Electronic Supplementary Information

Reversible $Na_{15}Sn_4$ alloy compensation for hard carbon anodes to enhance initial coulombic efficiency in sodium-ion full cells[†]

Ran Wei^a, Qingsong Lai^a, Rui yang^a, Qi Li^a, Kejie Mou^a, Dongrun Yang^a, Zhaomeng Liu^{ab}, Xuanwen Gao^{ab}, Qinfen Gu, Wen-Bin Luo^{*a}

^aInstitute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China. E-mail: luowenbin@smm.neu.edu.cn

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China

^cAustralian Synchrotron (ANSTO), 800 Blackburn Rd, Clayton, Victoria 3168, Australia.

* Corresponding Authors E-mail: luowenbin@smm.neu.edu.cn

1. Experimental Section

1.1 Synthesis Na₁₅Sn₄ alloy

Specifically, metallic Na (\geq 99.7%, Aladdin) and metallic Sn (\geq 99.99%, Aladdin) were weighed in a molar ratio of 15:4 and placed in a stainless-steel container. The container was then positioned on a stirring heating plate inside a glovebox. The temperature was gradually increased to 350 °C at a rate of 10 °C/ min, allowing both Na and Sn to reach a liquid state. The molten mixture was stirred at 30 r/min for 20 minutes to ensure homogeneity, followed by slow cooling to room temperature. The solidified product was then ground in an agate mortar for 40 minutes to obtain Na₁₅Sn₄ alloy powder. All operations were performed within the glovebox, maintaining O₂ and H₂O levels below 0.1 ppm.

1.2 Synthesis NaSn@HC

The NaSn@HC was fabricated by ball mixing prepared $Na_{15}Sn_4$ alloy with commercial hard carbon at a ratio of 1:20 and ground in an agate mortar in the glove box for 30 minutes.

1.3 Preparation of the Cathode Material for the Full Cell

1.3.1 Na₃V₂(PO₄)₃@C (NVP):

For a typical synthesis, V_2O_5 and $H_2C_2O_4$ were dissolved into deionized water and vigorously stirred at 70 °C for 1 h to obtain a VOC₂O₄ solution. Then NaH₂PO₄ and glucose were added into the solution, which was further stirred for stirring 5 min. After that, n-propanol was added into the solution stirring was continued for more than 10 min, followed by drying at 70 °C to get nanoflake-assembled flower-like precursor. In the end, nanoflake-assembled hierarchical NVP/C was obtained from the precursor by preheating it at 400 °C for 4 h followed by annealing at 750 °C for 8h in argon atmosphere with a heating rate of 5 °C min⁻¹.

1.3.2 Na_{2/3}[Fe_{1/3}Mn_{2/3}]O₂ (NaFeMnO):

The NaFeMnO cathode material used in this work was prepared by the hightemperature solid-state method. Stoichiometric amounts of Na₂CO₃, Mn₂O₃, and Fe₂O₃ were ground thoroughly in an agate mortar for 1 h. The mixture was calcined at 900 °C for 10 h at the rate of 5 C min⁻¹ in air atmosphere. When the temperature naturally cools to room temperature, the black powders were immediately transferred into a glovebox filled with argon (Ar) atmosphere.

1.3.3 Na[Ni_{0.3}Mn_{0.55}Cu_{0.1}Ti_{0.05}]O₂ (NaNMO)

The NaNMO cathode material was prepared by the high-temperature solid-state method. Stoichiometric amounts of Na₂CO₃, Mn₂O₃, Ni₂CO₃, CuO and TiO₂ were ground thoroughly in an agate mortar for 1 h. The mixture was calcined at 900 °C for 10 h at the rate of 5 C min⁻¹ in air atmosphere. When the temperature naturally cools to room temperature, the black powders were immediately transferred into a glovebox filled with argon (Ar) atmosphere.

1.4 Coin Cell Assembly:

The cathode was prepared using active material, carbon black, and polyvinylidene fluoride (PVDF) in a weight ratio of 7:2:1, dispersed in N-methyl-2-pyrrolidone (NMP). The resulting slurry was cast into electrodes and cut into circular discs with a diameter of 1.2 cm, achieving an active material loading of 1.0-1.75 mg cm⁻². Similarly, the NaSn@HC anode was fabricated using the same composition (7:2:1 weight ratio of active material, carbon black, and PVDF in NMP) and cut into 1.2 cm diameter electrodes. Full cells were assembled with an N/P ratio of 1-1.2, and the specific capacity was calculated based on the cathode.

Coin-type (2032) full cells were assembled in an argon-filled glovebox, maintaining water and oxygen levels below 0.01 ppm. The electrolyte consisted of 1 M NaClO₄ dissolved in a 1:1 (v/v) mixture of EC and DEC, with 5 wt% FEC as an additive. In half-cells, metallic sodium served as both the counter and reference electrode, while binder-free glass microfiber filters (Whatman, Grade GF/D) were used as separators.

1.5 Materials characterization

The cells were tested at room temperature Neware test system (CT-4008Tn-5V20mA-164). The Cyclic Voltammetry test (CV) was obtained using the Donghua electrochemical workstation (DH7006). The materials were studied using a Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, Raman Spectra (SEM, FTIR and Raman: the test in shiyanjia.com) and X-ray Photoelectron Spectroscopy (XPS: the test in www.zkec.cc).

Fig. S2. crystal structures of $Na_{15}Sn_4$.

Fig. S3. (a) $HC \parallel NVP$ and (b) $NaSn@HC \parallel NVP$ cyclic curve diagrams.

Fig. S4. Cycling performance of NaSn@HC || NVP at 0.1c.

Fig. S5. The SEM image of the NaSn@HC anode, (a, b) before cycling and (c, d) after 100 cycles in the full cell.

Fig. S6. The NaSn@HC || NVP full-cell performance and published various presodiation techniques full-cell performance graph.

Fig. S7. The scanning electron microscopy of $Na_{2/3}[Fe_{1/3}Mn_{2/3}]O_2$ material.

Fig. S8 (a) First loop charge-discharge curve of NaNMO || HC full cell and (b) NaNMO || NaSn@HC full cell; (c) The long-term cycling performance of NaNMO || NaSn@HC full cell.

1	10 1	
Sample		$Na_{15}Sn_4$
Crystal system		Cubic
Space group		I-43d
Lattice parameters		a=b=c=13.1946Å
Rp=12.7	Rwp=19.0	Chi2=10.9

Table S1. Structural parameters of Na₁₅Sn₄ from Rietveld refinement.

Table S2. Atomic positions of $Na_{15}Sn_4$ alloy deduced from Rietveld refinement of XRDdata.AtomWyckoffxyzOccupancy

Atom	Wyckoff	Х	У	Z	Occupancy
Na1	12a	0.37500	0.00000	0.25000	1
Na2	48e	0.65480	0.46700	0.46700	1
Sn	16c	0.70830	0.70830	0.70830	1

	1	1 1	
Anode	Cathode	ICE	Reference
SbSn@NCNFs	$Na_3V_2(PO_4)_2F_3$	79.5	1
Sn/FeSn ₂ @C	$Na_3V_2(PO_4)_3$	79.7	2
SnO ₂ @C/RGO	$n-Na_3V_2(PO_4)_2F_3$	77.9	3
Sn ₄ P ₃ -C	$Na_2C_6O_6$	85.0	4
α-Sn	Na ₃ V ₂ (PO ₄) ₃ /rGO	80.0	5
SnO	$Na_3V_2(PO_4)_2F_3$	63.7	6
Cu ₂ Sn@Cu	$Na_3V_2(PO_4)_3$	87.5	7
NaSn@HC	Na ₃ V ₂ (PO ₄) ₃	90.1	This work

Table S3. Summary of initial Coulomb efficiency (ICE) of various Sn-based alloy anodes full cell Electrochemical performance in previously published literature

	1 /1		
Anode	Cathode	ICE	Reference
CFS/CS@C	$Na_3V_2(PO_4)_3$	83.1	8
Mn-BiOCl	$Na_3V_2(PO_4)_3$	78.2	9
HC	$Na_3V_2(PO_4)_3$	63.6	10
Mo ₃ Sb ₇ @C	Na ₃ V ₂ (PO ₄) ₃ @C	57.3	11
MnHC	$Na_3V_2(PO_4)_3$	86.5	12
MGO-Si	$Na_{2/3}Ni_{1/3}Mn_{2/3}O_2$	45.1	13
Activated carbon	$NaNi_{1/3}Fe_{1/3}Mn_{1/3}O_2$	74.5	14
Na ₄ PTC@Bi	$Na_3V_2(PO_4)_2F_3$	89.6	15
NaSn@HC	Na ₃ V ₂ (PO ₄) ₃	90.1	This work

Table S4. Summary of initial Coulomb efficiency of various advanced sodium-ion anodes available in previously published literature

Cathode	Anode	Pre-sodiation Techniques	Ref.
Na ₃ (VO) ₂ (PO ₄) ₂ F	HC	Additive	16
Na _{3.5} V ₂ (PO ₄) ₂ F ₃	HC	Ball milling	17
Na ₃ V ₂ (PO ₄) ₂ F ₃ /rGO	HC	Sef-Sacrificial	18
$Na_{2/3}Ni_{1/3}Mn_{1/3}Ti_{1/3}O_2$	HC	Sef-Sacrificial	19
$Na_{2/3}Ni_{1/3}Mn_{1/3}Ti_{1/3}O_2$	HC	Sef-Sacrificial	20
Na ₃ V ₂ (PO ₄) ₃	НС	Alloy	This work

 Table S5.
 Summary of various pre-sodiation techniques in previously published

 literature
 Interview

References

- L. Yang, B. Yang, X. Chen, H. Wang, J. Dang and X. Liu, *Electrochim. Acta*, 2021, **389**, 138246.
- 2 M. Chen, P. Xiao, K. Yang, B. Dong, D. Xu, C. Yan, X. Liu, J. Zai, C. J. Low and X. Qian, *Angew. Chem. Int. Ed.*, 2023, **62**, e202219177.
- 3 H. Song and K. Eom, *Adv. Funct. Mater.*, 2020, **30**, 2003086.
- 4 Z. Hao, N. Dimov, J.-K. Chang and S. Okada, *Journal of Energy Chemistry*, 2022, **64**, 463-474.
- 5 Y. Zhu, Q. Yao, R. Shao, C. Wang, W. Yan, J. Ma, D. Liu, J. Yang and Y. Qian, *Nano Lett.*, 2022, **22**, 7976-7983.
- 6 Y. C. Lu, C. Ma, J. Alvarado, N. Dimov, Y. S. Meng and S. Okada, *Journal of Materials Chemistry A*, 2015, **3**, 16971.
- 7 C. Xie, H. Wu, J. Dai, Z. Fu, R. Zhang, H. Ji, Q. Zhang, Y. Tang, T. Qiu and H. Wang, *Adv. Energy Mater.*, 2024, 14, 2400367.
- 8 S. Li, H. Zhang, S. Zhang, Z. Liu, C. Yang and Y. Xu, *Materials Today Energy*, 2023, **34**, 101309.
- 9 J. Xia, L. Gao, M. Cao, C. Zhang, M. Tan, Q. Wang, F. Lv and L. Tao, *Appl. Surf. Sci.*, 2025, 695, 162888.
- 10 Y. Liu, X. Wu, A. Moeez, Z. Peng, Y. Xia, D. Zhao, J. Liu and W. Li, *Adv. Energy Mater.*, 2023, **13**, 2203283.
- 11 W. Li, C. Hu, M. Zhou, H. Tao, K. Wang, S. Cheng and K. Jiang, *J. Power Sources*, 2016, **307**, 173-180.
- 12 J. Zhao, X. X. He, W. H. Lai, Z. Yang, X. H. Liu, L. Li, Y. Qiao, Y. Xiao, L. Li, X. Wu and S. L. Chou, *Adv. Energy Mater.*, 2023, **13**, 2300444.
- 13 Y. Li, F. Wu, Y. Li, X. Feng, L. Zheng, M. Liu, S. Li, J. Qian, Z. Wang, H. Ren, Y. Gong, C. Wu and Y. Bai, *Adv. Mater.*, 2023, **36**, 2310270.
- 14 K. Wang, F. Sun, H. Wang, D. Wu, G. Zhao and X. Su, Adv. Energy Mater., 2025, 2105294.
- Z. Li, Y. Zhang, K. Zhou, T. Kong, X. Zhou, Y. Hao, X. Huang, J. Xu, Y. Cheng,
 H. Liu, Z. Guo and Y. Wang, *Adv. Energy Mater.*, 2024, 14, 2303786.
- 16 D. Shanmukaraj, K. Kretschmer, T. Sahu, W. Bao, T. Rojo, G. Wang and M. Armand, *ChemSusChem*, 2018, **11**, 3286-3291.
- 17 B. Zhang, R. Dugas, G. Rousse, P. Rozier, A. M. Abakumov and J.-M. Tarascon, *Nat. Commun.*, 2016, 7, 10308.
- 18 R. Zhang, Z. Tang, D. Sun, R. Li, W. Yang, S. Zhou, Z. Xie, Y. Tang and H. Wang, *Chem. Commun.*, 2021, 57, 4243-4246.
- 19 Y.-J. Guo, Y.-B. Niu, Z. Wei, S.-Y. Zhang, Q. Meng, H. Li, Y.-X. Yin and Y.-G. Guo, *ACS Appl. Mater. Interfaces*, 2021, **13**, 2772-2778.
- Y. B. Niu, Y. J. Guo, Y. X. Yin, S. Y. Zhang, T. Wang, P. Wang, S. Xin and Y. G. Guo, *Adv. Mater.*, 2020, **32**, 2001419.