ELECTRONIC SUPPORTING INFORMATION

For

Geminal Homologative Fluorination of Carbonyl Derivatives *en route* to 1-Fluoro-2-Haloethyl- Skeletons

Margherita Miele, ^{a*} Davide Castiglione,^a Alexander Prado-Roller,^b Laura Castoldi,^{c*} and Vittorio Pace^{a,d*}

^[a] University of Turin - Department of Chemistry – Via P. Giuria 7, 10125, Turin, Italy.

^[b] University of Vienna – Institute of Inoganic Chemistry - Waehringerstrasse 42, 1090, Vienna, Austria.

^[c] University of Milan - Department of Pharmaceutical Sciences, General and Organic Chemisty Section "A. Marchesini" – Via Venezian 21, 20133 Milan, Italy.

^[b] University of Vienna - Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry - Josef-Holaubek-Platz 2, 1090, Vienna, Austria.

e-mails: margherita.miele@unito.it; laura.castoldi@unimi.it; vittorio.pace@univie.ac.at; vittorio.pace@unito.it

TABLE OF CONTENTS

INSTRUMENTATION AND GENERAL ANALYTICAL METHODS	S2
GENERAL PROCEDURE	S3
CHARACTERIZATION AND SPECTRAL DATA OF COMPOUNDS	S4
REFERENCES	S24
COPIES OF NMR SPECTRA (¹ H-, ¹³ C-, HETERONUCLEI)	S25
X-RAY ANALYSIS	S129

1. Materials and methods

Melting Points were determined on a Reichert-Kofler hot-stage microscope and are uncorrected. Mass spectra were obtained on a Shimadzu QP 1000 instrument (EI, 70 eV) and on a Bruker maXis 4G instrument (ESI-TOF, HRMS). ¹H, ¹³C and ¹⁹ F NMR spectra were recorded at 297 K on a Bruker Avance III 400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, 40 MHz for ¹⁵N, 376 MHz for ¹⁹F) equipped with a directly detecting broadband observe (BBFO) probe, with a Bruker Avance III 500 spectrometer (500 MHz for ¹H, 125 MHz for ¹³C) using a Prodigy cryoprobe, and with a Bruker DRX 200 spectrometer (200 MHz for ¹H, 50 MHz for ¹³C) with a ¹H/¹³C dual probe.

The centre of the solvent signal was used as an internal standard which was related to TMS with δ 7.26 ppm (¹H in CDCl₃), δ 7.16 ppm (¹H in C₆D₆), δ 77.00 ppm (¹³C in CDCl₃) and δ 128.06 ppm (¹³C in C₆D₆). Absolute referencing via Ξ ratio was usd for the ¹⁹F NMR spectra. Spin-spin coupling constants (*J*) are given in Hz.

In nearly all cases, full and unambiguous assignment of all resonances was performed by combined application of standard NMR techniques, such as APT, HSQC, HMBC, HSQC-TOCSY, COSY and NOESY experiments.

All the reactions were carried out under inert atmosphere of argon. THF was distilled over Na/benzophenone. Chemicals were purchased from Sigma-Aldrich, Acros, Alfa Aesar and TCI Europe. Solutions were evaporated under reduced pressure with a rotary evaporator.

TLC was carried out on aluminium sheets precoated with silica gel 60F254 (Merchery-Nagel, Merk); the spots were visualised under UV light (λ = 254 nm).

2. General procedures

General Procedure 1

To a solution of carbonyl compound (aldehyde or ketone, 1.0 equiv) in dry THF (3 mL) cooled at -78 °C, the dihalomethane carbenoid precursor was added (1.5 equiv) under an Argon atmosphere. After 10 min, MeLi-LiBr 2.2 M solution in Et₂O (1.4 equiv) was added with a syringe pump 0.20 mL/min and the stirring was continued for additional 0.5 h. Subsequently, distilled water was added to the mixture and the cooling bath was removed; the organic phase was extracted with dichloromethane (3 x 3 mL) and, dried over anhydrous Na₂SO₄. The filtered solution (1.5 mL) was flushed under argon and Deoxo-Fluor 2.7 M solution in Toluene (2.2 equiv) was incorporated to it at room temperature and, the reaction was stirred overnight. Finally, the mixture was quenched with water (3 mL) and extracted with dichloromethane (3 mL). The organic layer was washed with saturated (aq.) NaCl (5 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure (bath: rt) to give the crude compound eventually purified as indicated below.

General Procedure 2

To a solution of dihalomethane carbenoids precursor (1.5 equiv) in dry THF (3 mL), cooled at -78 °C, was added LDA (1.4 equiv) with a syringe pump 0.20 mL/min under n Argon atmosphere. After 30 min, the carbonyl compound (aldehyde or ketone, 1 equiv) was added dropwise during a period of 15 min and, then the stirring was continued for additional 0.5 h. Subsequently, distilled water was added to the mixture and the cooling bath was removed; the organic phase was extracted with dichloromethane (3 x 3 mL) and, dried over anhydrous Na₂SO₄. The filtered solution (1.5 mL) was flushed under argon and Deoxo-Fluor 2.7 M solution in Toluene (2.2 equiv) was incorporated to it at room temperature and, the reaction was stirred overnight. Finally, the mixture was quenched with water (3 mL) and extracted with dichloromethane (3 mL). The organic layer was washed with saturated (aq.) NaCl (5 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure (bath: rt) to give the crude compound eventually purified as indicated below.

General Procedure 3

To a solution of carbonyl compound (aldehyde or ketone, 1.0 equiv) in dry THF (3 mL) cooled at 0 °C, TMSCHF₂ or TMSCF₃ or TMSCCl₃ was added (2.0 equiv) under an Argon atmosphere. After 5 min, potassium *tert*-pentoxide (in toluene 0.9 M, 1.8 equiv) was added dropwise and, then the stirring was continued for additional 0.5 h. Subsequently, distilled water was added to the mixture and the cooling bath was removed; the organic phase was extracted with dichloromethane (3 x 3 mL) and, dried over anhydrous Na₂SO₄. The filtered solution (1.5 mL) was flushed under argon and Deoxo-Fluor 2.7 M solution in Toluene (2.2 equiv) was incorporated to it at room temperature and, the reaction was stirred overnight. Finally, the mixture was quenched with water (3 mL) and extracted with dichloromethane (3 mL). The organic layer was washed with saturated (aq.) NaCl (5 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure (bath: rt) to give the crude compound eventually purified as indicated below.

3. Spectral and Characterization Data

Compound 2 (1,5-dichloro-2-fluoro-2-pentanyl) benzene

By following the **General procedure 1**, starting from 4-chloro-1-phenylbutan-1-one (200 mg, 1.1 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.12 mL, 1.64 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.7 mL, 1.54 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.9 mL, 2.4 mmol, 2.2 equiv), **compound 2** was obtained in 92% yield (237 mg) as colorless oil without any further purification.

¹H NMR (400 MHz, CDCl₃) δ: 7.43-7.38 (m, 2H, Ph H-3,5), 7.37-7.32 (m, 3H, Ph H-2,4,6), 3.84-3.75 (m, 2H, CH₂Cl), 3.54-3.47 (m, 2H, CH₂CH₂Cl), 2.44-2.07 (m, 2H, CH₂CH₃), 1.91-1.56 (m, 2H, CH₂CH₂). ¹³C NMR (100 MHz, CDCl₃) δ: 139.3 (d, 1C, ${}^{2}J_{C,F}$ = 21.8 Hz, Ph C-1), 128.6 (d, 2C, ${}^{4}J_{C,F}$ = 1.9 Hz, Ph C-3,5), 128.2 (d, 1C, ${}^{5}J_{C,F}$ = 1.0 Hz, Ph C-4), 124.7 (d, 2C, ${}^{3}J_{C,F}$ = 10.0 Hz, Ph C-2,6), 97.4 (d, 1C, ${}^{1}J_{C,F}$ = 182.4 Hz, CHF), 51.0 (d, 1C, ${}^{2}J_{C,F}$ = 27.6 Hz, CH₂Cl), 44.8 (1C, CH₂Cl), 34.3 (d, 1C, ${}^{2}J_{C,F}$ = 22.5 Hz, CH₂CH₂), 26.3 (d, 1C, ${}^{3}J_{C,F}$ = 3.1 Hz, CH₂CH₂CH₂).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -162.6 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₃Cl₂FNa⁺: 257.0276 [M+Na]⁺; found:257.0280.

Compound 2a 1,5-dichloro-2-phenylpentan-2-ol

By following the **General procedure 1**, starting from 4-chloro-1-phenylbutan-1-one (200 mg, 1.1 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.12 mL, 1.64 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.7 mL, 1.54 mmol, 1.4 equiv), after quenching with saturated (*aq*.) NH₄Cl (3 mL), **compound 2a** was obtained in 94% yield (240 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.40-7.34 (m, 4H, Ph H-2,3,5,6), 7.29-7.26 (m, 1H, Ph H-4), 3.85-3.78 (m, 2H, CH₂Cl), 3.46-3.43 (m, 2H, CH₂CH₂Cl), 2.68 (bs, OH), 2.07-1.99 (m, 2H, CH₂CH₃), 1.83-1.50 (m, 2H, CH₂CH₂).

¹³C NMR (100 MHz, CDCl₃) δ: 142.1 (Ph C-1), 128.6 (2C, Ph C-3,5), 127.6 (Ph C-4), 124.3 (2C, Ph C-2,6), 75.9 (COH), 55.3 (CH₂Cl), 45.3 (CH₂Cl), 36.9 (CH₂CH₂), 26.9 (CH₂CH₂CH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₄Cl₂ONa⁺: 255.0319 [M+Na]⁺; found:255.0322.

Compound 3

(1-chloro-2-fluoro-2-butanyl) benzene

By following the General procedure 1, starting from propiophenone (200 mg, 1.5 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.16 mL, 2.25 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.0 mL, 2.1 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.2 mL, 3.3 mmol, 2.2 equiv), compound 3 was obtained in 90% yield (251 mg) as colorless oil without any further purification.

¹H NMR (400 MHz, C₆D₆) δ: 7.10-7.08 (m, 4H, Ph H-2,3,5,6), 7.06-7.02 (m, 1H, Ph H-4), 3.45-3.33 (m, 2H, CH₂Cl), 2.00-1.45 (m, 2H, CH₂CH₃), 0.66 (t, 3H, ${}^{3}J_{H,H}$ = 7.4 Hz, CH₃).

¹³C NMR (100 MHz, C₆D₆) δ: 140.2 (d, 1C, ²J_{C,F} = 21.8 Hz, Ph C-1), 128.6 (d, 2C, ⁴J_{C,F} = 1.9 Hz, Ph C-3,5), 128.0 (d, 1C, ${}^{5}J_{C,F}$ = 1.1 Hz, Ph C-4), 125.2 (d, 2C, ${}^{3}J_{C,F}$ = 10.0 Hz, Ph C-2,6), 98.0 (d, 1C, ${}^{1}J_{C,F}$ = 182.4 Hz, CHF), 50.8 (d, 1C, ²J_{C.F} = 27.5 Hz, CH₂Cl), 30.3 (d, 1C, ²J_{C.F} = 23.2 Hz, CH₂CH₃), 7.4 (d, 1C, ${}^{3}J_{C,F} = 4.5 \text{ Hz}, \text{CH}_{2}\text{CH}_{3}$).

¹⁹**F NMR** (470 MHz, C₆D₆) δ: -164.4 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₂ClFNa⁺: 209.0509 [M+Na]⁺; found:209.0511.

Compound 4

(1-chloro-2-fluoro-2-pentanyl) benzene

By following the General procedure 1, starting from 1-phenylbutan-1-one (200 mg, 1.35 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.15 mL, 2.03 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.86 mL, 1.89 mmol, 1.4 equiv), 2.7 M solution in Toluene (1.1 mL, 2.97 mmol, 2.2 equiv), compound 4 was obtained in 92 %yield (249 mg) as colorless oil without any further purification.

¹H NMR (400 MHz, CDCl₃) δ: 7.43-7.38 (m, 2H, Ph H-3,5), 7.37-7.32 (m, 3H, Ph H-2,4,6), 3.83 (d, 2H, ³J_{H,H} = 19.7 Hz, CH₂Cl), 2.26-1.84 (m, 2H, CH₂CH₃), 1.48-1.09 (m, 2H, CH₂CH₃), 0.91 (t, 3H, ³J_{H,H} = 7.4 Hz. CH₃).

¹³C NMR (100 MHz, CDCl₃) δ: 140.1 (d, 1C, ²J_{C,F} = 21.9 Hz, Ph C-1), 128.4 (d, 2C, ⁴J_{C,F} = 1.8 Hz, Ph C-3,5), 127.9 (d, 1C, ${}^{5}J_{C,F}$ = 1.1 Hz, Ph C-4), 124.7 (d, 2C, ${}^{3}J_{C,F}$ = 10.0 Hz, Ph C-2,6), 97.7 (d, 1C, ${}^{1}J_{C,F}$ = 181.5 Hz, CHF), 50.9 (d, 1C, ²J_{C.F} = 27.5 Hz, CH₂Cl), 39.3 (d, 1C, ²J_{C.F} = 22.7 Hz, CH₂CH₃), 16.4 (d, 1C, ${}^{3}J_{C,F} = 3.6 \text{ Hz}, \text{CH}_{2}\text{CH}_{3}), 14.1 (1C, \text{CH}_{3}).$

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -162.0 (m, 1F, F-1).

HRMS (ESI), *m/z*: calcd. for C₁₁H₁₄ClFNa⁺: 223.0666 [M+Na]⁺; found:223.0669.

Compound 5

1-(1-chloro-2-fluoro-2-propanyl)-4-fluoro benzene

By following the **General procedure 1**, starting from 4-fluoroacetophenone (200 mg, 1.45 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.16 mL, 2.2 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.92 mL, 2.03 mmol, 1.4 equiv), 2.7 M solution in Toluene (1.18 mL, 3.19 mmol, 2.2 equiv), **compound 5** was obtained in 85% yield (235 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.38-7.35 (m, 2H, Ph H-2,6), 7.10-7.06 (m, 2H, Ph H-3,5), 3.82-3.68 (m, 2H, CH₂Cl), 1.80 (d, 3H, ³*J*_{H,F} = 22.1 Hz, CH₃).

¹³**C** NMR (100 MHz, CDCl₃) δ: 162.5 (dd, 1C, ${}^{1}J_{C,F}$ = 247.2 Hz, ${}^{5}J_{C,F}$ = 1.7 Hz, Ph C-4), 137.2 (dd, 1C, ${}^{2}J_{C,F}$ = 22.2 Hz, ${}^{4}J_{C,F}$ = 3.2 Hz, Ph C-1), 126.4 (t, 2C, ${}^{3}J_{C,F}$ = 8.6 Hz, Ph C-2,6), 115.4 (dd, 2C, ${}^{2}J_{C,F}$ = 22.5 Hz, ${}^{4}J_{C,F}$ = 1.1 Hz, Ph C-3,5), 95.3 (d, 1C, ${}^{1}J_{C,F}$ = 178.4 Hz, CF), 51.4 (d, 1C, ${}^{2}J_{C,F}$ = 29.0 Hz, CH₂Cl), 24.4 (d, 1C, ${}^{2}J_{C,F}$ = 24.2 Hz, CH₃).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -148.7 (m, 1F, F-1), -113.9 (m, 1F, Ph F-4).

HRMS (ESI), *m*/*z*: calcd. for C₉H₉ClF₂Na⁺: 213.0253 [M+Na]⁺; found:213.0257.

Compound 6

1-(1-chloro-2-fluoro-2-propanyl) -2,4,5-trifluorobenzene

By following the **General procedure 1**, starting from 2,4,5-trifluoroacetophenone (200 mg, 1.15 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.12 mL, 1,72 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.73 mL, 1.6 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.9 mL, 2.5 mmol, 2.2 equiv), **compound 6** was obtained in 82% yield (214 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, C₆D₆) δ: 7.18-7.12 (m, 1H, Ph H-6), 6.29-6.22 (m, 1H, Ph H-3), 3.52-3.36 (m, 2H, CH₂Cl), 1.35 (dd, 3H, ${}^{3}J_{H,F}$ = 22.5 Hz, ${}^{4}J_{H,H}$ = 1.4 Hz, CH₃).

¹³**C NMR** (100 MHz, C₆D₆) δ: 153.2, 150.0, 147.2 (dddd, 3C, Ph C-2,4,5), 125.4 (m, 1C, Ph C-1), 115.8 (dddd, 1C, ${}^{2}J_{C,F}$ = 21.4 Hz, ${}^{3}J_{C,F}$ = 16.6 Hz, ${}^{3}J_{C,F}$ = 5.5 Hz, ${}^{3}J_{C,F}$ = 1.4 Hz, Ph C-6), 106.2 (m, 1C, Ph C-3), 93.8 (ddt, 1C, ${}^{1}J_{C,F}$ = 183.1 Hz, ${}^{3}J_{C,F}$ = 4.9 Hz, ${}^{3}J_{C,F}$ = 0.6 Hz, CF), 49.2 (ddd, 1C, ${}^{2}J_{C,F}$ = 25.1 Hz, ${}^{4}J_{C,F}$ = 5.0 Hz, ${}^{4}J_{C,F}$ = 1.0 Hz, CH₂Cl), 23.6 (ddd, 1C, ${}^{2}J_{C,F}$ = 24.2 Hz, ${}^{4}J_{C,F}$ = 3.8 Hz, ${}^{3}J_{C,F}$ = 0.8 Hz, CH₃). ¹⁹**F NMR** (470 MHz, C₆D₆) δ: -147.9, -141.6, -133,7, -117.2 (m, 4F, F-1, Ph F-2,4,5). **HRMS (ESI)**, *m/z*: calcd. for C₉H₇ClF₄Na⁺: 249.0065 [M+Na]⁺; found:249.0071.

Compound 7

1-(1-chloro-2-fluoro-2-propanyl)-4-(trifluoromethyl) benzene

By following the **General procedure 1**, starting from 4-(trifluoromethyl)acetophenone (200 mg, 1.06 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.12 mL, 1.59 mmol, 1.5 equiv),

MeLi-LiBr 2.2 M solution in Et_2O (0.67 mL, 1.5 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.87 mL, 2.3 mmol, 2.2 equiv), **compound 7** was obtained in 90% yield (230 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.68-7.66 (m, 2H, Ph H-3,5), 7.65-7.50 (m, 2H, Ph H-2,6), 3.85-3.74 (m, 2H, CH₂Cl), 1.81 (d, 3H, ³*J*_{H,F} = 24.3 Hz, CH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ : 145.2 (dq, 1C, ²*J*_{C,F} = 22.1 Hz, ⁵*J*_{C,F} = 1.3 Hz, Ph C-1), 130.5 (dq, 1C, ²*J*_{C,F} = 32.7 Hz, ⁵*J*_{C,F} = 1.2 Hz, Ph C-4), 125.5 (dq, 2C, ³*J*_{C,F} = 3.8 Hz, ⁴*J*_{C,F} = 1.2 Hz, Ph C-3,5), 125.0 (d, 2C, ³*J*_{C,F} = 9.5 Hz, Ph C-2,6), 123.9 (q, 1C, ¹*J*_{C,F} = 272.2 Hz, CF₃), 95.3 (d, 1C, ¹*J*_{C,F} = 180.0 Hz, CF), 51.0 (dq, 1C, ²*J*_{C,F} = 28.3 Hz, ⁷*J*_{C,F} = 0.5 Hz, CH₂Cl), 24.6 (d, 1C, ²*J*_{C,F} = 24.3 Hz, CH₃).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -150.7 (m, 1F, F-1), -62.7 (m, 1F, CF₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₉ClF₄Na⁺: 263.0221 [M+Na]⁺; found:263.0225.

Compound 8

1-(1-chloro-2-fluoro-2-propanyl)-4-nitrobenzene

By following the **General procedure 1**, starting from 4-nitroacetophenone (200 mg, 1.2 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.13 mL, 1.8 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.76 mL, 1.7 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.98 mL, 2.64 mmol, 2.2 equiv), **compound 8** was obtained in 86% yield (225 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, C₆D₆) δ: 7.75-7.72 (m, 2H, Ph H-3,5), 6.76-6.74 (m, 2H, Ph H-2,6), 3.17-3.06 (m, 2H, CH₂Cl), 1.20 (d, 3H, ${}^{3}J_{H,F}$ = 21.9 Hz, CH₃).

¹³**C NMR** (100 MHz, C₆D₆) δ: 147.9 (1C, Ph C-4), 147.7 (d, 1C, ${}^{2}J_{C,F}$ = 22.0 Hz, Ph C-1), 125.5 (d, 2C, ${}^{3}J_{C,F}$ = 9.5 Hz, Ph C-2,6), 123.6 (d, 2C, ${}^{4}J_{C,F}$ = 1.6 Hz, Ph C-3,5), 95.1 (d, 1C, ${}^{1}J_{C,F}$ = 181.5 Hz, CF), 50.5 (d, 1C, ${}^{2}J_{C,F}$ = 27.6 Hz, CH₂Cl), 24.3 (d, 1C, ${}^{2}J_{C,F}$ = 24.2 Hz, CH₃).

¹⁹**F NMR** (470 MHz, C₆D₆) δ: -151.2 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₉H₉ClFNO₂Na⁺: 240.0204 [M+Na]⁺; found:240.0208.

Compound 9

1-bromo-4-(1-chloro-2-fluoro-2-propanyl) benzene

By following the **General procedure 1**, starting from 4-bromoacetophenone (200 mg, 1.0 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.11 mL, 1.5 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.64 mL, 1.4 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.8 mL, 2.2 mmol, 2.2 equiv), **compound 9** was obtained in 92% yield (231 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.54-7.51 (m, 2H, Ph H-2,6), 7.28-7.25 (m, 2H, Ph H-3,5), 3.78 (dd, 1H, ${}^{3}J_{H,F}$ = 17.0 Hz, ${}^{2}J_{H,F}$ = 12.1 Hz, CH₂Cl), 3.73 (dd, 1H, ${}^{3}J_{H,F}$ = 20.5 Hz, ${}^{2}J_{H,F}$ = 12.1 Hz, CH₂Cl), 1.78 (d, 3H, ${}^{3}J_{H,F}$ = 22.1 Hz, CH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 140.4 (d, 1C, ${}^{2}J_{C,F}$ = 22.2 Hz, Ph C-4), 131.6 (d, 2C, ${}^{4}J_{C,F}$ = 1.2 Hz, Ph C-2,6), 126.3 (d, 2C, ${}^{3}J_{C,F}$ = 9.2 Hz, Ph C-3,5), 122.4 (d, 1C, ${}^{J}C_{C,F}$ = 1.7 Hz, Ph C-1), 95.3 (d, 1C, ${}^{1}J_{C,F}$ = 179.1 Hz, CF), 51.1 (d, 1C, ${}^{2}J_{C,F}$ = 28.7 Hz, CH₂Cl), 24.3 (d, 1C, ${}^{2}J_{C,F}$ = 24.3 Hz, CH₃).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -150.0 (ddq, 1F, ${}^{2}J_{H,F}$ = 22.1 Hz, ${}^{3}J_{H,F}$ = 20.5 Hz, ${}^{3}J_{H,F}$ = 17.0 Hz, F-1). **HRMS (ESI)**, *m/z*: calcd. for C₉H₉BrClFNa⁺: 272.9458 [M+Na]⁺; found:272.9461.

Compound 10

(1-chloro-2-fluoro-2-propanyl) benzene^[1]

By following the **General procedure 1**, starting from acetophenone (200 mg, 1.7 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.18 mL, 2.5mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.1 mL, 2.38 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.4 mL, 3.7 mmol, 2.2 equiv), **compound 10** was obtained in 91% yield (266 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.43-7.37 (m, 4H, Ph H-2,3,5,6), 7.36-7.33 (m, 1H, Ph H-4), 3.86-3.71 (m, 2H, CH₂Cl), 1.81 (d, 3H, ³*J*_{H,F} = 22.2 Hz, CH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 141.4 (d, 1C, ${}^{2}J_{C,F}$ = 21.7 Hz, Ph C-1), 128.5 (d, 2C, ${}^{4}J_{C,F}$ = 1.4 Hz, Ph C-3,5), 128.2 (d, 1C, ${}^{5}J_{C,F}$ = 1.3 Hz, Ph C-4), 124.4 (d, 2C, ${}^{3}J_{C,F}$ = 9.1 Hz, Ph C-2,6), 95.5 (d, 1C, ${}^{1}J_{C,F}$ = 178.5 Hz, CF), 51.6 (d, 1C, ${}^{2}J_{C,F}$ = 28.4 Hz, CH₂Cl), 24.3 (d, 1C, ${}^{2}J_{C,F}$ = 24.4 Hz, CH₃).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -150.4 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₉H₁₀ClFNa⁺: 195.0347 [M+Na]⁺; found:195.0350.

Compound 11

(3-chloro-1,1,1,2-tetrafluoro-2-propanyl) benzene

By following the **General procedure 1**, starting from 2,2,2-trifluoroacetophenone (200 mg, 1.15 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.13 mL, 1.7 mmol, 1.5 equiv, MeLi-LiBr 2.2 M solution in Et_2O (0.73mL, 1.6 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.94 mL, 2.5 mmol, 2.2 equiv), **compound 11** was obtained in 89% yield (232 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, C₆D₆) δ: 7.20-7.15 (m, 2H, Ph H-2,6), 7.02-6.98 (m, 3H, Ph H-3,4,5), 3.69-3.50 (m, 1H, CH₂Cl), 3.47-3.39 (ddq, 1H, ${}^{3}J_{H,F}$ = 30.9 Hz, ${}^{2}J_{H,H}$ = 12.9 Hz, ${}^{4}J_{H,F}$ = 0.9 Hz, CH₂Cl). ¹³C NMP (100 MHz, C D) δ: 121 C (d, 1C ${}^{2}J_{H,F}$ = 21 4 Hz Db C 1) 120 O(d, 1C ${}^{5}J_{H,F}$ = 1.1 Hz Db C

¹³**C NMR** (100 MHz, C₆D₆) δ : 131.6 (d, 1C, ²*J*_{C,F} = 21.4 Hz, Ph C-1), 129.9(d, 1C, ⁵*J*_{C,F} = 1.1 Hz, Ph C-4), 128.8 (d, 2C, ⁴*J*_{C,F} = 2.0 Hz, Ph C-3,5), 126.0 (dq, 2C, ³*J*_{C,F} = 9.8 Hz, ⁴*J*_{C,F} = 1.1 Hz, Ph C-2,6), 123.0

(dq, 1C, ${}^{1}J_{C,F}$ = 286.1 Hz, ${}^{2}J_{C,F}$ = 29.9 Hz, CF₃), 94.8 (dq, 1C, ${}^{1}J_{C,F}$ = 193.6.0 Hz, ${}^{2}J_{C,F}$ = 30.6 Hz, CF), 43.5 (dq, 1C, ${}^{2}J_{C,F}$ = 22.5 Hz, ${}^{3}J_{C,F}$ = 1.3 Hz, CH₂Cl). ¹⁹F NMR (470 MHz, C₆D₆) δ : -175.0 (m, 1F, F-1), -78.2 (d, 1F, ${}^{3}J_{F,F}$ = 7.3 Hz, CF₃). HRMS (ESI), *m/z*: calcd. for C₉H₇ClF₄Na⁺: 249.0065 [M+Na]⁺; found:249.0067.

Compound 12

1,1'-(2-chloro-1-fluoro-1,1-ethanediyl) dibenzene

By following the **General procedure 1**, starting from benzophenone (200 mg, 1.1 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.12 mL, 1.65 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.73 mL, 1.6 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.9 mL, 2.4 mmol, 2.2 equiv), **compound 12** was obtained in 93% yield (240 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/ diethyl ether 9:1 as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.41-7.37 (m, 4H, Ph H-2,2,6,6), 7.36-7.33 (m, 4H, Ph H-3,3,5,5), 7.36-7.33 (m, 2H, Ph H-4,4), 4.24 (d, 2H, ${}^{3}J_{H,F}$ = 21.0 Hz, CH₂Cl).

¹³**C NMR** (100 MHz, CDCl₃) δ: 140.4 (d, 2C, ${}^{2}J_{C,F}$ = 23.2 Hz, ph C-1,1), 128.5 (m, 2C, Ph C-4,4), 128.4 (d, 4C, ${}^{4}J_{C,F}$ = 0.8 Hz, ph C-3,3,5,5), 125.8 (d, 4C, ${}^{3}J_{C,F}$ = 7.8 Hz, ph C-2,2,6,6), 97.7 (d, 1C, ${}^{1}J_{C,F}$ = 182.4 Hz, CHF), 49.4 (d, 1C, ${}^{2}J_{C,F}$ = 25.6 Hz, CH₂Cl).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -150.0 (t, ³*J*_{H,F} = 21.0 Hz, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₄H₁₂ClFNa⁺: 257.0509 [M+Na]⁺; found:257.0511.

Compound 13

(1,2-chloro-1-fluoro-1-phenylethyl) fluorobenzene

By following the **General procedure 1**, starting from 4-fluorobenzophenone (200 mg, 1.0 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.11 mL, 1.5 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.64 mL, 1.4 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.8 mL, 2.2 mmol, 2.2 equiv), **compound 13** was obtained in 89% yield (225 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/ diethyl ether 95:5 as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.43-7.35 (m, 5H, Ph1 H-2,3,4,5,6), 7.40-7.35 (m, 2H, Ph2 H-2,6), 7.10-7.05 (m, 2H, Ph2 H-3,5), 4.21 (d, 2H, ${}^{3}J_{H,F}$ = 20.7 Hz, CH₂F).

¹³**C** NMR (100 MHz, CDCl₃) δ: 162.6 (dd, 1C, ${}^{1}J_{C,F}$ = 248.1 Hz, ${}^{5}J_{C,F}$ = 2.0 Hz, ph2 C-4), 140.0 (d, 1C, ${}^{3}J_{C,F}$ = 23.2 Hz, Ph1 C-1), 136.0 (dd, 1C, ${}^{2}J_{C,F}$ = 23.7 Hz, ${}^{4}J_{C,F}$ = 3.3 Hz, ph2 C-1), 128.6 (d, 1C, ${}^{5}J_{C,F}$ = 1.6 Hz, ph1 C-4), 128.5 (2C, Ph1 C-3,5), 128.0 (t, 2C, ${}^{3}J_{C,F}$ = 8.0 Hz, Ph2 C-2,6), 125.8 (d, 2C, ${}^{3}J_{C,F}$ = 7.6 Hz, Ph1 C-2,6), 115.4 (d, 2C, ${}^{2}J_{C,F}$ = 21.7 Hz, Ph2 C-3,5), 97.5 (d, 1C, ${}^{1}J_{C,F}$ = 182.4 Hz, CHF), 49.3 (d, 1C, ${}^{2}J_{C,F}$ = 27.0 Hz, CH₂F).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -147.9 (t, ³ $J_{H,F}$ = 20.7 Hz, 1F, F-1), -113.3 (m, 1F, F-2). **HRMS (ESI)**, *m/z*: calcd. for C₁₄H₁₁ClFNa⁺: 275.0415 [M+Na]⁺; found:275.0418.

Compound 14 1-(2-chloro-1-fluoro-1-phenylethyl)-4-methoxybenzene

By following the **General procedure 1**, starting from 4-methoxybenzophenone (200 mg, 0.94 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.1 mL, 1.4 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.6 mL, 1.3 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.77 mL, 2.07 mmol, 2.2 equiv), **compound 14** was obtained in 79% yield (197 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/diethyl ether 8:2 as eluent).

¹H NMR (400 MHz, CDCl₃) δ: 7.40-7.38 (m, 4H, Ph1 H-2,3,5,6), 7.37-7.34 (m, 1H, Ph1 H-4), 7.33-7.30 (m, 2H, Ph2 H-2,6), 6.92-6.90 (m, 2H, Ph2 H-3,5), 4.25-4.19 (m, 2H, CH₂Cl), 3.81 (s, 3H, OCH₃). ¹³C NMR (100 MHz, CDCl₃) δ: 159.6 (d, 1C, ${}^{5}J_{C,F}$ = 1.8 Hz, Ph2 C-4), 140.4 (d, 1C, ${}^{2}J_{C,F}$ = 23.3 Hz, Ph1 C-1), 132.3 (d, 1C, ${}^{3}J_{C,F}$ = 23.7 Hz, Ph2 C-1), 128.4 (d, 2C, ${}^{4}J_{C,F}$ = 0.6 Hz, Ph1 C-3,5), 128.3 (1C, Ph1 C-4), 127.4 (d, 4C, ${}^{3}J_{C,F}$ = 7.2 Hz, Ph2 C-2,6, ${}^{3}J_{C,F}$ = 7.1 Hz, Ph1 C-2,6), 113.7 (2C, Ph2 C-3,5), 97.7 (d, 1C, ${}^{1}J_{C,F}$ = 181.5 Hz, CHF), 55.2 (1C, OCH₃), 49.5 (d, 1C, ${}^{2}J_{C,F}$ = 27.2 Hz, CH₂Cl). ¹⁹F NMR (470 MHz, CDCl₃) δ: -147.3 (t, ${}^{3}J_{H,F}$ = 20.7 Hz, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₅H₁₄ClFONa⁺: 287.0615 [M+Na]⁺; found:287.0619.

Compound 15

1-(2-chloro-1-fluoro-1-phenylethyl)-4-(methylsulfanyl) benzene

By following the **General procedure 1**, starting from 4-(methylsulfanyl) benzophenone (200 mg, 0.9 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.1 mL, 1.4 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et_2O (0.6 mL, 1.3 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.7 mL, 1.98 mmol, 2.2 equiv), **compound 15** was obtained in 90% yield (227 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/ diethyl ether 8:2 as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.39-7.33 (m, 5H, Ph1 H-2,3,4,5,6), 7.30-7.29 (m, 2H, Ph2 H-2,6), 7.25-7.23 (m, 2H, Ph2 H-3,5), 4.21 (d, 2H, ${}^{3}J_{H,H}$ = 20.8 Hz, CH₂F), 2.48 (s, 3H, SCH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 140.1 (d, 1C, ${}^{2}J_{C,F}$ = 23.2 Hz, Ph1 C-1), 139.3 (d, 1C, ${}^{5}J_{C,F}$ = 1.8 Hz, Ph2 C-4), 136.8 (d, 1C, ${}^{2}J_{C,F}$ = 23.6 Hz, ${}^{3}J_{C,F}$ = 2.7 Hz, Ph2 C-1), 128.5 (d, 1C, ${}^{5}J_{C,F}$ = 1.7 Hz, Ph1 C-4), 128.5 (2C, Ph1 C-3,5), 126.4 (d, 2C, ${}^{3}J_{C,F}$ = 7.5 Hz, Ph2 C-2,6), 126.1 (2C, Ph2 C-3,5), 125.8 (d, 2C, ${}^{3}J_{C,F}$ = 7.6 Hz, Ph1 C-2,6), 97.6 (d, 1C, ${}^{1}J_{C,F}$ = 182.2 Hz, CHF), 49.3 (d, 1C, ${}^{2}J_{C,F}$ = 27.0 Hz, CH₂Cl), 15.4 (1C, SCH₃). ¹⁹**F NMR** (470 MHz, CDCl₃) δ: -149.1 (t, ${}^{3}J_{H,F}$ = 20.8 Hz, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₅H₁₄ClFSNa⁺: 303.0381 [M+Na]⁺; found:303.0385.

Compound 16

1,1- (1,2-difluoro-1,1-ethanediyl)dibenzene^[2]

By following the **General procedure 1**, starting from benzophenone (200 mg, 1.1 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.12 mL, 1.65 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.73 mL, 1.6 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.9 mL, 2.42 mmol, 2.2 equiv), **compound 16** was obtained in 85% yield (204 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.42-7.38 (m, 4H, Ph H-2,2,6,6), 7.37-7.34 (m, 4H, Ph H-3,3,5,5), 7.38-7.36 (m, 2H, Ph H-4,4), 4.98 (dd, 2H, ${}^{2}J_{H,F}$ = 47.5 Hz, ${}^{2}J_{H,H}$ = 21.6 Hz, CH₂F).

¹³**C NMR** (100 MHz, CDCl₃) δ: 139.0 (dd, 2C, ${}^{2}J_{C,F}$ = 22.9 Hz, ${}^{3}J_{C,F}$ = 2.7 Hz, ph C-1,1), 128.6 (d, 2C, ${}^{5}J_{C,F}$ = 1.8 Hz, Ph C-4,4), 128.4 (4C, Ph C-3,3,5,5), 126.2 (dd, 4C, ${}^{3}J_{C,F}$ = 7.3 Hz, ${}^{4}J_{C,F}$ = 1.0 Hz, Ph C-2,2,6,6), 97.7 (dd, 1C, ${}^{1}J_{C,F}$ = 179.0 Hz, ${}^{2}J_{C,F}$ = 18.5 Hz, CHF), 85.1 (dd, 1C, ${}^{1}J_{C,F}$ = 185.5 Hz, ${}^{2}J_{C,F}$ = 26.6 Hz, CH₂F).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -221.2 (dt, ${}^{2}J_{H,F}$ = 47.5 Hz, ${}^{1}J_{C,F}$ = 18.0 Hz, 1F, F-2), -153.0 (m, 1F, F-1). **HRMS (ESI)**, *m/z*: calcd. for C₁₄H₁₂F₂Na⁺: 241.0805 [M+Na]⁺; found:241.0809.

Compound 17

1,1'- (1,2,2-trifluoro-1,1-ethanediyl)dibenzene^[3]

By following the **General procedure 3**, starting from benzophenone (200 mg, 1.1 mmol, 1.0 equiv) in dry THF (3 mL), TMSCHF₂ (0.27 mL, 2.2 mmol, 2 equiv), potassium *tert*-pentoxide 0.9 M (2.2 ml, 2.0 mmol, 1.8 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.9 mL, 2.42 mmol, 2.2 equiv), **compound 17** was obtained in 88% yield (229 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.35-7.26 (m, 10H, Ph H-2,2,3,3,4,4,5,5,6,6), 6.16 (dt, 1H, ${}^{2}J_{H,F}$ = 54.4 Hz, ${}^{3}J_{H,F}$ = 5.5 Hz, CHF₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 136.7 (dt, 2C, ${}^{2}J_{C,F}$ = 22.2 Hz, ${}^{3}J_{C,F}$ = 1.0 Hz, ph C-1,1), 129.1 (d, 2C, ${}^{5}J_{C,F}$ = 1.9 Hz, Ph C-4,4), 128.4 (4C, Ph C-3,3,5,5), 126.8 (dt, 4C, ${}^{3}J_{C,F}$ = 7.4 Hz, ${}^{4}J_{C,F}$ = 1.5 Hz, Ph C-2,2,6,6), 114.4 (dt, 1C, ${}^{1}J_{C,F}$ = 250.7 Hz, ${}^{2}J_{C,F}$ = 36.0 Hz, CHF₂), 95.8 (dt, 1C, ${}^{1}J_{C,F}$ = 180.5 Hz, ${}^{2}J_{C,F}$ = 23.2 Hz, CHF). ¹⁹**F NMR** (470 MHz, C₆D₆) δ: -156.0 (dt, ${}^{3}J_{F,F}$ = 11.0 Hz, ${}^{3}J_{H,F}$ = 5.8 Hz, 1F, F-1), -127.9 (dd, 1F, ${}^{2}J_{H,F}$ = 54.4 Hz, ${}^{3}J_{F,F}$ = 11.0 Hz, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₄H₁₁F₃Na⁺: 259.0712 [M+Na]⁺; found:259.0715.

Scale up of the reaction using 20 mmol of starting material

By following the **General procedure 3**, starting from benzophenone (3645 mg, 20 mmol, 1.0 equiv) in dry THF (30 mL), TMSCHF₂ (5.5 mL, 40 mmol, 2 equiv), potassium *tert*-pentoxide 0.9 M (40 ml, 36 mmol, 1.8 equiv), Deoxo-Fluor 2.7 M solution in Toluene (16.3 mL, 44 mmol, 2.2 equiv), **compound 17** was obtained in 87% yield (4110 mg) as colorless oil without any further

purification. Spectroscopic and spectrometric data match with those ones reported for the running reaction at 1.1 mmol scale.

Compound 18

1-fluoto-4- (1,2,2,2-tetrafluoro-1-phenylethyl) benzene

By following the **General procedure 3**, starting from 4-fluorobenzophenone (200 mg, 1.0 mmol, 1.0 equiv) in dry THF (3 mL), TMSCF₃ (0.3 mL, 2.0 mmol, 2.0 equiv), potassium *tert*-pentoxide 0.9 M (2.0 ml, 1.8 mmol, 1.8 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.8 mL, 2.2 mmol, 2.2 equiv), **compound 18** was obtained in 81% yield (221 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.51-7.46 (m, 2H, Ph1 H-2,6), 7.46-7.42 (m, 2H, Ph2 H-3,5), 7.47-7.43 (m, 1H, Ph1 H-4), 7.43-7.41 (m, 2H, Ph1 H-3,5), 7.13-7.07 (m, 2H, Ph2 H-2,6).

¹³**C** NMR (100 MHz, CDCl₃) δ: 163.2 (dd, 1C, ${}^{1}J_{C,F}$ = 249.7 Hz, ${}^{5}J_{C,F}$ = 2.2 Hz, Ph2 C-1), 135.3 (d, 1C, ${}^{2}J_{C,F}$ = 22.1 Hz, Ph1 C-1), 131.5 (dd, 1C, ${}^{2}J_{C,F}$ = 22.9 Hz, ${}^{4}J_{C,F}$ = 3.4 Hz, Ph2 C-4), 129.6 (d, 1C, ${}^{4}J_{C,F}$ = 1.8 Hz, Ph1 C-4), 129.1 (m, 2C, Ph2 C-3,5), 128.4 (2C, Ph1 C-3,5), 126.7 (dq, 2C, ${}^{3}J_{C,F}$ = 7.5 Hz, ${}^{4}J_{C,F}$ = 1.6 Hz, Ph1 C-2,6), 123.1 (dq, 1C, ${}^{1}J_{C,F}$ = 285.3 Hz, ${}^{3}J_{C,F}$ = 31.0 Hz, CF₃), 115.4 (d, 2C, ${}^{2}J_{C,F}$ = 21.8 Hz, Ph2 C-2,5), 95.8 (dq, 1C, ${}^{1}J_{C,F}$ = 187.1 Hz, ${}^{2}J_{C,F}$ = 31.6 Hz, CHF).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -153.7 (q, ${}^{3}J_{F,F}$ = 8.4 Hz, 1F, F-1), -111.6 (m, 1F, Ph F-2), -75.2 (d, ${}^{2}J_{F,F}$ = 8.4 Hz, 1F, F-3).

HRMS (ESI), *m*/*z*: calcd. for C₁₄H₉F₅Na⁺: 295.0522 [M+Na]⁺; found:295.0525.

Compound 19

2-(chloromethyl)-2-fluoroadamantane

By following the **General procedure 1**, starting from adamantan-2-one (200 mg, 1.3 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.15 mL, 2.0 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et_2O (0.8 mL, 1.8 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.1 mL, 2.9 mmol, 2.2 equiv), **compound 19** was obtained in 82% yield (216 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/ ethyl acetate 8:2 as eluent).

¹**H NMR** (400 MHz, C₆D₆) δ: 4.30 (dd, 1H, ${}^{2}J_{H,H}$ = 11.9 Hz, ${}^{3}J_{H,H}$ = 27.7 Hz, CH₂Cl), 4.06 (dd, 1H, ${}^{2}J_{H,H}$ = 11.9 Hz, ${}^{3}J_{H,H}$ = 22.2 Hz, CH₂Cl), 2.23-1.35 (14H, Ad).

¹³**C NMR** (100 MHz, C_6D_6) δ : 97.7 (d, 1C, ¹ $J_{C,F}$ = 181.8 Hz, CF), 63.9 (d, 1C, ² $J_{C,F}$ = 24.5 Hz, CH₂Cl), 37.6-27.2 (9C, Ad).

¹⁹**F NMR** (470 MHz, C₆D₆) δ: -151.1 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₆ClFNa⁺: 225.0822 [M+Na]⁺; found:225.0826.

Compound 20 1-(chloromethyl)-1-fluorocycloheptane

By following the **General procedure 1**, starting from cycloheptanone (200 mg, 1.8 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.19 mL, 2.7 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.14 mL, 2.5 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.45 mL, 3.9 mmol, 2.2 equiv), **compound 20** was obtained in 92% yield (273 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane as eluent).

¹H NMR (400 MHz, CDCl₃) δ: 3.56 (d, 2H, ${}^{2}J_{H,H}$ = 17.9 Hz, CH₂Cl), 2.06-1.95 (m, 2H, H-2), 1.89-1.83 (m, 2H, H-7), 1.79-1.60 (m, 4H, H-3,6), 1.57-1.41 (m, 4H, H-4,5). ¹³C NMR (100 MHz, CDCl₃) δ: 98.2 (d, 1C, ${}^{1}J_{C,F}$ = 175.5 Hz, CF), 51.6 (d, 1C, ${}^{2}J_{C,F}$ = 28.3 Hz, CH₂Cl), 36.7 (d, 2C, ${}^{2}J_{C,F}$ = 23.6 Hz, C-2,7), 29.7 (2C, C-4,5), 22.4 (d, 2C, ${}^{2}J_{C,F}$ = 5.4 Hz, C-2,6). ¹⁹F NMR (470 MHz, CDCl₃) δ: -142.7 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₈H₁₄ClFNa⁺: 187.0666 [M+Na]⁺; found:187.0670.

Compound 21 4-(chloromethyl)-4-fluorononane

By following the **General procedure 1**, starting from nonan-4-one (200 mg, 2.1 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.15 mL, 2.1 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.9 mL, 1.97 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.15 mL, 3.1 mmol, 2.2 equiv), **compound 21** was obtained in 87% yield (239 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 3.57 (d, 2H, ${}^{2}J_{H,H}$ = 15.6 Hz, CH₂Cl), 1.72 (dt, 4H, ${}^{2}J_{H,H}$ = 19.5 Hz, ${}^{3}J_{H,H}$ = 7.9 Hz, H-3,5), 1.35-1.32 (m, 8H, H-2,6,7,8), 0.93 (t, 6H, ${}^{3}J_{H,H}$ = 6.4 Hz, CH₃).

¹³C NMR (100 MHz, CDCl₃) δ: 97.7 (d, 1C, ${}^{1}J_{C,F}$ = 175.3 Hz, CF), 47.7 (d, 1C, ${}^{2}J_{C,F}$ = 30.9 Hz, CH₂Cl), 35.0 (d, 2C, ${}^{2}J_{C,F}$ = 30.9 Hz, C-3,5), 25.3 (d, 2C, ${}^{3}J_{C,F}$ = 5.4 Hz, C-2,6), 23.1 (2C, C-7,8), 14.1 (2C, CH₃). ¹⁹F NMR (470 MHz, CDCl₃) δ: -154.4 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₂₀ClFNa⁺: 217.1135 [M+Na]⁺; found:217.1139.

Compound 22

3-(1-bromo-1-chloro-2-fluoro-2-propanyl) benzonitrile

By following the **General procedure 2**, starting from 3-acetylbenzonitrile (200 mg, 1.4 mmol, 1.0 equiv) in dry THF (3 mL), bromochloromethane (0.14 mL, 2.1 mmol, 1.5 equiv), LDA 2.0 M in THF (1.0 mL, 2.0 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.1 mL, 3.1 mmol, 2.2 equiv), **compound 22** was obtained in 80% yield (310 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.79-7.72 (m, 1H, Ph H-2), 7.73-7.71 (m, 1H, Ph H-4), 7.71-7.68 (m, 1H, Ph H-6), 7.56-7.54 (m, 1H, Ph H-5), 5.86 (d, 1H, ${}^{3}J_{H,F}$ = 10.0 Hz, CHClBr), 1.99 (d, 3H, ${}^{3}J_{H,F}$ = 22.4 Hz, CH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ : 140.3 (d, 1C, ²*J*_{C,F} = 22.7 Hz, Ph C-3), 132.5 (d, 1C, ⁵*J*_{C,F} = 1.1 Hz, Ph C-6), 130.3 (d, 1C, ³*J*_{C,F} = 8.8 Hz, Ph C-4), 129.8 (d, 1C, ³*J*_{C,F} = 9.6 Hz, Ph C-2), 129.1 (d, 1C, ⁴*J*_{C,F} = 1.4 Hz, Ph C-5), 118.3 (1C, CN), 112.6 (d, 1C, ⁴*J*_{C,F} = 1.6 Hz, Ph C-1), 96.6 (d, 1C, ¹*J*_{C,F} = 186.3 Hz, CF), 63.4 (d, 1C, ²*J*_{C,F} = 34.5 Hz, CHClBr), 23.0 (d, 1C, ²*J*_{C,F} = 23.2 Hz, CH₃).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -144.0 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₈BrClFNNa⁺: 297.9410 [M+Na]⁺; found:297.9412.

Compound 23

1-(2-chloro -1-fluoroethyl)-4-methylbenzene^[4]

By following the **General procedure 1**, starting from 4-methylbenzaldehyde (200 mg, 1.7 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.18 mL, 2.5 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.1 mL, 2.4 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.4 mL, 3.7 mmol, 2.2 equiv), **compound 23** was obtained in 93% yield (273 mg) as colorless oil without any further purification.

¹H NMR (400 MHz, CDCl₃) δ: 7.28-7.26 (m, 2H, Ph H-2,6), 7.24-7.14 (m, 2H, Ph H-3,5), 5.57 (ddd, 1H, ${}^{2}J_{H,F}$ = 47.1 Hz, ${}^{3}J_{H,H}$ = 7.8 Hz, ${}^{3}J_{H,H}$ = 3.9 Hz, CHF), 3.89-3.68 (m, 2H, CH₂Cl), 2.38 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ: 139.2 (d, 1C, ${}^{5}J_{C,F}$ = 1.9 Hz, Ph C-4), 133.6 (d, 1C, ${}^{2}J_{C,F}$ = 20.2 Hz, Ph C-1), 129.4 (2C, Ph C-3,5), 125.8 (d, 2C, ${}^{3}J_{C,F}$ = 6.4 Hz, Ph C-2,6), 93.0 (d, 1C, ${}^{1}J_{C,F}$ = 177.6 Hz, CHF), 46.8 (d, 1C, ${}^{2}J_{C,F}$ = 28.7 Hz, CH₂Cl), 21.2 (1C, CH₃). ¹⁹F NMR (470 MHz, CDCl₃) δ: -176.9 (m, 1F, F-1). HRMS (ESI), *m/z*: calcd. for C₉H₁₀ClFNa⁺: 195.0353 [M+Na]⁺; found:195.0355.

Compound 24

1-chloro-4-(2-chloro-1-fluoroethyl) benzene^[4]

By following the **General procedure 1**, starting from 4-chlorobenzaldehyde (200 mg, 1.4 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.15 mL, 2.1 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.9 mL, 2.0 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.2 mL, 3.1 mmol, 2.2 equiv), **compound 24** was obtained in 91% yield (246 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/ethyl ether 5:5 as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.40-7.38 (m, 2H, Ph H-2,6), 7.32-7.30 (m, 2H, Ph H-3,5), 5.58 (ddd, ${}^{2}J_{H,F}$ = 46.6 Hz, ${}^{3}J_{H,H}$ = 7.2 Hz, ${}^{3}J_{H,H}$ = 4.3 Hz, 1H, CHF), 3.86-3.68 (m, 1H, CH₂Cl).

¹³**C NMR** (100 MHz, CDCl₃) δ: 135.2 (d, 1C, ${}^{2}J_{C,F}$ = 20.5 Hz, Ph C-1), 135.1 (d, 1C, ${}^{2}J_{C,F}$ = 20.6 Hz, Ph C-4), 128.9 (2C, Ph C-2,6), 127.2 (d, 2C, ${}^{3}J_{C,F}$ = 6.8 Hz, Ph C-3,5), 92.2 (d, ${}^{1}J_{C,F}$ = 178.9 Hz, CHF), 46.5 (d, 1C, ${}^{2}J_{C,F}$ = 28.5 Hz, CH₂Cl).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -178.3 (ddd, 1F, ${}^{2}J_{H,F}$ = 46.6 Hz, ${}^{2}J_{C,F}$ = 23.5 Hz, ${}^{3}J_{H,F}$ = 16.3 Hz, F-1). **HRMS (ESI)**, *m/z*: calcd. for C₈H₇Cl₂FNa⁺: 214.9807 [M+Na]⁺; found:214.9810.

Compound 25

1,3-dichloro-2-(2-chloro -1-fluoroethyl) benzene

By following the **General procedure 1**, starting from 2,6-dichlorobenzaldehyde (200 mg, 1.14 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.12 mL, 1.7 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.7 mL, 1.6 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.9 mL, 2.5 mmol, 2.2 equiv), **compound 25** was obtained in 79% yield (205 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.37-7.36 (m, 2H, Ph H-4,6), 7.27-7.23 (m, 1H, Ph H-5), 6.29 (ddd, 1H, ${}^{2}J_{H,F}$ = 46.0 Hz, ${}^{3}J_{H,H}$ = 8.7 Hz, ${}^{3}J_{H,H}$ = 4.8 Hz, CHF), 4.27 (m, 1H, CH₂Cl), 3.90 (ddd, 1H, ${}^{3}J_{H,F}$ = 24.1 Hz, ${}^{2}J_{H,H}$ = 11.9 Hz, ${}^{3}J_{H,H}$ = 4.8 Hz, CH₂Cl).

¹³**C NMR** (100 MHz, CDCl₃) δ: 135.0 (d, 2C, ${}^{3}J_{C,F}$ = 3.1 Hz, Ph C-1,3), 130.9 (d, 1C, ${}^{2}J_{C,F}$ = 18.4 Hz, Ph C-2), 130.8 (d, 1C, ${}^{5}J_{C,F}$ = 1.5 Hz, Ph C-5), 129.5 (d, 2C, ${}^{4}J_{C,F}$ = 1.1 Hz, Ph C-4,6), 90.0 (d, 1C, ${}^{1}J_{C,F}$ = 182.9 Hz, CHF), 42.9 (d, 1C, ${}^{2}J_{C,F}$ = 23.2 Hz, CH₂Cl).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -183.5 (dddq, 1F, ${}^{2}J_{H,F}$ = 46.0 Hz, ${}^{3}J_{H,F}$ = 34.3 Hz, ${}^{3}J_{H,F}$ = 24.1 Hz, ${}^{2}J_{C,F}$ = 10.1 Hz, ${}^{5}J_{C,F}$ = 1.1 Hz, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₈H₆Cl₃FNa⁺: 248.9417 [M+Na]⁺; found:248.9420.

Compound 26

1-bromo-4-(2-chloro -1-fluoroethyl) benzene^[4]

By following the **General procedure 1**, starting from 4-bromobenzaldehyde (200 mg, 1.1 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.12 mL, 1.6 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et_2O (0.7 mL, 1.5 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.9 mL, 2.2 mmol, 2.2 equiv), **compound 26** was obtained in 89% yield (233 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/ethyl ether 9:1 as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.56-7.53 (m, 2H, Ph H-2,6), 7.25-7.23 (m, 2H, Ph H-3,5), 5.57 (ddd, 1H, ${}^{2}J_{H,F}$ = 46.6 Hz, ${}^{3}J_{H,H}$ = 7.1 Hz, ${}^{3}J_{H,H}$ = 4.3 Hz, CHF), 3.85-3.68 (m, 2H, CH₂Cl).

¹³**C NMR** (100 MHz, CDCl₃) δ: 135.6 (d, 1C, ${}^{2}J_{C,F}$ = 20.5 Hz, Ph C-4), 131.8 (2C, Ph C-2,6), 127.4 (d, 2C, ${}^{3}J_{C,F}$ = 6.8 Hz, Ph C-3,5), 123.3 (d, 1C, ${}^{5}J_{C,F}$ = 2.2 Hz, Ph C-1), 91.3 (d, 1C, ${}^{1}J_{C,F}$ = 179.1 Hz, CHF), 46.4 (d, 1C, ${}^{2}J_{C,F}$ = 28.4 Hz, CH₂Cl).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -178.8 (ddd, 1F, ${}^{2}J_{H,F}$ = 46.6 Hz, ${}^{1}J_{C,F}$ = 23.4 Hz, ${}^{2}J_{C,F}$ = 16.1 Hz, F-1). **HRMS (ESI)**, *m/z*: calcd. for C₈H₇BrClFNa⁺: 258.9301 [M+Na]⁺; found:258.9304.

Compound 27

1-(2-chloro -1-fluoroethyl)-4-fluorobenzene^[4]

By following the **General procedure 1**, starting from 4-fluorobenzaldehyde (200 mg, 1.6 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.18 mL, 2.4 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.0 mL, 2.2 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.6 mL, 3.5 mmol, 2.2 equiv), **compound 27** was obtained in 82% yield (232 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, C₆D₆) δ: 6.70-6.68 (m, 2H, Ph H-2,6), 6.67-6.63 (m, 2H, Ph H-3,5), 5.03 (ddd, 1H, ${}^{2}J_{H,F}$ = 46.8 Hz, ${}^{3}J_{H,H}$ = 7.5 Hz, ${}^{3}J_{H,H}$ = 3.9 Hz, CHF), 3.27-3.18 (m, 1H, CH₂Cl), 3.13-3.01 (m, 1H, CH₂Cl).

¹³**C NMR** (100 MHz, C₆D₆) δ : 163.3 (dd, 1C, ¹*J*_{C,F} = 247.5 Hz, ⁵*J*_{C,F} = 1.9 Hz, Ph C-4), 132.8 (dd, 1C, ²*J*_{C,F} = 20.7 Hz, ⁴*J*_{C,F} = 3.3 Hz, Ph C-1), 128.0 (m, 2C, Ph C-2,6), 115.6 (d, 2C, ²*J*_{C,F} = 21.7 Hz, Ph C-3,5), 92.2 (d, 1C, ¹*J*_{C,F} = 178.9 Hz, CHF), 46.6 (d, 1C, ²*J*_{C,F} = 28.2 Hz, CH₂Cl).

¹⁹**F NMR** (470 MHz, C₆D₆) δ: -177.0 (m, 1F, F-1), -112.4 (m, 1F, F-4).

HRMS (ESI), *m*/*z*: calcd. for C₈H₇ClF₂Na⁺: 199.0102 [M+Na]⁺; found:199.0107.

Compound 28 1-(2-chloro -1-fluoroethyl)-4-(trifluoromethyl) benzene

By following the **General procedure 1**, starting from 4-(trifluoromethyl)benzaldehyde (200 mg, 1.15 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.12 mL, 1.7 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.7 mL, 1.6 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in

Toluene (0.94 mL, 2.5 mmol, 2.2 equiv), **compound 28** was obtained in 80% yield (208 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.70-7.68 (m, 2H, Ph H-3,5), 7.51-7.49 (m, 2H, Ph H-2,6), 5.68 (ddd, 1H, ${}^{2}J_{H,F}$ = 46.5 Hz, ${}^{3}J_{H,H}$ = 6.6 Hz, ${}^{3}J_{H,H}$ = 4.7 Hz, CHF), 3.88-3.74 (m, 2H, CH₂Cl).

¹³**C NMR** (100 MHz, CDCl₃) δ: 140.4 (d, 1C, ${}^{2}J_{C,F}$ = 20.5 Hz, Ph C-1), 131.4 (q, 1C, ${}^{2}J_{C,F}$ = 32.0 Hz, Ph C-4), 126.1 (d, 2C, ${}^{3}J_{C,F}$ = 7.2 Hz, Ph C-2,6), 125.7 (d, 2C, ${}^{4}J_{C,F}$ = 3.7 Hz, Ph C-3,5), 123.8 (q, 1C, ${}^{1}J_{C,F}$ = 272.2 Hz, CF₃), 92.0 (d, 1C, ${}^{1}J_{C,F}$ = 180.1 Hz, CHF), 46.4 (d, 1C, ${}^{2}J_{C,F}$ = 27.7 Hz, CH₂Cl).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -180.9 (ddd, 1F, ${}^{2}J_{H,F}$ = 46.5 Hz, ${}^{3}J_{H,F}$ = 22.6 Hz, ${}^{2}J_{C,F}$ = 17.7 Hz, F-1), - 62.8 (s, 1F, CF₃).

HRMS (ESI), *m*/*z*: calcd. for C₉H₇ClF₄Na⁺: 249.0070 [M+Na]⁺; found:249.0074.

Compound 29

4-(2-chloro-1-fluoroethyl)benzonotrile

By following the **General procedure 1**, starting from 4-cyanobenzaldehyde (200 mg, 1.5 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.16 mL, 2.25 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.0 mL, 2.1 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.2 mL, 3.3 mmol, 2.2 equiv), **compound 29** was obtained in 87% yield (240 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/ethyl ether 5:5 as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.73-7.71 (m, 2H, Ph H-2,6), 7.50-7.48 (m, 2H, Ph H-3,5), 5.67-5.51 (m, 1H, CHF), 3.84-3.82 (m, 1H, CH₂Cl), 3.79-3.77 (m, 1H, CH₂Cl).

¹³**C NMR** (100 MHz, CDCl₃) δ: 141.5 (d, 1C, ${}^{2}J_{C,F}$ = 20.5 Hz, Ph C-4), 132.5 (Ph C-2,6), 126.4 (d, 2C, ${}^{3}J_{C,F}$ = 7.5 Hz, Ph C-3,5), 118.2 (CN), 113.1 (d, 1C, ${}^{5}J_{C,F}$ = 1.5 Hz, Ph C-1), 91.7 (d, ${}^{1}J_{C,F}$ = 181.0 Hz, CHF), 46.1 (d, 1C, ${}^{2}J_{C,F}$ = 27.7 Hz, CH₂Cl).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -181.8 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₉H₇ClFNNa⁺: 206.0149 [M+Na]⁺; found:206.0150.

Compound 30

1-(2-chloro -1-fluoroethyl)-4-nitrobenzene

By following the **General procedure 1**, starting from 4-nitrobenzaldehyde (200 mg, 1.3 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.15 mL, 2.0 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.8 mL, 1.8 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.1 mL 2.9 mmol, 2.2 equiv), **compound 30** was obtained in 80% yield (211 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 8.30-8.27 (m, 2H, Ph H-3,5), 7.57-7.55 (m, 2H, Ph H-2,6), 5.74 (ddd, 1H, ${}^{2}J_{H,F}$ = 46.7 Hz, ${}^{3}J_{H,H}$ = 6.4 Hz, ${}^{3}J_{H,H}$ = 4.4 Hz, CHF), 3.87-2.80 (m, 2H, CH₂Cl). ¹³**C NMR** (100 MHz, CDCl₃) δ: 148.4 (1C, Ph C-4), 142.8 (d, 1C, ${}^{2}J_{C,F}$ = 20.4 Hz, Ph C-1), 126.7 (d, 2C,

³ $J_{C,F}$ = 7.4 Hz, Ph C-2,6), 123.9 (2C, Ph C-3,5), 90.7 (d, 1C, ¹ $J_{C,F}$ = 181.3 Hz, CHF), 46.1 (d, 1C, ² $J_{C,F}$ = 26.7 Hz, CH₂Cl).

¹⁹**F NMR** (470 MHz, C₆D₆) δ: -182.3 (m, 1F, F-1).

HRMS (ESI), *m/z*: calcd. for C₈H₇ClFNO₂Na⁺: 226.0047 [M+Na]⁺; found:226.0049.

Compound 31

1-(2-chloro -1-fluoroethyl)-4-methoxybenzene

By following the **General procedure 1**, starting from 4-methoxybenzaldehyde (200 mg, 1.5 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.16 mL, 2.25 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.0 mL, 2.1 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.2 mL, 3.3 mmol, 2.2 equiv), **compound 31** was obtained in 90% yield (255 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/ethyl ether 8:2 as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.31-7.28 (m, 2H, Ph H-2,6), 6.94-6.92 (m, 2H, Ph H-3,5), 5.54 (ddd, 1H, ${}^{2}J_{H,F}$ = 46.9 Hz, ${}^{3}J_{H,H}$ = 7.9 Hz, ${}^{3}J_{H,H}$ = 4.1 Hz, CHF), 3.84 (ddd, 1H, ${}^{3}J_{H,F}$ = 14.5 Hz, ${}^{2}J_{H,H}$ = 12.1 Hz, ${}^{3}J_{H,H}$ = 7.9 Hz, CH₂Cl), 3.83 (s, 3H, OCH₃), 3.71 (ddd, 1H, ${}^{3}J_{H,F}$ = 25.3 Hz, ${}^{2}J_{H,H}$ = 12.1 Hz, ${}^{3}J_{H,H}$ = 7.9 Hz, CH₂Cl).

¹³**C NMR** (100 MHz, CDCl₃) δ: 160.3 (d, 1C, ${}^{5}J_{C,F}$ = 1.8 Hz, Ph C-4), 128.6 (d, 1C, ${}^{2}J_{C,F}$ = 20.6 Hz, Ph C-1), 127.4 (d, 2C, ${}^{3}J_{C,F}$ = 6.1 Hz, Ph C-2,6), 114.1 (2C, Ph C-3,5), 92.9 (d, 1C, ${}^{1}J_{C,F}$ = 176.9 Hz, CHF), 55.3 (1C, OCH₃), 46.7 (d, 1C, ${}^{2}J_{C,F}$ = 29.6 Hz, CH₂Cl).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -173.9 (ddd, 1F, ${}^{2}J_{H,F}$ = 46.9 Hz, ${}^{3}J_{H,F}$ = 25.1 Hz, ${}^{3}J_{H,F}$ = 14.4 Hz, F-1). **HRMS (ESI)**, *m/z*: calcd. for C₉H₁₀ClFONa⁺: 211.0302 [M+Na]⁺; found:211.0305.

Compound 32

3-(2-chloro-1-fluoroethyl) thiophene

By following the **General procedure 1**, starting from 3-thiophenecarboxaldehyde (200 mg, 1.8 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.2 mL, 2.7 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.15 mL, 2.5 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.47 mL, 4.0 mmol, 2.2 equiv), **compound 32** was obtained in 92% yield (273 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane as eluent).

¹**H NMR** (400 MHz, C₆D₆) δ: 6.80-6.77 (m, 1H, Th H-5), 6.76-6.74 (m, 1H, Th H-2), 6.65-6.61 (m, 1H, Th H-4), 5.28-5.11 (m, 1H, CHF), 3.39-3.28 (m, 1H, CH₂Cl), 3.23-3.10 (m 1H, CH₂Cl).

¹³**C** NMR (100 MHz, C₆D₆) δ : 138.0 (d, 1C, ²J_{C,F} = 22.0 Hz, Th C-3), 126.6 (Th C-5), 125.3 (d, 1C, ³J_{C,F} = 3.8 Hz, Th C-4), 123.5 (d, 1C, ³J_{C,F} = 7.1 Hz, Th C-2), 89.4 (d, 1C, ¹J_{C,F} = 176.5 Hz, CHF), 46.2 (d, 1C, ²J_{C,F} = 27.7 Hz, CH₂Cl).

¹⁹**F NMR** (470 MHz, C₆D₆) δ: -172.3 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₆H₆ClFSNa⁺: 186.9761 [M+Na]⁺; found:186.9763.

Compound 33

2-methyl-2-propanyl 4-(2-chloro-1-fluoroethyl) benzoate

By following the **General procedure 1**, starting from *tert*-butyl 4-formylbenzoate (200 mg, 1.0 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.15 mL, 2.0 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.8 mL, 1.8 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.8 mL, 2.2 mmol, 2.2 equiv), **compound 33** was obtained in 86% yield (222 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/ ethyl ether 5:5 as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.94-7.92 (m, 2H, Ph H-2,6), 7.32-7.15 (m, 2H, Ph H-3,5), 5.55 (ddd, 1H, ${}^{2}J_{H,F}$ = 47.0 Hz, ${}^{3}J_{H,H}$ = 7.3 Hz, ${}^{3}J_{H,H}$ = 3.8 Hz, CHF), 3.76-3.61 (m, 2H, CH₂Cl), 1.50 (s, 9H, *t*-Bu). ¹³**C NMR** (100 MHz, C₆D₆) δ: 165.0 (d, 1C, ${}^{6}J_{C,F}$ = 0.4 Hz, CO₂ *t*-Bu), 140.7 (d, 1C, ${}^{2}J_{C,F}$ = 20.1 Hz, Ph C-4), 132.7 (d, 1C, ${}^{5}J_{C,F}$ = 1.4 Hz, Ph C-1), 129.7 (d, 2C, ${}^{4}J_{C,F}$ = 0.5 Hz, Ph C-2,6), 125.4 (d, 2C, ${}^{3}J_{C,F}$ = 7.1 Hz, Ph C-3,5), 92.3 (d, 1C, ${}^{1}J_{C,F}$ = 180.0 Hz, CHF), 81.3 (1C, CO₂ *t*-Bu), 46.5 (d, 1C, ${}^{2}J_{C,F}$ = 27.0 Hz, CH₂Cl), 28.1 (3C, *t*-Bu).

¹⁹**F NMR** (470 MHz, C₆D₆) δ: -181.3 (m, 1F, ${}^{2}J_{H,F}$ = 47.0 Hz, ${}^{3}J_{H,F}$ = 24.3 Hz, ${}^{3}J_{H,F}$ = 17.7 Hz, F-1). **HRMS (ESI)**, *m/z*: calcd. for C₁₃H₁₆ClFO₂Na⁺: 281.0721 [M+Na]⁺; found:281.0725.

Compound 34

[4-(2-chloro-1-fluoroethyl)phenyl] (1-piperidinyl) methanone

By following the **General procedure 1**, starting from 4-(piperidine-1-carbonyl)benzaldehyde (200 mg, 0.9 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.1 mL, 1.4 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et_2O (0.6 mL, 1.3 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (0.7 mL, 2.0 mmol, 2.2 equiv), **compound 34** was obtained in 91% yield (221 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane/ ethyl ether 5:5 as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.47-7.43 (m, 2H, Ph H-2,6), 7.41-7.37 (m, 2H, Ph H-3,5), 5.6 1(ddd, 1H, ${}^{2}J_{H,F}$ = 47.1 Hz, ${}^{3}J_{H,H}$ = 7.6 Hz, ${}^{3}J_{H,H}$ = 4.0 Hz, CHF), 3.81 (ddd, 1H, ${}^{3}J_{H,F}$ = 16.8 Hz, ${}^{2}J_{H,H}$ = 12.2 Hz, ${}^{3}J_{H,H}$ = 7.6 Hz, CH₂Cl), 3.72 (ddd, 1H, ${}^{3}J_{H,F}$ = 25.2 Hz, ${}^{2}J_{H,H}$ = 12.2 Hz, ${}^{3}J_{H,H}$ = 3.6 Hz, CH₂Cl), 3.70 (brs, 2H, H-6, CH₂N), 3.31 (brs, 2H, H-2, CH₂N), 1.83 (brs, 2H, H-4, CH₂), 1.67 (brs, 4H, H-3,5, CH₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 169.6 (1C, CO), 137.9 (d, 1C, ${}^{2}J_{C,F}$ = 20.2 Hz, Ph C-4), 137.6 (d, 1C, ${}^{5}J_{C,F}$ = 1.6 Hz, Ph C-1), 127.4 (2C, Ph C-2,6), 126.0 (d, 2C, ${}^{3}J_{C,F}$ = 6.9 Hz, Ph C-3,5), 92.7 (d, 1C, ${}^{1}J_{C,F}$ = 179.0 Hz, CHF), 48.3 (1C, C-6, CH₂N), 46.7 (d, 1C, ${}^{2}J_{C,F}$ = 27.9 Hz, CH₂Cl), 42.8 (1C, C-2, CH₂N), 26.1 (1C, C-3, CH₂), 25.7 (1C, C-5, CH₂), 24.6 (1C, C-4, CH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₄H₁₇ClFNONH⁺: 270.1055 [M+Na]⁺; found:270.1057.

Compound 35

(4-chloro -3-fluorobuthyl) benzene^[5]

By following the **General procedure 1**, starting from 3-phenylpropionaldehyde (200 mg, 1.5 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.16 mL, 2.25 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.0 mL, 2.1 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.2 mL, 3.3 mmol, 2.2 equiv), **compound 35** was obtained in 82% yield (230 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.33-7.28 (m, 2H, Ph H-3,5), 7.24-7.20 (m, 1H, Ph H-4), 7.20-7.19 (m, 2H, Ph H-2,6), 4.73-4.56 (m, 1H, ²*J*_{H,F} = 47.8 Hz, CHF), 3.66-3.60 (m, 2H, CH₂Cl), 2.88-2.69 (m, 2H, C-3H₂), 2.17-1.88 (m, 2H, C-2H₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 140.6 (1C, Ph C-1), 128.6 (2C, Ph C-3,5), 128.4 (2C, Ph C-2,6), 126.3 (1C, Ph C-4), 91.4 (d, 1C, ${}^{1}J_{C,F}$ = 175.4 Hz, CHF), 45.7 (d, 1C, ${}^{2}J_{C,F}$ = 25.4 Hz, CH₂Cl), 34.1 (d, 1C, ${}^{2}J_{C,F}$ = 20.7 Hz, CH₂), 30.9 (d, 1C, ${}^{3}J_{C,F}$ = 4.2 Hz, CH₂).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -183.6 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₂ClFNa⁺: 209.0509 [M+Na]⁺; found:209.0511.

Compound 36 1-chloro-2-fluorononane

By following the **General procedure 1**, starting from octanal (200 mg, 1.6 mmol, 1.0 equiv) in dry THF (3 mL), chloroiodomethane (0.17 mL, 2.3 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.0 mL, 2.2 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.3 mL, 3.4 mmol, 2.2 equiv), **compound 36** was obtained in 80% yield (231 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 4.63 (ddt, 1H, ${}^{2}J_{H,F}$ = 48.0 Hz, ${}^{3}J_{H,H}$ = 12.6 Hz, ${}^{3}J_{H,H}$ = 4.8 Hz, CH₂Cl), 3.64-3.58 (m, 2H, CH₂Cl), 1.75-1.69 (m, 2H, H-3), 1.67-1.63 (m, 10H, H-4,5,6,7,8), 0.89 (t, 3H, ${}^{3}J_{H,H}$ = 6.8 Hz, CH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ : 92.6 (d, 1C, ¹*J*_{C,F} = 174.8 Hz, CF), 46.0 (d, 1C, ²*J*_{C,F} = 25.4 Hz, CH₂Cl), 32.6 (d, 1C, ²*J*_{C,F} = 20.7 Hz, C-3), 31.9 (1C, C-7), 29.3 (d, 1C, ³*J*_{C,F} = 18.9 Hz, C-4), 24.8 (d, 1C, ⁴*J*_{C,F} = 4.4 Hz, C-5), 22.6 (2C, C-6,8), 14.2 (1C, CH₃).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -181.8 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₉H₁₈ClFNa⁺: 203.0979 [M+Na]⁺; found:203.0981.

Compound 37 [(1E)-4-chloro-3-fluoro-2-methyl-1-buten-1-yl] benzene

By following the **General procedure 1**, starting from α -methyl-trans-cinnamaldehyde (200 mg, 1.4 mmol, 1.0 equiv) in dry THF (3 mL),), chloroiodomethane (0.15 mL, 2.1 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (0.9 mL, 2.0 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.14 mL, 3.1 mmol, 2.2 equiv), **compound 37** was obtained in 88% yield (245 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.39-7.34 (m, 2H, Ph H-3,5), 7.32-7.29 (m, 2H, Ph H-2,6), 7.28-7.25 (m, 1H, Ph H-4), 6.64 (s, 1H, C-1), 5.09 (ddd, 1H, ${}^{2}J_{H,F}$ = 47.5 Hz, ${}^{3}J_{H,H}$ = 7.2 Hz, ${}^{3}J_{H,H}$ = 4.7 Hz, CHF), 3.86 -3.67 (m, 2H, CH₂Cl), 1.91 (d, 1H, ${}^{3}J_{H,H}$ = 1.4 Hz, CH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 136.2 (Ph C-1), 132.3 (d, 1C, ${}^{2}J_{C,F}$ = 17.0 Hz, C-2), 130.0 (d, 1C, ${}^{3}J_{C,F}$ = 10.6 Hz, C-1), 129.0 (d, 2C, ${}^{5}J_{C,F}$ = 1.4 Hz, Ph C-2,6), 128.3 (2C, Ph C-3,5), 127.3 (Ph C-4), 96.1 (d, 1C, ${}^{1}J_{C,F}$ = 178.2 Hz, CHF), 44.5 (d, 1C, ${}^{2}J_{C,F}$ = 29.3 Hz, CH₂Cl), 13.0 (d, 1C, ${}^{3}J_{C,F}$ = 3.1 Hz, CH₃).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -178.0 (dddd, 1F, ${}^{2}J_{H,F}$ = 47.5 Hz, ${}^{2}J_{C,F}$ = 22.7 Hz, ${}^{3}J_{H,F}$ = 14.9 Hz, ${}^{3}J_{H,F}$ = 2.7 Hz, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₁H₁₂ClFNa⁺: 221.0509 [M+Na]⁺; found:221.0512.

Compound 38

(2-bromo -1-fluoroethyl) benzene^[6]

By following the **General procedure 1**, starting from benzaldehyde (200 mg, 1.9 mmol, 1.0 equiv) in dry THF (3 mL), bromoiodomethane (0.2 mL, 2.8 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.2 mL, 2.7 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.6 mL, 4.2 mmol, 2.2 equiv), **compound 38** was obtained in 83% yield (318 mg) as colorless oil after column chromatography on neutral alumina grade IV (*n*-hexane as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.42-7.39 (m, 3H, Ph H-3,4,5), 7.38-7.35 (m, 2H, Ph H-2,6), 5.63 (ddd, 1H, ${}^{2}J_{H,F}$ = 46.9 Hz, ${}^{3}J_{H,H}$ = 7.9 Hz, ${}^{3}J_{H,H}$ = 4.1 Hz, CHF), 3.68 (ddd, 1H, ${}^{2}J_{H,H}$ = 11.4 Hz, ${}^{3}J_{H,F}$ = 15.2 Hz, ${}^{3}J_{H,F}$ = 7.9 Hz, CH₂Cl), 3.64 (ddd, 1H, ${}^{2}J_{H,H}$ = 11.4 Hz, ${}^{3}J_{H,F}$ = 25.8 Hz, ${}^{3}J_{H,F}$ = 4.1 Hz, CH₂Cl).

¹³**C NMR** (100 MHz, CDCl₃) δ: 137.1 (d, 1C, ${}^{2}J_{C,F}$ = 20.2 Hz, Ph C-1), 129.3 (d, 1C, ${}^{5}J_{C,F}$ = 1.8 Hz, Ph C-4), 128.7 (2C, Ph C-3,5), 125.7 (d, 2C, ${}^{3}J_{C,F}$ = 6.6 Hz, Ph C-2,6), 92.8 (d, 1C, ${}^{1}J_{C,F}$ = 178.0 Hz, CHF), 34.3 (d, 1C, ${}^{2}J_{C,F}$ = 28.4 Hz, CH₂Br).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -174.1 (ddd, 1F, ${}^{2}J_{H,F}$ = 46.9 Hz, ${}^{3}J_{H,F}$ = 25.8 Hz, ${}^{3}J_{H,F}$ = 15.2 Hz, F-1). **HRMS (ESI)**, *m/z*: calcd. for C₈H₈BrFNa⁺: 224.9691 [M+Na]⁺; found:224.9695.

Compound 39

(2,2-dibromo -1-fluoroethyl) benzene^[7]

By following the **General procedure 2**, starting from benzaldehyde (200 mg, 1.9 mmol, 1.0 equiv) in dry THF (3 mL), dibromomethane (0.2 mL, 2.8 mmol, 1.5 equiv), LDA 2.0 M in THF (1.3 mL, 2.7 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.6 mL, 4.2 mmol, 2.2 equiv), **compound 39** was obtained in 85% yield (455 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.43 (s, 5H, Ph H-2,3,4,5,6), 5.69 (dd, 1H, ${}^{2}J_{H,F}$ = 45.1 Hz, ${}^{3}J_{H,H}$ = 5.5 Hz, CHF), 5.80 (dd, 1H, ${}^{3}J_{H,F}$ = 13.1 Hz, ${}^{3}J_{H,H}$ = 5.5 Hz, CHBr₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 134.7 (d, 1C, ${}^{2}J_{C,F}$ = 20.8 Hz, Ph C-1), 129.8 (d, 1C, ${}^{5}J_{C,F}$ = 1.6 Hz, Ph C-4), 128.5 (2C, Ph C-3,5), 126.9 (d, 2C, ${}^{3}J_{C,F}$ = 6.6 Hz, Ph C-2,6), 95.2 (d, 1C, ${}^{1}J_{C,F}$ = 187.0 Hz, CHF), 44.5 (d, 1C, ${}^{2}J_{C,F}$ = 31.4 Hz, CHBr₂).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -167.5 (dd, 1F, ${}^{2}J_{H,F}$ = 45.1 Hz, ${}^{3}J_{H,F}$ = 13.1 Hz, F-1). **HRMS (ESI)**, *m/z*: calcd. for C₈H₇Br₂FNa⁺: 304.8776 [M+Na]⁺; found:304.8780.

Compound 40

1-chloro-4-(2,2,2-trichloro -1-fluoroethyl) benzene^[8]

By following the **General procedure 3**, starting from 4-chlorobenzaldehyde (200 mg, 1.4 mmol, 1.0 equiv) in dry THF (3 mL), TMSCCl₃ (536 mg, 2.8 mmol, 2.0 equiv), potassium *tert*-pentoxide 0.9 M (2.8 ml, 2.5 mmol, 1.8 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.1 mL, 3.1 mmol, 2.2 equiv), **compound 40** was obtained in 93% yield (341 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.56-7.53 (m, 2H, Ph H-3,5), 7.42-7.40 (m, 2H, Ph H-2,6), 5.75 (d, 1H, ${}^{2}J_{H,F}$ = 43.5 Hz, CHF).

¹³**C NMR** (100 MHz, CDCl₃) δ: 136.6 (d, 1C, ${}^{5}J_{C,F}$ = 1.5 Hz, Ph C-1), 130.3 (d, 1C, ${}^{2}J_{C,F}$ = 21.7 Hz, Ph C-4), 130.1 (d, 2C, ${}^{3}J_{C,F}$ = 6.7 Hz, Ph C-3,5), 128.2 (2C, Ph C-2,6), 97.8 (d, 1C, ${}^{2}J_{C,F}$ = 32.2 Hz, CCl₃), 97.8 (d, 1C, ${}^{1}J_{C,F}$ = 197.6 Hz, CHF).

¹⁹**F NMR** (470 MHz, C₆D₆) δ: -165.6 (d, 1F, ${}^{2}J_{H,F}$ = 43.4 Hz, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₈H₅Cl₄FNa⁺: 284.8998 [M+Na]⁺; found:284.9001.

Compound 41

[(1E)-3-fluoro-4-iodo-1-buten-1-yl] benzene

By following the **General procedure 1**, starting from cinnamaldehyde (200 mg, 1.5 mmol, 1.0 equiv) in dry THF (3 mL), diiodomethane (0.18 mL, 2.3 mmol, 1.5 equiv), MeLi-LiBr 2.2 M solution in Et₂O (1.0 mL, 2.1 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.2 mL, 3.3 mmol, 2.2 equiv), **compound 41** was obtained in 84% yield (348 mg) as colorless oil without any further purification.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.43-7.40 (m, 2H, Ph H-2,6), 7.37-7.30 (m, 2H, Ph H-3,5), 7.35-7.30 (m, 1H, Ph H-4), 6.74 (dd, 1H, ${}^{3}J_{H,H}$ = 16.0 Hz, ${}^{4}J_{H,F}$ = 3.7 Hz, C-1H), 6.21 (ddd, 1H, ${}^{3}J_{H,H}$ = 16.0 Hz, ${}^{3}J_{H,H}$ = 12.1 Hz, ${}^{4}J_{H,F}$ = 6.8 Hz, C-2H), 5.20-5.06 (m, 1H, CHF), 3.44 -3.37 (m, 2H, CH₂I).

¹³**C NMR** (100 MHz, CDCl₃) δ: 135.4 (d, 1C, ${}^{4}J_{C,F}$ = 1.5 Hz, Ph C-1), 135.0 (d, 1C, ${}^{3}J_{C,F}$ = 11.4 Hz, C-1), 128.7 (2C, Ph C-3,5), 128.6 (1C, Ph C-4), 126.9 (d, 2C, ${}^{5}J_{C,F}$ = 1.4 Hz, Ph C-2,6), 125.0 (d, 1C, ${}^{3}J_{C,F}$ = 19.4 Hz, C-2), 91.8 (d, 1C, ${}^{1}J_{C,F}$ = 173.7 Hz, CHF), 6.4 (d, 1C, ${}^{2}J_{C,F}$ = 27.5 Hz, CH₂I).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -162.3 (m, 1F, F-1).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₀FINa⁺: 298.9709 [M+Na]⁺; found:298.9711.

Compound 42

1-chloro-4-(1-fluoroethyl) benzene

By following the **General procedure 1**, starting from 4-chloro acetophenone (200 mg, 1.3 mmol, 1.0 equiv) in dry THF (3 mL), MeLi 1.6 M solution in Et_2O (1.1 mL, 1.8 mmol, 1.4 equiv), Deoxo-Fluor 2.7 M solution in Toluene (1.1 mL, 2.9 mmol, 2.2 equiv), **compound 42** was obtained in 54% yield (110 mg) as colorless after column chromatography on silica gel (*n*-hexane as eluent).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.35 (d, 2H, J = 8.4 Hz, Ph H-2,6), 7.28 (d, 2H, J = 8.4 Hz, Ph H-3,5), 5.60 (dq, 1H, ${}^{2}J_{H,F} = 47.5$ Hz, ${}^{3}J_{H,H} = 6.5$ Hz, CHF), 1.62 (dd, 3H, ${}^{3}J_{H,F} = 23.8$ Hz, ${}^{3}J_{H,H} = 6.4$ Hz, CH₃). ¹³**C NMR** (100 MHz, CDCl₃) δ: 140.1 (d, 1C, ${}^{2}J_{C,F} = 20.0$ Hz, Ph C-4), 134.2 (d, 1C, $J_{C,F} = 1.7$ Hz, Ph C-1), 128.8 (2C, Ph C-3,5), 126.8 (d, 2C, ${}^{3}J_{C,F} = 6.9$ Hz, Ph C-2,6), 90.4 (d, 1C, ${}^{1}J_{C,F} = 168.2$ Hz, CF), 23.0 (d, 1C, ${}^{2}J_{C,F} = 28.3$ Hz, CH₃).

¹⁹**F NMR** (470 MHz, CDCl₃) δ: -167.5 (dq, 1F, ${}^{2}J_{H,F}$ = 47.9 Hz, ${}^{3}J_{H,F}$ = 23.9 Hz, F-1). **HRMS (ESI)**, *m/z*: calcd. for C₈H₈ClFNa⁺: 181.0196 [M+Na]⁺; found:181.0110.

4. References

- [1] L. T. C. Crespo, R. d. S. Ribeiro, M. C. S. de Mattos, P. M. Esteves, *Synthesis* **2010**, 2379-2382.
- [2] C. Ye, B. Twamley, J. n. M. Shreeve, Org. Lett. 2005, 7, 3961-3964.
- [3] D. D. DesMarteau, Z. Q. Xu, M. Witz, J. Org. Chem. **1992**, 57, 629-635.
- [4] S. Hamman, C. Béguin, C. Charlon, C. Luu-Duc, Org. Magn. Reson. 1983, 21, 361-366.
- [5] K.-J. Bian, D. Nemoto, X.-W. Chen, S.-C. Kao, J. Hooson, J. G. West, Chem. Sci. 2024, 15, 124-133.
- [6] aC. J. Thomson, Q. Zhang, N. Al-Maharik, M. Bühl, D. B. Cordes, A. M. Z. Slawin, D. O'Hagan, *Chem. Commun* 2018, *54*, 8415-8418; bS. Liang, F. J. Barrios, O. E. Okoromoba, Z. Hetman, B. Xu, G. B. Hammond, *J. Fluor. Chem.* 2017, *203*, 136-139; cM. Stangier, A. Scheremetjew, L. Ackermann, *Chem. Eur. J.* 2022, *28*, e202201654.
- [7] D. R. Williams, M. W. Fultz, T. E. Christos, J. S. Carter, *Tetrahedron Lett.* **2010**, *51*, 121-124.
- [8] R. Anilkumar, D. J. Burton, J. Fluor. Chem. 2005, 126, 1174-1184.

5. ¹H-, ¹³C- and ¹⁹F-NMR Spectra for all the Compounds

Compound 2

oform-d

¹H-NMR, 400 MHz, CDCI3

¹⁹F-NMR, 470 MHz, CDCI₃

-100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 f1 (ppm)

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

S30

Et ¹⁹F-NMR, 470 MHz,C₆D₆

 $\begin{array}{c} --.164.24\\ -.164.27\\ -.164.27\\ -.164.23\\ -.164.34\\ -.164.34\\ -.164.34\\ -.164.38\\ -.164.41\\ -.164.43\\ -.164.43\\ -.164.46$

٨ -164.4 f1 (ppm) -164.2 -164.6

-90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -21C f1 (ppm)

Compound 4

¹H-NMR, 400 MHz, CDCI3

 $^{19}\mathrm{F}\text{-}\mathrm{NMR},\,470$ MHz, CDCI_3

-100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 f1 (ppm)

Compound 5

																						1 1 1 1
-25	-30	-35	-40	-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95 f	-100 1 (ppm	-110 I)	-120	-130	-140	-150	-160	-170

-80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 f1 (ppm)

f1 (ppm)

-45	-50	-55	-60	-65	-70	-75	-80	-85	-90	-95	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190
													f1 (ppm)							

 $^{19}\mathrm{F}\text{-}\mathrm{NMR},\,470$ MHz, CDCI_3

			1	1				1 . 1 .		1 . 1 .		1 . 1 .		1 . 1 .	1 . 1 .	т
-135	-137	-130	-141	-143	-145	-147	-140	-151	-153	-155	-157	-150	-161	-163	-165	

-135 -137 -139 -141 -143 -145 -147 -149 -151 -153 -155 -157 -159 -161 -163 -165 f1 (ppm)

-110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 -225 -230 fl (ppm)

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -19 fl (ppm)

¹⁹F-NMR, 470 MHz, CDCl₃

-122	-126	-130	-134	-138	-142	-146	-150	-154	-158	-162	-166	-170	-174	-178
							f1 (ppm)							

 $\underbrace{\leftarrow^{-149.89}}_{-149.95}$

-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 f1 (ppm)

110 100 f1 (ppm)

¹⁹F-NMR, 470 MHz, CDCI₃

-134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -144 -145 -146 -147 -148 -149 -150 -151 -152 -153 -154 -155 -156 -157 -158 -159 -160 -161 -162 -163 -164 -165 -16(f1 (ppm)

 $\underbrace{ < -147.26}_{-147.32} \\ -147.32 \\ -147.37 \\ \end{array}$

100 f1 (ppm)

 19 F-NMR, 470 MHz, CDCl₃

 $\underbrace{\leftarrow}^{-149.02}_{-149.08}_{-149.13}$

-132	-136	-140	-144	-148	-152	-156	-160 f1 (ppm)	-164	-168	-172	-176	-180	-184	-188	

110 100 f1 (ppm)

-125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 -225 -230 -235 -240 -245 f1 (ppm)

¹H-NMR, 400 MHz,CDCl₃

-90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 f1 (ppm)

110 100 f1 (ppm)

¹⁹F-NMR, 470 MHz,C₆D₆

NV -151.0 -151.5 f1 (ppm) -152.0 -150.5

-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150	-155	-160	-165	-170	-175	-180	-185	-190	-195	-200	-205	-210
												f1 (ppm)											

 $\underbrace{+}^{-151.08}_{-151.15}_{-151.21}$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹H NMR, 400 MHz, CDCl₃

---- 7.26 Chloroform-d

-154.25 -154.29 -154.30 -154.34 -154.35 -154.35 -154.41 -154.44 -154.45 -154.46 -154.46 -154.46 -154.50 -154.50

CI F Me´ Me

 19 F NMR, 376 MHz, CDCl₃

-153.9 -154.1 -154.3 -154.5 -154.7 -154.9 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

 19 F-NMR, 470 MHz, CDCl₃

**************************************	an yan da an	n 7 a a demonstration (d. M.). Hannes	ina hina ana sa ang mana	fan Markan (an Calair an Parais) (a	an a		ting by block of the second selection	۸	Merri Azlan Mala de Jacida ya di sayar d	8. × 49 / 10 × 10 × 10 × 10 × 10 × 10 × 10 × 10	**************************************	lingt den Lan Jameijan Jack of Jameire		an galantari ati gilan bargingin tinda	
-114	-118	-122	-126	-130	-134	-138	-142	-146 f1 (ppm)	-150	-154	-158	-162	-166	-170	-174

110 100 f1 (ppm)

176.79 176.83 176.86 176.90 176.91 176.95 176.95 177.02

_CI Me

 19 F-NMR, 470 MHz, CDCl₃

-176.79 -176.83 -176.86 -176.91 -176.91 -176.95 -176.95 -176.95 λi

-176.7 -176.8 -176.9 -177.0 -177.1 -177.2 f1 (ppm)

 -132	-136	-140	-144	-148	-152	-156	-160	-164	-168	-172	-176	-180	-184	-188
							f1 (ppm)							

¹H-NMR, 400 MHz, CDCl₃

 19 F-NMR, 470 MHz, CDCl₃

-165 -167 -169 -171 -173 -175 -177 -179 -181 -183 -185 -187 -189 -191 -193 -195 f1 (ppm)

CO1

¹H-NMR, 400 MHz,C₆D₆

-90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 f1 (ppm)

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 f1 (ppm)

-CI

F `H

¹H-NMR, 400 MHz, CDCl₃

NC

100 90 f1 (ppm) -10

-182.27 -182.27 -182.27 -182.33 -182.40 -182.40

¹⁹F-NMR, 470 MHz,C₆D₆

-90	-95	-100	-105	-110	-115	-120	-125	-130	-135	-140	-145	-150 f1 (ppm	-155)	-160	-165	-170	-175	-180	-185	-190	-195	-200	-205	-210

f1 (ppm)

¹⁹F-NMR, 470 MHz,C₆D₆

-144	-148	-152	-156	-160	-164	-168	-172 f:	-176 1 (ppm)	-180	-184	-188	-192	-196	-200	-204

_CI t-BuO ö

¹³C-NMR, 100 MHz,CDCI₃

S111

110 100 f1 (ppm)

F CI

¹⁹F-NMR, 470 MHz, CDCl₃

-165	-167	-169	-171	-173	-175	-177	-179 f1 (p	-181 pm)	-183	-185	-187	-189	-191	-193	-195

181.62 181.62 181.66 181.77 181.71 181.77 181.78 181.77 181.81 181.82 181.82 181.82 181.82 181.82 181.82 181.82 181.82 181.83 18

Me

-181.3 -181.5 -181.7 -181.9 -182.1 -182.3 f1 (ppm)

 $^{19}\mathrm{F}$ NMR, 376 MHz, CDCI_3

CI

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Compound 37

1H-NMR, 400 MHz, CDCI3

-177.84 -177.84 -177.88 -177.88 -177.90 -177.90 -177.90 -177.94 -177.96 -177.9

¹⁹F-NMR, 470 MHz, CDCl₃

-142	-146	-150	-154	-158	-162	-166	-170 f1 (ppm)	-174	-178	-182	-186	-190	-194	-198

Compound 38

1H-NMR, 400 MHz, CDCI3

110 100 f1 (ppm) 130 120

¹⁹F-NMR, 470 MHz, CDCI₃

-									1				1		
	-173.	.7		-173	3.9			-1	74.	1		-1	74.	3	
						f1	(pp)m)							

-160	-162	-164	-166	-168	-170	-172	-174 f1 (µ	-176 ppm)	-178	-180	-182	-184	-186	-188	-190

S123

 19 F-NMR, 470 MHz,C₆D₆

-150	-152	-154	-156	-158	-160	-162	-164 f1 (p	-166 opm)	-168	-170	-172	-174	-176	-178	-180

< -165.56< -165.68

¹⁹F-NMR, 470 MHz, CDCI₃

6. X-ray Analysis

The X-ray intensity data were measured on Bruker D8 Venture diffractometer, equipped with Oxford cooling system. The structures were solved by *Intrinsic Phasing*. Non-hydrogen atoms were refined with *anisotropic displacement parameters*. Hydrogen atoms were inserted at calculated positions and refined with riding model. Structure visible in Figure 1, data quality discussed in Figure 2. Measurement conditions listed in Table 1, sample and crystal data, data collection and structure refinement details listed in Table 2.

Further details on experimental data and used software are available online: <u>http://www.ccdc.cam.ac.uk/conts/retrieving.html</u>).

Sample	Machine	Source	Temp.	Detector Distance	Time/ Frame	#Frames	Frame width	CCDC	
			[K]	[mm]	[s]		[°]		
Compound 40	Bruker D8	Мо	100	40	30	797	0.36	2410335	

Table 1 Experimental parameter and CCDC-Code.

Compound 40

Figure 1 Asymmetric Unit of drawn with 50% displacement ellipsoid. The bond precision for C-C single bonds is 0.0017 Å. Disorder on F1 in the size of 96.9/3.1 % illustrated.

Figure 2 Data quality I 3 sigma line: All data are above the "noise level" line along the min IUCR definition.

Figure 3 Data quality II CC1/2: All data are above the "noise level" line along the min IUCR definition.

Identification code	mo_VIPA_MaMi980_1_P21n
Empirical formula	C ₈ H ₅ Cl ₄ F
Formula weight	261.92
Temperature/K	100.0
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	9.8894(3)
b/Å	6.0908(3)
c/Å	16.5497(9)
α/°	90
β/°	96.434(2)
γ/°	90
Volume/ų	990.58(8)
Z	4
$\rho_{calc}g/cm^3$	1.756
µ/mm ⁻¹	1.154
F(000)	520.0
Crystal size/mm ³	0.05 × 0.04 × 0.03
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.584 to 61.086
Index ranges	$-14 \le h \le 13, -8 \le k \le 6, -21 \le l \le 23$
Reflections collected	10830
Independent reflections	2927 [$R_{int} = 0.0296$, $R_{sigma} = 0.0328$]
Data/restraints/parameters	2927/1/125
Goodness-of-fit on F ²	1.113
Final R indexes [I>=2σ (I)]	$R_1 = 0.0233$, $wR_2 = 0.0561$
Final R indexes [all data]	R ₁ = 0.0328, wR ₂ = 0.0596
Largest diff. peak/hole / e Å ⁻³	0.48/-0.30

 Table 2 Sample and crystal data, Data collection and structure refinement.