Supporting Information

Oxidative Addition of Diaryldichalcogenides to the Diferrocenylphosphenium Ion: Synthesis, Structure and Organocatalytic Activity

Corina Stoian, at Nils Schmidt, at Thomas J. Kuczmera, b Pim Puylaert, a Enno Lork, a

Boris J. Nachtsheim,*b Emanuel Hupf,*a Jens Beckmann*a

^aInstitut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Str. 7, 28359 Bremen

bInstitut für Organische und Analytische Chemie, Universität Bremen, Leobener Str. 7, 28359

Bremen

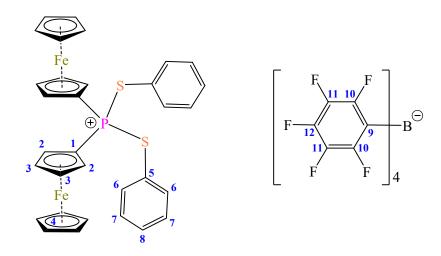
Table of Contents

1	Expe	rimental section	2
	1.1	General Considerations	2
	1.2	Preparation of $[Fc_2P(SPh)_2][B(C_6F_5)_4]$ (1)	3
	1.3	Preparation of $[Fc_2P(SePh)_2][B(C_6F_5)_4]$ (2)	4
	1.4	Preparation of $[Fc_2P(TePh)_2][B(C_6F_5)_4]$ (3)	5
	1.5	Preparation of $[Fc_2P(SeFc)_2][B(C_6F_5)_4]$ (4)	6
	1.6	Preparation of $[Fc_2P(Se_2biphen)][B(C_6F_5)_4]$ (5)	7
2	NMF	R Spectra	8
	2.1	$[Fc_2P(SPh)_2][B(C_6F_5)_4]$ (1)	8
	2.2	$[Fc_2P(SePh)_2][B(C_6F_5)_4]$ (2)	11
	2.3	$[Fc_2P(TePh)_2][B(C_6F_5)_4]$ (3)	14
	2.4	$[Fc_2P(SeFc)_2][B(C_6F_5)_4]$ (4)	18
	2.5	$[Fc_2P(Se_2biphen)][B(C_6F_5)_4]$ (5)	21
3	Mich	nael addition	25
	3.1	General Procedure	25
4	Crys	tallographic Data	32
5	Com	putational Details	36
6	Refe	rences	37

1 Experimental section

1.1 General Considerations

All the reactions, manipulations work-up and purifications were performed under inert argon atmosphere using anhydrous solvents. The reagents used in this work including Ph_2E_2 (E = S, Se, Te), 1-methylindole, trans- β -crotonophenone and Et_4Si were obtained commercially and used as received. $[Fc_2P][B(C_6F_5)_4]$, 51 $Fc_2Se_2^{52}$ and biphenSe₂ (dibenzo[1,2]diselenine), 53 were prepared following the procedures described in the literature. Anhydrous dichloromethane, n-hexane, n-pentane and toluene were collected from an SPS800 mBraun solvent purification system and stored over 3 Å molecular sieves. Diethyl ether was dried by heating at reflux over Na/benzophenone under argon atmosphere. Deuterated solvents were degassed and dried over 3 Å molecular sieves under argon. Other solvents, such as 1,2-difluorobenzene, were dried directly over 3 Å molecular sieves.


Unless otherwise noted, NMR spectra were recorded at room temperature on a Bruker Avance Neo 600 MHz spectrometer. 1 H, 13 C{ 1 H}, 11 B, 19 F, 31 P 77 Se and 125 Te NMR spectra are reported on the δ scale (ppm) and are referenced against SiMe₄, BF₃·Et₂O (15% in CDCl₃), CFCl₃, H₃PO₄ (85% in water), Me₂Se and Me₂Te respectively. 1 H and 13 C{ 1 H} chemical shifts are referenced to the residual peak of the solvent (CDHCl₂ 5.32 ppm for CD₂Cl₂) in the 1 H NMR spectra, and to the peak of the deuterated solvent (CD₂Cl₂ 53.84 ppm) in the 13 C{ 1 H} NMR spectra. 54

The ESI HRMS spectra were measured on a Bruker Impact II spectrometer. Dichloromethane or dichloromethane/acetonitrile solutions (c = $1\cdot10^{-5}$ mol·L⁻¹) were injected directly into the spectrometer at a flow rate of 3 μ L·min⁻¹. Nitrogen was used both as a drying gas and for nebulization with flow rates of approximately 5 L·min⁻¹ and a pressure of 5 psi. Pressure in the mass analyser region was usually about $1\cdot10^{-5}$ mbar. Spectra were collected for 1 min and averaged. The nozzle-skimmer voltage was adjusted individually for each measurement.

UV-Vis absorption spectra were recorded on a VWR UV-1600PC spectrophotometer, and analysed using Spectragryph software. State Melting points were determined on a SCHORPP Gerätetechnik MPM-H3, using one end closed capillary tubes, the other end was closed with silicon grease.

1.2 Preparation of $[Fc_2P(SPh)_2][B(C_6F_5)_4]$ (1)

[Fc₂P][B(C₆F₅)₄] (103 mg, 95.4 μmol, 1.0 eq.) and Ph₂S₂ (23 mg, 105 μmol, 1.1 eq.) were dissolved in dichloromethane (6 mL) and stirred for 48 h at 60 °C. The reaction mixture turned orange, and the solvent was evaporated to dryness. The dark yellow solid was washed with hexane (4 × 5 mL) and dried under reduced pressure. The title product was obtained as a yellow solid (120 mg, 92.4 μmol, 97%). Crystals of 1 were obtained by layering a CH_2Cl_2 solution with n-hexane (V:V, 1:3).

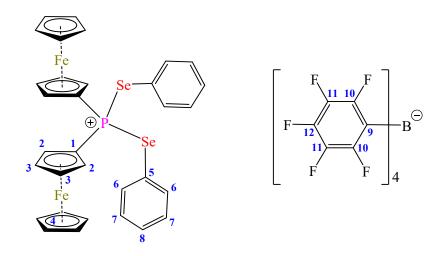


Figure S1. Numbering scheme for $[Fc_2P(SPh)_2][B(C_6F_5)_4]$ (1).

M.p. = 152–153 °C (decomp.) ¹H NMR (600 MHz, CD₂Cl₂): δ (ppm) = 7.63 (t, ¹J(¹H–¹H) = 7 Hz, 2H, H8), 7.58 (d, ¹J(¹H–¹H) = 8 Hz, 4H, H6), 7.53 (t, ¹J(¹H–¹H) = 8 Hz, 4H, H7), 4.80 (s, br, 4H, H3), 4.50 (s, br, 4H, H2), 4.20 (s, 10H, H4). ¹³C{¹H} NMR (151 MHz, CD₂Cl₂): δ (ppm) = 148.6 (dm, ¹J(¹³C–¹°F) = 241 Hz, C11), 138.7 (dm, ¹J(¹³C–¹°F) = 245 Hz, C12), 137.8 (d, C6), 136.7 (dm, ¹J(¹³C–¹°F) = 245 Hz, C10), 132.8 (d, C8), 131.0 (s, C7), 124.4 (s, br, C9), 122.8 (d, ¹J(¹³C–³¹P) = 7 Hz, C5), 75.6 (d, ³J(¹³C–³¹P) = 12 Hz, C3), 73.1 (d, ²J(¹³C–³¹P) = 14 Hz, C2), 72.1 (s, C4), 64.4 (¹J(¹³C–³¹P) = 99 Hz, C1). ¹°F NMR (565 MHz, CD₂Cl₂): δ = −133.1 (s, br, 8F, F11), −163.6 (t, ³J(¹°F–¹°F) = 20 Hz, 4F, F12), −167.5 (t, ³J(¹°F–¹°F) = 19 Hz, 8F, F10). ¹¹B NMR (193 MHz, CD₂Cl₂): δ = −16.7 (s). ³¹P{¹H} NMR (243 MHz, CD₂Cl₂): δ (ppm) = 81.4 (s). HRMS ESI (m/z): [M]⁺ calculated for C₃₂H₂₈Fe₂PS₂ 619.0063, found 619.0055.

1.3 Preparation of $[Fc_2P(SePh)_2][B(C_6F_5)_4]$ (2)

[Fc₂P][B(C₆F₅)₄] (107 mg, 99.1 μmol, 1.0 eq.) and Ph₂Se₂ (34 mg, 109 μmol, 1.1 eq.) were combined in a Schlenk and dissolved in dichloromethane (6 mL). The reaction mixture was stirred for 3 h at room temperature for full conversion (orange solution). The solvent of was evaporated under reduced pressure and the solid was washed with hexane (4 × 5 mL). The title product was dried under vacuum and was obtained as an orange solid (110 mg, 78.9 μmol, 80%). Crystals of **2** were grown from a saturated solution in CH_2Cl_2 at -30 °C.

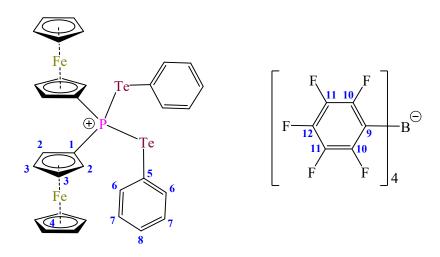


Figure S2. Numbering scheme for $[Fc_2P(SePh)_2][B(C_6F_5)_4]$ (2).

M.p. = 191–192 °C. ¹H NMR (600 MHz, CD₂Cl₂): δ (ppm) = 7.61 (m, 6H, H8 and H6), 7.50 (t, 4H, H7), 4.80 (s, br, 4H, H3), 4.47 (s, br, 4H, H2), 4.18 (s, 10H, H4). ¹³C{¹H} NMR (151 MHz, CD₂Cl₂): δ (ppm) = 148.7 (dm, ${}^{1}J({}^{13}C_{-}^{19}F)$ = 241 Hz, C11), 138.8 (dm, ${}^{1}J({}^{13}C_{-}^{19}F)$ = 245 Hz, C12), 138.4 (d, ${}^{4}J({}^{13}C_{-}^{31}P)$ = 4Hz, C7), 136.9 (dm, ${}^{1}J({}^{13}C_{-}^{19}F)$ = 245 Hz, C10), 132.5 (d, ${}^{5}J({}^{13}C_{-}^{31}P)$ = 3 Hz, C8), 131.1 (d, ${}^{3}J({}^{13}C_{-}^{31}P)$ = 3 Hz, C6), 124.6 (s, br, C9), 122.8 (d, ${}^{1}J({}^{13}C_{-}^{77}Se)$ = 6 Hz, C5), 75.4 (d, ${}^{3}J({}^{13}C_{-}^{31}P)$ = 11 Hz, C3), 73.3 (d, ${}^{2}J({}^{13}C_{-}^{31}P)$ = 14 Hz, C2), 72.0 (s, C4), 66.3 (d, ${}^{1}J({}^{13}C_{-}^{31}P)$ = 78 Hz, C1). ¹¹B NMR (193 MHz, CD₂Cl₂): δ (ppm) = 16.6 (s). ¹⁹F NMR (565 MHz, CD₂Cl₂): δ (ppm) = -133.1 (s, br, 8F, F11), -163.7 (t, ${}^{3}J({}^{19}F_{-}^{19}F)$ = 20 Hz, 4F, F12), -167.5 (t, ${}^{3}J({}^{19}F_{-}^{19}F)$ = 19 Hz, 8F, F10). ³¹P{¹H} NMR (243 MHz, CD₂Cl₂): δ (ppm) = 57.0 (s, ${}^{1}J({}^{31}P_{-}^{77}Se)$ = 475 Hz). ⁷⁷Se NMR (114 MHz, CD₂Cl₂): δ (ppm) = 399.2 (d, ${}^{1}J({}^{77}Se_{-}^{31}P)$ = 475 Hz). HRMS ESI (m/z): [M]+ calculated for C₃₂H₂₈Fe₂PSe₂ 714.8952, found 714.8966.

1.4 Preparation of $[Fc_2P(TePh)_2][B(C_6F_5)_4]$ (3)

[Fc₂P][B(C₆F₅)₄] (78 mg, 72.2 μmol, 1.0 eq.) and Te₂Ph₂ (32 mg, 78.2 μmol, 1.1 eq.) were dissolved in dichloromethane (6 mL) and stirred for 48 h at room temperature. (When the reaction is followed by NMR, the title product is formed immediately, but there is always a small residue of phosphenium left). The solvent was evaporated and the solid was washed with hexane (4 × 5 mL). The product was dried under vacuum to obtain a dark red solid (87 mg, 58.4 μmol, 81%). Crystals of **3** (bright red) were obtained by liquid-to-liquid diffusion at -30 °C (a solution of **3** in CH₂Cl₂ layered with *n*-pentane, V:V, 1:3).

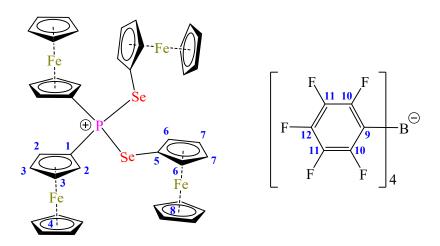


Figure S3. Numbering scheme for $[Fc_2P(TePh)_2][B(C_6F_5)_4]$ (3).

M.p. = 149–150 °C (decomp.). ¹H NMR (600 MHz, CD₂Cl₂): δ (ppm) = 7.80 (t, br, ${}^{3}J({}^{1}H-{}^{1}H) = 9$ Hz, 4H, H6), 7.61 (t, ${}^{3}J({}^{1}H-{}^{1}H) = 7$ Hz, 2H, H8), 7.43 (t, ${}^{3}J({}^{1}H-{}^{1}H) = 8$ Hz, 4H, H7), 4.78 (s, 4H, H3), 4.42 (s, 4H, H2), 4.17 (s, 10H, H4). ¹³C{}^{1}H} NMR (151 MHz, CD₂Cl₂): δ (ppm) = 148.6 (dm, ${}^{1}J({}^{13}C-{}^{19}F) = 242$ Hz, C11), 142.4 (d, ${}^{3}J({}^{13}C-{}^{31}P) = 2$ Hz, C6), 138.7 (dm, ${}^{1}J({}^{13}C-{}^{19}F) = 245$ Hz, C12), 136.8 (dm, ${}^{1}J({}^{13}C-{}^{19}F) = 246$ Hz, C10), 132.3 (d, ${}^{5}J({}^{13}C-{}^{31}P) = 3$ Hz, C8), 131.4 (d, ${}^{4}J({}^{13}C-{}^{31}P) = 3$ Hz, C7), 75.0 (d, ${}^{3}J({}^{13}C-{}^{31}P) = 10$ Hz, C3), 74.0 (d, ${}^{2}J({}^{13}C-{}^{31}P) = 13$ Hz, C2), 71.7 (s, C4), 69.0 (d, ${}^{1}J({}^{13}C-{}^{31}P) = 56$ Hz, C1). ¹¹B NMR (193 MHz, CD₂Cl₂): δ (ppm) = 16.7 (s). ¹⁹F NMR (565 MHz, CD₂Cl₂): δ (ppm) = -133.1 (s, br, 8F, F11), -163.7 (t, ${}^{3}J({}^{19}F-{}^{19}F) = 20$ Hz, 4F, F12), -167.5 (t, ${}^{3}J({}^{19}F-{}^{19}F) = 19$ Hz, 8F, F10). ³¹P{¹H} NMR (243 MHz, CD₂Cl₂): δ (ppm) = -22.8 (s, ${}^{1}J({}^{31}P-{}^{125}Te) = 1041$ Hz, Attempted characterisation by high resolution mass spectrometry (ESI, APCI, LIFDI) was unsuccessful and yielded only decomposition fragments.

1.5 Preparation of $[Fc_2P(SeFc)_2][B(C_6F_5)_4]$ (4)

[Fc₂P][B(C₆F₅)₄] (103 mg, 95.4 μmol, 1.0 eq.) and Fc₂Se₂ (56 mg, 106 μmol, 1.1 eq.) were dissolved in dichloromethane (6 mL) at -80 °C. The solution was stirred 48 h at room temperature. The solvent of the dark red solution was evaporated under vacuum and the solid was washed with *n*-hexane (4 × 5 mL). The solvent was removed under reduced pressure. The product was obtained as a red/ brown powder (138 mg, 85.8 μmol, 90%). Single crystals of the title product were obtained by layering a solution of **4** in dichloromethane with *n*-hexane at -30 °C.

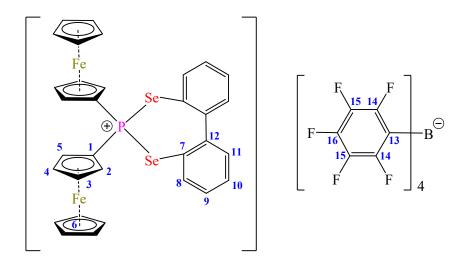


Figure S4. Numbering scheme for $[Fc_2P(SeFc)_2][B(C_6F_5)_4]$ (4).

M.p. = 158–159 °C. ¹H NMR (600 MHz, CD₂Cl₂): δ (ppm) = 4.75 (s, 4H, H3), 4.50 (s, 4H, H7), 4.43 (s, 4H, H2), 4.37 (s, 4H, H6), 4.35 (s, 10H, H4), 4.20 (s, 10H, H8). ¹³C{¹H} NMR (151 MHz, CD₂Cl₂): δ (ppm) = 148.7 (dm, ${}^{1}J({}^{13}C-{}^{19}F)$ = 240 Hz, C11), 138.8 (dm, ${}^{1}J({}^{13}C-{}^{19}F)$ = 244 Hz, C12), 136.8 (dm, ${}^{1}J({}^{13}C-{}^{19}F)$ = 245 Hz, C10), 124.6 (s, br, C9), 76.8 (s, C7), 74.9 (d, ${}^{3}J({}^{13}C-{}^{31}P)$ = 11 Hz, C3), 73.3 (d, ${}^{2}J({}^{13}C-{}^{31}P)$ = 13 Hz, C2), 72.8 (s, C6), 71.7 (s, C4), 70.8 (s, C8), 66.3 (d, ${}^{1}J({}^{13}C-{}^{31}P)$ = 70 Hz, C1), 65.9 (s, C5). ¹¹B NMR (193 MHz, CD₂Cl₂): δ (ppm) = 17.2 (s). ¹⁹F NMR (565 MHz, CD₂Cl₂): δ (ppm) = -133.9 (s, br, 8F, F11), -164.0 (t, ${}^{3}J({}^{19}F-{}^{19}F)$ = 20 Hz, 4F, F12), -168.2 (t, ${}^{3}J({}^{19}F-{}^{19}F)$ = 16 Hz, 8F, F10). ³¹P{¹H} NMR (243 MHz, CD₂Cl₂): δ (ppm) = 47.5 (s, ${}^{1}J({}^{31}P-{}^{77}Se)$ = 498 Hz). ⁷⁷Se NMR (114 MHz, CD₂Cl₂): δ (ppm) = 325.7 (d, ${}^{1}J({}^{77}Se-{}^{31}P)$ = 498 Hz). HRMS ESI (m/z): [M]⁺ calculated for C₄₀H₃₆Fe₄PSe₂ 930.8277, found 930.8287.

1.6 Preparation of $[Fc_2P(Se_2biphen)][B(C_6F_5)_4]$ (5)

[Fc₂P][B(C₆F₅)₄] (523 mg, 484 μ mol, 1.0 eq.) and Se₂biphen (151 mg, 484 μ mol, 1.0 eq.) were dissolved in dichloromethane (7 mL) at -80 °C, then the reaction mixture was stirred overnight at room temperature. The solvent of the dark yellow solution was removed under vacuum. The resulted brown oil was washed with hexane (4 × 5 mL), then dried under reduced pressure to obtain a yellow solid (465 mg, 334 μ mol, 69%). Single crystals of the product were obtained by layering a solution of **5** in CH₂Cl₂ with *n*-hexane.

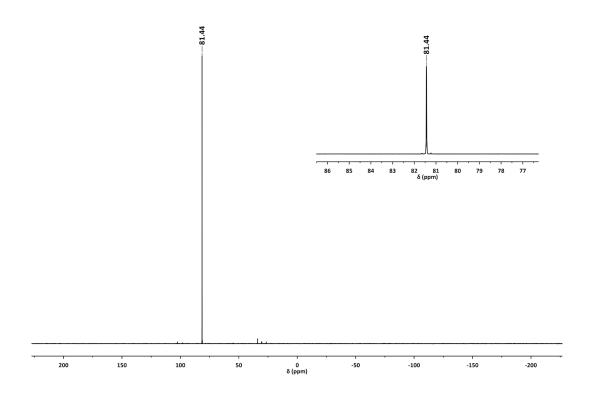


Figure S5. Numbering scheme for $[Fc_2P(Se_2biphen)][B(C_6F_5)_4]$ (5).

M.p. = 189–190 °C. ¹H NMR (600 MHz, CD₂Cl₂): δ (ppm) = 7.76 (m, 2H, *H*10), 7.69 (d, 2H, *H*8), 7.60 (d, 2H, *H*11), 7.51 (t, 2H, *H*9), 4.93 (s, 2H), 4.85 (s, 2H), 4.82 (s, 2H), 4.30 (s, 10H, *H*6), 4.25 (s, 2H). ¹³C{¹H} NMR (151 MHz, CD₂Cl₂): δ (ppm) = 148.7 (dm, ¹J(¹³C–¹°F) = 241 Hz, *C*15), 146.7 (s, *C*12), 138.8 (dm, ¹J(¹³C–¹°F) = 245 Hz, *C*16), 138.3 (s, *C*8), 136.9 (dm, ¹J(¹³C–¹°F) = 245 Hz, *C*14), 133.2 (d, *C*10), 131.8 (d, *C*11), 130.7 (d, *C*9), 126.2 (d, *C*7), 124.4 (s, br, *C*13), 76.2 (d, ³J(¹³C–³¹P) = 11 Hz), 75.4 (d, ³J(¹³C–³¹P) = 12 Hz), 73.9 (d, ²J(¹³C–³¹P) = 17 Hz), 72.9 (d, ²J(¹³C–³¹P) = 13 Hz), 72.2 (s, *C*6), 64.2 (d, ¹J(¹³C–³¹P) = 77 Hz, *C*1).¹¹B NMR (193 MHz, CD₂Cl₂): δ (ppm) = 16.6 (s). ¹°F NMR (565 MHz, CD₂Cl₂): δ (ppm) = -133.0 (s, br, 8F, *F*15), -163.5 (t, ³J(¹°F–¹°F) = 20 Hz, 4F, *F*16), -167.4 (t, ³J(¹°F–¹°F) = 19 Hz, 8F, *F*14). ³¹P{¹H} NMR (243 MHz, CD₂Cl₂): δ (ppm) = 74.9 (s, ¹J(³¹P–²°Se) = 444 Hz). *7°Se NMR (114 MHz, CD₂Cl₂): δ (ppm) = 378.8 (d, ¹J(²°Se–³¹P) = 444 Hz). *HRMS ESI (m/z): [M]* calculated for C₃₂H₂₆Fe₂PSe₂ 712.8796, found 712.8785.

2 NMR Spectra

2.1 $[Fc_2P(SPh)_2][B(C_6F_5)_4]$ (1)

Figure S6. $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂, 243 MHz) spectrum of [Fc₂P(SPh)₂][B(C₆F₅)₄] (1).

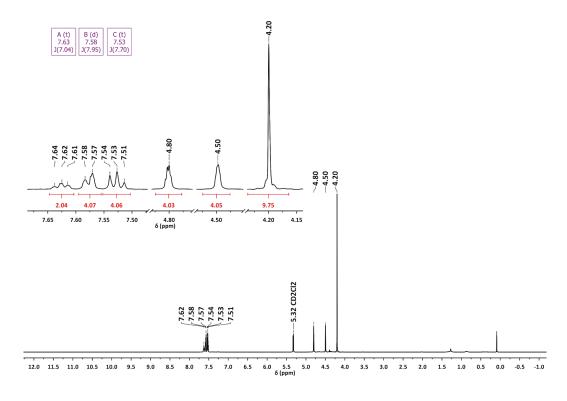
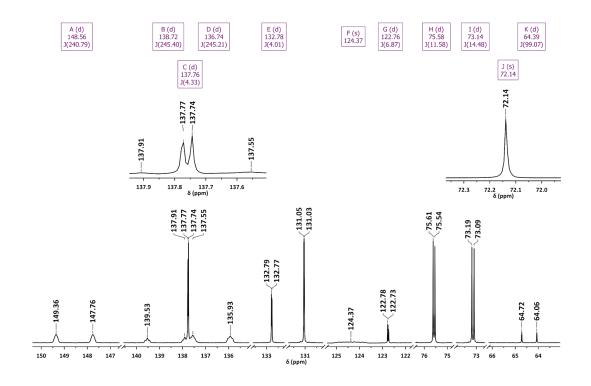
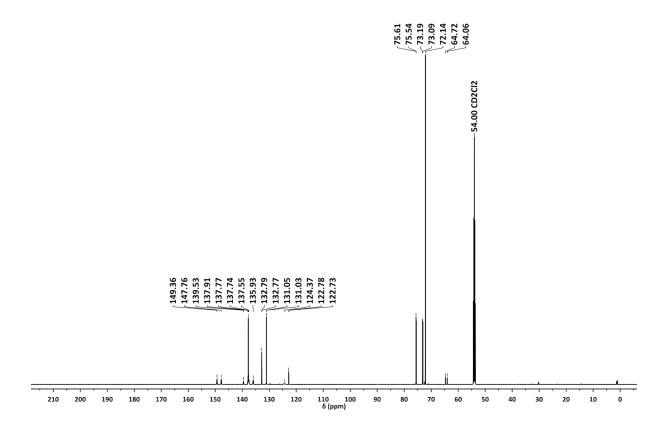
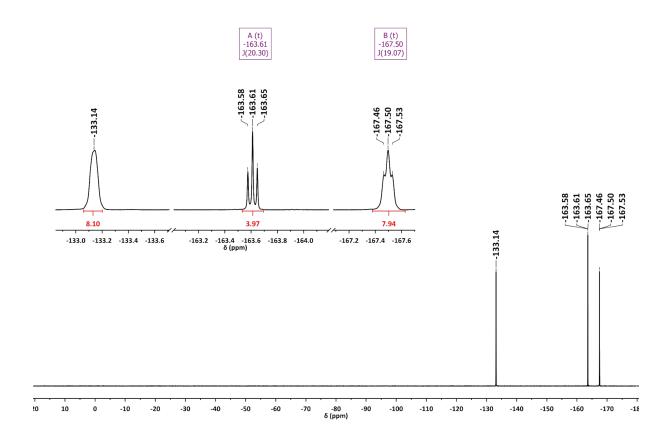





Figure S7. ¹H NMR (CD₂Cl₂, 600 MHz) spectrum of $[Fc_2P(SPh)_2][B(C_6F_5)_4]$ (1).

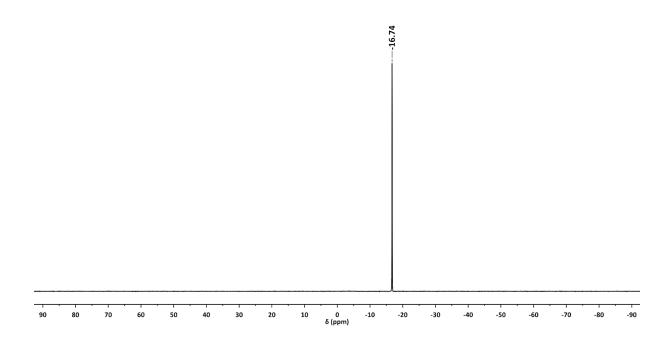


Figure S8. $^{13}C\{^{1}H\}$ NMR (CD₂Cl₂, 151 MHz) spectra of [Fc₂P(SPh)₂][B(C₆F₅)₄] (**1**).

Figure S9. ¹⁹F NMR (CD₂Cl₂, 565 MHz) spectrum of $[Fc_2P(SPh)_2][B(C_6F_5)_4]$ (1).

Figure S10. ¹¹B NMR (CD₂Cl₂, 193 MHz) spectrum of $[Fc_2P(SPh)_2][B(C_6F_5)_4]$ (1).

2.2 $[Fc_2P(SePh)_2][B(C_6F_5)_4]$ (2)

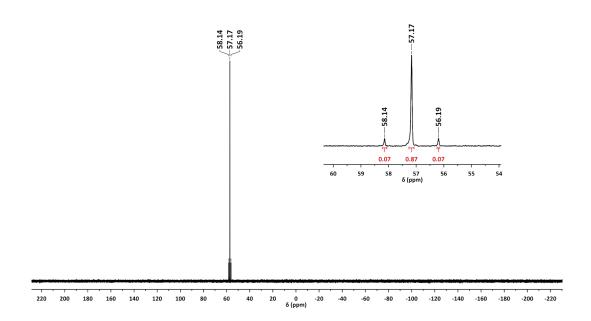


Figure S11. ^{31}P NMR (CD₂Cl₂, 243 MHz) spectrum of [Fc₂P(SePh)₂][B(C₆F₅)₄] (2).

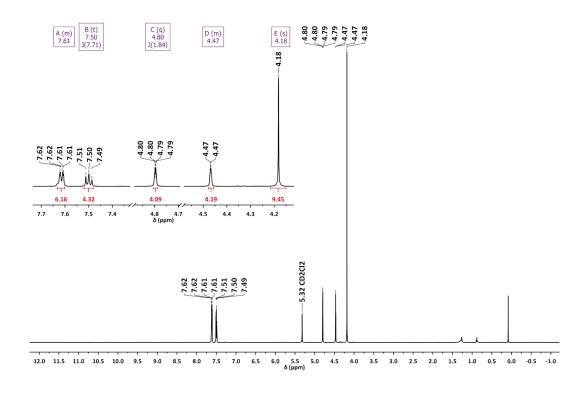
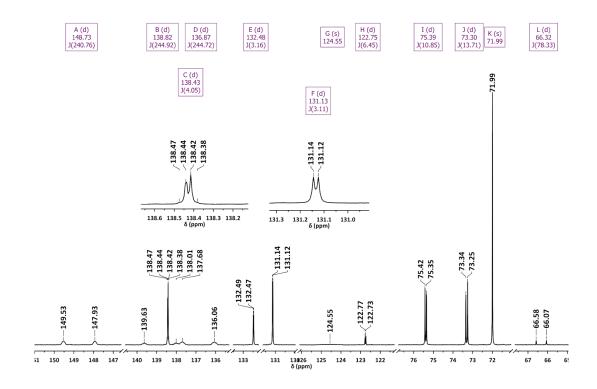
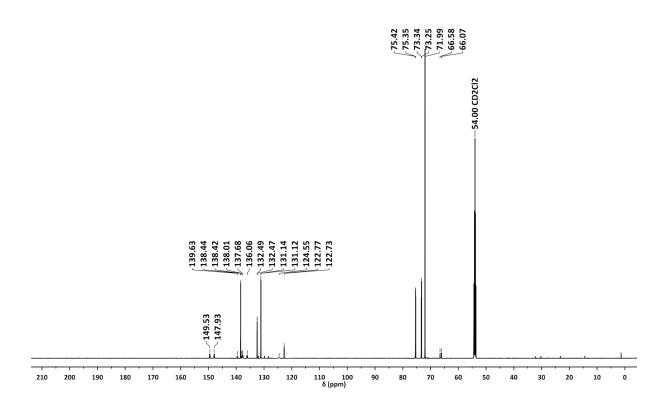
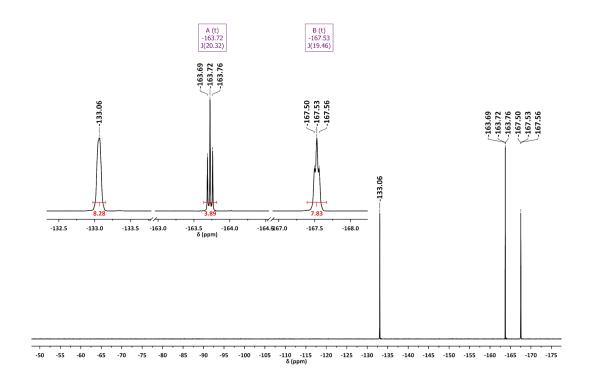
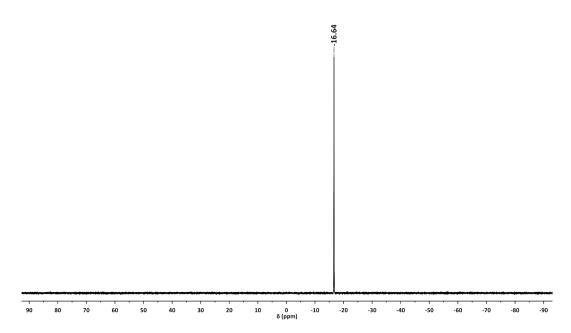





Figure S12. ¹H NMR (CD₂Cl₂, 600 MHz) spectrum of $[Fc_2P(SePh)_2][B(C_6F_5)_4]$ (2).



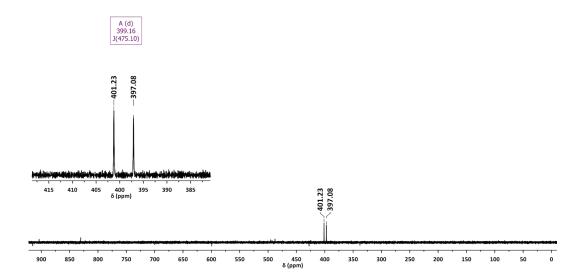

Figure S13. ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, 151 MHz) spectra of [Fc₂P(SePh)₂][B(C₆F₅)₄] (**2**).

Figure S14. ¹⁹F NMR (CD₂Cl₂, 565 MHz) spectrum of $[Fc_2P(SePh)_2][B(C_6F_5)_4]$ (2).

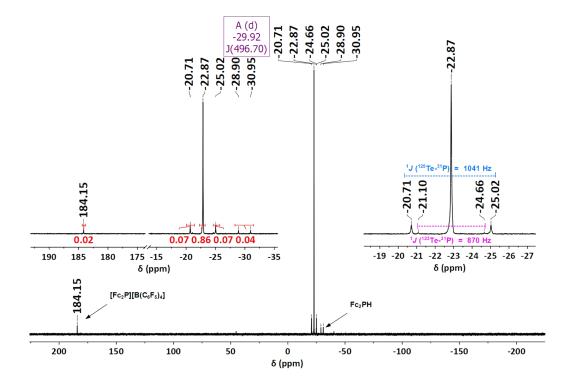


Figure S15. ¹¹B NMR (CD_2Cl_2 , 193 MHz) spectrum of [$Fc_2P(SePh)_2$][$B(C_6F_5)_4$] (**2**).

Figure S16. ⁷⁷Se NMR (CD₂Cl₂, 114 MHz) spectrum of $[Fc_2P(SePh)_2][B(C_6F_5)_4]$ (2).

2.3 $[Fc_2P(TePh)_2][B(C_6F_5)_4]$ (3)

Figure S17. ³¹P NMR (CD₂Cl₂, 243 MHz) spectrum of $[Fc_2P(TePh)_2][B(C_6F_5)_4]$ (3).

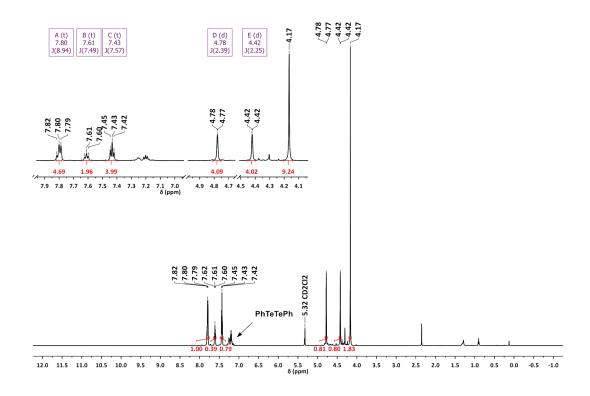
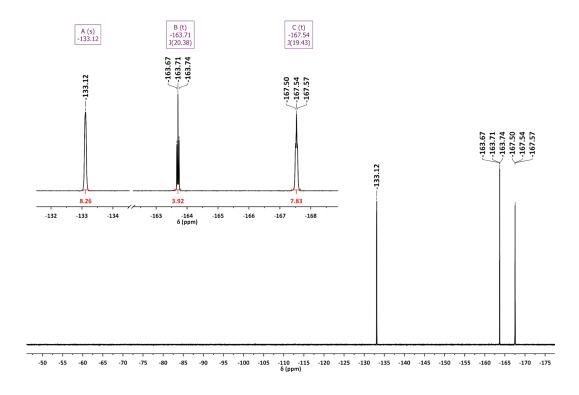
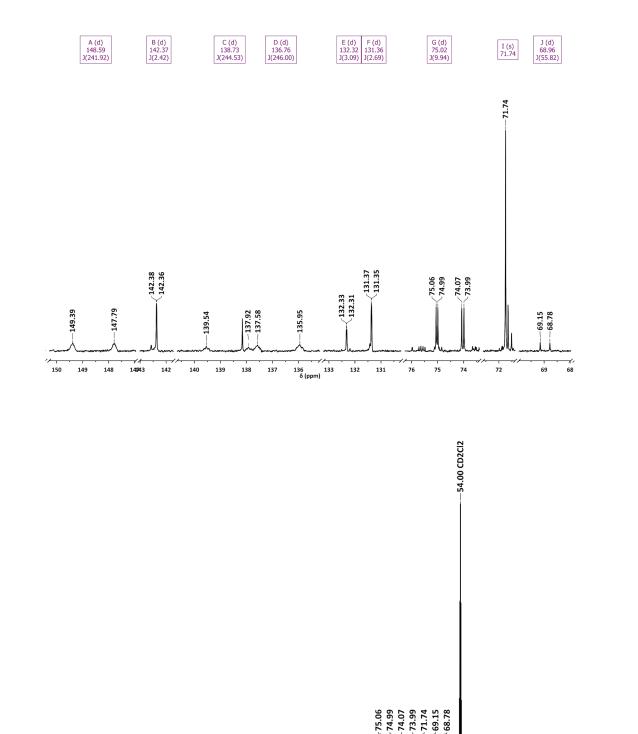




Figure S18. ¹H NMR (CD₂Cl₂, 600 MHz) spectrum of $[Fc_2P(TePh)_2][B(C_6F_5)_4]$ (3).

Figure S19. ¹⁹F NMR (CD_2Cl_2 , 565 MHz) spectrum of [$Fc_2P(TePh)_2$][$B(C_6F_5)_4$] (**3**).

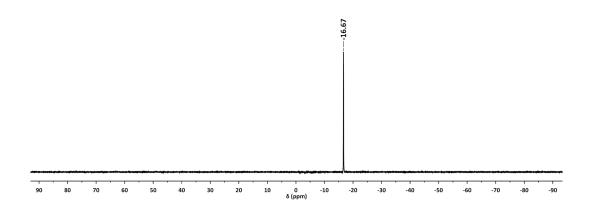
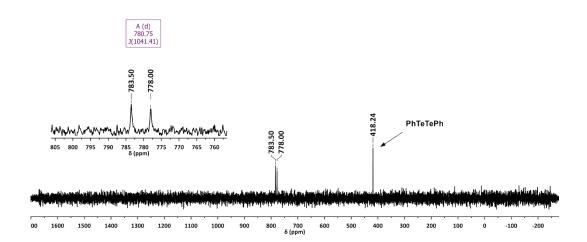


Figure S20. ¹³C NMR (CD₂Cl₂, 151 MHz) spectra of $[Fc_2P(TePh)_2][B(C_6F_5)_4]$ (3).


110 δ (ppm)

149.39 147.79 142.36 142.36 139.54 137.92 137.92 137.93 137.93 132.33 132.33 132.33 132.33

160 150

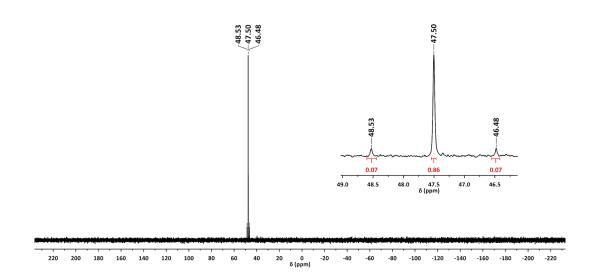


Figure S21. ¹¹B NMR (CD_2Cl_2 , 193 MHz) spectrum of [$Fc_2P(TePh)_2$][$B(C_6F_5)_4$] (**3**).

Figure S22. ¹²⁵Te NMR (CD₂Cl₂, 189 MHz) spectrum of $[Fc_2P(TePh)_2][B(C_6F_5)_4]$ (3).

2.4 [Fc₂P(SeFc)₂][B(C₆F₅)₄] (4)

Figure S23. ^{31}P NMR (CD₂Cl₂, 243 MHz) spectrum of [Fc₂P(SeFc)₂][B(C₆F₅)₄] (**4**).

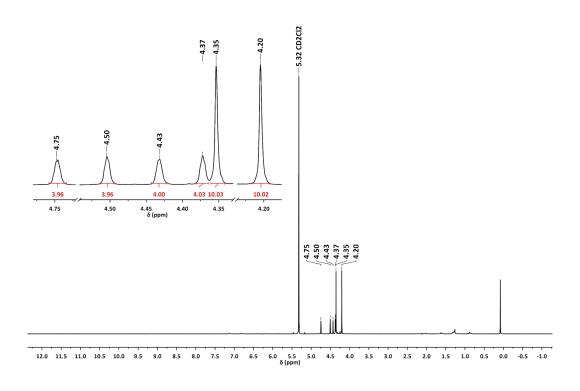
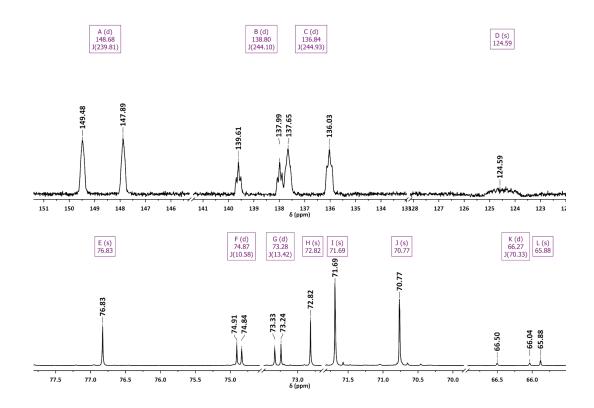
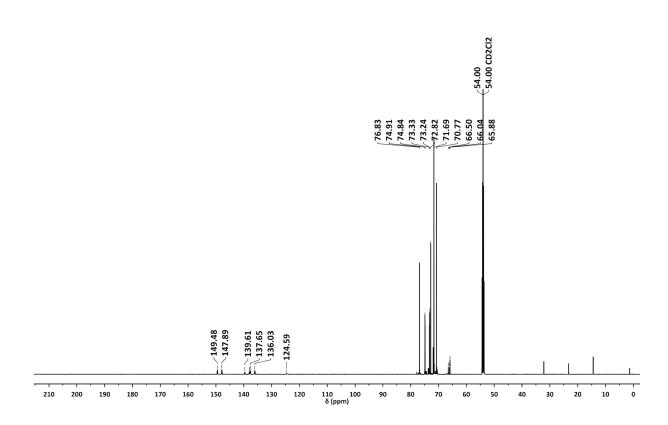
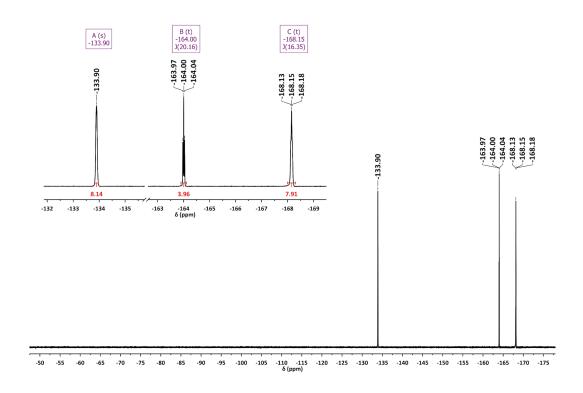





Figure S24. ¹H NMR (CD_2Cl_2 , 600 MHz) spectrum of [$Fc_2P(SeFc)_2$][$B(C_6F_5)_4$] (4).

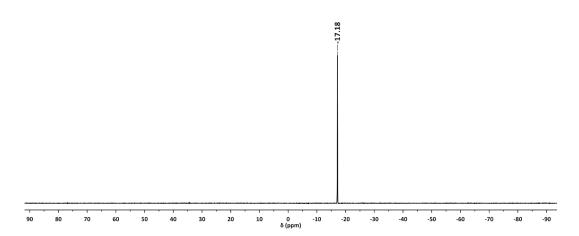


Figure S25. 13 C NMR (CD₂Cl₂, 151 MHz) spectra of [Fc₂P(SeFc)₂][B(C₆F₅)₄] (**4**).

Figure S26. ¹⁹F NMR (CD₂Cl₂, 565 MHz) spectrum of $[Fc_2P(SeFc)_2][B(C_6F_5)_4]$ (4).

Figure S27. ¹¹B NMR (CD₂Cl₂, 193 MHz) spectrum of $[Fc_2P(SeFc)_2][B(C_6F_5)_4]$ (4).

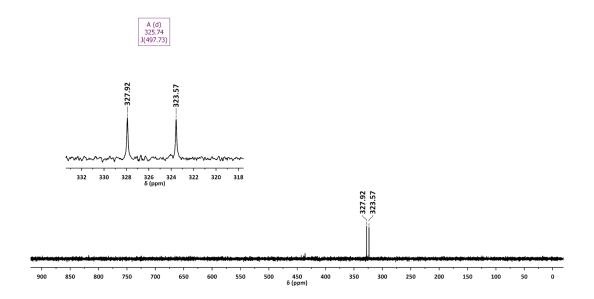


Figure S28. 77 Se NMR (CD₂Cl₂, 114 MHz) spectrum of [Fc₂P(SeFc)₂][B(C₆F₅)₄] (4).

2.5 [Fc₂P(Se₂biphen)][B(C₆F₅)₄] (5)



Figure S29. ^{31}P NMR (CD₂Cl₂, 243 MHz) spectrum of [Fc₂P(Se₂biphen)][B(C₆F₅)₄] (5).

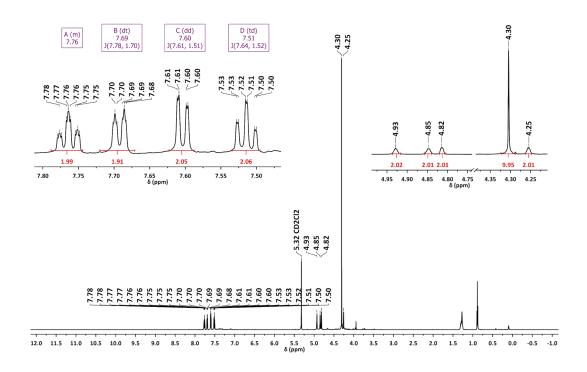
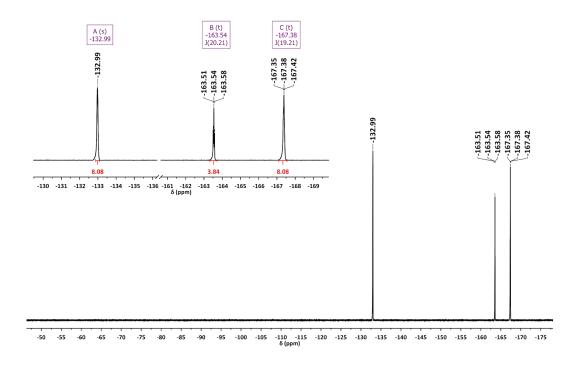
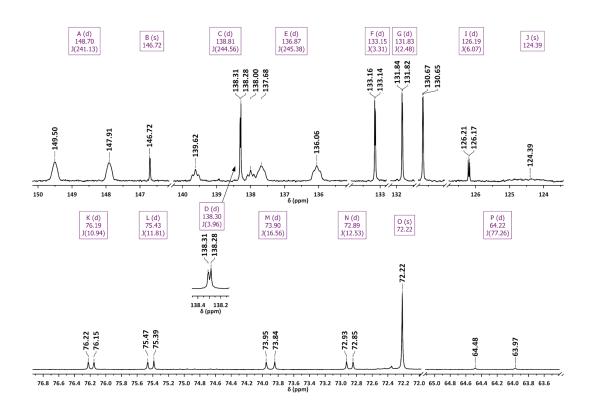




Figure S30. ¹H NMR (CD₂Cl₂, 600 MHz) spectrum of $[Fc_2P(Se_2biphen)][B(C_6F_5)_4]$ (5).

Figure S31. ¹⁹F NMR (CD_2Cl_2 , 565 MHz) spectrum of [$Fc_2P(Se_2biphen)$][$B(C_6F_5)_4$] (**5**).

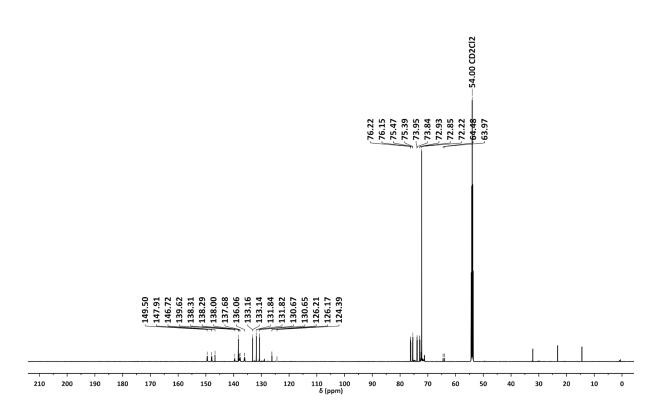


Figure S32. 13 C NMR (CD₂Cl₂, 151 MHz) spectra of [Fc₂P(Se₂biphen)][B(C₆F₅)₄] (5).

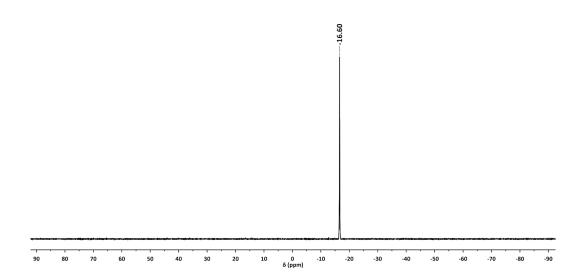


Figure S33. 11 B NMR (CD₂Cl₂, 193 MHz) spectrum of [Fc₂P(Se₂biphen)][B(C₆F₅)₄] (5).

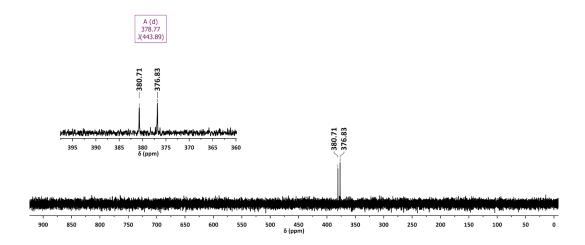
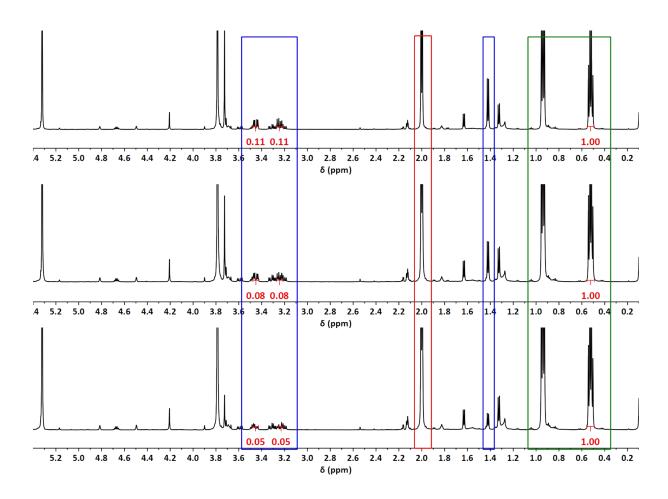
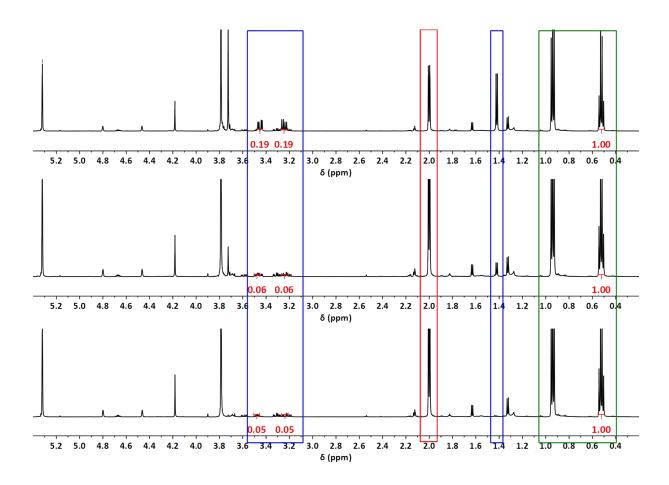


Figure S34. 77 Se NMR (CD₂Cl₂, 114 MHz) spectrum of [Fc₂P(Se₂biphen)][B(C₆F₅)₄] (5).

3 Michael addition


3.1 General Procedure

All experiments were carried on under inert conditions in a J. Young NMR tube and followed by NMR. The corresponding catalyst (compounds **1**–**5** or the [Fc₂P][B(C₆F₅)₄] 40 μ L, 0.6 μ mol, 15 mM stock solution in CD₂Cl₂, 2 mol%) was added into the NMR-tube together with CD₂Cl₂ (100 μ L). Then, it was followed by the addition of a 150 mM stock solution of *trans*- β -crotonophenone (**s2**, 200 μ L, 30 μ mol, 1.0 equiv., incl. 0.25 eq. Et₄Si) and a 150 mM stock solution of 1-methylindole (**s1**, 200 μ L, 30 μ mol, 1.0 equiv.), both in CD₂Cl₂. The tube was sealed, shaken and placed in an ultrasonic bath. After 30, 60 and 120 min of sonication, ¹H NMR measurements were conducted (4 scans, d_1 = 30 s, suitable for integration, assuming an error margin of 5%). The yields were determined by integration of the characteristic signal of product **p1** at 3.24 ppm (dd, J = 16, 8 Hz, 1H) and at 3.45 ppm (dd, J = 16, 5 Hz, 1H). The integral of the ethyl peak of Et₄Si (0.52 ppm, q, J = 8 Hz) was calibrated to 2 and/or the integral of the methyl peak of Et₄Si (0.94 ppm, t, J = 8 Hz) was calibrated to 3 against the starting material **s2**. Additionally, the consumption of the -*CH*₃ signal of **s2** at 2.00 ppm (dd, J = 7, 2 Hz, 3H) can be followed, together with the formation of the product **p1** with the characteristic -*CH*₃ signal at 1.42 ppm (d, J = 7 Hz, 3H).


Table S1. Catalytic screening of the Michael addition.

Catalyst (2 mol%)	Conversion (yield) 30 min	Conversion (yield) 60 min	Conversion (yield) 120 min
1	22 (10)	27 (16)	34 (22)
2	19 (10)	24 (12)	50 (38)
3	61 (50)	79 (68)	86 (74)
4	74 (62)	87 (78)	93 (86)
5	50 (36)	70 (56)	90 (78)
[FC ₂ P][B(C ₆ F ₅) ₄]	100 (90)	-	-

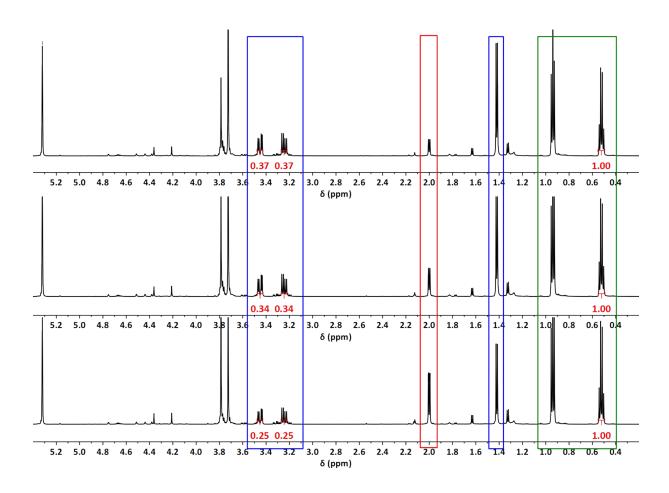

Conversions and yields in %, as determined by $^{1}\text{H-NMR}$ (d1 = 30 s) using tetraethylsilane as internal standard.

Figure S35. ¹H NMR (CD₂Cl₂, 600 MHz) spectra of the Michael addition using compound **1** as catalyst. Bottom to top: 30 min, 60 min and 120 min of sonication respectively. Important signals are marked as follows: blue for the newly formed product **p1**, red for **s2**, and green for Et₄Si.

Figure S36. ¹H NMR (CD₂Cl₂, 600 MHz) spectra of the Michael addition using compound **2** as catalyst. Bottom to top: 30 min, 60 min and 120 min of sonication respectively. Important signals are marked as follows: blue for the newly formed product **p1**, red for **s2**, and green for Et₄Si. Full conversion (90% yield) after approximately 6 h of sonication.

Figure S37. ¹H NMR (CD₂Cl₂, 600 MHz) spectra of the Michael addition using compound **3** as catalyst. Bottom to top: 30 min, 60 min and 120 min of sonication respectively. Important signals are marked as follows: blue for the newly formed product **p1**, red for **s2**, and green for Et₄Si. Full conversion (90% yield) after approximately 3 h of sonication.

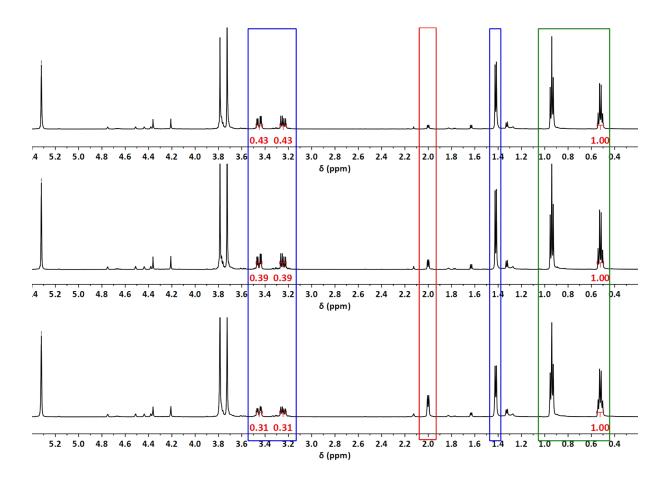
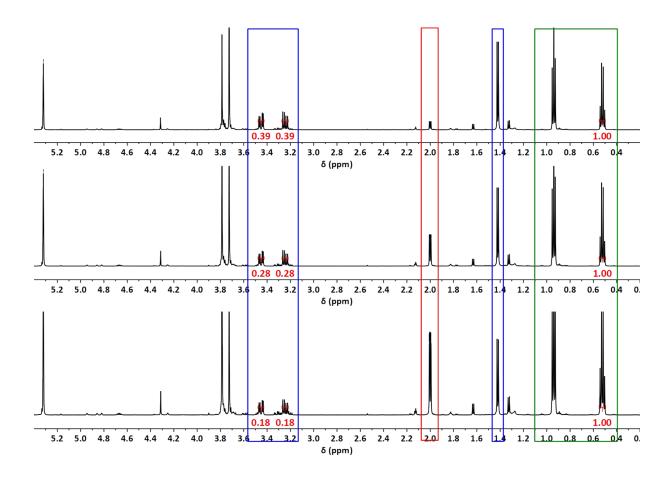



Figure S38. 1 H NMR (CD₂Cl₂, 600 MHz) spectra of the Michael addition using compound 4 as catalyst. Bottom to top: 30 min, 60 min and 120 min of sonication respectively. Important signals are marked as follows: blue for the newly formed product **p1**, red for **s2**, and green for Et₄Si. Full conversion (90% yield) after approximately 2.5 h of sonication.

Figure S38. ¹H NMR (CD₂Cl₂, 600 MHz) spectra of the Michael addition using compound **5** as catalyst. Bottom to top: 30 min, 60 min and 120 min of sonication respectively. Important signals are marked as follows: blue for the newly formed product **p1**, red for **s2**, and green for Et₄Si. Full conversion (90% yield) after approximately 4 h of sonication.

4 Crystallographic Data

Intensity data of **1–5** was collected on a Bruker Venture D8 diffractometer at 100 K with graphite-monochromatic Mo-Kα (0.7107 Å) radiation. All structures were solved by direct methods and refined based on F² by use of the SHELX program package as implemented in WinGX^{56,57} or OLEX2.⁵⁸ All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms attached to carbon atoms were included in geometrically calculated positions using a riding model. Crystal and refinement data are collected in Supplementary Tables S2 – S4. Figures were created using Diamond.⁵⁹ Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Table S2. Crystal data and structure refinement of compounds **1** and **2**.

	1	2
Formula	C ₅₆ H ₂₈ BF ₂₀ Fe ₂ PS ₂	C ₅₆ H ₂₈ BF ₂₀ Fe ₂ PSe ₂
Formula weight, g mol ⁻¹	1298.38	1392.18
Crystal system	monoclinic	monoclinic
Crystal size, mm	$0.40\times0.30\times0.10$	$0.40\times0.40\times0.40$
Space group	C2/c	C2/c
a, Å	16.270(2)	16.240(2)
b, Å	16.235(2)	16.332(2)
<i>c</i> , Å	38.130(5)	38.510(5)
α, º	90	90
β, ⁰	98.979(6)	98.942(4)
γ, ⁰	90	90
<i>V</i> , Å ³	9949(2)	10090(2)
Z	8	8
$ ho_{ m calcd}$, Mg m $^{-3}$	1.734	1.833
μ (Mo $Klpha$), mm $^{-1}$	0.816	2.165
F(000)	5184	5472
heta range, deg	2.27 to 28.70	2.43 to 27.10
Index ranges	$-21 \le h \le 21$	$-23 \le h \le 24$
	$-21 \le k \le 21$	$-25 \le k \le 25$
	- 51 ≤ l ≤ 51	- 59 ≤ l ≤ 59
No. of refins collected	86690	96558
Completeness to θ_{max}	99.9%	99.9%
No. indep. Reflns	12851	19286
No. obsd refins with $(I>2\sigma(I))$	10879	15448
No. refined params	739	739
GooF (F ²)	1.142	1.046
$R_1(F)(I > 2\sigma(I))$	0.0489	0.0377
wR_2 (F^2) (all data)	0.1128	0.0872
Largest diff peak/hole, e Å-3	1.232 / -0.584	0.568 / -0.507
CCDC number	2423663	2423664

Table S3. Crystal data and structure refinement of compounds $2 \cdot \text{toluene}$ and $3 \cdot \text{CH}_2\text{Cl}_2$.

	2 ·toluene	3 · CH ₂ Cl ₂
Formula	C ₆₃ H ₃₆ BF ₂₀ Fe ₂ PSe ₂	$C_{57}H_{30}BCl_2F_{20}Fe_2PTe_2$
Formula weight, g mol ⁻¹	1484.32	1574.39
Crystal system	triclinic	triclinic
Crystal size, mm	$0.21\times0.20\times0.18$	$0.50\times0.19\times0.16$
Space group	p1	p1
a, Å	10.8629(8)	10.3907(6)
b, Å	15.1456(11)	15.4524(8)
c, Å	17.3801(10)	18.1339(9)
α, º	71.852(2)	104.965(2)
β, ⁰	75.728(2)	103.652(2)
γ, ⁰	87.113(3)	92.341(2)
<i>V</i> , Å ³	2632.3(3)	2717.3(3)
Z	2	2
$ ho_{ m calcd}$, Mg m $^{-3}$	2.081	1.924
μ (Mo $Klpha$), mm $^{-1}$	1.873	1.824
F(000)	1468	1524
heta range, deg	2.37 to 27.50	2.03 to 27.50
Index ranges	$-14 \le h \le 13$	$-13 \le h \le 13$
	$-19 \le k \le 19$	$-20 \le k \le 20$
	- 22 ≤ l ≤ 22	- 23 ≤ l ≤ 22
No. of refins collected	60562	122020
Completeness to θ_{max}	99.9%	99.9%
No. indep. Reflns	12070	12481
No. obsd refins with $(I>2\sigma(I))$	9204	12032
No. refined params	739	739
GooF (F ²)	1.057	1.099
$R_1(F)(I > 2\sigma(I))$	0.0441	0.0224
wR_2 (F^2) (all data)	0.1269	0.0568
Largest diff peak/hole, e Å ⁻³	0.748 / -0.585	0.912 / -0.956
CCDC number	2423665	2423666

Table S4. Crystal data and structure refinement of compounds $\bf 4$ and $\bf 5 \cdot CH_2Cl_2$.

	4	5·CH ₂ Cl ₂
Formula	C ₆₄ H ₃₆ BF ₂₀ Fe ₄ PSe ₂	C ₅₇ H ₂₈ BCl ₂ F ₂₀ Fe ₂ PSe ₂
Formula weight, g mol⁻¹	1608.03	1475.09
Crystal system	triclinic	monoclinic
Crystal size, mm	$0.38\times0.26\times0.26$	$0.22\times0.16\times0.07$
Space group	p1	P2 ₁ /n
a, Å	13.4185(6)	16.326(4)
b, Å	13.8756(6)	9.990(2)
<i>c,</i> Å	15.8321(7)	32.781(7)
α, º	100.509(2)	90
β, º	95.382(2)	98.502(9)
γ, ⁰	92.036(2)	90
<i>V</i> , Å ³	2881.4(2)	5288.1(19)
Z	2	4
$ ho_{ m calcd}$, Mg m $^{-3}$	1.853	1.853
μ (Mo $Klpha$), mm $^{-1}$	2.387	2.169
F(000)	1584	2896
heta range, deg	2.39 to 30.52	2.40 to 28.32
Index ranges	$-19 \le h \le 19$	$-21 \le h \le 21$
	$-19 \le k \le 19$	$-13 \le k \le 13$
	- 22 ≤ l ≤ 22	$-43 \le l \le 43$
No. of reflns collected	177357	98939
Completeness to $ heta_{ m max}$	99.9%	99.8%
No. indep. Reflns	17580	13162
No. obsd reflns with ($I > 2\sigma(I)$)	15978	10777
No. refined params	847	739
GooF (F ²)	1.063	1.039
$R_1(F)(I > 2\sigma(I))$	0.0299	0.0446
wR_2 (F^2) (all data)	0.0766	0.1266
Largest diff peak/hole, e Å ⁻³	1.083 / -1.069	0.982 / -0.797

Computational Details

Geometry Optimizations were carried out using density functional theory (DFT) using the B3PW91/6-311+G(2df,p)^{S10,11} level of theory using the Gaussian16^{S12} software package. For Se and Te effective core potentials accounting for 10 (Se) and 28 (Te) electrons and corresponding cc-pVTZ basis sets^{S13} were used. Dispersion effects were modelled using Grimme's GD3BJ parameters.^{S14} Electrostatic potentials were plotted with VMD.^{S15}

6 References

- [S1] C. Stoian, M. Olaru, S. Demeshko, M. Fischer, S. Mebs, E. Hupf, J. Beckmann, *Chem. Eur. J.* **2025**, *31*, e202403555.
- [S2] M. Herberhold, P. Leitner, J. Organomet. Chem. 1987, 336, 153–161.
- [S3] T. M. Klapötke, B. Krumm, M. Scherr, Z. Anorg. Allg. Chem. **2010**, 636, 1955–1961.
- [S4] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J.E. Bercaw, K. I. Goldberg, *Organometallics* 2010, 29, 2176–2179.
- [S5] F. Menges, "Spectragryph optical spectroscopy software", Version 1.2.12, **2022**, http://www.effemm2.de/spectragryph/ (accessed 03.12.2024).
- [S6] L. J. Farrugia WinGX suite for small-molecule single-crystal crystallography. *J. Appl. Crystallogr.* **1999**, *32*, 837–838.
- [S7] G. M. Sheldrick, *Acta Cryst.* **2015**, *C71*, 3–8.
- [S8] O. V. Dolomanov, L. J. Bourhis, R. J., Gildea, R. J., J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* **2009**, *42*, 339–341.
- [S9] Crystal Impact Dr. H. Putz & Dr. K. Brandenburg GbR. *Diamond Crystal and Molecular Structure Visualization*, 2014.
- [S10] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652; (b) J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 6671–6687.
- [S11] (a) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, *J. Chem. Phys.* 1980, 72, 650–654;
 (b) A. D. McLean and G. S. Chandler, *J. Chem. Phys.* 1980, 72, 5639–5648.
- [S12] Gaussian16 (RevisionC.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.

- Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M.Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E.Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- [S13] (a) B. Metz, H. Stoll and M. Dolg, J. Chem. Phys. 2000, 113, 2563-2569; (b) K. A. Peterson, J. Chem. Phys. 2003, 119, 11099–11112. (c) K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, J. Chem. Phys. 2003, 119, 11113–11123.
- [S14] S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem. 2011, 32, 1456–1465.
- [S15] W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph. 1996, 14, 33–38.