900	-1.80732400	0.64638700
Ν	1.44962200	0.00000200	0.00000000
С	0.66654600	1.12960100	-0.29944300

Н	1.20040800	2.03262300	-0.56679200
С	-0.66654900	1.12959900	-0.29944500
Н	-1.20041300	2.03261900	-0.56679500
Ga	3.29680000	0.00000000	-0.00000600
С	4.23303300	-1.72076000	0.04170900
С	3.71746800	-2.88252400	-0.54578600
С	4.42401400	-4.07767500	-0.52521400
Н	4.00353500	-4.96283900	-0.99103200
С	5.66708300	-4.14002200	0.09041200
С	6.20159900	-3.00151600	0.67736800
Н	7.17348700	-3.04247000	1.15801700
С	5.49296700	-1.80733100	0.64639500
С	4.23303800	1.72075800	-0.04171500
С	3.71746700	2.88252500	0.54577000
С	4.42401900	4.07767300	0.52520500
Н	4.00353500	4.96284000	0.99101500
С	5.66709700	4.14001500	-0.09040200
С	6.20161800	3.00150600	-0.67734700
Н	7.17351400	3.04245500	-1.15798200
С	5.49298100	1.80732300	-0.64638200
Н	-6.21899000	5.07385400	-0.11015900
Н	-2.74922300	2.86121600	1.03643200
Н	-5.93588100	0.92768200	-1.10476600
Н	6.21900800	5.07384500	-0.11014600
Н	5.93589500	0.92767200	-1.10475300
Н	2.74922000	2.86122000	1.03640700
Н	-6.21900700	-5.07384500	0.11014900
Н	-2.74922300	-2.86121800	-1.03641400
Н	-5.93589200	-0.92767400	1.10476000
Н	5.93587800	-0.92768300	1.10477400
Н	2.74922700	-2.86121400	-1.03643700
Н	6.21899000	-5.07385400	0.11016300

3'-T at the UBH&HLYP/def2-SVP level

Ga	-3.17278400	-0.08083400	-0.01174200
С	-4.26794100	1.46142200	-0.46676800
С	-3.78684800	2.77544000	-0.41153100
С	-4.60904600	3.85342200	-0.70855200
Н	-4.21705100	4.86335900	-0.65551300
С	-5.93156600	3.63812400	-1.07345500
С	-6.43119400	2.34436700	-1.13296200
Н	-7.46411400	2.17236100	-1.41578300
С	-5.60786900	1.26940700	-0.82657700
Ν	-1.30361400	0.10364800	-0.31687600

С	-0.36284700	-0.67271900	0.33543700
Н	-0.72829900	-1.39952300	1.04914700
С	0.96659900	-0.53084800	0.10741900
Н	1.68101400	-1.15753200	0.62812000
С	-3.76055400	-1.78718300	0.71325000
С	-3.08006900	-2.98761000	0.47426900
С	-3.55077200	-4.19148300	0.97957800
Н	-3.00988200	-5.11010200	0.77964800
С	-4.71184500	-4.21848300	1.74097900
С	-5.40438800	-3.04127000	1.98906700
Н	-6.31242800	-3.05865500	2.58207100
С	-4.93502700	-1.84036500	1.47456500
Ν	1.46986600	0.37567400	-0.76830800
С	0.55489800	1.13775800	-1.41572900
Н	0.93688500	1.86168800	-2.12670700
С	-0.78112500	1.01972200	-1.21057600
Н	-1.48321200	1.63713400	-1.75575700
Ga	3.55589200	0.58831700	-1.03914400
С	4.13090400	-1.33456600	-0.90468100
С	3.90784000	-2.24746100	-1.94192000
С	4.29796300	-3.57705700	-1.84395600
Н	4.11062800	-4.26029800	-2.66686000
С	4.93486500	-4.03172800	-0.69604100
С	5.17494100	-3.14768500	0.34653000
Н	5.67470900	-3.49255300	1.24670000
С	4.77672400	-1.81901400	0.23908900
С	4.05406200	1.72260300	0.54202100
С	3.11931300	2.45121500	1.28607800
С	3.49728300	3.25445500	2.35528300
Н	2.74500200	3.80378900	2.91360600
С	4.83545600	3.35615700	2.71105200
С	5.78670300	2.64959700	1.98694600
Н	6.83650100	2.72226200	2.25435300
С	5.39700900	1.85024600	0.91947500
Н	-6.57356200	4.47997800	-1.30943200
Н	-2.75768900	2.97112700	-0.12681800
Н	-6.02183300	0.26630700	-0.87268400
Н	5.13517500	3.98283400	3.54476900
Н	6.16568900	1.31222300	0.36996600
Н	2.06405500	2.39449000	1.03213500
Н	-5.07778300	-5.15853300	2.13967500
Н	-2.17105000	-2.99444300	-0.11908500
Н	-5.49649100	-0.93255900	1.67545900
Н	4.97619900	-1.14656000	1.06911200

Н	3.42074700	-1.91426500	-2.85499500
Н	5.24586900	-5.06855100	-0.61714500

4'-CS at the UBH&HLYP/def2-SVP level

С	-2.83996100	-1.11369700	-0.36333000
Н	-3.41321500	-1.98278400	-0.66468000
С	-1.49761300	-1.14718700	-0.37352800
Н	-1.02910000	-2.07209200	-0.68263200
С	-0.68565000	-0.00000900	0.00005700
С	-1.49761200	1.14716900	0.37364700
Н	-1.02909800	2.07206900	0.68276400
С	-2.83996000	1.11368400	0.36343600
Н	-3.41321300	1.98277100	0.66478800
С	0.68564800	-0.00000800	0.00005200
С	1.49760900	-1.14718600	-0.37353800
Н	1.02909500	-2.07209100	-0.68264100
С	2.83995700	-1.11369600	-0.36334400
Н	3.41321000	-1.98278400	-0.66469600
С	2.83995900	1.11368600	0.36341900
Н	3.41321300	1.98277500	0.66476500
С	1.49761100	1.14717100	0.37363400
Н	1.02909800	2.07207300	0.68274900
С	-6.37657500	-1.72417000	-0.02335300
С	-5.84234000	-2.88092000	0.55753100
С	-6.54356700	-4.07912600	0.55440600
Н	-6.10961200	-4.96077100	1.01423900
С	-7.79806000	-4.14906300	-0.03692500
С	-8.35011200	-3.01559600	-0.61745000
Н	-9.33059900	-3.06345600	-1.07945500
С	-7.64754800	-1.81770400	-0.60379100
С	-6.37657900	1.72417700	0.02332900
С	-5.84229900	2.88094800	-0.55747200
С	-6.54353400	4.07914900	-0.55437300
Н	-6.10954300	4.96081000	-1.01414000
С	-7.79808200	4.14906000	0.03684500
С	-8.35017900	3.01557100	0.61728500
Н	-9.33070900	3.06341100	1.07920100
С	-7.64760600	1.81768500	0.60365500
С	6.37657400	1.72417500	0.02332700
С	7.64758800	1.81769200	0.60367900
С	8.35016000	3.01558000	0.61730900
Н	9.33068000	3.06342700	1.07924500
С	7.79807400	4.14906100	0.03684200
С	6.54353900	4.07914100	-0.55440200

6.10955700	4.96079600	-1.01419000
5.84230600	2.88093900	-0.55750000
6.37657800	-1.72416900	-0.02335200
5.84233700	-2.88092800	0.55750800
6.54357100	-4.07913000	0.55438600
6.10961000	-4.96078200	1.01420100
7.79807800	-4.14905400	-0.03691500
8.35013700	-3.01557800	-0.61741600
9.33063500	-3.06342700	-1.07939800
7.64756500	-1.81769000	-0.60376200
-5.45360300	0.00000500	0.00000700
5.45360100	0.00000200	0.00000200
-3.58634800	-0.00000300	0.00004400
3.58634600	-0.00000300	0.00002900
-8.10328300	-0.94196900	-1.05691300
-4.86403700	-2.85342800	1.02720300
-8.34538400	-5.08573600	-0.04315600
-8.34541300	5.08572900	0.04305400
-4.86395500	2.85347600	-1.02705700
-8.10337500	0.94193300	1.05671000
8.34540400	5.08573100	0.04305100
4.86397100	2.85346000	-1.02710600
8.10335000	0.94194700	1.05675400
8.10330500	-0.94194700	-1.05686500
8.34540800	-5.08572400	-0.04314300
4.86402300	-2.85344700	1.02715800
	6.10955700 5.84230600 6.37657800 5.84233700 6.54357100 6.10961000 7.79807800 8.35013700 9.33063500 7.64756500 -5.45360300 5.45360100 -3.58634800 3.58634600 -8.10328300 -4.86403700 -8.34538400 -8.34538400 -8.34541300 -4.86395500 8.34540400 4.86397100 8.10335000 8.10330500 8.34540800 4.86402300	6.10955700 4.96079600 5.84230600 2.88093900 6.37657800 -1.72416900 5.84233700 -2.88092800 6.54357100 -4.07913000 6.10961000 -4.96078200 7.79807800 -4.14905400 8.35013700 -3.01557800 9.33063500 -3.06342700 7.64756500 -1.81769000 -5.45360300 0.00000500 5.45360100 0.00000200 -3.58634800 -0.00000300 -8.10328300 -0.94196900 -4.86403700 -2.85342800 -8.34538400 -5.08573600 -8.10337500 2.85347600 -8.10337500 2.85346000 8.10335000 0.94194700 8.10330500 -0.94194700 8.34540800 -5.08572400 4.86402300 -2.85344700

4'-T at the UBH&HLYP/def2-SVP level

С	-2.68023900	-1.09872000	-0.23737800
Н	-3.22207100	-1.94574100	-0.64040400
С	-1.33089000	-1.13037700	-0.12843000
Н	-0.82935100	-2.03214600	-0.45192100
С	-0.59093000	-0.02028900	0.38415900
С	-1.40198500	1.09469100	0.75991600
Н	-0.95925000	1.99322300	1.16737800
С	-2.74969300	1.07246400	0.62942300
Н	-3.34822200	1.92330100	0.93154300
С	0.84023700	-0.02508900	0.50955800
С	1.63396300	-1.13207000	0.13556000
Н	1.19154300	-2.03249200	-0.26702700
С	3.00143200	-1.09331700	0.27289800
Н	3.61342200	-1.94106100	-0.01529200
С	2.93171200	1.02968200	1.11971700
Н	3.48861500	1.87810700	1.50347100

С	1.56351000	1.07885300	1.01623300
Н	1.06316600	1.98341400	1.33240500
С	-6.20880400	-1.74009600	-0.14311000
С	-5.69705500	-2.88803600	0.47451200
С	-6.37119100	-4.09956600	0.40989600
Н	-5.95840600	-4.97511600	0.89939600
С	-7.57243200	-4.19004100	-0.28103900
С	-8.10051000	-3.06511300	-0.89945900
Н	-9.03945000	-3.13080200	-1.43858700
С	-7.42720000	-1.85321300	-0.82453800
С	-6.20130800	1.73933900	-0.09215300
С	-5.57907300	2.88419900	-0.60521000
С	-6.24583900	4.10024700	-0.66077100
Н	-5.74584700	4.97331400	-1.06616600
С	-7.55133900	4.19837600	-0.19750600
С	-8.18965900	3.07661300	0.31334400
Н	-9.20997900	3.14829700	0.67444500
С	-7.52184300	1.86022000	0.35867600
С	6.20026900	1.71544400	0.06124400
С	7.17598400	2.59631200	0.53964100
С	7.49506500	3.77158400	-0.13030700
Н	8.25949300	4.43211700	0.26740500
С	6.83511100	4.10297400	-1.30591900
С	5.85930200	3.24976600	-1.80346900
Н	5.33862400	3.49818700	-2.72346500
С	5.55109000	2.07553800	-1.12604800
С	6.30942000	-1.69324000	0.08544900
С	6.20055100	-2.95270800	0.68631500
С	6.58570900	-4.11450400	0.02760800
Н	6.48839200	-5.07675700	0.52118400
С	7.10459100	-4.04331200	-1.25860600
С	7.23391400	-2.80617500	-1.87526800
Н	7.64370600	-2.74026300	-2.87858100
С	6.84095100	-1.65083500	-1.20892700
Ga	-5.33289200	-0.00337400	-0.03931000
Ga	5.77626000	0.00066400	1.02970700
Ν	-3.44470800	-0.01046700	0.13080700
Ν	3.65563100	-0.03476300	0.75875300
Н	-7.86311100	-0.98445200	-1.30926500
Н	-4.76088500	-2.84399400	1.02241000
Н	-8.09790900	-5.13742500	-0.33525300
Н	-8.07174600	5.14927900	-0.23706800
Н	-4.55985000	2.83417200	-0.97562500
Н	-8.04369700	0.99406400	0.75514000

Н	7.07960500	5.02058200	-1.83133800
Н	4.78457400	1.42643300	-1.54233100
Н	7.70305400	2.36361900	1.46131700
Н	6.95472400	-0.69451800	-1.71221200
Н	7.41181200	-4.94698900	-1.77523600
Н	5.81124200	-3.03334200	1.69838600

4"-CS at the BH&HLYP/def2-SVP level

Ga	5.46663900	-0.06521500	0.28229600
0	5.54367900	0.17474800	-1.82654700
Ν	3.57059400	-0.01599100	0.39316800
С	2.86000100	1.12653100	0.06643200
Н	3.45262300	2.02609900	-0.06501500
С	1.52509700	1.17221900	-0.09270900
Н	1.08653300	2.12915000	-0.34451300
С	0.68021300	-0.00390300	0.07429000
С	1.46147300	-1.18796400	0.41505100
Н	0.97085300	-2.14015200	0.56974100
С	2.79861700	-1.15486700	0.55367500
Н	3.34604100	-2.05783300	0.80163100
С	6.43230800	1.56004600	0.85889400
С	7.81392300	1.65012600	0.64855500
С	8.54550300	2.75598600	1.06227800
Н	9.61543300	2.79653800	0.88470300
С	7.90821700	3.80419400	1.71280700
С	6.54253400	3.73374000	1.94924500
Н	6.03861300	4.54329500	2.46736900
С	5.81818400	2.62479500	1.52736300
С	6.27065900	-1.86341300	0.45371200
С	7.08950000	-2.39410900	-0.54870500
С	7.69317300	-3.63899100	-0.41652300
Н	8.32283700	-4.02358100	-1.21260700
С	7.49124300	-4.38977300	0.73284600
С	6.68668900	-3.88567200	1.74562300
Н	6.52469000	-4.46413400	2.64943400
С	6.08893100	-2.63955300	1.60444600
С	5.99221500	1.36857400	-2.48799200
Н	7.07259500	1.44684000	-2.36651000
Н	5.52790000	2.22981500	-2.00217100
С	5.53653400	1.20814300	-3.92604100
Н	5.37108700	2.17082300	-4.41295200
Н	6.28603500	0.66212400	-4.50663500
С	4.26979900	0.37516400	-3.77465800

Н	3.43122200	1.00071800	-3.45703300
Н	3.97817900	-0.14544500	-4.68828000
С	4.64944800	-0.58252100	-2.66444600
Н	3.80754600	-0.91265000	-2.05782400
Н	5.19177200	-1.45629500	-3.03601500
Ν	-3.57059300	0.01599200	-0.39316300
С	-2.86000100	-1.12652900	-0.06642500
Н	-3.45262200	-2.02609800	0.06502100
С	-1.52509600	-1.17221800	0.09271700
Н	-1.08653200	-2.12914800	0.34452300
С	-0.68021300	0.00390500	-0.07428100
С	-1.46147300	1.18796500	-0.41504300
Н	-0.97085300	2.14015300	-0.56973300
С	-2.79861600	1.15486800	-0.55366800
Н	-3.34604000	2.05783400	-0.80162500
Ga	-5.46663900	0.06521400	-0.28229600
0	-5.54368400	-0.17474500	1.82654800
С	-6.43230400	-1.56004800	-0.85889400
С	-7.81391900	-1.65013200	-0.64855400
С	-8.54549600	-2.75599400	-1.06227900
Н	-9.61542600	-2.79654800	-0.88470400
С	-7.90820700	-3.80420000	-1.71280800
С	-6.54252400	-3.73374200	-1.94924500
Н	-6.03860200	-4.54329600	-2.46737000
С	-5.81817700	-2.62479600	-1.52736300
С	-6.27065900	1.86341100	-0.45371700
С	-7.08950700	2.39410700	0.54869600
С	-7.69318100	3.63898800	0.41651000
Н	-8.32284900	4.02357800	1.21259000
С	-7.49124600	4.38976900	-0.73285800
С	-6.68668600	3.88566900	-1.74563100
Н	-6.52468300	4.46413100	-2.64944200
С	-6.08892700	2.63955100	-1.60445000
С	-5.99221700	-1.36857200	2.48799300
Н	-7.07259600	-1.44684200	2.36650900
Н	-5.52789700	-2.22981200	2.00217500
С	-5.53653900	-1.20813700	3.92604300
Н	-5.37109000	-2.17081500	4.41295500
Н	-6.28604400	-0.66212100	4.50663400
С	-4.26980800	-0.37515300	3.77466100
Н	-3.43122700	-1.00070300	3.45703900
Н	-3.97819200	0.14545900	4.68828400
С	-4.64945800	0.58253000	2.66444800
Н	-3.80755700	0.91266100	2.05782700

Н	-5.19178700	1.45630100	3.03601400
Н	7.95962300	-5.36255500	0.83993100
Н	5.46761500	-2.27187700	2.41675800
Н	7.26415400	-1.82604400	-1.45796600
Н	8.34103500	0.83440100	0.15987700
Н	8.47561100	4.66878000	2.04122400
Н	4.75349500	2.59265800	1.73645500
Н	-7.26416400	1.82604300	1.45795600
Н	-5.46760600	2.27187500	-2.41675900
Н	-7.95962600	5.36255000	-0.83994700
Н	-8.47559900	-4.66878700	-2.04122500
Н	-8.34103300	-0.83440800	-0.15987600
Н	-4.75348800	-2.59265600	-1.73645500

5. References

- Petrie, M.; Dias, H.; Ruhlandt-Senge, K.; Waggoner, K.; Wehmschulte, R.; Power, P. Synthesis and Characterization of Bulky Aryl Derivatives of the Heavier Main Group 3 Elements. *Organometallics* 1993, 12, 1086–1093.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- S3. T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592.
- S4. W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics, 1996, 14.1, 33-38.