Pd-Catalyzed Enantioselective Reductive Heck Reaction of *mono*-Fluoro, *gem*-Difluoro, and Trifluoromethyl tethered-Alkenes

Naveen Sihag,^a Hemaang Bhartiya,^a Swati Jain,^a Jitendra Singh,^b S. Rajagopala Reddy^b,* and M Ramu Yadav^a*

^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India. Phone number: (+91) 11-2659-1506; e-mail address: <u>ramuyadav@chemistry.iitd.ac.in</u>.

^bDepartment of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India; e-mail address: <u>rajagopala.seelam@curaj.ac.in.</u>

Table of Contents

1. General Information
2. Synthesis of Substrates
Synthesis of o-Halo Trifluoromethyl Acrylamides
Synthesis of o -Halo β -Phenyl Trifluoromethyl Acrylamides
Synthesis of o-Halo gem-Difluoro and Monofluoro Acrylamides
3. Experimental Procedures:
Reductive Heck Cyclization of o-Halo Trifluoromethyl Acrylamide
Enantioselective Reductive Heck Cyclization of o-Halo Trifluoromethyl Acrylamide
Reductive Heck Cyclization of o -Halo β -Phenyl Trifluoromethyl Acrylamides
Enantioselective Reductive Heck Cyclization of o -Halo β -Phenyl Trifluoromethyl Acrylamides
Reductive Heck Cyclization of o-Halo gem-Difluoromethyl Acrylamide
Enantioselective Reductive Heck Cyclization of o-Halo gem-Difluoromethyl Acrylamide
Reductive Heck Cyclization of o-Halo Monofluoromethyl Acrylamide
Enantioselective Reductive Heck Cyclization of o-Halo Monofluoromethyl Acrylamide
4. Optimization of Reaction Conditions
5. Characterization data and HPLC Spectra of Enantioenriched Products
6. Synthetic Applications
7. Stereo-divergent Reactions
8. Mechanistic Studies
9. Computational Studies
10. X-Ray Structural Analysis
11. References
12. NMR Spectra

1. General Information

Experimental: All the inert condition reactions were performed in a nitrogen atmosphere using Glove box and Schlenk line techniques. All glassware was oven-dried overnight at 100 °C before use. Catalytic reactions were performed in commercially available 7.0 mL screw cap vials fitted with PTFE/silicone septa purchased from Sigma-Aldrich.

Chromatography: Analytical Thin Layer Chromatography (TLC) was performed on Merck and GLR precoated silica gel 60 F_{254} plates, using UV light as the visualization agent. Chromatographic purification of products was accomplished by column chromatography on Finar silica gel (100-200 mesh). The solvents were removed under reduced pressure using a rotary evaporator to obtain the desired compounds.

Characterization: All proton nuclear magnetic resonance spectra (¹H NMR), proton decoupled carbon nuclear magnetic resonance spectra [^{13}C { ^{1}H } NMR], and fluorine nuclear magnetic resonance spectra (¹⁹F NMR) were collected on Bruker Ascend 500 MHz and JEOL 400 MHz (the respective frequencies are for ¹H (500 MHz and 400 MHz), ¹³C (126 MHz and 101 MHz), and ¹⁹F (471 MHz and 377 MHz). Chemical shifts are reported in parts per million (ppm) downfield relative to tetramethylsilane (TMS, 0.0 ppm), all ¹H NMR and ¹³C NMR spectra referenced to residual solvent signal (¹H, CDCl₃ = 7.26 ppm) and (¹³C, CDC₁₃ = 77.00 ppm). Coupling constants (J) are reported in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; sept, septet; m, multiplet; dd, doublet of doublets; ddd, doublet of doublet of doublets; dq, doublet of quartet; dp, doublet of pentet; bs, broad singlet; bd, broad doublet; bt, broad triplet; bq, broad quartet; tq, triplet of quartet. High-resolution mass spectra (HRMS) were obtained using Waters Xevo-G2XQTOF instruments with the electrospray ionization (ESI) method. The gas chromatography-mass spectrometry (GC-MS) analysis was performed using an Agilent 5977B GC/MSD spectrometer. Single crystal X-ray diffractions were recorded using Bruker AXS Smart Apex CCD diffractometer and Rigaku XtaLab Synergy Custom X-Ray Diffractometer. Optical rotations were recorded on Rudolph, AUTOPOL V digital polarimeter using a 10 cm sample cell, and $[\alpha]_D$ values are given in deg.dm⁻¹.g⁻¹.mL; concentration c is listed in g.mL⁻¹ and all data are reported as follows: $[\alpha]_D^{\text{temp}}$ (c = g.mL⁻¹, solvent). Enantiomeric excesses (ee) were determined by chiral HPLC analysis (Shimadzu) LC-20AD using Chiralcel OJ-H, AD-H, and OD-H columns with *n*-Hexane and ⁱPrOH as solvents. Retention times are reported

using the following abbreviation: t_r . Preparative HPLC (Shimadzu) LC-20AP having a C18 column with acetonitrile (CH₃CN) and H₂O as solvents have been used in purification. The melting points of compounds were recorded using DIGITAL MELTING POINT APP. by UNITECH SALES.

Materials: Unless specified otherwise, all reagents, chiral ligands, and metal salts were obtained from commercial suppliers (BLD Pharma, Spectrochem, GLR, TCI, Sigma-Aldrich, SRL chemical) and used without further purification. Acrylamide derivatives were synthesized according to the literature. Anhydrous solvents were dried using CaH₂ pre-drying followed by vacuum distillation, and solvents like tetrahydrofuran (THF), and toluene (PhMe) were dried via sodium wire/benzophenone conventional drying agents. Oxalyl chloride was purchased from Spectrochem and distilled under N₂. Triethylamine was distilled and stored over KOH pellets for usage.

2. Synthesis of Substrates

All disubstituted acrylamides were prepared according to the previous reports.^{1,2} The known substrates (1a, 1a', 1b–1j, 1l–1p) characterization data were consistent with the reported literature. Further, the general procedure and characterization data for unreported substrates are given.

2.1 General Procedure for the Synthesis of *o*-Halo Trifluoromethyl Acrylamides and *o*-Iodo β -Phenyl Trifluoromethyl Acrylamides.

General procedure-I (GP-I):

Scheme S1. Synthesis of trifluoromethyl acrylamides from di- and trisubstituted olefins.

Step 1. Round Bottom Flask I (RB–I): A two–necked round bottom flask equipped with a magnetic stir bar was charged with acrylic acid (1.2 equiv) and dry DCM (0.2 M) was added under

nitrogen atmosphere. The flask was then cooled to 0 °C using an ice bath and 4–6 drops of dry DMF were added. Afterward, freshly distilled oxalyl chloride (1.5 equiv) was added dropwise to the solution. Then, the solution was slowly allowed to attain room temperature and stirred for 5 to 7 hours with nitrogen (N₂) ballon until the solution turned yellow-orange. The acyl chloride was directly used for the next step without further purification.

Round Bottom Flask II (RB–II): In a separate two–necked round–bottom flask equipped with a magnetic stir bar, *o*-halo aniline derivatives (1.0 equiv), triethylamine (3.0 equiv), and dry DCM (0.2 M) were added and stirred for 3-6 h at room temperature to activate anilines.

Step 2. Then, freshly prepared acryloyl chloride **RB–I** was added dropwise to **RB–II** for 10 to 15 min at 0 °C under a nitrogen atmosphere. The resultant mixture was allowed to warm up to room temperature and stirred overnight with nitrogen (N₂) ballon until the aniline derivative was consumed completely (monitored by TLC). The reaction mixture was washed with water and extracted with DCM (3.0 times). The organic layer was sequentially washed with 1.0 N HCl solution, 1.0 N NaOH solution, and brine. The final organic solution was dried over anhydrous Na₂SO₄, filtered, and concentrated using a rotary evaporator. The residue was purified by SiO₂ column chromatography (100–200 mesh) using a mixture of hexane, DCM, and ethyl acetate to afford the desired acrylamides.

Figure S1. N-(2-Haloaryl)-trifluoromethyl acrylamides.

Figure S2. N-(2-Iodoaryl)-trifluoromethyl acrylamides.

Figure S3. N-(2-Haloaryl)-N-substituted β -phenyl trifluoromethyl acrylamides.

Characterization data of starting materials:

Methyl 3-bromo-4- (N-methyl-2-(trifluoromethyl)acrylamido)benzoate (1k):

According to **GP–I**, amide coupling of 2-(trifluoromethyl)acrylic acid (420 mg, 3.0 mmol) with methyl 3–bromo–4–(methylamino)benzoate (610 mg, 2.5 mmol) afforded the desired amide **1k** (130 mg) in 14%

yield as a white solid; $R_f = 0.35$ (3% EtOAc, 30% DCM in hexane); Melting point: 94–96 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.33 (s, 1H), 8.01 (d, J = 7.9 Hz, 1H), 7.30–7.24 (m, 1H), 5.80 (s, 1H), 5.63 (s, 1H), 3.95 (s, 3H), 3.32 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 164.7, 163.4, 146.2, 135.2, 133.9 (q, J = 31.9 Hz), 131.7, 130.04, 129.98, 124.9 (q, J = 5.0 Hz), 122.5, 121.2 (q, J = 274.0 Hz), 52.7, 36.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.4 ppm; HRMS (ESI–TOF) *m/z*: [M+H]⁺ calcd. for C₁₃H₁₂BrF₃NO₃: 365.9947, found 365.9953.

2-(*N*-(2-Bromophenyl)-2-(trifluoromethyl)acrylamido)ethyl-3-methyl-4-oxo-2-phenyl-4Hchromene-8-carboxylate (1q):

According to **GP–I**, amide coupling of 2-(trifluoromethyl)acrylic acid (336 mg, 2.4 mmol) with 2-((2-bromophenyl)amino)ethyl 3methyl-4-oxo-2-phenyl-4*H*-chromene-8-carboxylate (957 mg, 2.0 mmol) afforded the desired amide **1q** (302 mg) in 25% yield

as a yellow solid; $R_f = 0.08$ (3% EtOAc, 30% DCM in hexane); Melting point: 78–80 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.46 (dd, J = 7.9, 1.5 Hz, 1H), 8.11 (dd, J = 7.4, 1.2 Hz, 1H), 7.79– 7.74 (m, 2H), 7.62–7.49 (m, 4H), 7.41 (t, J = 7.7 Hz, 1H), 7.15 (d, J = 3.3 Hz, 3H), 5.75 (s, 1H), 5.58 (s, 1H), 4.76–4.67 (m, 1H), 4.65–4.57 (m, 1H), 4.50–4.43 (m, 1H), 3.69–3.61 (m, 1H), 2.25 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 178.2, 163.8, 163.6, 160.9, 154.5, 140.3, 136.2, 134.1, 133.9 (q, *J* = 32.3 Hz), 132.9, 131.4, 131.0, 130.6, 130.1, 129.3, 128.6, 128.5, 124.4 (q, *J* = 5.8 Hz), 124.0, 123.2, 122.8, 121.2 (q, *J* = 274.0 Hz, one of the quartet peak merged with other peaks), 119.8, 117.6, 61.9, 46.9, 11.8; ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -64.4 ppm; HRMS (ESI–TOF) *m/z*: [M+Na]⁺ calcd. for C₂₉H₂₁BrF₃NO₅Na: 622.0447, found 622.0466.

2-(*N*-(2-Bromophenyl)-2-(trifluoromethyl)acrylamido)ethyl 2-(4-isobutylphenyl)propanoate (1r):

According to **GP–I**, amide coupling of 2-(trifluoromethyl)acrylic acid (504 mg, 3.6 mmol) with 2-((2-Bromophenyl)amino)ethyl 2-(4-isobutylphenyl)propanoate (1.2 g, 3.0 mmol) afforded the desired amide **1r** (364 mg) in

23% yield as a yellow liquid; $R_f = 0.46$ (3% EtOAc, 30% DCM in hexane).

¹**H NMR** (500 MHz, CDCl₃) δ 7.65–7.56 (m, 1H), 7.24–7.16 (m, 2H), 7.16–7.11 (m, 2H), 7.11– 7.06 (m, 2H), 7.05–6.96 (m, 1H), 5.72 (s, 1H), 5.53 (d, *J* = 10.7 Hz, 1H), 4.73–4.63 (m, 0.5H), 4.56–4.48 (m, 0.5H), 4.37–4.30 (m, 0.5H), 4.29–4.22 (m, 1H), 4.02–3.95 (m, 0.5H), 3.65–3.54 (m, 1H), 3.52–3.38 (m, 1H), 2.44 (d, *J* = 7.2 Hz, 2H), 1.84 (sept, *J* = 6.8 Hz, 1H), 1.41 (dd, *J* = 20.5, 7.1 Hz, 3H), 0.89 (bd, *J* = 6.6 Hz, 6H); ¹³C{¹H} **NMR** (126 MHz, CDCl₃) δ 174.40, 174.38, 163.7, 163.6, 140.59, 140.55, 139.8, 137.52, 137.49, 134.2, 134.1, 133.9, 133.8, 131.6, 130.12, 130.07, 129.34, 129.31, 128.63, 128.61, 127.14, 127.10, 124.3 (dq, *J* = 10.8, 5.5 Hz, this due to two quartet merging), 122.9, 122.8, 121.23 (q, *J* = 274.1 Hz), 121.21 (q, *J* = 274.2 Hz), 61.6, 60.9, 47.5, 46.2, 45.0, 44.9, 30.14, 30.13, 22.4, 22.3, 18.5, 18.3; ¹⁹F{¹H} **NMR** (471 MHz, CDCl₃) δ -64.2 ppm; HRMS (ESI–TOF) *m*/*z*: [M+Na]⁺ calcd. for C₂₅H₂₇BrF₃NO₃Na: 548.1019, found 548.1031.

2-(*N*-(2-Bromophenyl)-2-(trifluoromethyl)acrylamido)ethyl-2-(4-chlorophenoxy)-2methylpropanoate (1s):

According to **GP–I**, amide coupling of 2-(trifluoromethyl)acrylic acid (840 mg, 6.0 mmol) with 2-((2-Bromophenyl)amino)ethyl 2-(4-chlorophenoxy)-2methylpropanoate (2.1 g, 5.0 mmol) afforded the desired amide **1s** (1.06 g) in 40% yield as a yellow liquid; $R_f = 0.42$ (3% EtOAc, 30% DCM in hexane).

¹H NMR (500 MHz, CDCl₃) δ 7.64 (dd, J = 7.9, 1.3 Hz, 1H), 7.28 (td, J = 7.5, 1.2 Hz, 1H), 7.22 (td, J = 7.7, 1.7 Hz, 1H), 7.20–7.14 (m, 3H), 6.78–6.72 (m, 2H), 5.76 (s, 1H), 5.56 (s, 1H), 4.64 (ddd, J = 14.6, 7.4, 4.1 Hz, 1H), 4.43 (ddd, J = 11.4, 5.6, 4.3 Hz, 1H), 4.26 (ddd, J = 11.6, 7.4, 3.9 Hz, 1H), 3.48 (ddd, J = 14.6, 5.6, 4.1 Hz, 1H), 1.52 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 173.5, 163.6, 153.8, 140.0, 134.0, 133.7 (q, J = 32.0 Hz), 131.4, 130.2, 129.0, 128.7, 127.2, 124.5 (q, J = 5.2 Hz), 122.6, 121.1 (q, J = 274.0 Hz), 120.6, 79.3, 61.9, 46.8, 25.2, 24.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.2 ppm; HRMS (ESI–TOF) *m*/*z*: [M+Na]⁺ calcd. for C₂₂H₂₀BrClF₃NO₄Na: 556.0109, found 556.0103.

N-Ethyl-*N*-(2-iodophenyl)-2-(trifluoromethyl)acrylamide (1b'):

According to **GP–I**, amide coupling of *N*-ethyl-2-iodoaniline (1.6 mL, 10 mmol) with 2-(trifluoromethyl)acrylic acid (1.68 g, 12 mmol) afforded **1b**' (1.18 g) in 32% yield as a white solid; $R_f = 0.21$ (5% EtOAc in hexane);

Melting point: 70–72 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 5.5 Hz, 1H), 7.37 (t, J = 6.8 Hz, 1H), 7.11 (bd, J = 7.0 Hz, 1H), 7.05 (t, J = 7.1 Hz, 1H), 5.74 (s, 1H), 5.65 (s, 1H), 4.40–4.39 (m, 1H), 3.30–3.17 (m, 1H), 1.20–1.11 (m, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.1, 143.6, 140.5, 134.3 (q, J = 31.3 Hz), 131.0, 129.9, 129.4, 124.1 (q, J = 5.0 Hz), 121.4 (q, J = 273.9 Hz), 99.6, 43.9, 11.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.2 ppm; HRMS (ESI–TOF) m/z: [M+Na]⁺ calcd. for C₁₂H₁₁F₃INNaO: 391.9730, found 391.9727.

N-Benzyl-*N*-(2-iodophenyl)-2-(trifluoromethyl)acrylamide (1c'):¹

According to **GP–I**, amide coupling of *N*-benzyl-2-iodoaniline (1.3 mL, 7 mmol) with 2-(trifluoromethyl)acrylic acid (1.18 g, 8.4 mmol) afforded **1c'** (875 mg) in 29% yield as a white solid; $R_f = 0.26$ (5% EtOAc in hexane); Melting point: 53–55 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 7.9 Hz, 1H), 7.27–7.23 (m, 3H), 7.21–7.12 (m, 3H), 6.99 (td, J = 7.9, 1.0 Hz, 1H), 6.60 (d, J = 7.5 Hz, 1H), 5.83–5.69 (m, 3H), 4.14 (d, J = 14.3 Hz, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.4, 142.9, 140.3, 135.7, 134.2 (q, J = 31.5 Hz), 131.7, 130.0, 129.4, 129.1, 128.5, 127.9, 124.2 (bq, J = 5.0 Hz), 121.4 (q, J = 274.7 Hz), 99.3, 51.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.0 ppm.

N-(2-Iodo-4-methylphenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (1d'):

According to **GP–I**, amide coupling of 2-iodo-*N*,4-dimethylaniline (2.4 mL, 15 mmol) with 2-(trifluoromethyl)acrylic acid (2.52 g, 18 mmol) afforded **1d**' (2.0 g) in 36% yield as a yellow liquid; $R_f = 0.26$ (5% EtOAc

in hexane).

¹H NMR (500 MHz, CDCl₃) δ 7.71 (s, 1H), 7.16 (bd, J = 7.8 Hz, 1H), 7.03 (bd, J = 8.0 Hz, 1H), 5.78 (s, 1H), 5.68 (s, 1H), 3.26 (s, 3H), 2.32 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.7 143.0, 140.7, 140.4, 134.0 (q, J = 31.5 Hz), 130.6, 128.9, 124.6 (q, J = 5.2 Hz), 121.4 (q, J = 274.0 Hz, one of quartet peak merged with other peaks), 98.3, 36.9, 20.4; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.2 ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₂H₁₂F₃INO: 369.9910, found 369.9906.

N-(4-Fluoro-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (1e'):

According to **GP–I**, amide coupling of 4-fluoro-2-iodo-*N*-methylaniline (2.1 mL, 15 mmol) with 2-(trifluoromethyl)acrylic acid (2.52 g, 18 mmol) afforded **1e**' (3.14 g) in 56% yield as a white solid; $R_f = 0.18$ (5% EtOAc in

hexane); Melting point: 59–61 °C. (Due to rotamers of 1e', we obtained the product as a mixture with minor isomer).

¹H NMR (500 MHz, CDCl₃) δ 7.60–7.54 (m, 1H), 7.17–7.04 (m, 2H), 5.78 (s, 1H), 5.67 (s, 1H), 3.241 (s, 1.67H), 3.235 (s, 1.32H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.5, 161.1 (d, J = 254.5 Hz), 141.9 (d, J = 3.2 Hz), 133.9 (q, J = 32.2 Hz), 130.1 (d, J = 8.7 Hz), 127.1 (d, J = 24.7 Hz), 124.6 (bq, J = 5.0 Hz), 121.2 (q, J = 273.9 Hz), 116.8 (d, J = 22.2 Hz), 98.5 (d, J = 8.6 Hz), 36.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.1, -64.8 (minor isomer), -(110.6–110.7) ppm; HRMS (ESI–TOF) *m/z*: [M+H]⁺ calcd. for C₁₁H₉F₄INO: 373.9659, found 373.9661.

N-(4-Chloro-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (1f'):

According to **GP–I**, amide coupling of 4-chloro-2-iodo-*N*-methylaniline (2.82 mL, 20 mmol) with 2-(trifluoromethyl)acrylic acid (3.36 g, 24 mmol) afforded **1f**' (2.89 g) in 37% yield as a yellow liquid; $R_f = 0.21$ (5% EtOAc

¹H NMR (500 MHz, CDCl₃) δ 7.88 (bs, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.09 (bd, J = 8.3 Hz, 1H), 5.82 (s, 1H), 5.69 (s, 1H), 3.26 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.5, 144.4, 139.7, 134.8, 134.0 (q, J = 31.8 Hz), 130.04, 129.96, 124.88 (q, J = 5.0 Hz), 121.3 (q, J = 274.0 Hz), 98.9, 36.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.1, -64.7 (minor isomer) ppm; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₁H₉ClF₃INO: 389.9364, found 389.9360.

in hexane). (Due to rotamers of 1f, we obtained the product as a mixture with minor isomer).

N-(4-Bromo-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (1g'):

According to **GP–I**, amide coupling of 4-bromo-2-iodo-*N*-methylaniline (4.0 g 15.1 mmol) with 2-(trifluoromethyl)acrylic acid (2.54 g, 18.12 mmol) afforded 1g' (3.22 g) in 49% yield as a white solid; $R_f = 0.39$ (10%

EtOAc in hexane); Melting point: 45–47 °C. (Due to rotamers of 1g', we obtained the product as a mixture with minor isomer).

¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 2.0 Hz, 1H), 7.51 (d, J = 8.2 Hz, 1H), 7.03 (d, J = 8.3, 1H), 5.83 (s, 1H), 5.69 (s, 1H), 3.26 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.5, 144.9, 142.5, 133.9 (q, J = 32.8 Hz), 133.1, 130.4, 124.9 (q, J = 5.0 Hz), 122.8, 121.3 (q, J = 274.0 Hz), 99.4, 36.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.2, -64.7 (minor isomer) ppm; HRMS (ESI–TOF) m/z: [M+H]⁺ calcd. for C₁₁H₉BrF₃INO: 433.8859, found 433.8858.

N-(4-Cyano-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (1h'):

According to **GP–I**, amide coupling of 3-iodo-4-(methylamino)benzonitrile (2.64 g, 10.23 mmol) with 2-(trifluoromethyl)acrylic acid (1.72 g, 12.27 mmol) afforded **1h**' (1.5 g) in

39% yield as a white solid; $R_f = 0.17$ (10% EtOAc in hexane); Melting point: 84–86 °C. (Due to rotamers of **1h**', we obtained the product as a mixture with minor isomer).

¹H NMR (500 MHz, CDCl₃) δ 8.19 (bs, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.33–7.23 (m, 1H), 5.85 (s, 1H), 5.67 (s, 1H), 3.29 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.2, 149.8, 143.7, 133.9 (q, J = 31.5 Hz, one quartet peak is merged with other peak), 133.4, 130.0, 125.4 (bq, J = 2.1 Hz,

quartet splitting is not clear), 121.1 (q, J = 273.9 Hz), 116.0, 113.9, 98.8, 36.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.2, -64.7 (minor isomer) ppm; HRMS (ESI–TOF) m/z: [M+H]⁺ calcd. for C₁₂H₉F₃IN₂O: 380.9706, found 380.9698.

N-(2-Iodo-4-(trifluoromethyl)phenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (1i'):

According to **GP–I**, amide coupling of 2-iodo-*N*-methyl-4-(trifluoromethyl)aniline (2.48 mL, 15 mmol) with 2-(trifluoromethyl)acrylic acid (2.52 g, 18 mmol) afforded **1i**' (3.0 g) in 47%

yield as a yellow liquid; $R_f = 0.50$ (10% EtOAc in hexane). (Due to rotamers of 1i', we obtained the product as a mixture with minor isomer).

¹H NMR (500 MHz, CDCl₃) δ 8.13 (s, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.28 (bd, J = 7.8 Hz, 1H), 5.83 (s, 1H), 5.68 (s, 1H), 3.28 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.3, 149.0, 137.4, 133.8 (q, J = 32.4 Hz), 131.8 (q, J = 33.5 Hz), 129.8, 127.0 (q, J = 3.5 Hz), 125.3 (bq, J = 4.6 Hz, quartet splitting is not clear), 122.3 (q, J = 273.4 Hz), 121.2 (q, J = 273.9 Hz), 98.6, 36.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.6, -64.2, -64.7 (minor isomer) ppm; HRMS (ESI–TOF) *m/z*: [M+H]⁺ calcd. for C₁₂H₉F₆INO: 423.9628, found 423.9622.

N-(2-Iodo-5-methylphenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (1j'):

According to **GP–I**, amide coupling of 2-iodo-*N*,5-dimethylaniline (2.94 g, 14.67 mmol) with 2-(trifluoromethyl)acrylic acid (2.46 g, 17.6 mmol) afforded **1**j' (3.07 g) in 57% yield as a white solid; $R_f = 0.17$ (5% EtOAc in

hexane); Melting point: 81-83 °C. (Due to rotamers of 1j', we obtained the product as a mixture with minor isomer).

¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 1H), 6.99 (s, 1H), 6.87 (d, J = 8.0 Hz, 1H), 5.78 (s, 1H), 5.68 (s, 1H), 3.27 (s, 3H), 2.29 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.7, 145.5, 140.4, 139.9, 134.0 (q, J = 31.7 Hz), 130.9, 130.2, 124.6 (q, J = 5.0 Hz), 121.4 (q, J = 277.2Hz), 94.2, 36.8, 20.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.2, -64.8 (minor isomer) ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₂H₁₂F₃INO: 369.9910, found 369.9906.

N-(5-Fluoro-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (1k'):

According to **GP–I**, amide coupling of 5-fluoro-2-iodo-*N*-methylaniline (2.41 g, 11.8 mmol) with 2-(trifluoromethyl)acrylic acid (1.98 g, 14.2 mmol) afforded **1k**' (1.18 g) in 27% yield as a white solid; $R_f = 0.14$ (5% EtOAc in

hexane); Melting point: 50–52 °C. (Due to rotamers of 1k', we obtained the product as a mixture with minor isomer).

¹**H** NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 8.7, 5.9, Hz, 1H), 6.94 (d, J = 7.5 Hz, 1H), 6.85 (td, J = 8.3, 2.7 Hz, 1H), 5.83 (s, 1H), 5.71 (s, 1H), 3.28 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.5, 163.2 (d, J = 252.3 Hz), 146.9 (d, J = 8.8 Hz), 141.2 (d, J = 8.3 Hz), 133.9 (q, J = 31.9 Hz), 125.0 (bq, J = 4.6 Hz), 121.2 (q, J = 273.8 Hz), 117.7 (d, J = 21.5 Hz), 117.2 (d, J = 22.8 Hz), 91.9 (d, J = 2.9 Hz), 36.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.2, -64.8 (minor isomer) -110.3 (dd, J = 13.4, 6.8 Hz) ppm; HRMS (ESI–TOF) *m/z*: [M+H]⁺ calcd. for C₁₁H₉F₄INO: 373.9659, found 373.9655.

N-(5-Chloro-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (11'):

According to **GP–I**, amide coupling of 5-chloro-2-iodo-*N*-methylaniline (4.01 g, 15 mmol) with 2-(trifluoromethyl)acrylic acid (2.52 g, 18 mmol) afforded **1**I' (3.0 g) in 51% yield as a white solid; $R_f = 0.19$ (5% EtOAc in

hexane); Melting point: 85-87 °C. (Due to rotamers of 11', we obtained the product as a mixture with minor isomer).

¹**H** NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.5 Hz, 1H), 7.18 (bs, 1H), 7.06 (dd, J = 8.5, 2.1 Hz, 1H), 5.84 (s, 1H), 5.69 (s, 1H), 3.28 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.4, 146.7, 141.0, 135.6, 134.0 (q, J = 31.9 Hz), 130.2, 129.8, 125.0 (bq, J = 4.5 Hz), 121.3 (q, J = 276.4 Hz), 96.0, 36.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.2, -64.7 (minor isomer) ppm; HRMS (ESI–TOF) m/z: [M+H]⁺ calcd. for C₁₁H₉ClF₃INO: 389.9364, found 389.9366.

(Z)-N-(2-Iodophenyl)-N-methyl-3-phenyl-2-(trifluoromethyl)acrylamide (3a):

According to **GP–I**, amide coupling of 3-phenyl-2-(trifluoromethyl)acrylic acid³ (864 mg, 4.0 mmol, used ~30:70 to ~40:60 ratio of *Z/E* isomer compound) with 2-iodo-*N*-methylaniline (769 mg, 3.3 mmol) afforded the desired amide **3a** (714 mg) in 50% yield as a white solid; $R_f = 0.22$ (3%

EtOAc, 30% DCM in hexane); Melting point: 83-85 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 7.9 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.31–7.21 (m, 4H), 7.15 (s, 1H), 7.10–7.04 (m, 3H), 3.35 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.4 (q, J = 2.7 Hz), 145.8, 140.4, 140.0 (q, J = 3.7 Hz), 132.3, 129.95, 129.94, 129.8, 129.4, 128.7 (q, J = 2.6 Hz), 128.2, 126.1 (q, J = 32.4 Hz), 121.6 (q, J = 274.9 Hz), 98.4, 36.7; ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -56.7 ppm; HRMS (ESI–TOF) *m*/*z*: [M+Na]⁺ calcd. for C₁₇H₁₃IF₃NONa: 453.9886, found 453.9892.

Note: The independent amide coupling with *E*-isomer resulted in the E/Z isomerization. Therefore, the overall yield of *Z*-amide is higher.

Note: Compounds 3a' and 3a'' are prepared according to the reported procedure.²

(Z)-N-Benzyl-N-(2-iodophenyl)-3-phenyl-2-(trifluoromethyl)acrylamide (3b):

According to **GP–I**, amide coupling of 3-phenyl-2-(trifluoromethyl)acrylic acid³ (864 mg, 4.0 mmol, used ~30:70 to ~40:60 ratio of *Z/E* isomer compound) with *N*-benzyl-2-iodoaniline (1.0 g, 3.3 mmol) afforded the desired amide **3b** (949 mg) in 47% yield as a white solid; $R_f = 0.38$ (3%

EtOAc, 30% DCM in hexane); Melting point: 74–76 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 7.9 Hz, 1H), 7.30–7.20 (m, 8H), 7.18 (s, 1H), 7.14 (t, J = 7.6 Hz, 1H), 7.10–7.03 (m, 2H), 6.99 (t, J = 7.7 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 5.82 (d, J = 14.3 Hz, 1H), 4.21 (d, J = 14.3 Hz, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.0 (q, J = 2.4 Hz), 142.9, 140.2, 139.4 (q, J = 4.0 Hz), 135.8, 132.2, 131.8, 129.9, 129.34, 129.32, 129.2, 128.7 (bq, J = 2.4 Hz), 128.4, 128.2, 127.8, 126.1 (q, J = 32.5 Hz), 121.6 (q, J = 274.9 Hz), 99.1, 51.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -56.5 ppm; HRMS (ESI–TOF) m/z: [M+Na]⁺ calcd. for C₂₃H₁₇IF₃NONa: 530.0199, found 530.0215.

(Z)-N-(2-Iodo-4-methylphenyl)-N-methyl-3-phenyl-2-(trifluoromethyl)acrylamide (3c):

According to **GP–I**, amide coupling of 3-phenyl-2-(trifluoromethyl)acrylic acid³ (1.3 g, 6.0 mmol, used ~30:70 to ~40:60 ratio of Z/E isomer compound) with 2-iodo-*N*,4-dimethylaniline (1.2 g, 5.0 mmol) afforded the desired amide **3c** (796 mg) in 36% yield as a

yellow solid; $R_f = 0.22$ (3% EtOAc, 30% DCM in hexane); Melting point: 61–63 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.78 (s, 1H), 7.32–7.27 (m, 3H), 7.20–7.14 (m, 2H), 7.14–7.08 (m, 3H), 3.32 (s, 3H), 2.33 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.6 (bq, J = 2.7 Hz), 143.1, 140.7, 140.3, 139.8 (q, J = 3.7 Hz), 132.4, 130.6, 129.4, 129.2, 128.9 (bq, J = 2.6 Hz), 128.3, 126.2 (q, J = 32.5 Hz), 121.6 (q, J = 275.0 Hz), 98.2, 36.8, 20.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -56.6 ppm; HRMS (ESI–TOF) *m*/*z*: [M+Na]⁺ calcd. for C₁₈H₁₅IF₃NONa: 468.0043, found 468.0045.

(Z)-N-(4-Fluoro-2-iodophenyl)-N-methyl-3-phenyl-2-(trifluoromethyl)acrylamide (3d):

The above method **GP–I**, amide coupling of 3-phenyl-2-(trifluoromethyl)acrylic acid³ (259 mg, 1.2 mmol, used ~30:70 to ~40:60 ratio of Z/E isomer compound) with 4-fluoro-2-iodo-*N*methylaniline (251 mg, 1.0 mmol) afforded the desired amide **3d** (145

mg) in 32% yield as a yellow solid; $R_f = 0.22$ (3% EtOAc, 30% DCM in hexane); Melting point: 65–67 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.67 (dd, J = 7.5, 2.7 Hz, 1H), 7.34–7.27 (m, 3H), 7.22 (dd, J = 8.6, 5.3 Hz, 1H), 7.17 (s, 1H), 7.15–7.08 (m, 3H), 3.32 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.4 (bq, J = 2.0 Hz), 161.2 (d, J = 254.7 Hz), 142.1 (d, J = 3.3 Hz), 140.1 (q, J = 3.7 Hz), 132.1, 130.5 (d, J = 8.6 Hz), 129.6, 128.9 (q, J = 2.3 Hz), 128.4, 127.2 (d, J = 24.6 Hz), 126.2 (q, J = 32.5 Hz), 121.5 (q, J = 274.8 Hz), 116.9 (d, J = 22.1 Hz), 98.5 (d, J = 8.8 Hz), 36.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -56.5, -110.5 (q, J = 7.0 Hz); HRMS (ESI–TOF) *m/z*: [M+Na]⁺ calcd. for C₁₇H₁₂IF₄NONa: 471.9792, found 471.9792.

(*Z*)-*N*-(2-Iodophenyl)-*N*-methyl-2-(trifluoromethyl)-3-(4-trifluoromethyl)phenyl) acrylamide (3e):

The above method **GP–I**, amide coupling of 2-(trifluoromethyl)-3-(4-(trifluoromethyl)phenyl)acrylic acid³ (444 mg, 1.2 mmol, used ~30:70 to ~40:60 ratio of *Z/E* isomer compound) with 2-iodo-*N*-methylaniline (303 mg, 1.3 mmol) afforded the desired amide **3e** (306 mg) in 47%

yield as a white solid; $R_f = 0.28$ (3% EtOAc, 30% DCM in hexane); Melting point: 45–47 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 7.9 Hz, 1H), 7.53 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 7.4 Hz, 1H), 7.19 (s, 1H), 7.16–7.08 (m, 3H), 3.36 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 164.7 (bq, J = 2.5 Hz), 145.5, 140.5, 138.2 (q, J = 3.8 Hz), 135.9, 131.1 (q, J = 32.8 Hz), 130.2, 130.1, 129.8, 128.7 (bq, J = 2.4 Hz), 128.4 (q, J = 32.6 Hz), 125.3 (q, J = 3.7 Hz), 123.7 (q, J = 272.3 Hz), 121.2 (q, J = 275.1 Hz), 98.5, 36.7; ¹⁹F NMR (377 MHz, CDCl₃) δ -56.5, -62.9 ppm; HRMS (ESI–TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₈H₁₃IF₆NO: 499.9941, found 499.9954.

2.2 General Procedure for the Synthesis of *o*-Iodoaryl *gem*-Difluoro and Monofluoro Acrylamides (GP-II & III):

Scheme S2. Synthesis of o-iodoaryl gem-difluoro and monofluoromethyl acrylamides.

General Procedure-II (GP-II): A round bottom flask equipped with a magnetic stir bar was charged with *o*-iodo trifluoromethyl acrylamide **1'** (1.0 equiv) and sodium borohydride (0.4 equiv). Later, the RB was introduced into the glove box to add THF (0.5 M). Then, the reaction was stirred inside the glove box at room temperature for 2 hours. After completion of the reaction (monitored by TLC), the reaction mixture was washed with water and extracted with DCM (3 times). The combined organic solution was dried over anhydrous Na₂SO₄, filtered, and concentrated in a rotary evaporator. The residue was purified by SiO₂ column chromatography (100–200 mesh) using a mixture of hexane, DCM, and ethyl acetate to afford the desired acrylamides (**5a-5l**).

A similar procedure has been followed to prepare monofluoromethyl acrylamides (**7a-7e**) from *gem*-difluoro methyl acrylamides (**GP-III**).

Figure S4. N-(2-Haloaryl) gem-difluoro and monofluoro methyl acrylamides.

Characterization Data of o-Iodoaryl gem-Difluoro and Monofluoro Acrylamides:

3,3-Difluoro-*N*-(2-iodophenyl)-*N*, 2-dimethyl acrylamide (5a)⁴:

According to **GP–II**, the reaction of *N*-(2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1a'**, 178 mg, 0.5 mmol) with NaBH₄ (7.5 mg, 0.2 mmol) afforded the desired amide **5a** (115 mg) in 68% yield as a white

solid; $R_f = 0.28$ (3% EtOAc, 30% DCM in hexane); Melting point: 71–73 °C (89:11 mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹**H NMR (500 MHz, CDCl₃)** δ 7.90 (d, J = 7.9 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.28–7.23 (m, 1H), 7.06 (t, J = 7.5 Hz, 1H), 3.30 (s, 0.3H), 3.27-3.22 (m, 2.7H), 1.65 (bq, J = 3.2 Hz, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 166.0 (dd, J = 9.2, 3.5 Hz), 153.2 (t, J = 290.6 Hz), 145.4, 144.9*, 140.2, 140.0*, 129.8, 129.6*, 129.4, 129.1 (d, J = 2.7 Hz), 128.5*, 98.3, 97.6*, 86.0 (dd, J = 22.0, 17.8 Hz), 38.5*, 36.9, 11.2, 10.7*; ¹⁹F **NMR (377 MHz, CDCl₃)** δ -(78.95–79.35) (m, 1F), -81.7* (d, J = 37.0 Hz, 0.13F), -(89.36–89.60) (m, 1F), -90.3* (d, J = 36.6 Hz, 0.13F) ppm; **HRMS (ESI–TOF)** m/z: [M+H]⁺ calcd. for C₁₁H₁₁IF₂NO: 337.9848, found 337.9843.

N-Ethyl-3,3-difluoro-*N*-(2-iodophenyl)-2-methylacrylamide (5b):

According to **GP–II**, the reaction of *N*-(2-iodophenyl)-*N*-ethyl-2-(trifluoromethyl)acrylamide (**1b'**, 369 mg, 1.0 mmol) with NaBH₄ (15 mg, 0.4 mmol) afforded the desired amide **5b** (147 mg) in 42% yield as a yellow liquid along with (E)-*N*-ethyl-3-fluoro-*N*-(2-iodophenyl)-2-

methylacrylamide (85 mg, 25% yield); $R_f = 0.32$ (3% EtOAc, 30% DCM in hexane). (89:11 mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹**H NMR (500 MHz, CDCl₃)** δ 7.92 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.20 (bd, J = 7.8 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 4.22 (dq, J = 14.2, 7.2 Hz, 1H), 3.80 (td, J = 13.9, 6.8 Hz, 0.16H), 3.56 (dt, J = 21.3, 7.0 Hz, 0.16H), 3.28 (dq, J = 14.2, 7.1 Hz, 1H), 1.95 (s, 0.31H), 1.71 (s, 0.29H), 1.62 (bt, J = 3.0 Hz, 3H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 165.5 (dd, J = 9.2, 3.1 Hz), 153.1 (dd, J = 291.2, 289.6 Hz), 143.5, 140.2, 130.3 (d, J = 2.8 Hz), 129.8, 128.9, 99.4, 86.3 (dd, J = 21.6, 18.2 Hz), 43.9, 12.5, 11.1; ¹⁹F **NMR (377 MHz, CDCl₃)** δ -79.9 (dp, J = 33.8, 3.8 Hz, 1F), -82.7* (d, J = 39.4 Hz, 0.11F), -90.2 (dq, J = 33.2, 3.0 Hz, 1F), -91.2* (d, J = 37.4 Hz, 0.11F) ppm; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calcd. for C₁₂H₁₃IF₂NO: 352.0004, found 351.9995.

N-Benzyl-3,3-difluoro-*N*-(2-iodophenyl)-2-methylacrylamide (5c):

According to **GP–II**, the reaction of *N*-(2-iodophenyl)-*N*-benzyl-2-(trifluoromethyl)acrylamide (**1c'**, 790 mg, 1.5 mmol) with NaBH₄ (23 mg, 0.6 mmol) afforded the desired amide **5c** (304 mg) in 49% yield as a white solid; $R_f = 0.46$ (3% EtOAc, 30% DCM in hexane); Melting point: 47–49 °C. (91:09

mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹**H NMR (500 MHz, CDCl₃)** δ 7.90 (d, J = 7.9 Hz, 1H), 7.30–7.23 (m, 3H), 7.22–7.13 (m, 3H), 7.01 (t, J = 7.6 Hz, 1H), 6.77 (d, J = 7.8 Hz, 1H), 5.68 (d, J = 14.4 Hz, 1H), 4.11 (d, J = 14.4 Hz, 1H), 1.67 (bt, J = 2.9 Hz, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 165.9 (dd, J = 9.1, 3.2 Hz), 153.0 (dd, J = 291.6, 289.5 Hz), 143.0, 140.0, 136.2, 130.7 (d, J = 3.0 Hz), 129.9, 129.1, 128.6, 128.4, 127.6, 99.2, 86.1 (dd, J = 21.9, 18.2 Hz), 52.0, 11.2; ¹⁹F **NMR (377 MHz, CDCl₃)** δ - (79.30–79.65) (m, 1F), -80.8* (d, J = 36.0 Hz, 0.07F), -(89.85–90.10) (m, 1F), -90.3* (d, J = 35.1 Hz, 0.09F) ppm; **HRMS (ESI–TOF)** m/z: [M+H]⁺ calcd. for C₁₇H₁₅IF₂NO: 414.0161, found 414.0160.

3,3-Difluoro-N-(2-iodo-4-methylphenyl)-N, 2-dimethylacrylamide (5d):

According to **GP–II**, the reaction of *N*-(2-iodo-4-methylphenyl)-*N*methyl-2-(trifluoromethyl)acrylamide (**1d'**, 369 mg, 1.0 mmol) with NaBH₄ (15 mg, 0.4 mmol) afforded the desired amide **5d** (202 mg) in

57% yield as a yellow liquid; $R_f = 0.31$ (3% EtOAc, 30% DCM in hexane). (88:12 mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹**H NMR (400 MHz, CDCl₃)** δ 7.71 (bd, J = 1.0 Hz, 1H), 7.19–7.09 (m, 2H), 3.21 (s, 3H), 2.32 (s, 3H), 1.64 (t, J = 3.1 Hz, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 166.2 (dd, J = 9.1, 3.0 Hz), 153.1 (t, J = 290.6 Hz), 142.7, 140.4, 140.2, 130.1, 128.5 (d, J = 2.6 Hz), 98.0, 86.0 (dd, J = 22.0, 18.0 Hz), 36.9, 20.5, 11.2; ¹⁹F **NMR (377 MHz, CDCl₃)** δ -(79.32–79.53) (m, 1F), -81.8* (d, J = 37.2 Hz, 0.12F), -(89.75–89.86) (m, 1F), -90.4* (dd, J = 37.3, 2.1 Hz, 0.12F, broad peaks) ppm; **HRMS (ESI–TOF)** m/z: [M+H]⁺ calcd. for C₁₂H₁₃IF₂NO: 352.0004, found 351.9994.

3,3-Difluoro-N-(4-fluoro-2-iodophenyl)-N, 2-dimethylacrylamide (5e):

According to **GP–II**, the reaction of *N*-(4-fluoro-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1e'**, 186.5 mg, 0.5 mmol) with NaBH₄ (7.5 mg, 0.2 mmol) afforded the desired amide **5e** (85 mg) in 48% yield as a white solid; $R_f = 0.31$ (3% EtOAc, 30% DCM in hexane); Melting point:

50–52 °C. (87:13 mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹**H NMR (400 MHz, CDCl₃)** δ 7.61 (dd, J = 7.6, 2.8 Hz, 1H), 7.26–7.21 (m, 1H), 7.14–7.08 (m, 1H), 3.28* (s, 0.4H), 3.22 (s, 3H), 1.90* (t, J = 2.4 Hz, 0.4H), 1.67 (bt, J = 3.1 Hz, 3H); ¹³C{¹H} **NMR (101 MHz, CDCl₃)** δ 165.9 (dd, J = 10.2, 3.8 Hz), 161.0 (d, J = 254.2 Hz), 152.9 (dd, J = 291.9, 290.2 Hz), 141.6 (d, J = 4.1 Hz), 129.6 (dd, J = 9.2, 3.3 Hz), 126.7 (d, J = 24.8 Hz), 116.3 (d, J = 22.4 Hz), 98.1 (d, J = 8.9 Hz), 85.8 (dd, J = 22.2, 17.9 Hz), 36.8, 11.2; ¹⁹**F NMR (377 MHz, CDCl₃)** δ -(78.78–79.06) (m, 1F), -81.6* (d, J = 36.2 Hz, 0.16F), -(89.20–89.50) (m, 1F), -90.0* (d, J = 36.4 Hz, 0.15F), 110.9 (dd, J =13.3, 7.4 Hz, 1F), -111.9 (dd, J =13.1, 7.1 Hz, 0.14F) ppm; **HRMS (ESI–TOF)** *m/z*: [M+H]⁺ calcd. for C₁₁H₁₀F₃NO: 355.9754, found 355.9751.

N-(4-Chloro-2-iodophenyl)-3,3-difluoro-*N*, 2-dimethylacrylamide (5f):

According to **GP–II**, the reaction of *N*-(4-chloro-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1f**', 389 mg, 1.0 mmol) with NaBH₄ (15 mg, 0.4 mmol) afforded the desired amide **5f** (216 mg) in 58% yield as a white

solid; $R_f = 0.31$ (3% EtOAc, 30% DCM in hexane); Melting point: 44–46 °C. (85:15 mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹**H NMR (400 MHz, CDCl₃)** δ 7.86 (d, J = 2.3 Hz, 1H), 7.35 (dd, J = 8.4, 2.3 Hz, 1H), 7.16 (dd, J = 8.4, 2.8 Hz, 1H), 3.26* (s, 0.45H), 3.20 (s, 3H), 1.91* (bt, J = 4.0 Hz, 0.6H), 1.65 (t, J = 3.2 Hz, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 165.8 (dd, J = 9.2, 3.3 Hz), 153.1 (dd, J = 292.2, 290.4 Hz), 144.0, 139.4, 134.6, 129.53, 129.46 (d, J = 2.9 Hz), 98.5, 85.8 (dd, J = 21.9, 17.7 Hz), 36.8, 11.2; ¹⁹F **NMR (377 MHz, CDCl₃)** δ -(78.48–78.64) (m, 1F), -81.3* (d, J = 35.8 Hz, 0.18F), -(88.71–88.88) (m, 1F), -89.7* (dd, J = 36.0, 1.5 Hz, 0.18F) ppm; **HRMS (ESI–TOF)** *m/z*: [M+H]⁺ calcd. for C₁₁H₁₀ClIF₂NO: 371.9458, found 371.9455.

N-(4-Bromo-2-iodophenyl)-3,3-difluoro-*N*, 2-dimethylacrylamide (5g):

According to **GP–II**, the reaction of *N*-(4-bromo-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1g'**, 217 mg, 0.5 mmol) with NaBH₄ (7.5 mg, 0.2 mmol) afforded the desired amide **5g** (85 mg) in 47% yield as a white solid; $R_f = 0.33$ (3% EtOAc, 30% DCM in hexane);

Melting point: 46–48 °C. (86:14 mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 2.1 Hz, 1H), 7.51 (dd, J = 8.4, 1.9 Hz, 1H), 7.12 (dd, J = 8.4, 2.6 Hz, 1H), 3.27* (s, 0.43H), 3.22 (s, 3H), 1.93* (bs, 0.45H), 1.67 (bt, J = 3.0 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.9 (dd, J = 9.2, 3.2 Hz), 153.2 (dd, J = 292.3, 290.5 Hz), 144.6, 142.2, 132.6, 129.9 (d, J = 2.9 Hz), 122.6, 99.1, 85.9 (dd, J = 22.0, 17.7 Hz), 36.8, 11.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -(78.36–78.60) (m, 1F), -81.2* (d, J = 35.5 Hz, 0.17F), -(88.56–88.74) (m, 1F), -89.6* (d, J = 35.5 Hz, 0.17F) ppm; HRMS (ESI–TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₁H₁₀BrIF₂NO: 415.8953, found 415.8946.

N-(4-Cyano-2-iodophenyl)-3,3-difluoro-*N*, 2-dimethylacrylamide (5h):

According to **GP–II**, the reaction of *N*-(4-cyano-2-iodophenyl)-*N*methyl-2-(trifluoromethyl)acrylamide (**1h'**, 362 mg, 1.0 mmol) with NaBH₄ (15 mg, 0.4 mmol) afforded the desired amide **5h** (144 mg) in 40% yield as a white solid; $R_f = 0.11$ (3% EtOAc, 30% DCM in hexane);

Melting point: 84–86 °C. (78:22 mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹**H NMR (500 MHz, CDCl₃)** δ 8.20 (s, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 3.25 (bs, 3H), 1.70 (bs, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 165.6 (bd, J = 10.1 Hz), 153.4 (dd, J = 293.5, 291.2 Hz), 149.7, 143.5, 132.9, 129.6, 116.2, 113.8, 98.6, 85.9 (dd, J = 22.0, 16.6 Hz), 36.9, 11.4; ¹⁹**F NMR (377 MHz, CDCl₃)** δ -77.3 (d, J = 28.3, 1F), -80.4* (d, J = 34.1 Hz, 0.28F), -87.2 (d, J = 28.4 Hz, 1F), -88.7* (d, J = 32.5 Hz, 0.31F) ppm; **HRMS (ESI-TOF)** *m/z*: [M+H]⁺ calcd. for C₁₂H₁₀F₂IN₂O: 362.9800, found 362.9796.

3,3-Difluoro-N-(2-iodo-4-(trifluoromethyl)phenyl)-N, 2-dimethylacrylamide (5i):

According to **GP–II**, the reaction of N–(2-iodo-4-(trifluoromethyl)phenyl)-N-methyl-2-(trifluoromethyl)acrylamide (1i', 405 mg, 1.0 mmol) with NaBH₄ (15 mg, 0.4 mmol) afforded the desired amide **5i** (223 mg) in 55% yield as a white solid along with (*E*)-3-Fluoro-

N-(2-iodo-4-(trifluoromethyl)phenyl)-*N*,2-dimethylacrylamide (66 mg, 17% yield); $R_f = 0.30$ (3% EtOAc, 30% DCM in hexane); Melting point: 66–68 °C. (82:18 mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 1.0 Hz, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 3.30* (s, 0.51H), 3.25 (s, 3H), 1.94* (bs, 0.54H), 1.68 (bt, J = 2.9 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 165.7 (dd, J = 9.3, 3.3 Hz), 153.3 (dd, J = 292.7, 291.1 Hz), 148.7, 137.2 (bq, J = 3.6 Hz), 131.7 (q, J = 33.4 Hz), 129.3 (d, J = 2.7 Hz), 126.4 (bq, J = 3.3 Hz), 122.4 (q, J = 273.1 Hz), 98.3, 85.8 (dd, J = 21.9, 17.4 Hz), 36.8, 11.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.61 (3F), -62.64 (0.5F), -(77.84–78.02) (m, 1F), -80.9* (d, J = 35.9 Hz, 0.22F), -(87.82–88.00) (m, 1F), -89.2* (d, J = 35.9 Hz, 0.22F) ppm; HRMS (ESI–TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₂H₁₀F₅INO: 405.9722, found 405.9716.

3,3-Difluoro-N-(2-iodo-5-methylphenyl)-N, 2-dimethylacrylamide (5j):

According to **GP–II**, the reaction of *N*-(2-iodo-5-methylphenyl)-*N*methyl-2-(trifluoromethyl)acrylamide (**1j**', 2.0 g, 5.4 mmol) with NaBH₄ (82 mg, 2.17 mmol) afforded the desired amide **5j** (793 mg) in 42% yield

as a yellow liquid; $R_f = 0.30$ (3% EtOAc, 30% DCM in hexane). (86:14 mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 1H), 7.06 (s, 1H), 6.87 (d, J = 7.3 Hz, 1H), 3.27* (s, 0.42H), 3.22 (s, 3H), 2.31 (s, 3H), 1.93* (bs, 0.43H), 1.64 (bt, J = 3.0 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.0 (dd, J = 9.1, 3.3 Hz), 153.1 (t, J = 290.6 Hz), 145.1, 139.8, 139.7, 130.8, 129.7 (d, J = 2.6 Hz), 93.9, 86.1 (dd, J = 21.9, 17.9 Hz), 36.8, 20.7, 11.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -(79.42–79.56) (m, 1F), -81.8* (d, J = 37.0 Hz, 0.17F), -(89.63–89.79) (m, 1F), -(90.31–90.46)* (m, 0.16F) ppm; HRMS (ESI–TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₂H₁₃F₂INO: 352.0004, found 351.9995.

3,3-Difluoro-N-(5-fluoro-2-iodophenyl)-N, 2-dimethylacrylamide (5k):

According to **GP–II**, the reaction of *N*-(5-fluoro-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1k'**, 1.18 g, 3.17 mmol) with NaBH₄ (48 mg, 1.27 mmol) afforded the desired amide **5k** (634 mg) in 56% yield as a yellow liquid; $R_f = 0.33$ (3% EtOAc, 30% DCM in hexane). (83:17 mixture

of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark).

¹**H NMR (500 MHz, CDCl₃)** δ 7.83 (dd, J = 8.8, 6.0 Hz 1H), 7.01 (dt, J = 8.8, 2.6 Hz, 1H), 6.86 (td, J = 8.6, 2.8 Hz, 1H), 3.28* (s, 0.49H), 3.22 (s, 3H), 1.92* (bs, 0.48H), 1.67 (bt, J = 3.1 Hz, 3H); ¹³**C**{¹**H**} **NMR (126 MHz, CDCl₃)** δ 165.8 (dd, J = 9.1, 3.5 Hz), 162.9 (d, J = 251.0 Hz), 153.2 (t, J = 291.5 Hz), 146.6 (d, J = 9.6 Hz), 140.8 (d, J = 8.5 Hz), 117.5 (d, J = 21.5 Hz), 116.7 (dd, J = 22.6, 2.8 Hz), 91.5 (d, J = 3.8 Hz), 85.9 (dd, J = 22.0, 17.6 Hz), 36.8, 11.2; ¹⁹**F NMR (377 MHz, CDCl₃)** δ -(78.39–78.55) (m, 1F), -81.1* (d, J = 35.5 Hz, 0.20F), -(88.47–88.67) (m, 1F), -89.6* (d, J = 35.4 Hz, 0.20F), -111.1 (bq, J = 6.4 Hz, 1F), -111.3 (bq, J = 6.4 Hz, 0.20F) ppm; **HRMS (ESI–TOF)** m/z: [M+H]⁺ calcd. for C₁₁H₁₀F₃INO: 355.9754, found 355.9750.

N-(5-Chloro-2-iodophenyl)-3,3-difluoro-*N*, 2-dimethylacrylamide (5l):

According to GP-II, the reaction of N-(5-chloro-2-iodophenyl)-Nmethyl-2-(trifluoromethyl)acrylamide (11', 389 mg, 1.0 mmol) with NaBH₄ (15 mg, 0.4 mmol) afforded the desired amide **5**I (181 mg) in 49%

yield as a white solid; $R_f = 0.41$ (3% EtOAc, 30% DCM in hexane); Melting point: 68–70 °C. (82:18 mixture of isomers based on ¹⁹F NMR ratio, the minor isomer highlighted with star mark). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 1H), 7.26 (bs, 1H), 7.08 (bd, J = 8.3 Hz, 1H), 3.29* (s, 0.60H), 3.23 (s, 2.4H), 1.94* (bs, 0.54H), 1.69 (bs, 2.4H); ¹³C{¹H} NMR (101 MHz, **CDCl**₃) δ 165.7 (dd, J = 9.0, 3.3 Hz), 153.2 (t, J = 291.7 Hz), 146.4, 140.7, 135.0, 130.1, 129.3 (d, J = 2.8 Hz), 95.6, 85.8 (dd, J = 22.0, 17.5 Hz), 36.8, 11.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -(78.25-78.42) (m, 1F), -81.0^* (d, J = 35.3 Hz, 0.22F), -(88.31-88.48) (dd, J = 30.7, 2.4 Hz, 1F), -89.5* (d, J = 35.5 Hz, 0.22F) ppm; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calcd. for C₁₁H₁₀ClIF₂NO: 371.9458, found 371.9455.

(*E*)-3-Fluoro-*N*-(2-iodophenyl)-*N*,2-dimethyl acrylamide (7a):

According to **GP-III**, the reaction of 3,3-difluoro-*N*-(2-iodophenyl)-*N*,2dimethyl acrylamide (5a, 101 mg, 0.3 mmol) with NaBH₄ (4.5 mg, 0.12 mmol) afforded the desired amide 7a (42 mg) in 44% yield as a white solid; $R_f = 0.18$ (3% EtOAc 30% DCM in hexane); Melting point: 60–62 °C.

¹**H NMR (500 MHz, CDCl**₃) δ 7.90 (d, J = 7.1 Hz, 1H), 7.38 (bt, J = 6.8 Hz, 1H), 7.16 (bd, J =6.7 Hz, 1H), 7.04 (bt, J = 7.8 Hz, 1H), 6.75 (d, J = 82.7 Hz, 1H), 3.23 (s, 3H), 1.64 (s, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 168.7 (d, J = 15.1 Hz), 152.7 (d, J = 267.6 Hz), 146.5, 140.4, 129.7, 129.5, 129.1, 116.7 (d, J = 9.2 Hz), 99.0, 37.4, 10.7 (d, J = 5.3 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -123.6 (d, J = 82.0 Hz) ppm; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calcd. for C₁₁H₁₂FINO: 319.9942, found 319.9958.

(E)-3-Fluoro-N-(4-fluoro-2-iodophenyl)-N, 2-dimethylacrylamide (7b):

According to GP-III, the reaction of 3,3-difluoro-N-(4-fluoro-2iodophenyl)-N,2-dimethylacrylamide (5e, 476 mg, 1.3 mmol) with NaBH₄ (18 mg, 0.48 mmol) afforded the desired amide 7b (274 mg) in 63% yield

as a white solid; $R_f = 0.20$ (3% EtOAc, 30% DCM in hexane); Melting point: 56–58 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.58 (d, J = 6.8 Hz, 1H), 7.17–7.03 (m, 2H), 6.74 (d, J = 82.7 Hz, 1H), 3.18 (s, 3H), 1.62 (s, 3H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ 168.6 (d, J = 15.1 Hz), 160.8 (d, J = 254.0 Hz), 152.4 (d, J = 276.2 Hz), 142.7, 129.6 (d, J = 8.6 Hz), 127.0 (d, J = 24.6 Hz)116.7 (d, J = 22.3 Hz), 116.5 (d, J = 9.2 Hz), 98.8 (d, J = 8.5 Hz), 37.4, 10.6 (d, J = 5.3 Hz); ¹⁹F **NMR (377 MHz, CDCl₃)** δ -111.4, -123.2 (bd, J = 79.4 Hz) ppm; **HRMS (ESI-TOF)** m/z: $[M+H]^+$ calcd. for C₁₁H₁₁F₂INO: 337.9848, found 337.9844.

(E)-N-(4-Bromo-2-iodophenyl)-3-fluoro-N, 2-dimethylacrylamide (7c):

According to GP-III, the reaction of N-(4-bromo-2-iodophenyl)-3,3difluoro-N,2-dimethylacrylamide (5g, 250 mg, 0.6 mmol) with NaBH₄ (9.0 mg, 0.24 mmol) afforded the desired amide 7c (150 mg) in 63% yield as a white solid; $R_f = 0.21$ (3% EtOAc, 30% DCM in hexane); Melting point: 65–67 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.04 (s, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.03 (d, J = 8.3 Hz, 1H), 6.76 (d, J = 82.4 Hz, 1H), 3.20 (s, 3H), 1.66 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 168.6 (d, J = 15.1 Hz), 152.7 (d, J = 270.4 Hz), 145.7, 142.4, 132.9, 130.0, 122.1, 116.6 (d, J = 9.4 Hz), 99.7, 37.4, 10.7 (d, J = 5.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -123.8 (d, J = 79.4 Hz) ppm; **HRMS (ESI-TOF)** *m/z*: [M+H]⁺ calcd. for C₁₁H₁₁BrFINO: 397.9047, found 397.9066.

(E)-3-Fluoro-N-(2-iodo-5-methylphenyl)-N, 2-dimethylacrylamide (7d):

According to GP-III, the reaction of 3,3-difluoro-N-(2-iodo-5methylphenyl)-N,2-dimethylacrylamide (5j, 420 mg, 1.2 mmol) with NaBH₄ (18 mg, 0.48 mmol) afforded the desired amide 7d (300 mg) in

75% yield as a white solid; $R_f = 0.21$ (3% EtOAc, 30% DCM in hexane); Melting point: 58–60 °C.

¹**H NMR (500 MHz, CDCl**₃) δ 7.72 (d, J = 8.1 Hz, 1H), 6.97 (s, 1H), 6.84 (d, J = 8.2 Hz, 1H), 6.76 (d, J = 80.5 Hz, 1H, one of the doublet peak merged with previous peak), 3.20 (s, 3H), 2.30(s, 3H), 1.64 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 168.6 (d, J = 15.1 Hz), 152.5 (d, J =270.0 Hz), 146.2, 140.1, 139.9, 130.4, 129.7, 116.6 (d, J = 9.0 Hz), 94.6, 37.3, 20.8, 10.7 (d, J = 5.3 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -123.8 (d, J = 89.2 Hz, 1F) ppm; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd. for C₁₂H₁₃FINNaO: 355.9918, found 355.9922.

(E)-N-(5-Chloro-2-iodophenyl)-3-fluoro-N, 2-dimethylacrylamide (7e):

According to **GP–III**, the reaction of *N*-(5-chloro-2-iodophenyl)-3,3difluoro-*N*,2-dimethylacrylamide (**5**I, 175 mg, 0.47 mmol) with NaBH₄ (7.1 mg, 0.19 mmol) afforded the desired amide **7e** (96 mg) in 58% yield

as a white solid; $R_f = 0.28$ (3% EtOAc, 30% DCM in hexane); Melting point: 68–70 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.5 Hz, 1H), 7.17 (s, 1H), 7.05 (d, J = 8.5 Hz, 1H), 6.78 (d, J = 82.4 Hz, 1H), 3.22 (s, 3H), 1.69 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 168.5 (d, J = 15.2 Hz), 152.7 (d, J = 267.1 Hz), 147.6, 141.0, 135.4, 129.8, 129.3, 116.5 (d, J = 9.3 Hz), 96.3, 37.5, 10.7 (d, J = 5.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -123.8 (d, J = 82.8 Hz, 1F) ppm; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₁H₁₁ClFINO: 353.9552, found 353.9550.

3. Experimental Procedures:

3.1 General Procedure for Palladium-Catalyzed Reductive Heck Cyclization of Disubstituted CF₃-Acrylamides (GP-IV, racemic):

Scheme S3. Reductive Heck cyclization of *o*-halo trifluoromethyl acrylamide.

<u>General Procedure-IV (GP-IV)</u>: An oven-dried reaction vial (7.0 mL) equipped with a magnetic bead was charged with *o*-halo trifluoromethyl acrylamide (1, 1.0 equiv), $Pd(OAc)_2$ (10 mol%), HCOONa (2.5 equiv) and Ag₂CO₃ (0.4 equiv). Then the reaction vial was introduced inside the glove box and acetonitrile solvent (MeCN, 0.2 M) was added. The reaction vial was capped, taken outside, and stirred at 90 °C (oil bath/heating block) for 48 hours. After completion of the reaction (monitored by TLC), the vial was cooled to room temperature, the reaction mixture was diluted with DCM (10 mL) and filtered through a celite pad, and the filtrate was concentrated under vacuum. The crude mixture was then purified by column chromatography on silica gel (Hexane/Ethyl acetate/DCM) to afford the desired products (2).

Table S1.Scope study.

^{*a*}**Reaction Conditions: 1** (0.2 mmol), Pd(OAc)₂ (10 mol %), HCOONa (2.5 equiv), Ag₂CO₃ (0.4 equiv), MeCN (0.2 M), 90 °C, 48 h. ^{*b*}0.1 mmol reaction scale.

3.2 General Procedure for Palladium-Catalyzed Asymmetric Reductive Heck Cyclization of Di-substituted CF₃-Acrylamides (GP-V):

Scheme S4. Asymmetric reductive Heck cyclization of *o*-halo trifluoromethyl acrylamide 1.

<u>General Procedure-V (GP-V)</u>: An oven-dried reaction vial (7.0 mL) equipped with a magnetic bead was charged with *o*-halo trifluoromethyl acryl amide (1, 0.1 mmol), $Pd(TFA)_2$ (7 mol%), L4 (15 mol%), HCOONa (0.25 mmol) and K₃PO₄ (0.04 mmol). Then, the reaction vial was introduced inside the glove box, and acetonitrile solvent (MeCN, 0.1 M) was added. The reaction vial was

capped, taken outside and stirred at 60 °C (oil bath/heating block) for 48 hours. After completion of the reaction (monitored by TLC), the vial was cooled to room temperature, the reaction mixture was diluted with DCM (10 mL) and filtered through a celite pad, and the filtrate was concentrated under vacuum. The crude mixture was then purified by column chromatography on silica gel (Hexane/Ethyl acetate/DCM) to afford the desired products.

3.6 General Procedure for Palladium-Catalyzed Reductive Heck of Tri-substituted β -Phenyl-CF₃-Acrylamides (GP-VI, racemic):

Scheme S5. Reductive Heck cyclization of o-halo β -phenyl trifluoromethyl acrylamides.

General procedure-VI (GP-VI): An oven-dried reaction vial (7.0 mL) equipped with a magnetic bead was charged with *o*-iodo β -phenyl trifluoromethyl acryl amides (**3**, 0.1 mmol), Pd(PPh₃)₄ (10 mol%), HCOONa (0.25 mol), Ag₂CO₃ (0.03 mmol) and K₃PO₄ (0.04 mmol). Then the reaction vial was introduced inside the glove box and acetonitrile solvent (MeCN, 0.1 M) was added. The reaction vial was capped, taken outside and stirred at 100 °C (oil bath/heating block) for 48 hours. After completion of the reaction (monitored by TLC), the vial was cooled to room temperature, the reaction mixture was diluted with DCM (10 mL) and filtered through a celite pad, and the filtrate was concentrated under vacuum. The crude mixture was then purified by column chromatography on silica gel (Hexane/Ethyl acetate/DCM) to afford the desired products (**4**).

Note: Compounds **4a–b** and **4d** reported in the literature.^{2,6}

Table S2. Scope study.^a

^{*a*}**Reaction Conditions: 3** (0.1 mmol), Pd(PPh₃)₄ (10 mol%), HCOONa (2.5 equiv), K₃PO₄ (0.4 equiv), Ag₂CO₃ (0.3 equiv), MeCN (0.1 M), 100 °C, 48 h. ^{*b*}Pd(TFA)₂ (7.0 mol%) at 70 °C.

3.7 General Procedure for Palladium-Catalyzed Asymmetric Reductive Heck of Trisubstituted β -Phenyl-CF₃-Acrylamides (GP-VII):

Scheme S6. Asymmetric Reductive Heck cyclization of *o*-halo β -phenyl trifluoromethyl acrylamides.

General Procedure- VII (GP- VII): An oven-dried reaction vial (7.0 mL) equipped with a magnetic bead was charged with *o*-iodo β -phenyl trifluoromethyl acryl amides (**3**, 1.0 equiv), Pd(TFA)₂ (7 mol%), L₃ (20 mol%), HCOONa (2.5 equiv) and Ag₂CO₃ (0.3 equiv) and K₃PO₄ (0.4 equiv). Then the reaction vial was introduced inside the glove box and acetonitrile solvent (MeCN, 0.1 M) was added. The reaction vial was capped, taken outside and stirred at 70 °C (oil bath/heating block) for 48 hours. After completion of the reaction (monitored by TLC), the vial was cooled to room temperature, the reaction mixture was diluted with DCM (10 mL) and filtered through a celite pad, and the filtrate was concentrated under vacuum. The crude mixture was then purified by column chromatography on silica gel (Hexane/Ethyl acetate/DCM) to afford the desired products (**4**).

3.8 General Procedure for Palladium-Catalyzed Reductive Heck of Tri/Tetra-substituted *gem*-Difluoro and Monolfuoro-Acrylamides (GP-VIII, racemic):

Scheme S7. Reductive Heck cyclization of *o*-iodo *gem*-difluoromethyl and monofluoromethyl acrylamide.

<u>General Procedure-VIII (GP-VIII)</u>: An oven-dried reaction vial (7.0 mL) equipped with a magnetic bead was charged with *o*-iodo *gem*-difluoro (5) or monofluoro methyl acrylamide (7) (1.0 equiv), $Pd(TFA)_2(10 \text{ mol}\%)$, HCOONa (2.5 equiv), $K_3PO_4(0.4 \text{ equiv})$. Then the reaction vial was introduced inside the glove box and acetonitrile solvent (MeCN, 0.1 M) was added. The reaction vial was capped, taken outside and stirred at 90-120 °C (oil bath/heating block) for 48 hours. After completion of the reaction (monitored by TLC), the vial was cooled to room temperature, the reaction mixture was diluted with DCM (10 mL) and filtered through a celite pad, and the filtrate was concentrated under vacuum. The crude mixture was then purified by column chromatography on silica gel (Hexane/Ethyl acetate/DCM) to afford the desired products (6/8).

 Table S3. Scope study.

^{*a*}**Reaction Conditions: 5** (0.2 mmol), Pd(TFA)₂ (15 mol%), HCOONa (2.5 equiv), K₃PO₄ (1.5 equiv), MeCN (0.2 M), 120 °C, 36 h. ^{*b*}(0.15 mmol), MeCN (0.15 M). ^{*c*}(0.1 mmol), MeCN (0.1 M).

^d**Reaction Conditions: 7** (0.1 mmol), Pd(TFA)₂ (10 mol%), HCOONa (2.5 equiv), K₃PO₄ (1.5 equiv), MeCN (0.1 M), 90 °C, 36 h.

3.9 General Procedure for Palladium-Catalyzed Asymmetric Reductive Heck of Tetrasubstituted *gem*-Difluoro Acrylamides (GP-IX):

Scheme S8. Asymmetric reductive Heck cyclization of *o*-iodo *gem*-difluoro acrylamide.

<u>General Procedure- IX (GP- IX)</u>: An oven-dried reaction vial (7.0 mL) equipped with a magnetic bead was charged with *o*-iodo *gem*-difluoro acrylamides (5, 1.0 equiv), Pd(TFA)₂ (7 mol%), L5 (15 mol%), HCOONa (2.5 equiv) and Ag₃PO₄ (0.5 equiv). Then the reaction vial was introduced

inside the glove box and acetonitrile solvent (MeCN, 0.1 M) was added. The reaction vial was capped, taken outside and stirred at desired temperature (oil bath/heating block) for 48 hours. After completion of the reaction (monitored by TLC), the vial was cooled to room temperature, the reaction mixture was diluted with DCM (10 mL) and filtered through a celite pad, and the filtrate was concentrated under vacuum. The crude mixture was then purified by column chromatography on silica gel (Hexane/Ethyl acetate/DCM) to afford the desired products (**6**).

3.10 General Procedure for Palladium-Catalyzed Asymmetric Reductive Heck of Trisubstituted Monofluoro Acrylamides (GP-X):

General Procedure-X (GP-X): An oven-dried reaction vial (7.0 mL) equipped with a magnetic bead was charged with *o*-iodo monofluoromethyl acrylamide (7, 1.0 equiv), Pd(TFA)₂ (7 mol%), L₅ (20 mol%), HCOONa (2.5 equiv) and Ag₃PO₄ (0.4 equiv). Then, the reaction vial was introduced inside the glove box, and acetonitrile solvent (MeCN, 0.1 M) was added. The reaction vial was capped, taken outside and stirred at 35 °C (oil bath/heating block) for 48 hours. After completion of the reaction (monitored by TLC), the vial was cooled to room temperature, the reaction mixture was diluted with DCM (10 mL) and filtered through a celite pad, and the filtrate was concentrated under vacuum. The crude mixture was then purified by column chromatography on silica gel (Hexane/Ethyl acetate/DCM). Afterward, all the compounds were further purified by preparative HPLC (Shim-pack, SHIMADZU, C18 column, 70% acetonitrile in water, flow rate 20 mL/min, T = 25 °C, λ = 254 nm) to afford the desired products (8).

4. Optimization of Reaction Conditions:

 Table S4: Optimization of Asymmetric Reaction Conditions for Di-substituted

 Trifluoromethyl Acrylamides^a

Entry	Metal	Ligand	[H]	Additive	Solvent	Conversion(%) ^b	<i>ee^c</i> %
1	Pd(OAc) ₂	L ₁	HCOONa	K ₃ PO ₄	MeCN	<5	14
2	Pd(OAc) ₂	L_2	HCOONa	K ₃ PO ₄	MeCN	<5	<5
3	Pd(OAc) ₂	L ₃	HCOONa	K ₃ PO ₄	MeCN	60	90
4	Pd(OAc) ₂	L4	HCOONa	K ₃ PO ₄	MeCN	50	96
5	Pd(OAc) ₂	L5	HCOONa	K ₃ PO ₄	MeCN	<5	-8
6	Pd(OAc) ₂	L ₆	HCOONa	K ₃ PO ₄	MeCN	30	<5
7	Pd(OAc) ₂	L_7	HCOONa	K ₃ PO ₄	MeCN	10	15
8	Pd(OAc) ₂	L8	HCOONa	K ₃ PO ₄	MeCN	45	<5
9	Pd(OAc) ₂	L9	HCOONa	K ₃ PO ₄	MeCN	89	-12
10^d	Pd(OAc) ₂	L ₄	HCOONa	K ₃ PO ₄	MeCN	76 ^e	95 ^e
11^d	Pd(OAc) ₂	L ₄	HCOONH ₄	K ₃ PO ₄	MeCN	10	90
12^d	Pd(OAc) ₂	L ₄	HSiEt ₃	K ₃ PO ₄	MeCN	27	40
13 ^{<i>d</i>}	Pd(OAc) ₂	L ₄	HCOONa	Cs ₂ CO ₃	MeCN	56	97
14^d	Pd(OAc) ₂	L ₄	HCOONa	Ag ₂ CO ₃	MeCN	62 ^e	96 ^e
15 ^d	Pd(OAc) ₂	L ₄	HCOONa	K ₃ PO ₄	1,4- Dioxane	10	-20

16 ^{<i>d</i>}	$Pd(OAc)_2$	L ₄	HCOONa	K ₃ PO ₄	DMA	25	64
17^d	Pd(OAc) ₂	L ₄	HCOONa	K ₃ PO ₄	Toluene	18	-38
18^d	Pd(OAc) ₂	-	HCOONa	K ₃ PO ₄	MeCN	65	-
19 ^{<i>d</i>}	Pd(OAc) ₂	L ₄	-	K ₃ PO ₄	MeCN	NR	-
20^d	Pd(OAc) ₂	L ₄	HCOONa	-	MeCN	17	94
21^d	Pd(acac) ₂	L ₄	HCOONa	K ₃ PO ₄	MeCN	88	96
22^d	Pd(TFA)2	L ₄	HCOONa	K ₃ PO ₄	MeCN	>98	97
23 ^{<i>d</i>}	Pd ₂ dba ₃	L ₄	HCOONa	K ₃ PO ₄	MeCN	95	96
24 ^{f, g}	Pd(TFA) ₂	L ₄	HCOONa	K ₃ PO ₄	MeCN	88	95
25 ^{g, h}	Pd(TFA) ₂	L ₄	HCOONa	K ₃ PO ₄	MeCN	96	95
26 ^{g, i}	Pd(TFA) ₂	L4	HCOONa	K ₃ PO ₄	MeCN	>98 (89) ^e	96 (94) ^e
27 ^{g, j}	Pd(TFA) ₂	L ₄	HCOONa	K ₃ PO ₄	MeCN	>98	91
28 ^{g, i}	Pd(TFA) ₂	L ₄	DMP	K ₃ PO ₄	MeCN	10	91
29 ^{g, i}	Pd(TFA) ₂	L ₄	L-Menthol	K ₃ PO ₄	MeCN	-	-
30 ^{g, i}	Pd(TFA) ₂	L ₄	IPA	K ₃ PO ₄	MeCN	-	-
31 ^{g, i}	Pd(TFA) ₂	L ₄	HCOONa	Na ₃ PO ₄	MeCN	33	94
32 ^{g, i}	Pd(TFA) ₂	L ₄	HCOONa	Ag ₃ PO ₄	MeCN	>90	94

^{*a*}**Reactions Conditions:** Reaction conditions: **1a** (0.025 mmol), [**Pd**] (5 mol%), **L**_n* (10 mol%), [**H**] (2.5 equiv), additive (0.4 equiv), solvent (0.05 M) at 60 °C for 48 h. ^{*b*}Crude ¹⁹F NMR conversion. ^{*c*}Enantiomeric excess (*ee*) determined by chiral HPLC. ^{*d*}[**Pd**] (10 mol%), **L**₄ (20 mol%). ^{*e*}0.1 mmol scale, isolated yield. ^{*f*}[**Pd**] (5 mol%), **L**₄ (10 mol%). ^{*g*}0.05 mmol reaction scale. ^{*h*}[**Pd**] (5 mol%), **L**₄ (15 mol%). ^{*i*}[**Pd**] (7 mol%), **L**₄ (10 mol%). NR = No Reaction. DMP = 2,4-Dimethyl-3-pentanol, IPA = Isopropanol.

Table S5: Optimization of Asymmetric Reaction Conditions for Tri-substituted β -Phenyl Trifluoromethyl Acrylamides^{*a*}

Entry	Metal	Ligand	[H]	Additive	Solvent	Conversion(%) ^b	<i>ee^c</i> %
1	Pd(TFA) ₂	L_1	HCOONa	K ₃ PO ₄	MeCN	63	-32
2	Pd(TFA) ₂	L3	HCOONa	K ₃ PO ₄	MeCN	36	85
3	Pd(TFA) ₂	L4	HCOONa	K ₃ PO ₄	MeCN	30	31
4	Pd(TFA) ₂	L5	HCOONa	K ₃ PO ₄	MeCN	29	-10
5	Pd(TFA) ₂	L10	HCOONa	K ₃ PO ₄	MeCN	48	06
6	Pd(TFA) ₂	L11	HCOONa	K ₃ PO ₄	MeCN	27	72
7^d	Pd(TFA) ₂	L_3	HCOONa	K ₃ PO ₄	MeCN	28	82
8 ^e	Pd(TFA) ₂	L ₃	HCOONa	K ₃ PO ₄	MeCN	20	52
9 ^e	Pd(OAc) ₂	L_3	HCOONa	K ₃ PO ₄	MeCN	58	18
10 ^e	Pd(allyl) Cl2	L ₃	HCOONa	K ₃ PO ₄	MeCN	23	78
]] <i>f, g</i>	Pd(TFA) ₂	L3	HCOONa	K3PO4 (0.4 equiv)+Ag2 CO3 (0.3 equiv)	MeCN	42	83
12 ^{f, h}	Pd(TFA) ₂	L ₃	HCOONa	K ₃ PO ₄ (0.4 equiv)+Ag ₂ CO ₃ (0.3 equiv)	MeCN	49	26
13 ^{<i>f</i>, <i>i</i>}	Pd(TFA) ₂	L ₃	HCOONa	K ₃ PO ₄ (0.4 equiv)+Ag ₂	MeCN	56	20

^{*a*}**Reaction Conditions: 3a** (0.025 mmol), [**Pd**] (7 mol%), L_n^* (15 mol%), HCOONa (2.5 equiv), additive (0.4 equiv), solvent (0.05 M) at 60 °C for 48 h. ^{*b*}Crude ¹⁹F NMR conversion. 'Enantiomeric excess (*ee*) determined by chiral HPLC. ^{*d*}[**Pd**] (10 mol%), L_3 (15 mol%), ^{*e*}[**Pd**] (10 mol%), L_3 (20 mol). ^{*f*}[**Pd**] (7.0 mol%), L_3 (20 mol%), ^{*g*}70 °C. ^{*h*}75 °C. ^{*i*}80 °C.

Table S6: Optimization of Asymmetric Reaction Conditions for Tetra-substituted gem Difluoromethyl Acrylamides^a

8	Pd(TFA) ₂	L12	HCOONa	K ₃ PO ₄	MeCN	33	<5
9	Pd(TFA) ₂	L15	HCOONa	K ₃ PO ₄	MeCN	20	<5
10^d	Pd(TFA) ₂	L_5	HCOONa	Ag_2CO_3	MeCN	19	94
11 ^d	Pd(TFA) ₂	L_5	HCOONa	AgNO ₃	MeCN	15	90
12 ^{<i>d</i>}	Pd(TFA) ₂	L_5	HCOONa	Ag_3PO_4	MeCN	17	96
13 ^e	Pd(TFA) ₂	L_5	HCOONa	Ag ₃ PO ₄	MeCN	49	94
14 ^f	Pd(TFA) ₂	L_5	HCOONa	Ag ₃ PO ₄	MeCN	70	93

^{*a*}**Reactions Conditions:** Reaction conditions: **5a** (0.025 mmol), Pd(TFA)₂ (7 mol%), **L**_n* (15 mol%), HCOONa (2.5 equiv), K₃PO₄ (0.4 equiv), MeCN (0.05 M) at 60 °C for 48 h. ^{*b*}Crude ¹H NMR yield (yields measured with tri-methoxybenzene as internal standard). ^{*c*}Enantiomeric excess (*ee*) determined by chiral HPLC. ^{*d*}At 50 °C. ^{*e*}At 60 °C. ^{*f*}**5a** (0.1 mmol) at 70 °C, 48 h, isolated yield.

5. Characterization data and HPLC Spectra of Products:

Di-substituted Trifluoromethyl Acrylamides (2):

(S)-1,3-Dimethyl-3-(trifluoromethyl)indolin-2-one (2a):⁵

According to **GP–V**, the reaction of *N*-(2-bromophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide **1a** (31 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (L4, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2a** (20.3 mg) in 89% yield and 94% *ee* as

a white solid; $R_f = 0.50$ (3% EtOAc, 30% DCM in hexane). Melting point: 59–61 °C. For 1.0 mmol reaction, **2a** (218.3 mg) in 95% yield and 96% *ee*.

¹**H NMR (500 MHz, CDCl₃)** δ 7.42–7.35 (m, 2H), 7.12 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 3.25 (s, 3H), 1.64 (s, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 172.3 (q, J = 2.1 Hz) 143.7, 129.9, 126.2, 124.9 (q, J = 281.8 Hz), 124.5, 123.2, 108.6, 52.1 (q, J = 27.6 Hz), 26.6, 17.7 (q, J = 2.2 Hz); ¹⁹F{¹H} **NMR (471 MHz, CDCl₃)** δ -73.6 ppm; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calcd. for C₁₁H₁₁F₃NO: 230.0787, found 230.0783.
Enantiomeric excess = 94%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 20.45 min (major), t_R = 21.79 min (minor). [α] $p^{26.3}$ = +17° (c = 10⁻³, CHCl₃).

Figure S5. HPLC chromatograms for racemic 2a and enantioenriched 2a.

(S)-1-Benzyl-3-methyl-3-(trifluoromethyl)indolin-2-one (2b):

According to **GP–V**, the reaction of *N*-benzyl-*N*-(2-bromophenyl)-2-(trifluoromethyl)acrylamide **1b** (38 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (L4, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2b** (30.4 mg) in >99% yield and 98% *ee* as a white solid; $R_f = 0.64$ (3% EtOAc, 30% DCM in hexane);

Melting point: 46–48 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.30 (d, J = 7.3 Hz, 1H), 7.26–7.21 (m, 2H), 7.20–7.14 (m, 4H), 7.00 (t, J = 7.5 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 4.99 (d, J = 15.7 Hz, 1H), 4.73 (d, J = 15.7 Hz, 1H), 1.63 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 172.5 (bq, J = 2.3 Hz), 142.7, 135.1, 129.8, 128.9, 127.8, 127.0, 126.2, 125.0 (q, J = 281.8 Hz), 124.6, 123.2, 109.6, 52.2 (q, J = 27.6 Hz), 43.9, 17.9 (bq, J = 2.3 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -73.5 ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₇H₁₅F₃NO: 306.1100, found 306.1104. **Enantiomeric excess** = 98%, determined by HPLC (Daicel Chiralpak OJ-H Column, 2.5% ^{*i*}PrOH in *n*-Hexane, flow rate 1.0 mL/min, T = 25 °C, λ = 254 nm): t_R = 11.71 min (major), t_R = 30.92 min (minor). [α] $p^{28.4}$ = +2° (c = 10⁻³, CHCl₃).

Figure S6. HPLC chromatograms for racemic 2b and enantioenriched 2b.

(S)-5-Methoxy-1,3-dimethyl-3-(trifluoromethyl)indolin-2-one (2c):

According to **GP–V**, the reaction of *N*-(2-bromo-4-methoxyphenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide **1c** (34 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (**L**₄, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2c** (23.4

mg) in 90% yield and 97% *ee* as a white solid; $R_f = 0.42$ (3% EtOAc, 30% DCM in hexane); Melting point: 59–61 °C.

¹H NMR (500 MHz, CDCl₃) 6.98 (bs, 1H), 6.90 (dd, J = 8.5, 2.5 Hz, 1H), 6.79 (d, J = 8.5 Hz, 1H), 3.81 (s, 3H), 3.22 (s, 3H), 1.63 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 171.9 (bq, J = 2.1 Hz), 156.3, 137.0, 127.4, 124.9 (q, J = 281.8 Hz), 114.0, 112.0, 108.9, 55.8, 52.4 (q, J = 27.6 Hz), 26.6, 17.8 (bq, J = 2.2 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -73.6 ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₂H₁₃F₃NO₂: 260.0893, found 260.0911.

Enantiomeric excess = 97%, determined by HPLC (Daicel Chiralpak OD-H Column, 2.5% ^{*i*}PrOH in *n*-Hexane, flow rate 1.0 mL/min, T = 15 °C, λ = 254 nm): t_R = 10.13 min (major), t_R = 12.77 min (minor). [α] \mathbf{p}^{28} = +31° (c = 10⁻³, CHCl₃).

Figure S7. HPLC chromatograms for racemic 2c and enantioenriched 2c.

(S)-1,3,5-Trimethyl-3-(trifluoromethyl)indolin-2-one (2d):

According to **GP–V**, the reaction of *N*-(2-bromo-4-methylphenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide **1d** (32.2 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), *S*-PHOX (L4, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol)

and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2d** (20.2 mg) in 83% yield and 99% *ee* as a white solid; $R_f = 0.50$ (3% EtOAc, 30% DCM in hexane); Melting point: 81–83 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.20–7.15 (m, 2H), 6.77 (d, J = 7.8 Hz, 1H), 3.22 (s, 3H), 2.36 (s, 3H), 1.63 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 172.2 (q, J = 3.3 Hz), 141.2, 132.8, 130.1, 126.2, 125.3, 125.0 (q, J = 282.0 Hz), 108.3, 52.2 (q, J = 27.5 Hz), 26.6, 21.1, 17.8 (q, J = 2.1 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -73.6 ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₂H₁₃F₃NO: 244.0944, found 244.0942.

Enantiomeric excess = 99%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 16.64 min (major), t_R = 20.76 min (minor). [α] $_{D}^{26.7}$ = +29° (c = 10⁻³, CHCl₃).

Figure S8. HPLC chromatograms for racemic 2d and enantioenriched 2d.

(S)-5-Fluoro-1,3-dimethyl-3-(trifluoromethyl)indolin-2-one (2e):

F 2e Me Using the above method **GP–V**, the reaction of *N*-(2-Bromo-4-fluorophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (1e; 32.6 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), *S*-PHOX (L4, 5.6 mg, 15 mol%), HCOONa (17

mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded the **2e** (13.1 mg) in 53% yield and 91% *ee* as a white solid; $R_f = 0.46$ (3% EtOAc, 30% DCM in hexane); Melting point: 76–78 °C.

¹**H** NMR (500 MHz, CDCl₃) δ 7.16–7.06 (m, 2H), 6.82 (dd, J = 8.3, 3.8 Hz, 1H), 3.24 (s, 3H), 1.64 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 171.8 (bd, J = 1.3 Hz), 159.3 (d, J = 242.1 Hz), 139.6 (d, J = 2.0 Hz), 127.5 (d, J = 8.3 Hz), 124.6 (q, J = 281.8 Hz), 116.2 (d, J = 23.5 Hz), 112.9 (d, J = 25.6 Hz), 109.2 (d, J = 8.1 Hz), 52.5 (qd, J = 29.1, 1.5 Hz), 26.7, 17.7 (bq, J = 2.4 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -73.6, -119.3 ppm; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₁H₁₀F₄NO: 248.0693, found 248.0688.

Enantiomeric excess = 91%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 32.38 min (major), t_R = 44.10 min (minor). [α] $\mathbf{p}^{28.5}$ = +6° (c = 5*10⁻⁴, CHCl₃).

Figure S9. HPLC chromatograms for racemic 2e and enantioenriched 2e.

(S)-5-Chloro-1,3-dimethyl-3-(trifluoromethyl)indolin-2-one (2f):

According to **GP–V**, the reaction of *N*-(2-Bromo-4-chlorophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1f**; 34 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (**L**₄, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol)

and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2f** (23.5 mg) in 89% yield and 91% *ee* as a white solid; R_f = 0.54 (3% EtOAc, 30% DCM in hexane); Melting point: 68–70 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.39–7.33 (m, 2H), 6.82 (d, J = 8.2 Hz, 1H), 3.23 (s, 3H), 1.64 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 171.7 (d, J = 1.7 Hz), 142.2, 130.0, 128.6, 127.7, 125.1, 124.6 (q, J = 281.9 Hz), 109.5, 52.3 (q, J = 28.0 Hz), 26.7, 17.7 (bq, J = 2.1 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -73.6 ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₁H₁₀ClF₃NO: 264.0398, found 264.0406.

Enantiomeric excess = 91%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 23.92 min (major), t_R = 33.75 min (minor). [α] $p^{27.4}$ = +40° (c = 5*10⁻⁴, CHCl₃).

Figure S10. HPLC chromatograms for racemic 2f and enantioenriched 2f.

(S)-5-Bromo-1,3-dimethyl-3-(trifluoromethyl)indolin-2-one (2g):

Br F₃C Br H 2g Me According to **GP–V**, the reaction of *N*-(4-bromo-2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1g'**; 86.8 mg, 0.2 mmol) using Pd(TFA)₂ (4.65 mg, 7 mol%), *S*-PHOX (**L**₄, 11.2 mg, 15 mol%), HCOONa (34 mg, 0.5 mmol)

and K₃PO₄ (17 mg, 0.08 mmol) afforded **2g** (39.6 mg) in 59% yield and 94% *ee* as a white solid; R_f = 0.54 (3% EtOAc, 30% DCM in hexane); Melting point: 97–99 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.51 (bd, J = 8.3 Hz, 1H), 7.48 (bs, 1H), 6.77 (d, J = 8.2 Hz, 1H), 3.23 (s, 3H), 1.64 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 171.6 (bq, J = 2.0 Hz), 142.7, 132.8, 128.0, 127.8, 124.6 (q, J = 281.9 Hz), 115.7, 110.0, 52.2 (q, J = 27.9 Hz), 26.7, 17.7 (q, J = 1.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -73.4 ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₁H₁₀BrF₃NO: 307.9892, found 307.9889.

Enantiomeric excess = 94%, determined by HPLC (Daicel Chiralpak OJ-H Column, 2.5% ^{*i*}PrOH in *n*-Hexane, flow rate 1.0 mL/min, T = 25 °C, λ = 254 nm): t_R = 14.09 min (major), t_R = 27.16 min (minor). [α] $\mathbf{p}^{28.7}$ = +30° (c = 5*10⁻⁴, CHCl₃).

PDA C	<u>h1 254nm</u>					PDA C	h1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	14.005	13121948	574360	50.325	50.325	1	14.091	15886931	671104	96.983	96.983
2	26.368	12952598	187265	49.675	49.675	2	27.157	494209	6773	3.017	3.017
Tota		26074546	761625		100.000	Total		16381140	677877		100.000

Figure S11. HPLC chromatograms for racemic 2g and enantioenriched 2g.

(S)-1,3-Dimethyl-3,5-bis(trifluoromethyl)indolin-2-one (2h):

According to **GP–V**, the reaction of *N*-(2-bromo-4-(trifluoromethyl)phenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1h**; 37.6 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (**L**₄, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2h** (14.2 mg)

in 48% yield and 97% *ee* as a white solid; $R_f = 0.54$ (3% EtOAc, 30% DCM in hexane); Melting point: 82–84 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 1H), 7.60 (s, 1H) 6.98 (d, J = 8.1 Hz, 1H), 3.28 (s, 3H), 1.68 (s, 3H);¹³C{¹H} NMR (126 MHz, CDCl₃) δ 172.1 (bq, J = 2.1 Hz), 146.6, 127.7 (q, J = 3.8 Hz), 126.7, 125.6 (q, J = 33.1 Hz), 124.6 (q, J = 276.5 Hz), 124.0 (q, J = 271.6 Hz), 121.7 (q, J = 3.7 Hz), 108.5, 52.1 (q, J = 28.1 Hz), 26.8, 17.6 (bq, J = 1.9 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -61.7, -73.5 ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₂H₁₀F₆NO: 298.0661, found 298.0668.

Enantiomeric excess = 97%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 26.90 min (major), t_R = 31.19 min (minor). [α] \mathbf{p}^{28} = +2° (c = 5*10⁻⁴, CHCl₃).

PDA C	h1 254nm					PDA Cł	n1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	26.603	17311033	474056	50.118	50.118	1	26.901	21828074	534436	98.214	98.214
2	30.485	17229795	395864	49.882	49.882	2	31.189	396991	9028	1.786	1.786
Total		34540827	869920		100.000	Total		22225065	543464		100.000

Figure S12. HPLC chromatograms for racemic 2h and enantioenriched 2h.

(S)-1,3-Dimethyl-5-(trifluoromethoxy)-3-(trifluoromethyl)indolin-2-one (2i):

According to **GP–V**, the reaction of *N*-(2-bromo-4-(trifluoromethoxy)phenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (1i; 39.2 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (L4, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04

mmol) afforded **2i** (19.7 mg) in 63% yield and 98% *ee* as a yellow liquid; $R_f = 0.54$ (3% EtOAc, 30% DCM in hexane).

¹H NMR (500 MHz, CDCl₃) δ 7.30–7.24 (m, 2H), 6.89 (d, J = 8.2 Hz, 1H), 3.26 (s, 3H), 1.66 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 171.9 (bq, J = 1.8 Hz), 145.0, 142.4, 127.5, 124.5 (q, J = 281.8 Hz), 123.1, 120.5 (q, J = 257.1 Hz), 118.7, 109.1, 52.4 (q, J = 28.0 Hz), 26.8, 17.7 (bq, J = 2.1 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -58.5, -73.6 ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₂H₁₀F₆NO₂: 314.0610, found 314.0610.

Enantiomeric excess = 98%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 17.90 min (major), t_R = 27.94 min (minor). [α] $p^{28.6}$ = +13° (c = 10⁻³, CHCl₃).

PDA (Ch1 254nm					PDA C	h1 254nm	-			
Peak	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	17.856	5378953	133735	49.290	49.290	1	17.899	51120721	1682495	98.851	98.851
2	28.363	5533850	226524	50,710	50,710	2	27.936	594346	17494	1.149	1.149
Tota		10912803	360259		100.000	Total		51715067	1699989		100.000

Figure S13. HPLC chromatograms for racemic 2i and enantioenriched 2i.

(S)-1,3-Dimethyl-2-oxo-3-(trifluoromethyl)indoline-5-carbonitrile (2j):

According to **GP–V**, the reaction of *N*-(2-bromo-4-cyanophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1j**; 33.3 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (**L**₄, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol), K₃PO₄ (42.5 mg, 0.2 mmol) and Ag₂CO₃ (55.2 mg, 0.2 mmol)

afforded **2j** (17 mg) in 67% yield and 93% *ee* as a white solid; $R_f = 0.17$ (3% EtOAc, 30% DCM in hexane); Melting point: 123–125 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.72 (dd, J = 8.2, 1.5 Hz, 1H), 7.63 (s, 1H), 6.98 (d, J = 8.2 Hz 1H), 3.28 (s, 3H), 1.67 (s, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 171.7 (bq, J = 2.0 Hz), 147.4 135.1, 128.0, 127.1, 124.3 (q, J = 281.9 Hz), 118.4, 109.2, 106.6, 51.9 (q, J = 28.3 Hz), 26.8, 17.5 (bq, J = 1.9 Hz); ¹⁹F{¹H} **NMR (471 MHz, CDCl₃)** δ -73.5 ppm; **HRMS (ESI-TOF)** *m/z*: [M+H]⁺ calcd. for C₁₂H₁₀F₃N₂O: 255.0740, found 255.0755.

Enantiomeric excess = 93%, determined by HPLC (Daicel Chiralpak OD-H Column, 3% ^{*i*}PrOH in *n*-Hexane, flow rate 1.3 mL/min, T = 15 °C, $\lambda = 254$ nm): t_R = 16.72 min (minor), t_R = 18.80 min (major). [α] $_{D}^{28}$ = +36° (c = 5*10⁻⁴, CHCl₃).

DAC	2341111					D 1 11	i i i			•	• • • • • •
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
4	40.704	2570050	400000	40.050	40.050	1	16 725	226043	8664	3 628	3 628
1	16.704	3578850	120089	49.958	49.958	-	10.725	220043	0004	5.020	5.020
2	19 008	3584826	106120	50 042	50 042	2	18.805	6005144	176027	96.372	96.372
-	10.000	0004020	100120	00.042	00.042						
Total		7163677	226210		100.000	Total		6231187	184691		100.000

Figure S14. HPLC chromatograms for racemic 2j and enantioenriched 2j.

Methyl (S)-1,3-dimethyl-2-oxo-3-(trifluoromethyl)indoline-5-carboxylate (2k):

According to **GP–V**, the reaction of methyl 3-bromo-4-(*N*-methyl-2-(trifluoromethyl)acrylamido)benzoate (**1k**; 36.6 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), *S*-PHOX (**L**₄, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded

the desired amide **2k** (27.4 mg) in 95% yield and 96% *ee* as a white solid; $R_f = 0.32$ (3% EtOAc, 30% DCM in hexane); Melting point: 96–98 °C.

¹**H** NMR (500 MHz, CDCl₃) δ 8.14 (dd, J = 8.2, 1.6 Hz, 1H), 8.04 (s, 1H), 6.94 (d, J = 8.2 Hz, 1H), 3.92 (s, 3H), 3.28 (s, 3H), 1.67 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 172.5 (q, J = 1.8 Hz), 166.3, 147.6, 132.5, 126.1, 125.9, 125.3, 124.6 (q, J = 281.3 Hz), 108.2, 52.2, 52.0 (q, J = 28.0 Hz), 26.8, 17.6 (bq, J = 2.0 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -73.5 ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₃H₁₃F₃NO₃: 288.0842, found 288.0854.

Enantiomeric excess = 96%, determined by HPLC (Daicel Chiralpak OD-H Column, 12% ^{*i*}PrOH in *n*-Hexane, flow rate 1.0 mL/min, T = 15 °C, λ = 254 nm): t_R = 17.43 min (major), t_R = 30.45 min (minor). [α] $p^{28.2}$ = +35° (c = 10⁻³, CHCl₃).

PDA C	h1 254nm					PDA C	h1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	17.376	12923581	321741	50.389	50.389	1	17.429	38027417	802053	97.859	97.859
2	29.472	12723834	133063	49.611	49.611	2	30.453	831783	8196	2.141	2.141
Total		25647415	454804		100.000	Total		38859200	810249		100.000

Figure S15. HPLC chromatograms for racemic 2k and enantioenriched 2k.

(S)-1,3,6-Trimethyl-3-(trifluoromethyl)indolin-2-one (2l):

According to **GP–V**, the reaction of *N*-(2-bromo-5-methylphenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1**I; 32.2 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (**L**₄, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol)

and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2l** (21.3 mg) in 88% yield and 96% *ee* as a white solid; $R_f = 0.56$ (3% EtOAc, 30% DCM in hexane); Melting point: 69–71 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.28–7.23 (m, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.72 (s, 1H), 3.23 (s, 3H), 2.41 (s, 3H), 1.62 (s, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 172.6 (bd, J = 1.6 Hz), 143.7, 140.3, 125.0 (q, J = 281.6 Hz), 124.2, 123.7, 123.3, 109.5, 51.9 (q, J = 27.6 Hz), 26.6, 21.8, 17.8 (bd, J = 2.0 Hz); ¹⁹F{¹H} **NMR (471 MHz, CDCl₃)** δ -73.8 ppm; **HRMS (ESI-TOF)** *m/z*: [M+H]⁺ calcd. for C₁₂H₁₃F₃NO: 244.0944, found 244.0947.

Enantiomeric excess = 96%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 21.86 min (minor), t_R = 25.31 min (major). [α] $p^{28.3}$ = +8° (c = 5*10⁻⁴, CHCl₃).

Figure S16. HPLC chromatograms for racemic 21 and enantioenriched 21.

(S)-6-Methoxy-1,3-dimethyl-3-(trifluoromethyl)indolin-2-one (2m):

According to **GP–V**, the reaction of *N*-(2-bromo-5-methoxyphenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1m**; 33.8 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (**L**₄, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2m** (14.8

mg) in 57% yield and 93% *ee* as a white solid; $R_f = 0.44$ (3% EtOAc, 30% DCM in hexane); Melting point: 55–57 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.30–7.23 (m, 1H), 6.61 (dd, J = 8.2, 1.8 Hz, 1H), 6.46 (d, J = 1.6 Hz, 1H), 3.84 (s, 3H), 3.22 (s, 3H), 1.61 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 172.9 (bs), 161.4, 145.0, 125.3, 125.0 (q, J = 283.4 Hz), 118.1, 106.9, 96.6, 55.6, 51.7 (q, J = 28.6 Hz), 26.6, 17.8 (bd, J = 1.6 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -73.9 ppm; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₂H₁₃F₃NO₂: 260.0893, found 260.0903.

Enantiomeric excess = 93%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 52.79 min (minor), t_R = 56.49 min (major). [α] $_{D}^{28.4}$ = +2° (c = 5*10⁻⁴, CHCl₃).

Figure S17. HPLC chromatograms for racemic 2m and enantioenriched 2m.

Total

100.000

(S)-6-Chloro-1,3-dimethyl-3-(trifluoromethyl)indolin-2-one (2n):

45392442

571959

Total

Using the above method **GP–V**, the reaction of *N*-(2-bromo-5-chlorophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1n**; 34 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (**L**₄, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2n**

16120195

197225

100.000

(22.7 mg) in 86% yield and 91% *ee* as a white solid; $R_f = 0.56$ (3% EtOAc, 30% DCM in hexane); Melting point: 80–82 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.28 (d, J = 7.9 Hz, 1H), 7.10 (d, J = 8.0 Hz 1H), 6.89 (s, 1H), 3.23 (s, 3H), 1.63 (s, 3H); ¹³C{¹H} **NMR (126 MHz, CDCl₃)** δ 172.2 (bq, J = 1.6 Hz), 144.8, 135.9, 125.5, 124.6 (q, J = 281.8 Hz), 124.5, 123.0, 109.4, 51.9 (q, J = 28.0 Hz), 26.7, 17.7 (bq, J= 1.8 Hz); ¹⁹F{¹H} **NMR (471 MHz, CDCl₃)** δ -73.6 ppm; **HRMS (ESI-TOF)** m/z: [M+H]⁺ calcd. for C₁₁H₁₀ClF₃NO: 264.0398, found 264.0392.

Enantiomeric excess = 91%, determined by HPLC (Daicel Chiralpak OJ-H Column, 2% ^{*i*}PrOH in *n*-Hexane, flow rate 1.0 mL/min, T = 15 °C, λ = 254 nm): t_R = 15.84 min (minor), t_R = 21.09 min (major). [α] $p^{27.1}$ = +7° (c = 10⁻³, CHCl₃).

PDA C	h1 254nm					F	PDA C	h1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	F	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	15.680	6614248	230122	49.660	49.660		1	15.840	1289534	45434	4.283	4.283
2	21.707	6704935	164452	50.340	50.340		2	21.088	28819164	578625	95.717	95.717
Total		13319184	394574		100.000		Total		30108698	624058		100.000

Figure S18. HPLC chromatograms for racemic 2n and enantioenriched 2n.

(S)-7-Fluoro-1,3-dimethyl-3-(trifluoromethyl)indolin-2-one (20):

According to **GP–V**, the reaction of *N*-(2-bromo-6-fluorophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1o**; 32.6 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (**L**₄, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2o** (7 mg) in 28% yield and 99% *ee* as a

yellow solid; $R_f = 0.64$ (3%, EtOAc 30% DCM in hexane); Melting point: 106–108 °C.

¹**H** NMR (500 MHz, CDCl₃) δ 7.18 (bd, J = 7.1 Hz, 1H), 7.12 (bt, J = 9.8 Hz, 1H), 7.09–7.03 (m, 1H), 3.47 (s, 3H), 1.66 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 171.8 (q, J = 2.1 Hz), 147.6 (d, J = 244.4 Hz), 130.5 (d, J = 8.8 Hz), 128.8 (d, J = 2.4 Hz), 124.6 (q, J = 281.9 Hz), 123.8 (d, J = 6.4 Hz), 120.4 (d, J = 3.0 Hz), 117.9 (d, J = 19.1 Hz), 52.3 (qd, J = 27.9, 2.0 Hz), 29.1 (d, J = 6.0 Hz), 17.9 (q, J = 2.2 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -73.7, -(135.6–135.8) (m, 1F) ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₁H₁₀F₄NO: 248.0693, found 248.0712. Enantiomeric excess = 99%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, $\lambda = 254$ nm): t_R = 17.14 min (minor), t_R = 18.00 min (major). [α]p^{27.6} = +10° (c = 2*10⁻⁴, CHCl₃).

Figure S19. HPLC chromatograms for racemic 20 and enantioenriched 20.

(S)-1,3-Dimethyl-3-(trifluoromethyl)-1,3-dihydro-2H-pyrrolo[3,2-b]pyridin-2-one (2p):

F₃C Me 2p

According to GP-V, the reaction of N-(2-bromopyridin-3-yl)-N-methyl-2-(trifluoromethyl)acrylamide (1p; 30.9 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), S-PHOX (L4, 5.6 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2p** (19.3 mg) in 84% yield and 97% ee as a brown solid; R_f

= 0.12 (3.0%, EtOAc, 30% DCM in hexane); Melting point: 75-77 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.32 (d, J = 4.8 Hz, 1H), 7.29 (bt, J = 6.2 Hz, 1H), 7.15 (d, J = 7.9 Hz, 1H), 3.26 (s, 3H), 1.71 (s, 3H); ${}^{13}C{}^{1}H{}$ (126 MHz, CDCl₃) δ 170.9 (bq, J = 1.9 Hz), 147.1, 143.8, 139.1, 124.4, 124.2 (q, J = 282.9 Hz), 115.0, 52.2 (q, J = 27.7 Hz), 26.4, 15.9 (bq, J = 1.8 Hz); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -72.6 ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₀H₁₀F₃N₂O: 231.0740, found 231.0743.

Enantiomeric excess = 97%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, $\lambda = 254$ nm): t_R = 40.22 min (minor), t_R = 45.70 min (major). $[\alpha]_D^{28.6} = +2^\circ$ (c = 5*10⁻⁴, CHCl₃).

Figure S20. HPLC chromatograms for racemic 2p and enantioenriched 2p.

(*S*)-2-(3-Methyl-2-oxo-3-(trifluoromethyl)indolin-1-yl)ethyl-3-methyl-4-oxo-2-phenyl-4*H*chromene-8-carboxylate (2q):

According to **GP–V**, the reaction of 2-(*N*-(2-bromophenyl)-2-(trifluoromethyl)acrylamido)ethyl-3-methyl-4-oxo-2-phenyl-4*H*chromene-8-carboxylate (**1q**; 60 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (**L**4, 5.6 mg, 15 mol%), HCOONa (17

mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2q** (32.2 mg) in 62% yield and 96% *ee* as a white solid; $R_f = 0.04$ (3% EtOAc, 30% DCM in hexane); Melting point: 153–155 °C.

¹H NMR (500 MHz, CDCl₃) δ 8.45 (dd, J = 7.9, 1.6 Hz, 1H), 8.09 (dd, J = 7.5, 1.6 Hz, 1H), 7.79 (dd, J = 7.4, 1.9 Hz, 2H), 7.57–7.48 (m, 3H), 7.38 (t, J = 7.7 Hz, 1H), 7.34 (d, J = 7.4 Hz, 1H), 7.29–7.24 (m, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.9 Hz, 1H), 4.66–4.55 (m, 2H), 4.20–4.06 (m, 2H), 2.24 (s, 3H), 1.60 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 178.2, 172.5 (bq, J = 1.8 Hz), 163.5, 160.9, 154.6, 142.5, 136.2, 133.0, 131.2, 130.5, 129.8, 129.3, 128.5, 126.1, 124.85, 124.78 (q, J = 281.5 Hz), 123.9, 123.3, 123.2, 119.5, 117.6, 108.6, 61.3, 52.0 (q, J = 27.7 Hz), 39.2, 17.6 (bq, J = 2.0 Hz), 11.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -73.6 ppm; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd. for C₂₉H₂₂F₃N Na O₅: 544.1342, found 544.1348.

Enantiomeric excess = 96%, determined by HPLC (Daicel Chiralpak AD-H Column, 2.5% ^{*i*}PrOH in *n*-Hexane, flow rate 1.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 72.66 min (major), t_R = 78.82 min (minor). [α] $p^{27.8}$ = +6° (c = 5*10⁻⁴, CHCl₃).

Figure S21. HPLC chromatograms for racemic 2q and enantioenriched 2q.

2-((S)-3-Methyl-2-oxo-3-(trifluoromethyl)indolin-1-yl)ethyl 2-(4-isobutylphenyl)propanoate (2r):

According to **GP–V**, the reaction of 2-(N-(2-bromophenyl)-2-(trifluoromethyl)acrylamido)ethylisobutylphenyl)propanoate (**1r**; 52.6 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (L4, 5.6 mg, 15 mol%),

HCOONa (17 mg, 0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2r** (41.5 mg) in 93% yield and 96% *ee* as a yellow liquid; $R_f = 0.42$ (3% EtOAc, 30% DCM in hexane). Based on ¹H NMR 1:1 diastereomeric ratio observed.

¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 7.4 Hz, 1H), 7.32 (tt, J = 7.8, 1.6 Hz, 1H), 7.12 (bt, J = 7.6 Hz, 1H), 7.09–6.98 (m, 4H), 6.87 (t, J = 7.2 Hz, 1H), 4.43–4.31 (m, 1H), 4.30–4.20 (m, 1H), 4.10–3.97 (m, 1H), 3.96–3.86 (m, 1H), 3.57 (q, J = 7.2 Hz, 1H), 2.41 (d, J = 7.2 Hz, 2H), 1.82 (sept, J = 6.8 Hz, 1H), 1.61 (s, 1.5H), 1.59(s, 1.5H), 1.40 (d, J = 7.2 Hz, 1.5H), 1.35 (d, J = 7.2 Hz, 3H), 0.88 (d, J = 6.6 Hz, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 174.51, 174.50, 172.4 (bq, J = 2.3 Hz, 1H), 142.9, 142.8, 140.59, 140.56, 137.21, 137.16, 129.79, 129.78, 129.3 (bs), 127.09, 127.07, 126.12, 126.08, 124.8 (q, J = 281.7 Hz), 124.6, 123.1, 108.94, 108.90, 61.25, 61.18, 52.0 (q, J = 27.8 Hz), 45.00, 44.96, 44.93, 39.2, 30.1, 22.4, 18.23, 18.18, 17.7 (bq, J = 2.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -73.5 ppm; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd. for C₂₅H₂₈F₃NNaO₃: 470.1913, found 470.1922.

Enantiomeric excess = 96%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 21.84 min (minor), t_R = 26.67 min (major). [α] $\mathbf{p}^{29.3}$ = +6.5° (c = 2*10⁻³, CHCl₃).

PDA C	h1 254nm					PDA C	h1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	21.717	8614619	328053	27.974	27.974	1	21.835	421775	16664	1.131	1.131
2	23.979	13584040	379630	44.111	44.111	2	24.043	18381771	562073	49.288	49.288
3	26.677	8596548	237049	27.915	27.915	3	26.667	18491367	498821	49.581	49.581
Tota		30795207	944732		100.000	Total		37294913	1077559		100.000

Figure S22. HPLC chromatograms for racemic 2r and enantioenriched 2r.

(S)-2-(3-Methyl-2-oxo-3-(trifluoromethyl)indolin-1-yl)ethyl-2-(4-chlorophenoxy)-2methylpropanoate (2s):

According to **GP–V**, the reaction of 2-(*N*-(2-bromophenyl)-2-(trifluoromethyl)acrylamido)ethyl 2-(4-chlorophenoxy)-2methylpropanoate (**1s**; 53.47 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), *S*-PHOX (L4, 5.6 mg, 15 mol%), HCOONa (17 mg,

10

20

30

40

0.25 mmol) and K₃PO₄ (8.5 mg, 0.04 mmol) afforded **2s** (43.5 mg) in 95% yield and 96% *ee* as a yellow liquid; $R_f = 0.35$ (3% EtOAc, 30% DCM in hexane).

¹H NMR (500 MHz, CDCl₃) δ 7.37 (bd, J = 7.5 Hz, 1H), 7.33 (td, J = 7.8, 1.0 Hz, 1H), 7.14–7.09 (m, 3H), 6.90 (d, J = 7.9 Hz, 1H), 6.72–6.67 (m, 2H), 4.46–4.36 (m, 2H), 4.09–4.02 (m, 1H), 4.00–3.93 (m, 1H), 1.61 (s, 3H), 1.47 (s, 3H), 1.45 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 173.7, 172.4 (bq, J = 2.1 Hz), 153.7, 142.5, 129.8, 129.0, 127.4, 126.0, 124.8 (q, J = 281.9 Hz), 124.7, 123.3, 120.7, 108.9, 79.4, 62.0, 52.0 (q, J = 27.8 Hz), 39.1, 25.2, 25.0, 17.6 (bq, J = 1.7 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -73.6 ppm; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd. for C₂₂H₂₁ClF₃N NaO₄: 478.1003, found 478.1003.

Enantiomeric excess = 96%, determined by HPLC (Daicel Chiralpak AD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 50.22 min (major), t_R = 54.80 min (minor). [α] $p^{28.3}$ = +14° (c = 5*10⁻⁴, CHCl₃).

Figure S23. HPLC chromatograms for racemic 2s and enantioenriched 2s.

Tri-substituted β-Phenyl Trifluoromethyl Acrylamides (4):

(S)-3-Benzyl-1-methyl-3-(trifluoromethyl)indolin-2-one (4a):⁶

According to **GP–VII**, the reaction of (*Z*)-*N*-(2-iodophenyl)-*N*-methyl-3-phenyl-2-(trifluoromethyl)acrylamide (**3a**; 21.56 mg, 0.05 mmol) using Pd(TFA)₂ (1.2 mg, 7 mol%), (*S*, *Sp*)-^{*t*}Bu-Phosferrox (**L**₃, 4.95 mg, 20 mol%),

HCOONa (8.5 mg, 0.125 mmol), K₃PO₄ (4.25 mg, 0.02 mmol) and Ag₂CO₃ (4.13 mg, 0.015

mmol) afforded **4a** (6.7 mg) in 44% yield and 88% *ee* as a white solid; $R_f = 0.35$ (3% EtOAc, 30% DCM in hexane); Melting point: 83–85 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.47 (d, J = 7.4 Hz, 1H), 7.30–7.25 (m, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.08–7.04 (m, 1H), 7.01 (t, J = 7.2 Hz, 2H), 6.85–6.80 (m, 2H), 6.58 (d, J = 7.8 Hz, 1H), 3.61 (d, J = 12.9 Hz, 1H), 3.31 (d, J = 12.9 Hz, 1H), 2.94 (s, 3H); ¹⁹F{¹H} **NMR (471 MHz, CDCl₃)** δ -71.5 ppm.

Enantiomeric excess = 88%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 23.99 min (major), t_R = 28.59 min (minor). [α] $p^{28.3}$ = +39° (c = 10⁻³, CHCl₃).

Figure S24. HPLC chromatograms for racemic 4a and enantioenriched 4a.

(S)-1,3-Dibenzyl-3-(trifluoromethyl)indolin-2-one (4b)⁶:

According to **GP–VII**, the reaction of (Z)-*N*-benzyl-*N*-(2-iodophenyl)-3-phenyl-2-(trifluoromethyl)acrylamide (**3b**; 25.36 mg, 0.05 mmol) using Pd(TFA)₂ (1.2 mg, 7 mol%), (*S*, *Sp*)-'Bu-Phosferrox (**L**₃, 4.95 mg, 20 mol%), HCOONa (8.5 mg, 0.125 mmol), K₃PO₄ (4.25 mg, 0.02 mmol) and Ag₂CO₃

(4.13 mg, 0.015 mmol) afforded **4b** (7.3 mg) in 38% yield and 75% *ee* as a white solid; $R_f = 0.46$ (3% EtOAc, 30% DCM in hexane); Melting point: 76–78 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.2 Hz, 1H), 7.20–7.10 (m, 6H), 7.06 (t, *J* = 7.6 Hz, 2H), 6.91 (d, *J* = 7.7 Hz, 2H), 6.63 (d, *J* = 7.2 Hz, 2H), 6.41 (d, *J* = 7.7 Hz, 1H), 4.90 (d, *J* = 16.0

Hz, 1H), 4.56 (d, *J* = 16.0 Hz, 1H), 3.71 (d, *J* = 13.0 Hz, 1H), 3.42 (d, *J* = 13.0 Hz, 1H); ¹⁹F NMR (377 MHz, CDCl₃) δ -71.8 ppm.

Enantiomeric excess = 75%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 23.53 min (major), t_R = 37.30 min (minor). [α] $p^{28.8}$ = +20° (c = 5*10⁻⁴, CHCl₃).

Figure S25. HPLC chromatograms for racemic 4b and enantioenriched 4b.

(S)-3-Benzyl-1,5-dimethyl-3-(trifluoromethyl)indolin-2-one (4c):

According to **GP–VII**, the reaction of (*Z*)-*N*-(2-iodo-4-methylphenyl)-*N*-methyl-3-phenyl-2-(trifluoromethyl)acrylamide (**3c**; 44.52 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), (*S*, *Sp*)-^{*t*}Bu-Phosferrox (**L**₃, 10 mg, 20 mol%), HCOONa (17 mg, 0.25 mmol), K₃PO₄ (8.5 mg, 0.04 mmol) and

Ag₂CO₃ (8.3 mg, 0.03 mmol) afforded **4c** (12 mg) in 38% yield and 82% *ee* as a semi-solid; $R_f = 0.22$ (3% EtOAc, 30% DCM in hexane).

¹**H NMR (500 MHz, CDCl₃)** δ 7.28 (s, 1H), 7.09–7.05 (m, 2H), 7.04–7.00 (m, 2H), 6.83 (d, J = 7.1 Hz, 2H), 6.47 (d, J = 7.9 Hz, 1H), 3.59 (d, J = 12.9 Hz, 1H), 3.29 (d, J = 12.9 Hz, 1H), 2.91 (s, 3H), 2.39 (s, 3H); ¹³C{¹H} (**126 MHz, CDCl₃**) δ 170.8 (q, J = 2.2 Hz), 141.8, 133.0, 132.3, 130.1, 130.0, 127.7, 127.0, 125.9, 124.7 (q, J = 281.9 Hz), 123.6, 108.0, 58.2 (q, J = 26.1 Hz), 37.3 (bq, J = 2.5 Hz), 26.1, 21.2; ¹⁹F **NMR (377 MHz, CDCl₃**) δ -71.4 ppm; **HRMS (ESI-TOF)** *m*/*z*: [M+Na]⁺ calcd. for C₁₈H₁₆F₃NNaO: 342.1076, found 342.1067.

Enantiomeric excess = 82%, determined by HPLC (Daicel Chiralpak OJ-H Column, 2.5% ^{*i*}PrOH in *n*-Hexane, flow rate 1.0 mL/min, T = 25 °C, λ = 254 nm): t_R = 8.27 min (minor), t_R = 24.08 min (major). [α] $p^{28.6}$ = +84° (c = 5*10⁻⁴, CHCl₃).

Figure S26. HPLC chromatograms for racemic 4c and enantioenriched 4c.

(S)-3-Benzyl-5-fluoro-1-methyl-3-(trifluoromethyl)indolin-2-one (4d):²

According to **GP–VII**, the reaction of (*Z*)-*N*-(4-fluoro-2-iodophenyl)-*N*methyl-3-phenyl-2-(trifluoromethyl)acrylamide (**3d**; 44.9 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), (*S*, *Sp*)-^{*t*}Bu-Phosferrox (**L**₃, 10 mg, 20 mol%), HCOONa (17 mg, 0.25 mmol), K₃PO₄ (8.5 mg, 0.04 mmol) and

Ag₂CO₃ (8.3 mg, 0.03 mmol) afforded **4d** (13.1 mg) in 41% yield and 83% *ee* as a white solid; $R_f = 0.35$ (3% EtOAc, 30% DCM in hexane); Melting point: 106–108 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.23 (d, J = 7.6 Hz, 1H), 7.12–7.02 (m, 3H), 6.98 (t, J = 8.7 Hz, 1H), 6.85 (d, J = 7.3 Hz, 2H), 6.51 (dd, J = 8.5, 4.0 Hz, 1H), 3.62 (d, J = 13.0 Hz, 1H), 3.28 (d, J = 13.0 Hz, 1H), 2.94 (s, 3H); ¹⁹**F NMR (377 MHz, CDCl₃)** δ -119.4 (td, J = 8.5, 4.2 Hz), -71.4 ppm.

Enantiomeric excess = 83%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 28.82 min (major), t_R = 42.92 min (minor). [α] $p^{28.5}$ = +42° (c = 5*10⁻⁴, CHCl₃).

Figure S27. HPLC chromatograms for racemic 4d and enantioenriched 4d.

(S)-1-Methyl-3-(trifluoromethyl)-3-(4-(trifluoromethyl)benzyl)indolin-2-one (4e):

According to **GP–VII**, the reaction of (*Z*)-*N*-(2-iodophenyl)-*N*-methyl-2-(trifluoromethyl)-3-(4-(trifluoromethyl)phenyl)acrylamide (**3e**; 25 mg, 0.05 mmol) using Pd(TFA)₂ (1.2 mg, 7 mol%), (*S*, *Sp*)-^{*t*}Bu-Phosferrox (**L**₃, 4.95 mg, 20 mol%), HCOONa (2.5 mg, 0.125 mmol), K₃PO₄ (4.25 mg,

0.02 mmol) and Ag₂CO₃ (4.13 mg, 0.015 mmol) afforded **4e** (14.6 mg) in 78% yield and 81% *ee* as a white solid; $R_f = 0.44$ (3% EtOAc, 30% DCM in hexane); Melting point: 71–73 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.48 (d, J = 8.0 Hz, 1H), 7.34–7.25 (m, 3H), 7.14 (td, J = 7.6, 1.0 Hz, 1H), 6.95 (d, J = 8.0 Hz, 2H), 6.62 (d, J = 7.8 Hz, 1H), 3.65 (d, J = 12.9 Hz, 1H), 3.36 (d, J = 12.9 Hz, 1H), 2.94 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 170.4 (bq, J = 1.7 Hz), 144.0, 137.0, 130.4, 130.3, 129.5 (q, J = 32.4 Hz), 125.1, 124.6 (q, J = 3.6 Hz), 124.5 (q, J = 282.2 Hz), 123.9 (q, J = 272.0 Hz), 123.0, 108.6, 57.9 (q, J = 26.4 Hz), 36.9 (bq, J = 1.9 Hz), 26.2 (one of the aromatic ¹³C merged with other peaks); ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -62.7, -71.7 ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₈H₁₄F₆NO: 374.0974, found 374.0990.

Enantiomeric excess = 81%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 13.41 min (minor), t_R = 15.18 min (major). [α] $p^{28.9}$ = +28° (c = 5*10⁻⁴, CHCl₃).

PDA C	h1 254nm					PDA C	h1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	13.333	10737809	479728	50.369	50.369	1	13.408	1038745	47683	9.535	9.535
2	15.125	10580413	432078	49.631	49.631	2	15.179	9855410	391634	90.465	90.465
Tota		21318222	911806		100.000	Total		10894155	439317		100.000

Figure S28. HPLC chromatograms for racemic 4e and enantioenriched 4e.

Scheme S10. Asymmetric Reductive Heck cyclization of o-halo β -methyl meth-acrylamides.

Tetra-substituted gem-Difluoromethyl Acrylamides (6):

(*R*)-3-(Difluoromethyl)-1,3-dimethylindolin-2-one (6a):

According to **GP–IX**, the reaction of **5a** (33.7 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (**L**₅, 9.2 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) afforded **6a** (14.7 mg) in 70% yield and 93% *ee* as a colorless liquid; $R_f = 0.32$ (3% EtOAc, 30% DCM in hexane).

¹H NMR (500 MHz, CDCl₃) δ 7.40–7.33 (m, 2H), 7.12 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 7.8 Hz, 1H), 5.95 (t, *J* = 56.0 Hz, 1H), 3.23 (s, 3H), 1.52 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 174.9 (dd, *J* = 9.2, 1.6 Hz), 143.8, 129.2, 127.0, 124.8, 123.0, 116.7 (dd, *J* = 247.7, 244.8 Hz), 108.4, 51.9 (t, *J* = 21.1 Hz), 26.4, 17.7 (dd, *J* = 5.2, 2.7 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -122.1 (dd, *J* = 280.9, 55.7 Hz), -129.8 (dd, *J* = 280.9, 56.3 Hz) ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₁H₁₂F₂NO: 212.0881, found 212.0878.

Enantiomeric excess = 93%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 24.24 min (minor), t_R = 25.56 min (major). [α] $p^{28.3} = -6^{\circ}$ (c = 5*10⁻⁴, CHCl₃).

Figure S29. HPLC chromatograms for racemic 6a and enantioenriched 6a.

(R)-3-(Difluoromethyl)-1-ethyl-3-methylindolin-2-one (6b):

According to **GP–IX**, the reaction of **5b** (35 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L5, 9.2 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) at 115 °C afforded **6b** (19.6 mg) in 87% yield and 88% *ee* as a yellow liquid; $R_f = 0.39$ (3% EtOAc, 30% DCM in hexane).

¹**H NMR (500 MHz, CDCl₃)** δ 7.39 (d, J = 7.4 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 5.95 (t, J = 56.0 Hz, 1H), 3.85–3.70 (m, 2H), 1.51 (s, 3H), 1.26 (bt, J = 7.2 Hz, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 174.5 (dd, J = 9.2, 1.4 Hz), 142.9, 129.2, 127.3, 125.0, 122.8, 116.8 (dd, J = 247.7, 244.7 Hz), 108.5, 51.8 (t, J = 21.0 Hz), 34.8, 17.7 (dd, J = 5.2, 2.6 Hz), 12.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -122.4 (dd, J = 280.9, 55.8 Hz), -129.9 (dd, J = 280.9, 56.3 Hz) ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₂H₁₄F₂NO: 226.1038, found 226.1037.

Enantiomeric excess = 88%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 14.53 min (major), t_R = 15.23 min (minor). [α] $p^{28.2}$ = -2.7° (c = 1.5*10⁻³, CHCl₃).

Figure S30. HPLC chromatograms for racemic 6b and enantioenriched 6b.

(R)-1-Benzyl-3-(difluoromethyl)-3-methylindolin-2-one (6c):

According to **GP–IX**, the reaction of **5c** (62 mg, 0.15 mmol) using Pd(TFA)₂ (3.5 mg, 7 mol%), (*R*)-SEGPHOS (L₅, 18.3 mg, 20 mol%), HCOONa (26 mg, 0.375 mmol) and Ag₃PO₄ (32 mg, 0.075mmol) at 110 °C afforded **6c** (10.4 mg) in 24% yield and 82% *ee* as a yellow liquid; $R_f = 0.46$ (3% EtOAc, 30% DCM in hexane).

¹**H** NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 7.4 Hz, 1H), 7.34–7.29 (m, 2H), 7.28–7.20 (m, 4H), 7.08 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 7.9 Hz, 1H), 6.05 (t, J = 56.0 Hz, 1H), 5.04 (d, J = 15.8 Hz, 1H), 4.83 (d, J = 15.8 Hz, 1H), 1.59 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 175.1 (dd, J = 9.3, 1.0 Hz), 142.9, 135.2, 129.1, 128.8, 127.7, 126.99 (d, J = 1.3 Hz), 126.95, 124.8 (d, J = 1.2 Hz), 123.0, 116.9 (dd, J = 247.8, 244.6 Hz), 109.5, 51.9 (t, J = 21.1 Hz), 43.7, 18.0 (dd, J = 5.2, 2.4 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -122.1 (ddd, J = 280.9, 55.8, 1.1 Hz), -129.8 (dd, J = 280.9, 56.2 Hz) ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₇H₁₆F₂NO: 288.1194, found 288.1192.

Note: Each ¹⁹F peak appears as a broad quartet and quintet (four peaks for each fluorine atom), but not distinctly enough for clear assignment. As a result, MestReNova software could not assign values to all peaks, so we have provided the ¹⁹F values accordingly.

Enantiomeric excess = 82%, determined by HPLC (Daicel Chiralpak AD-H Column, 1% PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 28.31 min (minor), t_R = 31.32 min (major). $[\alpha]_{D}^{28.5} = -34^{\circ}$ (c = 5*10⁻⁴, CHCl₃).

Figure S31. HPLC chromatograms for racemic 6c and enantioenriched 6c.

Total

100.000

(*R*)-3-(Difluoromethyl)-1,3,5-trimethylindolin-2-one (6d):

1086564

39666011

According to GP-IX, the reaction of 5d (35 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), (R)-SEGPHOS (L5, 9.2 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) afforded 6d (15.6 mg) in 69% yield and 94% ee as a white solid; $R_f = 0.31$ (3%)

10751631

217649

100.000

EtOAc, 30% DCM in hexane); Melting point: 116–118 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.20 (s, 1H), 7.15 (d, J = 7.9 Hz, 1H), 6.77 (d, J = 7.9 Hz, 1H), 5.94 (t, J = 56.1 Hz, 1H), 3.20 (s, 3H), 2.36 (s, 3H), 1.50 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 174.9 (dd, J = 9.4, 1.5 Hz), 141.4, 132.6, 129.5, 127.1, 125.6, 116.8 (dd, J = 247.6, 244.7 Hz), 108.1, 51.9 (t, J = 21.0 Hz), 26.4, 21.1, 17.8 (dd, J = 5.3, 2.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -122.1 (ddd, J = 280.5, 55.9, 1.0 Hz), -129.8 (ddd, J = 280.6, 56.3, 0.9 Hz) ppm; HRMS (ESI-**TOF**) m/z: [M+H]⁺ calcd. for C₁₂H₁₄F₂NO: 226.1038, found 226.1036.

Note: Each ¹⁹F peak appears as a broad quartet and quintet (four peaks for each fluorine atom), but not distinctly enough for clear assignment. As a result, MestReNova software could not assign values to all peaks, so we have provided the ¹⁹F values accordingly.

Enantiomeric excess = 94%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 22.66 min (minor), t_R = 23.80 min (major). [α] $p^{28.2} = -6^{\circ}$ (c = 5*10⁻⁴, CHCl₃).

A CI	n1 254nm					PDA C	h1 254nm				
ak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	22.805	2660094	99129	49.813	49.813	1	22.656	145609	5774	2.662	2.662
2	24.139	2680061	95476	50.187	50.187	2	23.797	5324416	175792	97.338	97.338
otal		5340155	194605		100.000	Tota		5470025	181566		100.000
	k# 1 2 tal	k# Ret. Time 1 22.805 2 24.139 otal	Actin 254nm k# Ret. Time Area 1 22.805 2660094 2 24.139 2680061 otal 5340155	A Ch1 Z54 nm k# Ret. Time Area Height 1 22.805 2660094 99129 2 24.139 2680061 95476 tal 5340155 194605	A Ch1 254nm Area Height Conc. k# Ret. Time Area Height Conc. 1 22.805 2660094 99129 49.813 2 24.139 2680061 95476 50.187 tat 5340155 194605 50.187	Actn1 254nm Area Height Conc. Area% k# Ret. Time Area Height Conc. Area% 1 22.805 2660094 99129 49.813 49.813 2 24.139 2680061 95476 50.187 50.187 stal 5340155 194605 100.000 100.000	Actn 254nm PDA Conc. Area Height Conc. Area% Peak# 1 22.805 2660094 99129 49.813 49.813 1 2 24.139 2680061 95476 50.187 50.187 2 stal 5340155 194605 100.000 Total	Actn1 254nm PDA Ch1 254nm k# Ret. Time Area Height Conc. Area% Peak# Ret. Time 1 22.805 2660094 99129 49.813 49.813 1 22.656 2 24.139 2680061 95476 50.187 50.187 2 23.797 tal 5340155 194605 100.000 Total	A Ch1 254nm PDA Ch1 254nm k# Ret. Time Area Height Conc. Area% 1 22.805 2660094 99129 49.813 49.813 1 22.656 145609 2 24.139 2680061 95476 50.187 50.187 2 23.797 5324416 tal 5340155 194605 100.000 Total 5470025	Acra 254nm PDA Ch1 254nm k# Ret. Time Area Height Conc. Area% 1 22.805 2660094 99129 49.813 49.813 1 22.666 145609 5774 2 24.139 2680061 95476 50.187 50.187 2 23.797 5324416 175792 tal 5340155 194605 100.000 Total 5470025 181566	Actn1 254nm PDA Ch1 254nm k# Ret. Time Area Height Conc. Area% 1 22.805 2660094 99129 49.813 49.813 2 24.139 2680061 95476 50.187 50.187 stal 5340155 194605 100.000 Total 5470025 181566

Figure S32. HPLC chromatograms for racemic 6d and enantioenriched 6d.

(*R*)-3-(Difluoromethyl)-5-fluoro-1,3-dimethylindolin-2-one (6e):

According to **GP–IX**, the reaction of **5e** (35.5 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L5, 9.2 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) at 115 °C afforded **6e** (12.5 mg) in 55% yield and 87% *ee* as a white solid; $R_f = 0.35$

(3% EtOAc, 30% DCM in hexane); Melting point: 87-89 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.14 (d, J = 7.6 Hz, 1H), 7.06 (td, J = 8.8, 1.9 Hz, 1H), 6.80 (dd, J = 8.4, 3.9 Hz, 1H), 5.96 (t, J = 55.8 Hz, 1H), 3.22 (s, 3H), 1.52 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 174.5 (d, J = 8.7 Hz), 159.4 (d, J = 241.5 Hz), 139.8 (d, J = 1.9 Hz), 128.5 (d, J = 8.7 Hz), 116.5 (dd, J = 247.9, 245.0 Hz), 115.5 (d, J = 23.5 Hz), 113.1 (dd, J = 25.2, 1.4 Hz), 108.9 (d, J = 8.2 Hz), 52.3 (td, J = 21.1, 1.7 Hz), 26.5, 17.8 (dd, J = 5.2, 2.5 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ - 119.7 (ddd, J = 9.2, 7.8, 4.1 Hz), -122.0 (ddd, J = 281.8, 55.6, 1.1 Hz), -122.3 (dd, J = 5.6, 1.1 Hz) ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₁F₃NO: 230.0787, found 230.0782.

Note: Each ¹⁹F peak appears as a broad quartet and quintet (four peaks for each fluorine atom), but not distinctly enough for clear assignment. As a result, MestReNova software could not assign values to all peaks, so we have provided the ¹⁹F values accordingly.

Enantiomeric excess = 87%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 19.24 min (major), t_R = 21.01 min (minor). [α] $p^{28.3}$ = -24° (c = 5*10⁻⁴, CHCl₃).

FDAC	111 2341111					PL	DA CI	h1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Pe	eak#	Ret. Time	Area	Height	Conc.	Area%
1	19.157	5768100	186184	49.874	49.874		1	19.243	18811499	564615	93.528	93.528
2	20.843	5797149	200440	50.126	50.126		2	21.013	1301738	42236	6.472	6.472
Total		11565249	386623		100.000	٦	Total		20113236	606852		100.000

Figure S33. HPLC chromatograms for racemic 6e and enantioenriched 6e.

(R)-5-Chloro-3-(difluoromethyl)-1,3-dimethylindolin-2-one (6f):

According to **GP–IX**, the reaction of **5f** (37 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L5, 9.2 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) afforded **6f** (11.4 mg) in 46% yield and 82% *ee* as a white solid; $R_f = 0.31$ (3%

EtOAc, 30% DCM in hexane); Melting point: 93–95 °C.

¹**H NMR (500 MHz, CDCl₃)** δ 7.36 (s, 1H), 7.34 (d, J = 8.6 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 5.95 (t, J = 55.8 Hz, 1H), 3.21 (s, 3H), 1.52 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 174.4 (dd, J = 9.3, 1.1 Hz), 142.4, 129.2, 128.6, 128.5, 125.4 (d, J = 1.4 Hz), 116.4 (dd, J = 248.1, 245.0 Hz), 109.3, 52.1 (t, J = 21.0 Hz), 26.5, 17.8 (dd, J = 5.2, 2.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ - 121.9 (ddd, J = 281.9, 55.6, 1.0 Hz), -129.8 (dd, J = 281.9, 56.0 Hz) ppm; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₁H₁₁ClF₂NO: 246.0492, found 246.0490.

Note: Each ¹⁹F peak appears as a broad quartet and quintet (four peaks for each fluorine atom), but not distinctly enough for clear assignment. As a result, MestReNova software could not assign values to all peaks, so we have provided the ¹⁹F values accordingly.

Enantiomeric excess = 82%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 33.92 min (minor), t_R = 42.92 min (major). [α] ρ ^{28.3} = -22° (c = 5*10⁻⁴, CHCl₃).

Figure S34. HPLC chromatograms for racemic 6f and enantioenriched 6f.

(R)-5-Bromo-3-(difluoromethyl)-1,3-dimethylindolin-2-one (6g):

According to **GP–IX**, the reaction of **5g** (41.6 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L5, 12.2 mg, 20 mol%), HCOONa (17 mg, 0.25 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) at 100 °C afforded **6g** (9.9 mg) in 34% yield and 87% *ee* as a white solid; $R_f = 0.33$

(3% EtOAc, 30% DCM in hexane); Melting point: 96–98 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51–7.47 (m, 2H), 6.76 (bd, J = 8.9 Hz, 1H), 5.95 (t, J = 55.8 Hz, 1H), 3.21 (s, 3H), 1.52 (bt, 3H); ¹³C{¹H} (101 MHz, CDCl₃) δ 174.3 (bd, J = 9.5 Hz), 142.9, 132.1, 128.9, 128.1 (d, J = 1.6 Hz), 116.4 (dd, J = 248.1, 245.1 Hz), 115.7, 109.8, 52.1 (t, J = 21.2 Hz), 26.5, 17.8 (dd, J = 5.1, 2.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -121.8 (dd, J = 281.9, 55.6 Hz), -129.8 (dd, J = 281.8, 56.0 Hz) ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₁BrF₂NO: 289.9987, found 289.9986.

Enantiomeric excess = 87%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 38.16 min (minor), t_R = 50.48 min (major). [α] $p^{28.3} = -4^{\circ}$ (c = 5*10⁻⁴, CHCl₃).

Figure S35. HPLC chromatograms for racemic 6g and enantioenriched 6g.

(R)-3-(Difluoromethyl)-1,3-dimethyl-2-oxoindoline-5-carbonitrile (6h):

According to **GP–IX**, the reaction of **5h** (36 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L₅, 12.2 mg, 20 mol%), HCOONa (17 mg, 0.25 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) at 100 °C afforded **6h** (18.8 mg) in 80% yield and 90% *ee* as a white solid; $R_f = 0.11$

(3% EtOAc, 30% DCM in hexane); Melting point: 143–145 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, J = 8.2 Hz, 1H), 7.63 (s, 1H), 6.96 (d, J = 8.1 Hz, 1H), 5.97 (t, J = 55.7 Hz, 1H), 3.26 (s, 3H), 1.54 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 174.6 (dd, J = 9.6, 0.8 Hz), 147.7, 134.6, 128.3 (d, J = 1.5 Hz), 128.0, 118.7, 116.2 (dd, J = 248.7, 245.2 Hz), 108.9, 106.5, 51.8 (t, J = 21.2 Hz), 26.7, 17.8 (dd, J = 5.0, 2.4 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -121.7 (dd, J = 282.9, 55.5 Hz), -129.7 (dd, J = 282.8, 55.8 Hz) ppm; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₂H₁₁F₂N₂O: 237.0834, found 237.0832.

Enantiomeric excess = 90%, determined by HPLC (Daicel Chiralpak OD-H Column, 2.5% ⁱPrOH in *n*-Hexane, flow rate 2.0 mL/min, T = 25 °C, λ = 254 nm): t_R = 14.87 min (major), t_R = 16.38 min (minor). [α] $p^{26.5}$ = -16° (c = 5*10⁻⁴, CHCl₃).

PDA C	h1 254nm					PDA C	h1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	14.752	3122556	104905	50.172	50.172	1	14.869	3819752	124658	94.969	94.969
2	16.032	3101104	96208	49.828	49.828	2	16.384	202367	6221	5.031	5.031
Tota		6223659	201113		100.000	Total		4022119	130878		100.000

Figure S36. HPLC chromatograms for racemic 6h and enantioenriched 6h.

(R)-3-(Difluoromethyl)-1,3-dimethyl-5-(trifluoromethyl)indolin-2-one (6i):

According to **GP–IX**, the reaction of **5i** (61 mg, 0.15 mmol) using Pd(TFA)₂ (3.5 mg, 7 mol%), (*R*)-SEGPHOS (L₅, 18.3 mg, 20 mol%), HCOONa (26 mg, 0.375 mmol) and Ag₃PO₄ (32 mg, 0.075 mmol) at 110 °C afforded **6i** (11.9 mg) in 29% yield and 94% *ee* as a yellow liquid; $R_f = 0.33$ (3% EtOAc,

30% DCM in hexane).

¹**H NMR (500 MHz, CDCl₃)** δ 7.65 (d, J = 8.1 Hz, 1H), 7.61 (s, 1H), 6.96 (d, J = 8.2 Hz, 1H), 5.98 (t, J = 55.8 Hz, 1H), 3.26 (s, 3H), 1.55 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 174.8 (dd, J = 9.4, 1.4 Hz), 146.8 (q, J = 1.3 Hz), 127.6 (bq, J = 1.3 Hz), 127.1 (q, J = 4.1 Hz), 125.4 (q, J = 32.7 Hz), 124.2 (q, J = 271.4 Hz), 121.9 (qd, J = 3.9, 1.7 Hz), 116.4 (dd, J = 248.1, 245.4 Hz), 108.2, 51.9 (t, J = 21.2 Hz), 26.6, 17.8 (dd, J = 5.0, 2.7 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -61.5 (d, J = 0.6 Hz), -CF₃), -121.8 (ddd, J = 282.3, 55.6, 1.1 Hz), -(129.3–130.3, m) ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₂H₁₁F₅NO: 280.0755, found 280.0753.

Note: Each ¹⁹F peak appears as a broad quartet and quintet (four peaks for each fluorine atom), but not distinctly enough for clear assignment. As a result, MestReNova software could not assign values to all peaks, so we have provided the ¹⁹F values accordingly.

Enantiomeric excess = 94%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 27.19 min (minor), t_R = 37.81 min (major). [α] $p^{28.2} = -12^{\circ}$ (c = 10⁻³, CHCl₃).

Figure S37. HPLC chromatograms for racemic 6i and enantioenriched 6i.

(*R*)-3-(Difluoromethyl)-1,3,6-trimethylindolin-2-one (6j):

According to **GP–IX**, the reaction of **5j** (35 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L5, 9.2 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) at 90 °C afforded **6j** (13.2 mg) in 59% yield and 90% *ee* as a white solid; $R_f = 0.30$

(3% EtOAc, 30% DCM in hexane); Melting point: 120-122 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.27–7.24 (m, 1H), 6.93 (dq, J = 7.6, 0.8 Hz, 1H), 6.71 (s, 1H), 5.93 (t, J = 56.1 Hz, 1H), 3.21 (s, 3H), 2.40 (s, 3H), 1.50 (bs, 3H, appears like triplet but not splitted clearly); ¹³C{¹H} (126 MHz, CDCl₃) δ 175.2 (dd, J = 9.6, 1.4 Hz), 143.9, 139.5, 124.5 (d, J = 0.8 Hz), 124.0 (bd, J = 0.8 Hz), 123.5, 116.7 (dd, J = 247.6, 244.6 Hz), 109.3, 51.7 (t, J = 21.2 Hz), 26.3, 21.8, 17.8 (dd, J = 5.1, 2.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -122.1 (dd, J = 280.6, 56.0 Hz), -129.8 (dd, J = 280.6, 56.3 Hz) ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₂H₁₄F₂NO: 226.1038, found 226.1035.

Enantiomeric excess = 90%, determined by HPLC (Daicel Chiralpak AD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 14.91 min (major), t_R = 16.08 min (minor). [α] $p^{28.4} = -2^{\circ}$ (c = 10⁻³, CHCl₃).

Figure S38. HPLC chromatograms for racemic 6j and enantioenriched 6j.

(*R*)-3-(Difluoromethyl)-6-fluoro-1,3-dimethylindolin-2-one (6k):

According to **GP–IX**, the reaction of **5k** (35.5 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L5, 9.2 mg, 15 mol%), HCOONa (17 mg, 0.25mmol) and Ag₃PO₄ (21 mg, 0.05mmol) at 115 °C afforded **6k** (11 mg) in 48% yield and 84% *ee* as a yellow liquid; $R_f = 0.37$

(3% EtOAc, 30% DCM in hexane).

¹**H NMR (500 MHz, CDCl₃)** δ 7.31 (t, J = 6.6 Hz, 1H), 6.79 (t, J = 8.8 Hz, 1H), 6.62 (d, J = 8.7 Hz, 1H), 5.93 (t, J = 56.0 Hz, 1H), 3.21 (s, 3H), 1.50 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 175.2 (dd, J = 9.5, 1.2 Hz), 163.8 (d, J = 246.5 Hz), 145.4 (d, J = 11.7 Hz), 125.9 (dd, J = 9.8, 1.2 Hz), 122.2 (bd, J = 1.7 Hz), 116.5 (dd, J = 247.7, 244.9 Hz), 109.1 (d, J = 22.4 Hz), 97.4 (d, J = 27.7 Hz), 51.6 (t, J = 21.2 Hz), 26.5, 17.8 (dd, J = 4.9, 2.4 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -110.5 (td, J = 9.1, 5.3 Hz, 1F), -122.1 (dd, J = 281.4, 55.8 Hz, 1F), -129.9 (dd, J = 281.3, 56.2 Hz, 1F) ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₁F₃NO: 230.0787, found 230.0793.

Enantiomeric excess = 84%, determined by HPLC (Daicel Chiralpak AD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 16.24 min (major), t_R = 17.20 min (minor). [α] $\mathbf{p}^{\mathbf{28}}$ = -4° (c = 5*10⁻⁴, CHCl₃).

Figure S39. HPLC chromatograms for racemic 6k and enantioenriched 6k.

(R)-6-Chloro-3-(difluoromethyl)-1,3-dimethylindolin-2-one (6l):

According to **GP–IX**, the reaction of **5l** (37 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L5, 9.2 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) at 90 °C afforded **6l** (14.6 mg) in 59% yield and 96% *ee* as a white solid; $R_f = 0.33$

(3% EtOAc, 30% DCM in hexane); Melting point: 97–99 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, J = 7.8 Hz, 1H), 7.09 (dd, J = 7.9, 1.4 Hz, 1H), 6.88 (bd, J = 1.1 Hz, 1H), 5.94 (t, J = 55.9 Hz, 1H), 3.21 (s, 3H), 1.50 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 174.8 (dd, J = 9.2, 1.2 Hz), 145.0, 135.2, 125.7 (bd, J = 0.6 Hz), 125.3, 122.9, 116.4 (dd, J = 248.0, 244.9 Hz), 109.2, 51.7 (t, J = 21.2 Hz), 26.5, 17.7 (dd, J = 5.0, 2.4 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -122.1 (dd, J = 280.6, 56.0 Hz, 1F), -129.8 (dd, J = 280.6, 56.3 Hz, 1F) ppm; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd. for C₁₁H₁₁ClF₂NO: 246.0492, found 246.0486.

Enantiomeric excess = 96%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 38.03 min (major), t_R = 45.16 min (minor). [α] $p^{28.6}$ = -6° (c = 5*10⁻⁴, CHCl₃).

Figure S40. HPLC chromatograms for racemic 61 and enantioenriched 61.

100.000

Total

15782470

293032

100.000

Tri-substituted Monofluoromethyl Acrylamides:

4508642

(*R*)-3-(Fluoromethyl)-1,3-dimethylindolin-2-one (8a):

72615

Total

According to **GP–X**, the reaction of **7a** (31.91 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L₅, 12.21 mg, 20 mol%), HCOONa (13.6 mg, 0.20 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) afforded **8a** (8.6 mg) in 45% yield and 78% *ee* as a white solid; $R_f = 0.21$ (3% EtOAc, 30% DCM in hexane);

Melting point: 50-52 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.36–7.28 (m, 2H), 7.10 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 4.57 (d, J = 47.0 Hz, 2H), 3.23 (s, 3H), 1.40 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 177.4 (d, J = 6.2 Hz), 143.4, 131.0 (d, J = 0.8 Hz), 128.5, 123.2 122.8, 108.3, 86.3 (d, J = 177.4 Hz), 49.3 (d, J = 19.6 Hz), 26.3, 18.5 (d, J = 6.2 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -223.6 (t, J = 47.0 Hz, 1F) ppm; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd. for C₁₁H₁₃FNO: 194.0976, found 194.0974.

Enantiomeric excess = 78%, determined by HPLC (Daicel Chiralpak AD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 26.58 min (minor), t_R = 29.56 min (major). [α] $p^{27.9} = -2^{\circ}$ (c = 5*10⁻⁴, CHCl₃).

Figure S41. HPLC chromatograms for racemic 8a and enantioenriched 8a.

(*R*)-5-Fluoro-3-(fluoromethyl)-1,3-dimethylindolin-2-one (8b):

According to **GP–X**, the reaction of **7b** (33.71 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L5, 12.21 mg, 20 mol%), HCOONa (13.6 mg, 0.20 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) afforded **8b** (12.8 mg) in 61% yield and >99% *ee* as a white solid; $R_f = 0.20$ (3% EtOAc, 30% DCM in

hexane); Melting point: 88-90 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.07–6.96 (m, 2H), 6.81 (dd, J = 8.4, 4.0 Hz, 1H), 4.55 (d, J = 47.0 Hz, 2H), 3.21 (s, 3H), 1.39 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 176.9 (d, J = 6.3 Hz), 159.4 (d, J = 241.1 Hz), 139.3 (d, J = 1.9 Hz), 132.6 (dd, J = 8.1, 0.6 Hz), 114.7 (d, J = 23.5 Hz), 111.6 (d, J = 24.8 Hz), 108.7 (d, J = 8.1 Hz), 86.0 (d, J = 177.8 Hz), 49.7 (dd, J = 19.5, 1.6 Hz), 26.4, 18.4 (d, J = 6.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -(120.17–120.25) (m, 1F), -223.8 (t, J = 47.0 Hz, 1F) ppm; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd. for C₁₁H₁₁F₂NNaO: 234.0701, found 234.0702. Enantiomeric excess = >99%, determined by HPLC (Daicel Chiralpak AD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, $\lambda = 254$ nm): t_R = 28.03 min (major), t_R = 30.45 min (minor). [α]p^{26.4} = -4° (c = 5*10⁻⁴, CHCl₃).

Figure S42. HPLC chromatograms for racemic 8b and enantioenriched 8b.

2

Total

30.453

200309

27787116

5839

687465

0.721

0.721

100.000

49.899

100.000

(R)-5-Bromo-3-(fluoromethyl)-1,3-dimethylindolin-2-one (8c):

49.899

2

Tota

30.581

18178263

36430324

According to **GP–X**, the reaction of **7c** (39.80 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L₅, 12.21 mg, 20 mol%), HCOONa (13.6 mg, 0.20 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) afforded **8c** (21.8 mg) in 80% yield and 77% *ee* as a white solid; $R_f = 0.20$ (3%)

EtOAc, 30% DCM in hexane); Melting point: 96–98 °C.

484891

987903

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.2 Hz, 1H), 7.41 (s, 1H), 6.75 (d, J = 8.2 Hz, 1H), 4.55 (d, J = 46.9 Hz, 2H), 3.21 (s, 3H), 1.39 (s, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 176.8 (d, J = 6.1 Hz), 142.5, 133.0, 131.4, 126.6, 115.5, 109.7, 86.0 (d, J = 177.9 Hz), 49.5 (d, J = 19.6 Hz), 26.4, 18.4 (d, J = 6.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -223.5 (t, J = 46.9 Hz, 1F) ppm; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd. for C₁₁H₁₂BrFNO: 272.0081, found 272.0081.

Enantiomeric excess = 77%, determined by HPLC (Daicel Chiralpak AD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 26.99 min (minor), t_R = 42.82 min (major). [α] $\mathbf{p}^{28.6}$ = -7° (c = 10⁻³, CHCl₃).

PDA C	PDA Ch1 254nm					PDA C	h1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	28.192	13482384	397876	49.993	49.993	1	26.987	2644023	53824	11.632	11.632
2	43.659	13486418	241205	50.007	50.007	2	42.816	20086491	266384	88.368	88.368
Tota		26968803	639080		100.000	Tota		22730514	320209		100.000

Figure S43. HPLC chromatograms for racemic 8c and enantioenriched 8c.

(*R*)-3-(Fluoromethyl)-1,3,6-trimethylindolin-2-one (8d):

According to **GP–X**, the reaction of **7d** (33.31 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L5, 12.21 mg, 20 mol%), HCOONa (13.6 mg, 0.20 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) afforded **8d** (9.3 mg) in 45% yield and 83% *ee* as a white solid; $R_f = 0.21$ (3% EtOAc, 30% DCM in hexane); Melting point: 131–133 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, J = 7.5 Hz, 1H), 6.91 (d, J = 7.5 Hz, 1H), 6.70 (bs, 1H), 4.62–4.56 (m, 1H), 4.53–4.46 (m, 1H), 3.21 (s, 3H), 2.40 (s, 3H), 1.37 (bd, J = 1.2 Hz, 3H); ¹³C{¹H} (126 MHz, CDCl₃) δ 177.7 (d, J = 6.0 Hz), 143.5, 138.7, 128.0 (d, J = 1.2 Hz), 123.2, 122.9, 109.2, 86.4 (d, J = 177.2 Hz), 49.1 (d, J = 19.4 Hz), 26.3, 21.8, 18.5 (d, J = 6.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -223.5 (t, J = 47.1 Hz, 1F) ppm; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd. for C₁₂H₁₄FNNaO: 230.0952, found 230.0948.

Enantiomeric excess = 83%, determined by HPLC (Daicel Chiralpak AD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 23.57 min (minor), t_R = 27.89 min (major). [α] $p^{26.3} = -16^{\circ}$ (c = 5*10⁻⁴, CHCl₃).

PDA C	PDA Ch1 254nm					PDA C	h1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	22.240	9867624	243664	49.749	49.749	1	23.573	2561258	62385	8.391	8.391
2	27.488	9967024	194778	50.251	50.251	2	27.893	27963233	529844	91.609	91.609
Tota	l l	19834648	438442		100.000	Tota		30524490	592229		100.000

Figure S44. HPLC chromatograms for racemic 8d and enantioenriched 8d.

(*R*)-6-Chloro-3-(fluoromethyl)-1,3-dimethylindolin-2-one (8e):

According to **GP–X**, the reaction of **7e** (35.36 mg, 0.1 mmol) using $Pd(TFA)_2$ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L₅, 12.21 mg, 20 mol%), HCOONa (13.6 mg, 0.20 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) afforded **8e** (14.3 mg) in 63% yield and 84% *ee* as a white solid; $R_f = 0.25$ (3% EtOAc, 30% DCM in hexane); Melting point: 87–89 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 7.9 Hz, 1H), 7.07 (d, J = 7.8 Hz, 1H), 6.87 (bs, 1H), 4.54 (d, J = 47.0 Hz, 2H), 3.21 (s, 3H), 1.38 (s, 3H); ¹³C{1H} (126 MHz, CDCl₃) δ 177.2 (d, J = 6.1 Hz), 144.6, 134.4, 129.3 (d, J = 0.7 Hz), 124.1, 122.6, 109.1, 86.0 (d, J = 177.8 Hz), 49.1 (d, J = 19.5 Hz), 26.4, 18.4 (d, J = 6.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -223.5 (t, J = 47.0 Hz, 1F) ppm; HRMS (ESI-TOF) *m*/z: [M+H]⁺ calcd. for C₁₁H₁₂ClFNO: 228.0586, found 228.0581. Enantiomeric excess = 84%, determined by HPLC (Daicel Chiralpak AD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, $\lambda = 254$ nm): t_R = 22.02 min (minor), t_R = 25.90 min (major). [α]p^{28.4} = -2° (c = 5*10⁻⁴, CHCl₃).

PDA C	h1 254nm					PDA C	<u>h1 254nm</u>				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	22.016	27105597	820234	49.835	49.835	1	22.016	1656590	56463	7.904	7.904
2	26.037	27285345	656018	50.165	50.165	2	25.899	19301002	477118	92.096	92.096
Total		54390942	1476253		100.000	Tota		20957592	533581		100.000

Figure S45. HPLC chromatograms for racemic 8e and enantioenriched 8e.

6. Synthetic Applications:

Halogenation Reactions: Chlorination using NCS and Bromination using NBS:

Scheme S11. Chlorination of 2a using NCS provides 2f and Bromination of 2a using NBS provides 2g.

Chlorination using NCS: Compound **2a** (22.92 mg, 0.1 mmol) and *N*-chlorosuccinimide (40 mg, 0.3 mmol) were taken in a 7.0 ml reaction vial equipped with a magnetic stir bar. Then, 'BuOH (0.1 M) was added to the reaction mixture, vial was sealed and purged with N₂ gas. Afterwards, the reaction was kept for stirring at 50 °C for 48 h. The reaction mixture was concentrated under reduced pressure, and the crude mixture was purified on silica gel column chromatography to afford the desired chlorinated product **2f** (16 mg, 61%, >99% *ee*) as yellow liquid; $R_f = 0.54$ (3.0%, EtOAc, 30% DCM in hexane).

(S)-5-Chloro-1,3-dimethyl-3-(trifluoromethyl)indolin-2-one (2f)

Enantiomeric excess = >99%, determined by HPLC (Daicel Chiralpak OD-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 15 °C, λ = 254 nm): t_R = 22.51 min (major), t_R = 30.25 min (minor). [α] $p^{28.6}$ = +38° (c = 5*10⁻⁴, CHCl₃).

Figure S46. HPLC chromatography of the enantioenriched 2f.

Bromination using NBS: Compound **2a** (22.92 mg, 0.1 mmol) and *N*-bromosuccinimide (19.5 mg, 0.11 mmol) were taken in a 7.0 ml reaction vial equipped with a magnetic stir bar. Then the reaction vial was taken under the glove box to add acetonitrile solvent (MeCN, 0.1 M). The reaction mixture was allowed to stir at room temperature for 36 hours. After completion of the reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure, and the crude mixture was purified on silica gel column chromatography to afford the desired brominated product **2g** (27.7 mg, 91%, 98% *ee*) as white solid; $R_f = 0.26$ (3.0%, EtOAc, 30% DCM in hexane).

(S)-5-Bromo-1,3-dimethyl-3-(trifluoromethyl)indolin-2-one (2g)

Enantiomeric excess = 98%, determined by HPLC (Daicel Chiralpak OJ-H Column, 2.5% ⁱPrOH in *n*-Hexane, flow rate 1.0 mL/min, T = 25 °C, λ = 254 nm): t_R = 14.18 min (major), t_R = 27.14 min (minor). [α] $\mathbf{p}^{29.1}$ = +38° (c = 10⁻³, CHCl₃).

PDA C	h1 254nm						h1 254nm				
Peak#	Ret. Time	Area	Height	Conc.	Area%	Peak#	Ret. Time	Area	Height	Conc.	Area%
1	14.005	13121948	574360	50.325	50.325	1	14.176	9307632	398259	98.955	98.955
2	26.368	12952598	187265	49.675	49.675	2	27.136	98339	1883	1.045	1.045
Tota		26074546	761625		100.000	Total		9405970	400141		100.000

Figure S47. HPLC chromatography of the enantioenriched 2g.

7. Stereo-divergent reactions:

(S)-1,3-Dimethyl-3-(trifluoromethyl)indolin-2-one (2a) and (R)-1,3-Dimethyl-3-(trifluoromethyl)indolin-2-one (2a'):

Scheme S12. Stereo-divergent products with ligands S-L₄ and R-L₄.

(*R*)-1,3-Dimethyl-3-(trifluoromethyl)indolin-2-one (2a'):

According to **GP–V**, the reaction of *N*-(2-bromophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1a**, 46.2 mg, 0.15 mmol) using Pd(TFA)₂ (3.5 mg, 7 mol%), (*R*)-PHOX (**L**₄, 8.4 mg, 15 mol%), HCOONa (26 mg, 0.375 mmol) and K₃PO₄ (18 mg, 0.06 mmol) afforded the desired amide **2a**' (26.5 mg) in 77% yield and 91% *ee* as a white solid; $R_f = 0.50$ (3% EtOAc, 30%

DCM in hexane).

Enantiomeric excess = 91%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 21.45 min (minor), t_R = 22.67 min (major). [α] $\mathbf{p}^{28.3} = -17^{\circ}$ (c = 10⁻³, CHCl₃).

Figure S48. HPLC chromatography of the racemic 2a and enantioenriched 2a and 2a'.

(*R*)-3-(Difluoromethyl)-1,3-dimethylindolin-2-one (6a) and (*S*)-3-(Difluoromethyl)-1,3-dimethylindolin-2-one (6a'):

Scheme S13. Stereo-divergent products with ligands *R*-L₅ and *S*-L₅.

(S)-3-(Difluoromethyl)-1,3-dimethylindolin-2-one (6a'):

According to **GP–IX**, the reaction of **5a** (33.71 mg, 0.1 mmol) using Pd(TFA)₂ (2.33 mg, 7 mol%), (*R*)-SEGPHOS (L₅, 9.2 mg, 15 mol%), HCOONa (17 mg, 0.25 mmol) and Ag₃PO₄ (21 mg, 0.05 mmol) afforded **6a**' (11.8 mg) in 56% yield and 92% *ee* as a colorless liquid; $R_f = 0.32$ (3% EtOAc, 30% DCM in hexane).

Enantiomeric excess = 92%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 23.39 min (major), t_R = 24.94 min (minor). [α] $p^{28.5}$ = +6° (c = 5*10⁻⁴, CHCl₃).

Figure S49. HPLC chromatography of the racemic 6a and enantioenriched 6a and 6a'.

8. Mechanistic Studies:

Control Experiments:

Deuterium Incorporation Experiment:

An oven-dried reaction vial (7.0 mL) equipped with a magnetic bead was charged with *o*-bromo trifluoromethyl acryl amide (**1a**, 1.0 equiv., 0.1 mmol), Pd(TFA)₂ (2.33 mg, 7 mol%), DCOONa (18 mg, 0.25 mmol) and Ag₂CO₃ (11 mg, 0.04 mmol). Then the reaction vial was introduced inside the glove box and acetonitrile solvent (MeCN, 0.1 M) was added. The reaction vial was capped, taken outside, and stirred at 90 °C (oil bath/heating block) for 48 hours. After completion of the reaction (monitored by TLC), the vial was cooled to room temperature, the reaction mixture was diluted with DCM (10 mL) and filtered through a celite pad, and the filtrate was concentrated under vacuum. The crude mixture was purified on silica gel column chromatography to afford the desired product *Rac* 2a-D (20.7 mg, 90%) as a white solid; $R_f = 0.22$ (3.0%, EtOAc, 30% DCM in hexane).

Scheme S14. The racemic reductive Heck reaction of 1a with DCOONa as hydride source.

An oven-dried reaction vial (7.0 mL) equipped with a magnetic bead was charged with *o*-bromo trifluoromethyl acryl amide (**1a**, 1.0 equiv., 0.05 mmol), Pd(TFA)₂ (1.2 mg, 7 mol%), L₄ (2.8 mg, 15 mol%), DCOONa (8.63 mg, 0.125 mmol) and K₃PO₄ (4.25 mg, 0.02 mmol). Then the reaction vial was introduced inside the glove box and acetonitrile solvent (MeCN, 0.05 M) was added. The reaction vial was capped, taken outside, and stirred at 60 °C (oil bath/heating block) for 48 hours. After completion of the reaction (monitored by TLC), the vial was cooled to room temperature, the reaction mixture was diluted with DCM (10 mL) and filtered through a celite pad, and the filtrate was concentrated under vacuum. The crude mixture was purified on silica gel column chromatography to afford the desired product **2a-D** (11 mg, 95%) and 96% *ee* a white solid; R_f = 0.22 (3.0%, EtOAc, 30% DCM in hexane).

Scheme S15. The asymmetric reductive Heck reaction of 1a with DCOONa as hydride source.

(S)-1-Methyl-3-(methyl-D)-3-(trifluoromethyl)indolin-2-one (2a-D)
¹H NMR (400 MHz, CDCl₃) δ 7.43–7.35 (m, 2H), 7.12 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 3.24 (s, 3H), 1.63 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.2 (q, J = 2.8 Hz), 143.6, 129.8, 126.2, 124.9 (q, J = 281.7 Hz), 124.5, 123.1, 108.6, 52.0 (q, J = 27.7 Hz), 26.5, 17.5 (tq, J = 20.2, 2.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -73.5 ppm; HRMS (ESI–TOF) *m/z*: [M+H]⁺ calcd. for C₁₁H₁₀DF₃NO: 231.0851, found 231.0860.

Enantiomeric excess = 96%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 25.36 min (major), t_R = 27.50 min (minor). [α] $p^{27.8}$ = +17° (c = 3*10⁻⁴, CHCl₃).

Figure S50. HPLC chromatography of the enantioenriched 2a-D.

Total

41248204

1299351

100.000

Reactivity Profile without Hydride Source and Ligand:

995725

Total

30396179

100.000

According to **GP–IX**, the reaction of *N*-(2-bromophenyl)-*N*-methyl-2-(trifluoromethyl)acrylamide (**1a**, 0.025 mmol) was conducted under two conditions: (i) without a hydride source and (ii) without a ligand. *Without a hydride source, the reaction did not yield the desired product, leaving only the starting material. However, when the reaction was carried out without a ligand, 90% of the racemic product was obtained (by crude* ¹⁹*F NMR analysis), suggesting the presence of a rapid background reaction.*

Scheme S16. Role of hydride source and ligand in the reaction medium.

Asymmetric reductive Heck cyclization of monosubstituted terminal alkenes (1a"):

Following the general procedure (**GP-V**), the reaction of 1a'' afforded 2a'' in 19% yield and 5% *ee*. The NMR data matched with the reported data.^{7a}

Enantiomeric excess = 5%, determined by HPLC (Daicel Chiralpak OJ-H Column, 1% ^{*i*}PrOH in *n*-Hexane, flow rate 0.5 mL/min, T = 25 °C, λ = 254 nm): t_R = 25.26 min (minor), t_R = 30.59 min (major).

Scheme S17. Asymmetric Reductive Heck cyclization of o-bromo-acrylamides.

Asymmetric reductive Heck cyclization of terminally disubstituted (3a^{'''}) acrylamides:

Following the general procedure (**GP-VII**), the reaction of 3a''' afforded 4a''' in 60% yield. The NMR data matched with the reported data.^{7b}

Scheme S18. Asymmetric Reductive Heck cyclization of *o*-iodo- β , β -methy, phenyl acrylamides.

9. Computational Studies:

The reaction mechanisms were studied through Density Functional Theory (DFT) using the B3LYP functional.⁸ Mixed basis sets were used to account for the relativistic effects from the heavy elements such as Pd. Lanl2DZ basis set⁹ was used for Pd, Br and I and for lighter atoms H, C, N, P, F and O the basis set 6-31G(D,P)¹⁰ was used. The Gaussian Program Package was used for all the calculations.¹¹ All the structures were optimized and stable geometries were found on the account of positive frequencies. We have located the species **A**, **TSs**, **TS**_R, *S*-B and *R*-B pertinent to the enantio-selectivity in the migratory insertion step.

For the reaction involving substrate **1a** with *S*-L₄, the energies with respect to the energy of **A** is given in Table S7. The location of possible transition state points (TS_R , TS_S) for both the *re* and *si* face based on interaction of ligand is done. The pictorial representation of optimized geometries can be seen in Figure S51.

Table S7: The energies (in kcal/mol) with respect to the energy of A for both thepathways R and S respectively for the reaction involving substrate 1a and ligand S-L4.

Pathway	E _A	E _{TS}	E _B
R	0.0	25.79	-15.83
S	0.0	21.27	-16.96

Figure S51. The pictorial representation of A, TS_R , TS_S , *R*-B, *S*-B for the reaction involving 1a with ligand *S*-L₄. The values in the parenthesis are the first vibrational frequency in cm⁻¹ units.

The enantioselectivity is determined by the interaction between the isopropyl group of the ligand (L4) and the *Re* or *Si*-face of alkene (1a) during the migratory insertion step. Two intermediates (*R*-B and *S*-B) can be formed through the transition states (TS_R and TS_S). We have calculated the energies of the oxidative addition intermediate **A**, the two transition states (TS_R, TS_S), and two intermediates (*R*-B and *S*-B). The activation energies computed are ~21 kcal/mol for TS_S and ~26 kcal/mol for TS_R, corresponding to the *Si* and *Re* attack of the alkene, respectively (Scheme 17). The steric interactions between the isopropyl group and the alkene destabilize TS_R more than TS_S. For instance, the distance between these two carbons is 3.47 Å in TS_R and 4.62 Å in TS_S. Additionally, we identified a dihedral angle (52-54-71-76) that governs the positioning of the isopropyl and alkene groups. This dihedral angle is 18° for TS_R and -11° for TS_S, which results in the alkene being pushed toward the isopropyl group in TS_R, while it is pushed away in TS_S. Furthermore, the reaction Gibbs free energy (ΔG) was calculated at the reaction temperature of 60 °C for both processes. The formation of *S*-B (21.68 kcal/mol) was found to be more favorable than the formation of *R*-B (27.97 kcal/mol), supporting the preferential formation of *S*-2a under the given conditions.

Figure S52. Transition states for enantio-induction step.

Optimized cartesian coordinates (in XYZ format): Substrate 1a with ligand *S*-L₄

A (E = -2394.42243645 au)

Р	-1.84375	-1.08355	-0.10486
С	-2.77010	-0.55590	-1.61220
С	-3.14001	0.79931	-1.79333
С	-3.15699	-1.491	41 -2.58087
С	-3.90450	1.16262	-2.91387
С	-3.89347	-1.111	65 -3.70446
Н	-2.88330	-2.53249	-2.45455
С	-4.27259	0.21810	-3.86878
Н	-4.19501	2.19926	-3.03383
Η	-4.17405	-1.85907	-4.44056
Н	-4.85133	0.52400	-4.73469
С	-1.50120	-2.86974	-0.36354
С	-2.20580	-3.87684	0.31169
С	-0.47033	-3.23192	-1.24716
С	-1.89219	-5.22057	0.09632
Η	-2.99492	-3.61876	1.00883
С	-0.16709	-4.57402	-1.46543
Η	0.10551	-2.46586	-1.75420
С	-0.87704	-5.57181	-0.79298
Η	-2.44273	-5.99078	0.62857
Η	0.63389	-4.83892	-2.14887
Η	-0.6328	38 -6.6174	40 -0.95616
С	-3.14021	-1.01372	1.20635
С	-2.78635	-0.60024	2.50011
С	-4.47514	-1.36191	0.94009
С	-3.74792	-0.54972	3.51118
Η	-1.76390	-0.29904	2.70897
С	-5.43296	-1.30773	1.95278
Η	-4.76957	-1.67008	-0.05853
С	-5.07031	-0.90348	3.23981
Η	-3.46125	-0.22608	4.50729
Η	-6.46239	-1.57698	1.73481
Н	-5.81831	-0.85875	4.02608

С	-2.74526	1.89743	-0.88261
С	-3.06612	3.89819	0.08732
С	-1.63506	3.40245	0.35384
Н	-3.12735	4.90431	-0.32880
Н	-3.72011	3.82284	0.96214
Н	-1.39371	3.38514	1.41830
Ν	-1.69722	1.99800	-0.13780
0	-3.56761	2.97150	-0.91524
С	-0.52531	4.20401	-0.37474
С	-0.34733	5.57348	0.29843
Н	-0.11600	5.46188	1.36234
Н	0.47915	6.11978	-0.16626
Н	-1.24326	6.20075	0.20489
С	-0.74523	4.34126	-1.88790
Н	-0.83411	3.36618	-2.37697
Н	-1.63876	4.92927	-2.13098
Н	0.10945	4.85329	-2.34082
Н	0.39534	3.63611	-0.21030
Pd	-0.1936	0.4421	7 0.47615
Br	1.16886	2.03325	1.99959
С	1.18913	-0.98941	0.83198
С	1.00603	-1.89166	1.88756
С	2.34188	-1.12909	0.02944
С	1.91108	-2.92518	2.13961
Η	0.14288	-1.78659	2.53762
С	3.22341	-2.19915	0.26028
С	3.02108	-3.08686	1.31305
Н	1.73959	-3.60135	2.97293
Н	4.09012	-2.30951	-0.38347
Н	3.72587	-3.89583	1.48144
	2 65238	-0.22137	-1.04366
Ν	2.05258	0.2210,	
N C	1.74285	-0.15699	-2.18877
N C H	1.74285 1.99465	-0.15699 0.71719	-2.18877 -2.78695

Η	0.71376	-0.07780	-1.83141
С	3.90095	0.33425	-1.24958
0	4.21716	0.83643	-2.32495
С	4.89670	0.36263	-0.11744
С	6.28139	-0.09775	-0.50125
F	6.22842	-1.30177	-1.13512
F	7.07514	-0.26048	0.58163
F	6.91345	0.75170	-1.32939
С	4.65983	0.87592	1.09017
Н	3.67359	1.22631	1.37812
Η	5.45859	0.95471	1.82021

TS_R (E = -2394.38132934 au)

Р	1.08540	1.36762	0.06175
С	1.86193	1.40873	-1.62589
С	2.43341	0.22325	-2.14479
С	1.93974	2.57202	-2.40266
С	3.06087	0.22964	-3.39731
С	2.54093	2.56350	-3.66344
Н	1.53529	3.50105	-2.01917
С	3.09956	1.39054	-4.16618
Н	3.51632	-0.68495	-3.76100
Н	2.58033	3.48103	-4.24333
Н	3.57306	1.37889	-5.14287
С	0.46405	3.07721	0.34225
С	0.87629	3.82769	1.45448
С	-0.49268	3.62782	-0.52705
С	0.35773	5.10395	1.67841
Н	1.60371	3.41809	2.14605
С	-0.99549	4.90992	-0.30990
Н	-0.84051	3.05508	-1.38034
С	-0.57222	5.65164	0.79451
Η	0.68744	5.67067	2.54427
Н	-1.72643	5.32469	-0.99798

Η	-0.96880	6.64798	0.96677
С	2.55580	1.23625	1.16482
С	2.47398	0.45019	2.32317
С	3.74551	1.92850	0.87649
С	3.57235	0.36607	3.18423
Н	1.57360	-0.12138	2.54372
С	4.83582	1.83730	1.73957
Н	3.82201	2.53515	-0.02101
С	4.74953	1.05633	2.89646
Н	3.49887	-0.25068	4.07506
Н	5.75248	2.37264	1.50874
Н	5.60166	0.98508	3.56683
С	2.47140	-1.03826	-1.37339
С	3.56670	-2.77378	-0.46122
С	2.06956	-2.84023	-0.08597
Η	3.95194	-3.67538	-0.93994
Η	4.20941	-2.50593	0.38199
Η	1.90913	-2.78629	0.99461
Ν	1.53790	-1.57170	-0.66541
0	3.65112	-1.68898	-1.42857
С	1.33475	-4.09781	-0.60272
С	1.85972	-5.34294	0.13018
Η	1.76180	-5.22714	1.21392
Η	1.28835	-6.22811	-0.16663
Η	2.91277	-5.54608	-0.10157
С	1.38769	-4.26531	-2.12729
Η	0.98661	-3.38916	-2.64722
Η	2.41025	-4.43062	-2.48849
Η	0.79521	-5.13258	-2.43582
Η	0.29226	-3.97493	-0.30098
Pd	-0.35911	-0.57049	-0.02593
Br	-0.11077	-2.15456	2.63537
С	-2.16296	0.46687	0.44602
С	-2.26295	0.69787	1.82755

С	-2.94809	1.24460	-0.43128
С	-2.98617	1.79347	2.30012
Η	-1.72850	0.04427	2.51148
С	-3.67193	2.34500	0.04483
С	-3.66550	2.62924	1.40783
Н	-3.01142	1.99713	3.36652
Н	-4.27398	2.93818	-0.63581
Н	-4.22599	3.48249	1.77858
N	-3.08765	0.77664	-1.75237
С	-3.52216	1.61586	-2.85775
Н	-4.57725	1.89551	-2.75632
Н	-2.91710	2.52583	-2.90627
Н	-3.39503	1.03899	-3.77358
С	-2.91205	-0.57429	-1.94373
0	-2.93843	-1.13013	-3.03129
С	-2.65413	-1.32339	-0.64165
С	-3.89577	-1.69833	0.17244
F	-4.82136	-0.72165	0.23072
F	-3.59872	-2.07684	1.41806
F	-4.48358	-2.74778	-0.45135
С	-1.60217	-2.24997	-0.62444
Η	-1.10574	-2.46499	-1.56542
Η	-1.57536	-2.99659	0.16023

TSs(E=-2394.38852991 au)

Р	-1.41432	-0.80034	0.21925
С	-2.99350	-0.14443	-0.51929
С	-3.34898	1.22937	-0.48844
С	-3.88503	-1.03815	-1.12653
С	-4.56059	1.64722	-1.05936
С	-5.08487	-0.60809	-1.69593
Η	-3.64379	-2.09264	-1.16328
С	-5.42480	0.74051	-1.66530
Η	-4.81136	2.70030	-1.02364

11	-5.74609	-1.33374	-2.16052
Н	-6.35376	1.08821	-2.10688
С	-1.54011	-2.63451	-0.04193
С	-1.83655	-3.54307	0.98463
С	-1.23236	-3.13685	-1.32144
С	-1.83191	-4.91898	0.73872
Η	-2.06852	-3.18327	1.98077
С	-1.23964	-4.51014	-1.56477
Н	-0.99512	-2.44661	-2.12704
С	-1.53585	-5.40625	-0.53403
Н	-2.06157	-5.60811	1.54675
Н	-1.00789	-4.87880	-2.55999
Н	-1.53321	-6.47604	-0.72284
С	-1.74617	-0.61383	2.02890
С	-0.69373	-0.36265	2.91725
С	-3.04795	-0.74212	2.54080
С	-0.93314	-0.24741	4.28746
Н	0.31213	-0.24733	2.53646
С	-3.28622	-0.62394	3.91096
Η	-3.87983	-0.93110	1.86997
С	-2.22903	-0.37685	4.78865
Н	-0.10351	-0.05349	4.96169
Η	-4.29933	-0.72381	4.29031
Η	-2.41539	-0.28412	5.85490
С	-2.50225	2.26241	0.13014
С	-2.09597	4.33247	0.91286
С	-0.86596	3.40299	1.11318
Н	-1.89017	5.22086	0.31052
Н	-2.55764	4.64190	1.85566
Н	-0.64052	3.29719	2.18258
Ν	-1.33186	2.09916	0.61563
0	-3.04789	3.51453	0.19620
С	0.43565	3.85705	0.41039
С	1.00840	5.11331	1.08328

Η	1.15274	4.96722	2.16052
Н	1.97717	5.37365	0.64575
Н	0.34835	5.97961	0.95113
С	0.28179	4.04968	-1.10414
Н	-0.12524	3.15616	-1.58621
Н	-0.37135	4.89697	-1.34570
Н	1.25912	4.25912	-1.55125
Н	1.14723	3.03723	0.56650
Pd	0.67534	-0.14419	-0.92246
С	2.04597	-0.89362	0.59468
С	1.84925	-2.27310	0.75400
С	2.71223	-0.19328	1.61957
С	2.11743	-2.88990	1.97730
Н	1.42092	-2.85801	-0.05261
С	2.98556	-0.80601	2.85003
С	2.65779	-2.14807	3.03158
Н	1.89030	-3.94342	2.10783
Н	3.48991	-0.25483	3.63667
Η	2.86586	-2.62569	3.98433
Ν	3.20063	1.08335	1.29881
С	3.60845	2.05433	2.30346
Η	3.80628	2.99365	1.78848
Н	2.81020	2.19233	3.03776
Н	4.52030	1.73256	2.81962
С	3.41793	1.34065	-0.03357
0	3.81787	2.40744	-0.47325
С	3.07262	0.16248	-0.94504
С	4.17231	-0.88382	-1.13853
F	3.69887	-2.00498	-1.71253
F	4.81051	-1.22685	-0.00511
F	5.10563	-0.36588	-1.96592
С	2.33865	0.47915	-2.10927
Br	-0.66750	0.35296	-3.08807
Н	2.09530	1.51902	-2.29648

R-B(E=-2394.44767058 au)

Р	1.11015	-1.26892	0.18849
С	1.18470	-1.03360	2.02915
С	1.83066	0.07054	2.65011
С	0.51901	-1.95357	2.85188
С	1.81208	0.19043	4.04740
С	0.49769	-1.81375	4.24111
Н	0.01378	-2.80155	2.40580
С	1.14954	-0.74101	4.84247
Η	2.32111	1.03414	4.49810
Н	-0.02729	-2.54822	4.84461
Η	1.14122	-0.62398	5.92173
С	0.35839	-2.94301	-0.04501
С	1.06817	-4.11940	0.25427
С	-0.93738	-3.04874	-0.56991
С	0.48268	-5.36779	0.04948
Η	2.08217	-4.06286	0.63610
С	-1.52108	-4.30058	-0.77469
Η	-1.48351	-2.14945	-0.83511
С	-0.81374	-5.46138	-0.46386
Н	1.04340	-6.26839	0.28264
Н	-2.52429	-4.36075	-1.18602
Н	-1.26410	-6.43603	-0.62879
С	2.85930	-1.54474	-0.32504
С	3.22496	-1.42489	-1.67196
С	3.81577	-1.96561	0.61428
С	4.53004	-1.72114	-2.06929
Н	2.50307	-1.07586	-2.40373
С	5.11804	-2.25988	0.20834
Н	3.55409	-2.05872	1.66320
С	5.47858	-2.13834	-1.13475
Н	4.80170	-1.61707	-3.11566

Н	5.84901	-2.58126	0.94499
Η	6.49345	-2.36504	-1.44908
С	2.53234	1.11304	1.88110
С	3.85765	2.91090	1.63347
С	3.37756	2.37210	0.25565
Н	3.44751	3.89485	1.87938
Η	4.94365	2.93635	1.74496
Η	4.21880	1.91797	-0.28627
N	2.46392	1.27583	0.61816
0	3.33432	1.95621	2.59478
С	2.73014	3.40171	-0.69552
С	3.78076	4.40747	-1.19101
Н	4.63178	3.90310	-1.66244
Η	3.34459	5.08543	-1.93115
Н	4.16820	5.02700	-0.37173
С	1.51358	4.11525	-0.09299
Η	0.77357	3.40497	0.28205
Η	1.79037	4.78608	0.72983
Н	1.02488	4.72881	-0.85637
Н	2.38004	2.81753	-1.55540
Pd	-0.14719	0.30399	-0.87866
Br	0.69170	0.58143	-3.32436
С	-3.60758	0.17380	-0.47107
С	-3.45599	-0.28018	-1.77502
С	-4.75969	-0.16470	0.25709
С	-4.45895	-1.08795	-2.33412
Η	-2.58253	-0.01513	-2.36402
С	-5.76121	-0.96615	-0.28008
С	-5.59157	-1.42580	-1.59285
Н	-4.35041	-1.44415	-3.35356
Н	-6.64696	-1.22384	0.29111
Η	-6.36050	-2.05061	-2.03800
Ν	-4.71259	0.41368	1.53434
С	-5.73955	0.29164	2.54901

Η	-5.40791	0.86209	3.41731
Н	-6.69219	0.69657	2.19019
Η	-5.88403	-0.75657	2.83321
С	-3.56744	1.16546	1.71378
0	-3.27581	1.79154	2.71388
С	-2.70504	1.01607	0.41579
С	-2.45479	2.40029	-0.17664
F	-3.59172	3.03457	-0.50649
F	-1.71310	2.27961	-1.32791
F	-1.75897	3.19992	0.64590
С	-1.36571	0.35016	0.80271
Н	-1.57486	-0.64009	1.21117
Н	-0.86305	0.94971	1.56515

S-B(E=-2394.44946953 au)

Р	1.66434	1.05601	0.14072
С	3.26077	0.68628	-0.74086
С	3.89632	-0.58265	-0.70540
С	3.86252	1.69676	-1.50397
С	5.09553	-0.78098	-1.40723
С	5.04737	1.48199	-2.20947
Н	3.40201	2.67523	-1.55238
С	5.66953	0.23840	-2.16045
Н	5.56704	-1.75486	-1.35649
Н	5.47809	2.29239	-2.79043
Н	6.59314	0.05879	-2.70247
С	1.46035	2.88545	-0.10978
С	1.88052	3.85276	0.81550
С	0.79821	3.30962	-1.27691
С	1.64651	5.20956	0.58000
Н	2.38792	3.54962	1.72503
С	0.57670	4.66652	-1.51495
Η	0.46391	2.57141	-2.00126
С	0.99666	5.62014	-0.58476

Н	1.97513	5.94533	1.30902
Н	0.07133	4.97649	-2.42539
Н	0.81738	6.67628	-0.76636
С	2.11357	0.94628	1.92939
С	1.09670	0.71566	2.86822
С	3.43071	1.11530	2.38280
С	1.39418	0.65576	4.23073
Η	0.07383	0.58234	2.53265
С	3.72526	1.05101	3.74602
Η	4.23069	1.29158	1.67062
С	2.70783	0.82074	4.67351
Η	0.59728	0.47320	4.94653
Η	4.75069	1.18027	4.08129
Η	2.93791	0.76894	5.73406
С	3.35886	-1.72958	0.04713
С	3.51835	-3.75130	1.01701
С	2.09065	-3.15861	1.18014
Η	3.54342	-4.72346	0.51861
Η	4.06327	-3.82331	1.96390
Η	1.84513	-3.03742	2.24265
Ν	2.20221	-1.81949	0.57876
0	4.20596	-2.79787	0.17635
С	0.95623	-3.98929	0.53189
С	0.76643	-5.31746	1.28129
Η	0.59483	-5.15706	2.35217
Η	-0.09519	-5.86315	0.88347
Η	1.63932	-5.97425	1.17753
С	1.14966	-4.20648	-0.97471
Η	1.20867	-3.25471	-1.50952
Η	2.05334	-4.78842	-1.19491
Η	0.30153	-4.76511	-1.38502
Н	0.04577	-3.39589	0.66434
Pd	-0.48473	0.11815	-0.65616
С	-4.77736	-0.22015	-0.34876

С	-5.73370	-0.85827	-1.12242
С	-5.13449	0.89326	0.42802
С	-7.04551	-0.36042	-1.11971
Η	-5.47051	-1.72515	-1.71950
С	-6.42584	1.39976	0.44786
С	-7.38312	0.74970	-0.34478
Н	-7.80415	-0.84476	-1.72631
Η	-6.69232	2.26139	1.05102
Η	-8.40321	1.12151	-0.35249
N	-3.99239	1.38729	1.10941
С	-3.94677	2.61129	1.89003
Η	-2.90952	2.78585	2.17642
Η	-4.30680	3.45585	1.29393
Η	-4.56443	2.51581	2.78831
С	-2.89889	0.65676	0.78042
0	-1.72181	0.92586	1.07745
С	-3.29999	-0.50402	-0.12956
С	-3.14805	-1.82505	0.64211
F	-3.52430	-2.86779	-0.12500
F	-3.91857	-1.83792	1.75430
F	-1.88152	-2.05127	1.04518
С	-2.35223	-0.45926	-1.35151
Η	-2.67074	0.32503	-2.04226
Η	-2.32027	-1.41289	-1.87792
Br	0.41098	-0.53042	-2.93587

10. X-ray Structural Analysis:

Crystal Growth of Compound 7b:

A saturated solution of **7b** in DCM was kept at room temperature to obtain crystals. Colorless crystals were observed after DCM evaporation. A suitable crystal was selected and visualized on a Bruker APEX–II CCD diffractometer. The crystal was kept at 298.00 K during data collection.

Using Olex2, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the olex2.refine refinement package using Gauss–Newton minimization. The crystal structure was drawn on diamond–3 software.

Crystal Structure of Compound 7b:

Figure S53. Crystal Structure of compound **7b**. The ellipsoid contour has been drawn at 25% probability levels.

Empirical formula	C11H10F2INO
CCDC	2384466
Formula weight	337.11
Temperature/K	298.00
Crystal system	monoclinic
Space group	C2/c
a/Å	20.4768(11)
b/Å	11.5083(6)
c/Å	14.1850(8)

α/°	90
β/°	132.601(1)
γ/°	90
Volume/Å ³	2460.5(2)
Z	8
$\rho_{calc}(g/cm^3)$	1.820
μ/mm^{-1}	2.607
F(000)	1293.7
Crystal size/mm ³	0.015 imes 0.014 imes 0.012
Radiation	Mo Ka ($\lambda = 0.71073$)
20 range for data collection/°	4.46 to 55.42
Index ranges	$-26 \le h \le 26, -15 \le k \le 15, -18 \le l \le 18$
Reflections collected	25756
Independent reflections	2895 [$R_{int} = 0.0368$, $R_{sigma} = 0.0192$]
Data/restraints/parameters	2895/0/147
Goodness-of-fit on F ²	1.038
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0285, wR_2 = 0.0622$
Final R indexes [all data]	$R_1 = 0.0398, wR_2 = 0.0682$
Largest diff. peak/hole/ e Å ⁻³	0.77/-0.83

Crystal Growth of Compound 2g:

A saturated solution of 2g in DCM was kept at room temperature to obtain crystals. Colorless crystals were observed after DCM evaporation. A suitable crystal was selected and visualized on a Bruker APEX–II CCD diffractometer. The crystal was kept at 295.00 K during data collection.

Using Olex2, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the olex2.refine refinement package using Gauss–Newton minimization. The crystal structure was drawn on diamond–3 software.

Crystal Structure of Compound 2g:

Figure S54. Crystal Structure of compound **2g**. The ellipsoid contour has been drawn at 25% probability levels.

Empirical formula	C ₁₁ H ₉ BrF ₃ NO
ССРС	2384458
Formula weight	308.10
Temperature/K	295.00
Crystal system	orthorhombic
Space group	P2 ₁ /ac
a/Å	7.084(3)
b/Å	10.507(5)
c/Å	16.180(8)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1204.3(10)
Z	4
$\rho_{calc}(g/cm^3)$	1.699
μ/mm^{-1}	0.063
F(000)	608
Crystal size/mm ³	$0.22\times0.14\times0.102$
Radiation	Mo Ka ($\lambda = 0.71073$)
2@ range for data collection/°	4.62 to 52.90
Index ranges	$-8 \le h \le 8, -13 \le k \le 13, -20 \le l \le 20$
Reflections collected	17814
Independent reflections	2419 [$R_{int} = 0.0476$, $R_{sigma} = 0.0364$]

Table 59. Crystal uata and structure refinement for 2g	Table S9:	Crystal data	and structure	refinement	for 2g
--	-----------	--------------	---------------	------------	--------

Data/restraints/parameters	2419/0/156
Goodness-of-fit on F ²	1.028
Final R indexes [I>=2σ (I)]	$R_1 = 0.0265, wR_2 = 0.0589$
Final R indexes [all data]	$R_1 = 0.0388, wR_2 = 0.0630$
Largest diff. peak/hole/ e Å ⁻³	0.25/-0.32
Flack parameter	0.048(6)

Crystal Growth of Compound 6g:

A saturated solution of **6g** in DCM was kept at room temperature to obtain crystals. Colorless crystals were observed after DCM evaporation. A suitable crystal was selected and visualized on a Rigaku XtaLab Synergy Custom, X-Ray Diffractometer with RA-MicroMax 007HF Generator and

HyPix 6000 Detector. The crystal was kept at 100.00 K during data collection. Using CrysAlisPro, the structure was solved and refined with the olex2.refine refinement package using Gauss–Newton minimization. The crystal structure was drawn on diamond–3 software.

Crystal Structure of compound 6g:

Figure S55. Crystal Structure of compound **6g**. The ellipsoid contour has been drawn at 50% probability levels.

Table S10:	Crystal	data a	and structure	e refinement	for 6g:
------------	---------	--------	---------------	--------------	---------

Empirical formula	C11H10BrF2NO
CCDC	2407321
Formula weight	290.11
Temperature/K	100.00
Crystal system	orthorhombic
Space group	P212121

a/Å	7.2114(5)
b/Å	8.6463(5)
c/Å	17.6697(11)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1101.74(12)
Z	4
$\rho_{calc}(g/cm^3)$	1.749
μ/mm^{-1}	5.180
F(000)	576.0
Crystal size/mm ³	0.192 imes 0.134 imes 0.094
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	5.006 to 81.420
Index ranges	$-8 \le h \le 9, -10 \le k \le 4, -22 \le l \le 22$
Reflections collected	4283
Independent reflections	2105 [Rint = 0.0800, Rsigma = 0.0658]
Data/restraints/parameters	2105/0/129
Goodness-of-fit on F ²	1.171
Final R indexes $[I > 4\sigma(I)]$	$R_1 = 0.0649, wR_2 = 0.1874$
Final R indexes [all data]	$R_1 = 0.0680, wR_2 = 0.1857$
Largest diff. peak/hole/ e Å ⁻³	1.366/-1.443
Flack parameter	0.02(5)

11. References:

- 1. Bai, X.; Wu, C.; Ge, S.; Lu, Y. Angew. Chem. Int. Ed. 2020, 59, 2764-2768.
- (a) Sharma, R.; Sihag, N.; Bhartiya, H.; Saini, S.; Kumar, A.; Yadav, M. R. Org. Chem. Front. 2024, 11, 1736–1741. (b) Dong, W.; Liu, Y.; Hu, B.; Ren, K.; Li, Y.; Xie, X.; Jiang, Y.; Zhang, Z. Chem. Commun. 2015, 51, 4587–4590. (c) Seashore-Ludlow, B.; Somfai, P. Org. Lett. 2012, 14, 3858–3861.
- Xiao, P.; Pannecoucke, X.; Bouillon, J.P.; Couve-Bonnaire, S. Adv. Synth. Catal. 2020, 362, 949–954.
- 4. Li, Y.; Sun, G.; He, X.; Lv, H.; Gao, B. J. Fluor. Chem. 2023, 268, 110115.

- (a) Kilaru, P.; Acharya, S.P.; Zhao, P. Chem. Commun. 2018, 54, 924–927. (b) Liu, Z.; Zhong, S.; Ji, X.; Deng, G.J.; Huang, H. ACS Catal. 2021, 11, 4422–4429.
- Shaw, R.; Sihag, N.; Jain, S.; Sharma, R.; Yadav, M. R. J. Org. Chem. 2023, 88, 5652–5660.
- (a) Giraldo, J. J. A.; Lindsay, A. C.; Seo, R. C.-Y.; Kilmartina, P. A.; Sperry, J. Org. Biomol. Chem. 2023, 21, 5609–5615. (b) Tang, S.; Peng, P.; Zhong, P.; Li, J.-H. J. Org. Chem. 2008, 73, 5476–5480.
- 8. Becke A. D. J. Chem. Phys. 1993, 98, 5648.
- Dunning Jr., T. H; Hay, P. J. in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1977) 1–28.
- 10. Ditchfield, R.; Hehre, W. J.; Pople J. A. J. Chem. Phys. 1971, 54, 724.
- Gaussian 09, Revision E. 01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; 57 Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, A. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D.-J.; Gaussian, Inc., Wallingford CT, 2016.

S107

¹H-NMR (500 MHz, CDCl₃)

¹H-NMR (500 MHz, CDCl₃)

¹³C{¹H}-NMR (126 MHz, CDCl₃)

¹H-NMR (500 MHz, CDCl₃)

— 1.644

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -125 -135 -145 f1 (ppm)

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -125 -135 -145 f1 (ppm)

¹H-NMR (500 MHz, CDCl₃)

S179

7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.373 7.336 7.337 7.337 7.336 7.337 7.336 7.337 7.336 7.337 7.337 7.338 7.337 7.338 7.337 7.338 7.337 7.338 7.338 7.338 7.338 7.338 7.338 7.338 7.338 7.338 7.338 7.338 7.338 7.338 7.338 7.338 7.338 7.339

¹H-NMR (500 MHz, CDCl₃)

¹H-NMR (500 MHz, CDCl₃)

¹⁹F-NMR (377 MHz, CDCl₃)

-60 -65 -70 -75 -80 -85 -90 -95 -105 -115 -125 -135 -145 -155 -165 -175 -185 -195 f1 (ppm)

S218

S221

