Supporting information

Multi-functional synergistic platform of Cas12a split dsDNA activators

Xiaolong Li, †^a Jiarun Wang, †^a Xianzhi Cheng, ^a Qin Xu, *^a Lan She *^b and Tongbo Wu *^a

^a School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China

^b Department of Inorganic Chemistry, Naval Medical University, 325 Guohe Road, Shanghai, 200433, China

[†]These authors contribute equally.

*Corresponding authors Email: xuqin19@hust.edu.cn (Q.X.), slgs4100@126.com (L.S.), wutongbo@hust.edu.cn (T.W.)

Materials and instruments

All oligonucleotides used in this study (Table S1) were synthesized and purified by Sangon Biotech (Shanghai, China) and subsequently diluted with 1× TE buffer (Sangon Biotech). EnGen LbaCas12a (Cpf1, LbCas12a), along with 10× NEBuffer r2.1 (100 mM Tris-HCl, 100 mM MgCl₂, 500 mM NaCl, 1000 µg/mL Recombinant Albumin, pH 7.9) and 10× NEBuffer 4 (200 mM Tris-acetate, 100 mM Magnesium acetate, 500 mM Potassium acetate, 10 mM DTT, pH 7.9) were procured from New England Biolabs Inc (Beijing, China). Deionized water, certified DNase/RNase free, was obtained from Tiangen Biotech (Beijing, China) and employed in all experimental procedures. Endo IV was acquired from Thermo Fisher Scientific. Additional enzymes, including APE1, T7 Exonuclease (T7), Exonuclease I (Exo I), Deoxyribonuclease I (DNase I), and Uracil glycosylase (UDG), were all sourced from New England Biolabs (NEB, MA, USA). Fluorescence measurements of all reaction solutions were conducted using a Rotor-Gene Q real-time PCR instrument (QIAGEN, Hilden, Germany), with fluorescence detection set at an excitation wavelength of 470 nm and an emission wavelength of 525 nm in the green channel.

Different combinations of split dsDNA activators for synergistic activation

In a 200 μ L PCR tube, 2 μ L of Cas12a (500 nM), 2 μ L of crRNA (1 μ M), 2 μ L of 10× NEBuffer r2.1, and 2 μ L of ssDNA reporter (1 μ M) were combined. Subsequently, 2 μ L of each splitting dsDNA activator (250 nM) was added, and the reaction mixture was adjusted to a final volume of 20 μ L using deionized water. The fluorescence intensity was monitored immediately using a Rotor-Gene Q real-time PCR instrument (QIAGEN, Hilden, Germany) in the green channel, with measurements taken at 37°C in cycles of 20 seconds per cycle.

Synergistic activation platform for APE1 detection

In a 200 µl PCR tube, 2 µL of proximal split dsDNA activator (1 µM, TS-AP:NTS=1:1.5), 1 µl of 10× NEBuffer 4, and 2 µL of APE1 (at varying concentrations) were combined and thoroughly mixed in 10 uL volume. The mixture was incubated at 37°C for 30 minutes, followed by heat inactivation of APE1 at 80°C for 20 minutes. Subsequently, 2 µL of Cas12a (250 nM), 2 µL of crRNA (1 µM), 1 µL of 10× NEBuffer 4, 2 µL of ssDNA reporter (1 µM), and 2 µL of distal split dsDNA activator (1 µM) were added to the reaction. The final volume was adjusted to 20 µL using deionized water.

To assess the selectivity of this method, other potential interfering enzymes were evaluated in parallel with APE1. The enzymatic activities of APE1 and the other enzymes were analyzed using

the same protocol described above, with all enzymes standardized to a concentration of 0.00001 U/mL in the reaction solution.

For the detection of APE1 in biological samples, 2 μ L of diluted cell lysate was substituted for APE1 in the aforementioned detection system. 1 uL of additional inhibitor (NCA) was used for activity inhibition experiments in cell lysate.

Synergistic activation platform for light response

In a 200 μ L PCR tube, 2 μ L of proximal split dsDNA activator (1 μ M, TS-PC linker:NTS=1:1.5) was exposed to ultraviolet light for 1 hour to facilitate the reaction. Following illumination, 2 μ L of Cas12a (250 nM), 2 μ L of crRNA (1 μ M), 2 μ L of 10× NEBuffer r2.1, and 2 μ L of ssDNA reporter (1 μ M) were added to the reaction. The final volume was adjusted to 20 μ L using deionized water.

Synergistic activation platform for dynamic network

In a 200 μ L PCR tube, 2 μ L of Cas12a (500 nM), 2 μ L of crRNA (1 μ M), 2 μ L of 10× NEBuffer r2.1, and 2 μ L of ssDNA reporter (1 μ M) were combined. Subsequently, 2 μ L of each single-stranded probe (250 nM; A, A', B, B') was added, and the reaction mixture was adjusted to a final volume of 20 μ L using deionized water.

Name	Sequences from 5' to 3'			
Synergistic activation				
crRNA	UAAUUUCUACUAAGUGUAGAUCUCAGGGCGGACGAGGUUU			
	AGGAU			
reporter	FAM-TTTTTTTTTTTTT-BHQ-1			
Proximal-TS	GTCCGCCCTGAGTAAAGCGA			
Proximal-TS-1Del	TCCGCCCTGAGTAAAGCGA			
Proximal-TS-2Del	CCGCCCTGAGTAAAGCGA			
Proximal-TS-1nt	GGTCCGCCCTGAGTAAAGCGA			
Proximal-TS-2nt	AGGTCCGCCCTGAGTAAAGCGA			
Proximal-TS-3nt	GAGGTCCGCCCTGAGTAAAGCGA			
1nt-Proximal-TS	GTCCGCCCTGAGTAAAGCGAA			
2nt-Proximal-TS	GTCCGCCCTGAGTAAAGCGAAA			
3nt-Proximal-TS	GTCCGCCCTGAGTAAAGCGAAAT			
Proximal-TS-M1ntEx	CGTCCGCCCTGAGTAAAGCGA			
Proximal-TS-M2ntEx	TCGTCCGCCCTGAGTAAAGCGA			
Proximal-TS-M3ntEx	CTCGTCCGCCCTGAGTAAAGCGA			
Proximal-TS-M4ntEx	CCTCGTCCGCCCTGAGTAAAGCGA			
Proximal-TS-M5ntEx	ACCTCGTCCGCCCTGAGTAAAGCGA			
Proximal-NTS	TCGCTTTACTCAGGGCGGAC			
Proximal-NTS-1ntDel	TCGCTTTACTCAGGGCGGA			

Table S1. Detailed sequences used in experiment.

Proximal-NTS-2ntDel	TCGCTTTACTCAGGGCGG				
Proximal-NTS-1nt	TCGCTTTACTCAGGGCGGACG				
Proximal-NTS-2nt	TCGCTTTACTCAGGGCGGACGA				
Proximal-NTS-3nt	TCGCTTTACTCAGGGCGGACGAG				
1nt-Proximal-NTS	ATCGCTTTACTCAGGGCGGA				
2nt-Proximal-NTS	AATCGCTTTACTCAGGGCGGA				
3nt-Proximal-NTS	TAATCGCTTTACTCAGGGCGGA				
Distal-TS	ATCCTAAACCTC				
1nt-Distal-TS	ATCCTAAACCTCC				
2nt-Distal-TS	ATCCTAAACCTCCA				
3nt-Distal-TS	ATCCTAAACCTCCAG				
Distal-TS-1nt	AATCCTAAACCTC				
Distal-TS-2nt	AAATCCTAAACCTC				
Distal-TS-3nt	TAAATCCTAAACCTC				
Distal-NTS	GAGGTTTAGGAT				
1nt-Distal-NTS	CGAGGTTTAGGAT				
2nt-Distal-NTS	ACGAGGTTTAGGAT				
3nt-Distal-NTS	GACGAGGTTTAGGAT				
Distal-NTS-1nt	CGAGGTTTAGGATA				
Distal-NTS-2nt	CGAGGTTTAGGATAA				
Distal-NTS-3nt	CGAGGTTTAGGATAAT				
	APE1 detection				
Proximal-TS-AP	GGATTTGGA*GTCCGCCCTGAGTAAAGCGA				
Proximal-NTS	TCGCTTTACTCAGGGCGGACATCC				
Light response					
Proximal-TS-PC linker	TGGAG/iPClink/GTCCGCCCTGAGTAAAGCGA				
Proximal-NTS	TCGCTTTACTCAGGGCGGAC				
Dynamic network					
А	GTCCGCCCTGAGTAAAGCGA				
A'	TCGCTTTACTCAGGGCGGAC				
В	TTTTTTTTTGGGGGGGGGGGGGGGGCCCTGAGTAAAGCGA				
В'	TCGCTTTACTCAGGGCGGACGGGGGGGGGGGGGGTTTTTTTT				
A-BHQ	GTCCGCCCTGAGTAAAGCGA-BHQ-1				
A'-HEX	HEX-TCGCTTTACTCAGGGCGGAC				

* Represents AP site modification and /IPClink/ represents PC-Linker modification

Table S2. Comparison of sensitivity with other methods

Method			Detection of limit	References	
Catalytic	hairpin	self-	3.37×10 ⁻⁴ U/mL	[1]	
assembly	and	G-			
quadruplex/hemin					
DNAzyme					
Defective	PAM-driven		7.66×10 ⁻⁵ U/mL	[2]	
self-catalytic biosensor					

Dual-locking probe self-	0.05 U/mL	[3]
assembly		
Synergistic platform of	0.00001 U/mL	This work
Cas12a split dsDNA		
activator		

Fig. S1 Comparison of synergistic activation effects of different combinations of split activators.

Fig. S2 The fluorescence curve of proximal NTS-22nt extension and standard activator for synergistic activation.

References:

[1] C.J. Li, Y.Q. Hu, T.Z. Shi, K.J. Dong, T.B. Wu, Talanta, 2024, 272, 125835.

[2] Y. Song, J. Long, H.B. Wang, W.Y. Tang, W. Yang, Y. Zheng, R. Yuan, D.C. Zhang, B. Gu,

W.Q. Nian, Biosens. Bioelectron., 2025, 279, 117410.

[3] J.N. Wang, X.L. Han, H.Y. Yu, G.M. Xie, Anal. Chem., 2024, 96, 9570-9575.