Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2025

> Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2025

Supplementary Information for

The Ni/Li Disordering Evolution Mechanisms in Ni-Based Layered Cathode

Materials: Insights from First-Principles Calculations

Fanghua Ning^a, Huiying Zhang^a, Jingwen Dai^a, Xiaoyu Liu^a, Shigang Lu^a, and Jin Yi^{*a}

^a Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China.

*Authors to whom correspondence should be addressed: jin.yi@shu.edu.cn

METHODOLOGY

All the first-principles calculations based on the density functional theory (DFT) framework are implemented in the Vienna *ab initio* simulation package (VASP) code.¹ The projector-augmented wave (PAW) method is used for the pseudopotentials of atomic cores.² A plane-wave basis set ³ with an energy cutoff of 400 eV is used. The spin-polarization is considered. The Brillouin zone is sampled with the $5 \times 5 \times 2$ kpoint mesh using the Monkhorst-Pack scheme.⁴ The exchange-correlation functional is counted by the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) version.⁵ The strong correlation effect of transition metal is addressed with the Hubbard U correction (GGA+U).^{6,7} The U value for the 3d state of Ni is 4.05 eV, which is taken from previous theoretical works.⁸ The energy convergence criterion for self-consistent calculations is set to be 10⁻⁵ eV. The force convergence criterion for structural relaxations is set to be 0.01 eV/Å. The Ni ion migration in LiNiO2 is performed in a 2 \times 2 \times 1 supercell containing 48 atoms. The Li₂₇Ni₉Co₉Mn₉O₅₄, Li₂₇Ni₂₇O₅₄, and Li₁₀Ni₆Co₂Mn₂O₂₀ supercells are used for NCM111, LNO, and NCM622 materials in Li_{Ni} anti-site calculations, respectively. Uniaxial strain (ε) was calculated by dividing the lattice deformation ($\Delta \alpha$) by the initial lattice constant (α) in that orientation (i.e., $\varepsilon = \Delta \alpha / \alpha$). The Ni/Li anti-site configurations were generated by exchanging the positions of Ni and Li ions, followed by structural optimization. The anti-site formation energy (ΔE) is defined as:

$$\Delta E = E(\text{defect}) - E(\text{pristine})$$

Where E(defect) and E(pristine) are the total energies of the configuration with Ni/Li anti-site defect and the pristine configuration, respectively.

SUPPLEMENTARY FIGURES

Fig. S1 (a) The orange and green bar charts represent the Ni³⁺ and Ni⁴⁺ content, respectively. And the average magnetic moment of Ni ion in Li_{1-x}NiO₂ structures for x = 0.00, 0.25, 0.50, 0.75.

The contents of Ni³⁺ and Ni⁴⁺ cations are determined by the atomic magnetic moments. It can be observed that the proportion of Ni³⁺ ions decreases with an increase in x, while the proportion of Ni⁴⁺ ions increases. The average magnetic moment of Li_{1-x}NiO₂ increases with the growth of x.

Fig. S2 (a) The PDOS of Ni²⁺, Ni³⁺, and Ni⁴⁺ ions. Schematic diagram of the 3*d* electron configurations (b) and the NiO₆ octahedron local structures (c). The blue and red spheres represent Ni and O atoms, respectively.

Fig. S3 (a) The optimized structure of LiNiO_2 . The Li/vacancy configurations for the $\text{Li}_{1-x}\text{NiO}_2$ of (b) x = 0.00, (c) x = 0.25, (d) x = 0.50, and (e) x = 0.75. The purple and blue spheres represent Li and Ni atoms, respectively.

Fig. S4 Difference between the interlayer spacing of Li and Ni layers under strain.

Fig. S5 The relationship between d_{LiO} - d_{NiO} and the migration energy of Ni³⁺ migrate to the octahedral site (a) and tetrahedral site (b) of the Li layer. The relationship between d_{LiO} - d_{NiO} and the migration energy of Ni⁴⁺ migrate to the octahedral site (c) and tetrahedral site (d) of the Li layer.

Fig. S6 Difference between the LiO and NiO slab distances before and after Ni migration. The LiO slabs with and without Ni ion are marked as "slab A" and "slab B", respectively.

Fig. S7 Two migration paths for the coordinated migration of Li ions and Ni ions in $Li_{0.5}NiO_2$. Path 1 and path 2 represent the migration of Li ions from the original site (a) to octahedral (b) and tetrahedral (c) sites in the Ni layer when Ni ions migrate to the octahedral site in the Li layer, respectively.

	Initial magnetic moment (µB)	Optimized magnetic moment (µB)
Ni ²⁺	0 (low spin)	1.7(high spin)
	2 (high spin)	1.7(high spin)
Ni ³⁺	3 (high spin)	1.0 (low spin)
	1 (low spin)	1.0 (low spin)
Ni ⁴⁺	4 (high spin)	0.0 (low spin)
	0 (low spin)	0.0 (low spin)

Table S1 The initial and optimized magnetic moments of Ni²⁺, Ni³⁺, and Ni⁴⁺ ions.

Both the high-spin and low-spin configurations of Ni²⁺, Ni³⁺, and Ni⁴⁺ ions were tested by setting different initial magnetic moments. The result revealed that different initial spin configurations consistently converged to the same spin configurations after selfconsistent field (SCF) iteration, as listed in Table S1. The optimized electronic states of Ni²⁺, Ni³⁺, and Ni⁴⁺ ions are as follows: Ni²⁺ exhibits a high-spin state $(t_{2g}^{6}e_{g}^{2})$ with a magnetic moment of about 2 µB, Ni³⁺ shows a low-spin state $(t_{2g}^{6}e_{g}^{1})$ with a magnetic moment of about 1 µB, and Ni⁴⁺ displays a low-spin state (t_{2g}^{6}) with a magnetic moment of about 0 µB.

References

- 1. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B*, 1992, **46**, 6671-6687.
- 2. G. Kresse, J. Joubert, *Phys. Rev. B* 1999, **59**, 1758.
- 3. G. Kresse, J. Furthmuller, *Phys. Rev. B*, 1996, **54**, 11169.
- 4. H. J. Monkhorst, J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188.
- 5. J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 6. V. I. Anisimov, J. Zaanen and O. K. Andersen, *Phys. Rev. B*, 1991, 44, 943-954.

- 7. V. I. Anisimov, F. Aryasetiawan, A. I. Lichtenstein, J. Phys. Condens. Mat. 1997, 9, 767.
- 8. V. N. Kothalawala, A. A. Sasikala Devi, J. Nokelainen, M. Alatalo, B. Barbiellini, T. Hu, U. Lassi, K. Suzuki, H. Sakurai, A. Bansil, *Condensed matter*, 2022, 7, 54.