Contents

S1. General methods	2
S2. Synthesis	3
S3. Supplementary Details of Cyclic voltammetry Measurements and Analysis	
S4. Single crystal X-ray Diffraction Measurements and Analysis	6
S5. Electron Spin Resonance (ESR) Measurements	9
S6. Theoretical Calculations	1
S7. References	22
S8. NMR Charts	26
S9. HR-MS	28

S1. General methods

Synthesis: All the synthetic manipulations were performed under a dry an argon atmosphere using standard Schlenk techniques. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Column chromatography was performed using Wako Silicagel 70 PF254 or Kanto Silica Gel 60 (spherical, particle size 100-210 μm).

 ^{1}H and ^{13}C -NMR measurements: ^{1}H -, ^{13}C -, spectra were recorded with a Bruker AVANCE III (^{1}H -NMR 400 MHz, ^{13}C -NMR 100 MHz). Variable temperature (VT)-NMR measurements were recorded with a JEOL ECS-400 (^{1}H -NMR 400 MHz). ^{1}H -NMR spectra are reported as follows: chemical shift in ppm relative to the chemical shift of CD₂Cl₂ at 5.32 ppm, integration, multiplicities (s = singlet, d = doublet, t = triplet, dd = double doublet, m = multiplet), and coupling constants (Hz). ^{13}C -NMR spectra reported in ppm relative to the central line of quintet for CD₂Cl₂ at 53.84 ppm.

Cyclic voltammetry: Electrochemical measurements were performed under dry argon atmosphere using a BAS Electrochemical Analyzer Model 1210C, a glassy carbon working electrode (diameter: 3 mm), a Pt wire counter electrode, and an Ag wire/AgNO₃ in MeCN reference electrode.

Mass spectrometry: High-resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF mass spectrometer (ionization mode: APCI or ESI). Tuning Mix (Agilent Technologies, Inc.) or sodium formate in MeOH was used as an external standard.

Variable temperature (VT) ESR measurements: ESR spectra were recorded on an X-band ESR spectrometer (JES-FA200; JEOL). The *g*-factor and ESR signal intensity were calibrated based on Mn²⁺ marker signal.

Ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy: UV-vis-NIR spectra were recorded on a Shimadzu UV-3101PC spectrometer.

Single crystal X-ray (scXRD) diffraction: scXRD measurements were carried out on a Rigaku MicroMax-007HF diffractometer equipped with a VariMax light source (Mo K α , λ = 0.71073 Å).

S2. Synthesis

Br₂DBAB^[S1] and tris(4-bromophenyl)ammoniumyl hexafluoroantimonate^[S2] were synthesized following the reported procedures.

Synthesis of Dpa₂DBAB

Scheme S1. Synthesis of Dpa₂DBAB

A toluene (50 mL) solution of **Br₂DBAB** (1.00 g, 1.63 mmol), bis(4-*tert*-butylphenyl)amine (0.96 g, 3.41 mmol), Pd(OAc)₂ (0.04 g, 0.16 mmol), [tBu_3PH]BF₄ (0.18 g, 0.33 mmol) and tBuONa (0.94 g, 9.75 mmol) was stirred at 110 °C for 48 h. The reaction was quenched with aq. NH₄Cl and extracted with ethyl acetate. The organic layer was dried over Na₂SO₄ and concentrated. The mixture was purified by column chromatography (SiO₂, hexane to hexane/dichloromethane 10:1 to 1:1 v/v) to afford **Dpa₂DBAB** (0.40 g, 0.39 mmol, 24%) as a light yellow solid.

Note: **Dpa₂DBAB** is light and air sensitive. The color gradually changed from light yellow to light green under air. Therefore, **Dpa₂DBAB** was kept under an argon atmosphere in the dark.

¹**H-NMR** (400 MHz, CD₂Cl₂): δ = 7.64 (t, J = 7.6 Hz, 2H), 7.55 (t, J = 7.6 Hz, 2H), 7.41–7.38 (m, 4H), 7.17 (dd, J = 4.7, 2.6 Hz, 2H), 7.05 (d, J = 9.2 Hz, 8H), 6.80 (s, 2H), 6.75 (d, J = 8.8 Hz, 8H), 6.70 (d, J = 9.2 Hz, 2H), 2.79–2.73 (m, 1H), 2.34–2.27 (m, 2H), 1.16–1.14 (m, 42H), 0.79 (d, J = 6.8 Hz, 12H). (Figure S17)

¹³C-NMR (100 MHz, CD₂Cl₂): δ = 150.6, 148.2, 146.0, 144.7, 143.5, 142.3, 140.0, 134.3, 132.6, 131.3, 130.6, 129.5, 126.2, 122.2, 120.0, 118.7, 35.4, 34.5(2), 34.5(4), 24.5, 24.2. (Two signals corresponding to B-C carbon could not be observed, Figure S18)

HRMS (APCI, Positive) calcd. for $C_{73}H_{86}BN_3$ [M+nH]⁺: 1016.6999. Found: 1016.6848. (Figure S19)

Synthesis of [Dpa2DBAB](SbF6)2

Scheme S2. Synthesis of [Dpa2DBAB](SbF6)2

A dichloromethane (15 mL) solution of **Dpa₂DBAB** (50.0 mg, 0.05 mmol) and **MB** (77.7 mg, 0.11 mmol) was stirred at 20 °C for 2 h in the dark. To the mixture, diethyl ether was added slowly and cooled to 0 °C slowly. The precipitated crystals were further washed by diethyl ether to afford **[Dpa₂DBAB](SbF₆)₂** (33.4 mg, 0.02 mmol, 45%) as dark violet crystals.

HRMS (ESI, Positive): Calcd. for C₇₃H₈₆BN₃SbF₆ [M]⁺: 1252.5852. Found: 1252.6041. (Figure S20)

Anal.: Calcd. For $C_{73}H_{86}BN_3Sb_2F_{12} + CH_2Cl_2 + C_4H_{10}O$: C, 56.89; H, 6.00; N, 2.55%. Found: C, 56.55; H, 6.01; N, 2.62%.

S3. Supplementary Details of Cyclic voltammetry Measurements and Analysis

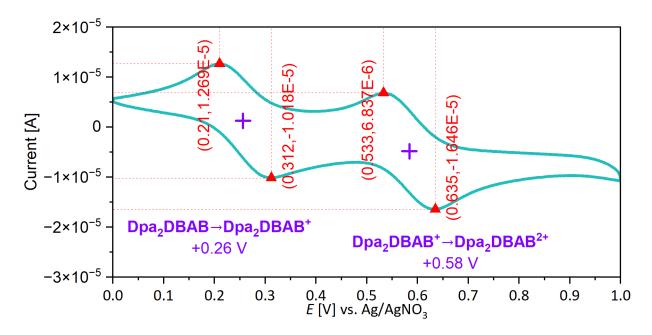


Figure S1. Oxidation and reduction peaks, as well as the estimated oxidation potentials of Dpa2DBAB.

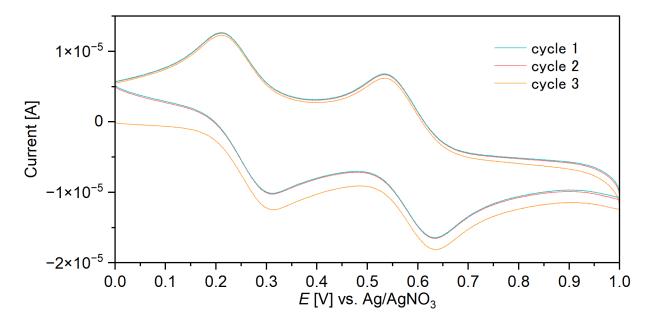


Figure S2. Repeated cyclic voltammograms (3 cycles) of Dpa₂DBAB.

S4. Single crystal X-ray Diffraction Measurements and Analysis

Single crystal X-ray diffraction (scXRD) measurements were carried out on a Rigaku MicroMax-007HF diffractometer equipped with a VariMax light source (Mo K α , λ = 0.71073 Å). The crystals were kept at -100 °C while the data collection. The collected data were processed using the CrysAlisPro (ver. 1.171.41.117a) program package (Rigaku Oxford Diffraction, 2021). Using Olex2, [S3] the structures were solved with the SHELXT and refined with the SHELXL program packages. [S4] The full-matrix least-squares refinements were performed on F_2 . All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. Two counter SbF₆ anions and one Et₂O molecule were found per one **Dpa₂DBAB**²⁺ moiety (Figure S3, Figure S4). The two SbF₆ counter anions were disordered over two sites, with the occupancy ratios of 0.294:0.706 and 546:454, respectively. The SIMU and RIGU restraints were included for the anisotropic displacement parameters of these disordered counter anions. CCDC 2387211 ([**Dpa₂DBAB**](SbF₆)₂) contains the additional crystallographic data. [S5]

Table 1. Crystallographic data for [Dpa2DBAB](SbF6)2

	[Dpa ₂ DBAB](SbF ₆) ₂							
Empirical formula	$C_{77}H_{96}BF_{12}N_3OSb_2$							
Formula weight	1561.87							
Temperature/K	173.15							
Crystal system	triclinic							
Space group	<i>P</i> -1							
a /Å	15.2096(4)							
$m{b}/ ext{Å}$	16.6088(6)							
c/Å	17.4936(7)							
$lpha/^\circ$	63.221(4)							
$oldsymbol{eta}/^\circ$	81.517(3)							
$\gamma/^{\circ}$	89.492(3)							
Volume/Å ³	3893.7(3)							
Z	2							
$ ho_{ m calcd}$ /g cm ⁻³	1.332							
μ/mm^{-1}	0.765							
F(000)	1604.0							
Crystal size/mm ³	$0.113 \times 0.095 \times 0.055$							
Radiation	Mo $K\alpha$ ($\lambda = 0.71073$)							
2 𝚱 range for data collection/°	5.576 to 59.768							
Index ranges	$-21 \le h \le 20, -23 \le k \le 23, -24 \le 1 \le 23$							
Reflections collected	61213							
Independent reflections	20095 [$R_{\text{int}} = 0.0477$, $R_{\text{sigma}} = 0.0738$]							
Data/restraints/parameters	20095/924/1013							
Goodness-of-fit on F^2	1.016							
Final R indexes [$I > = 2\sigma(I)$]	$R_1 = 0.0591$, w $R_2 = 0.1270$							
Final R indexes [all data]	$R_1 = 0.1075$, w $R_2 = 0.1437$							
Largest diff. peak and hole / e Å ⁻³	0.90/-0.68							

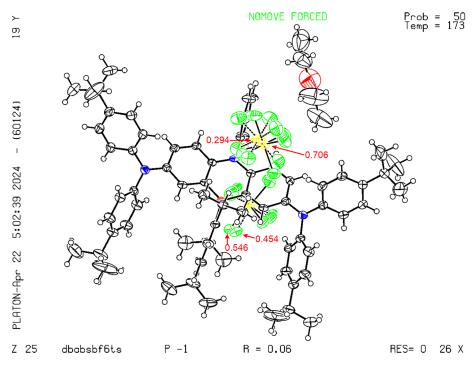


Figure S3. Thermal ellipsoid plots of [Dpa₂DBAB](SbF₆)₂ with one Et₂O molecule and disordered counter SbF₆- anions.

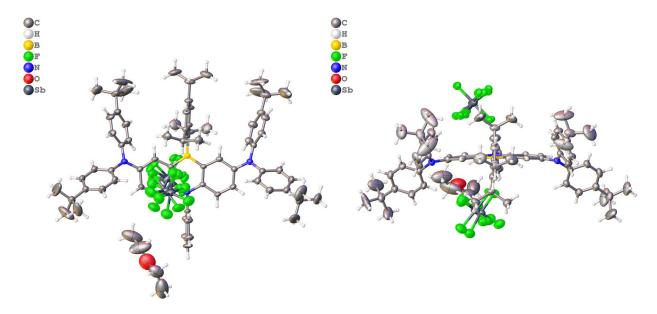


Figure S4. Top view (left) and side view (right) of the scXRD detected molecular structures of [Dpa₂DBAB](SbF₆)₂.

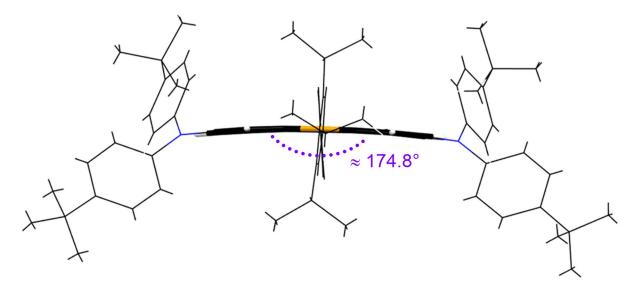


Figure S5. Side view of [Dpa₂DBAB](SbF₆)₂ showing the curvature of the dibenzo-1,4-azaborine moiety.

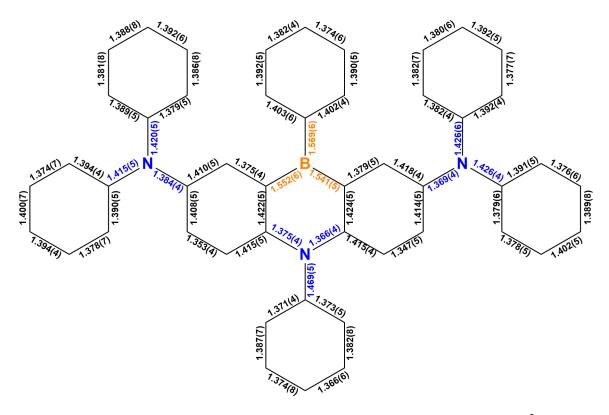


Figure S6. scXRD-determined bond lengths of the conjugated system of Dpa₂DBAB²⁺.

S5. Electron Spin Resonance (ESR) Measurements

Powder of [Dpa₂DBAB](SbF₆)₂ was used for the VT-ESR measurements and the VT-ESR data was fitted by modified Bleaney-Bowers equation. Here, we describe the approach to the singlet-triplet energy gap ΔE_{S-T} .

As there was no significant change in the linewidth of the signals, the ESR signal intensity of powder [Dpa₂DBAB](SbF₆)₂ normalized by Mn²⁺ marker obeys:

$$I_{Singal}/I_{Mn} \propto \chi$$
 [Eq. S1]

where I_{singal} is the double integral of the [**Dpa₂DBAB**](**SbF₆**)₂ ESR spectral, I_{Mn} is the double integral of the Mn²⁺ mark signal, χ is the magnetic susceptibility.

By letting χ (arb. unit) be I_{singal}/I_{Mn} , the χ (arb. unit) is expected to follow the Bleaney-Bowers equation below:

$$\chi = \frac{1}{T} \frac{A}{3 + \exp\left(-\frac{\Delta E_{S-T}}{k_B T}\right)}$$
 [Eq. S2]

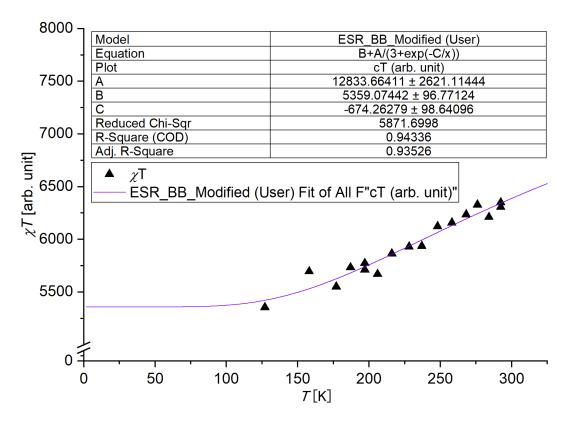
where A is a constant, k_B is Boltzmann constant.

In this study, to correspond the contribution of paramagnetic impurity, the equation was modified with an offset obeying the Curie's law:

$$\chi = \frac{B}{T} + \frac{1}{T} \frac{A}{3 + \exp\left(-\frac{\Delta E_{S-T}}{k_B T}\right)}$$
 [Eq. S3]

where B is a constant.

Based on equation S3, a fitting on the χT vs. T plot of [Dpa₂DBAB](SbF₆)₂ was carried out via the following equation:


$$\chi T = B + \frac{A}{3 + \exp\left(-\frac{C}{T}\right)}$$
 [Eq. S4]

where A and B are constant, C could be expressed by the following equation:

$$C = \frac{\Delta E_{S-T}}{k_B} = \frac{2J}{k_B}$$
 [Eq. S5]

The fitting gave a C in -674 K, and the ΔE_{S-T} was calculated out in -1.34 kcal mol⁻¹.

Details of earned curve and the values of each parameter were shown below with error (Figure S7).

Figure S7. χT -T plot for the dication with the fitting curve obtained using the modified Bleaney-Bowers equation. The obtained values of parameters with error bar were also shown.

Table S2. Used date for the χT -T plot. (χ [arb. unit] = I_{signal}/I_{Mn})

		1 (// [1 5.8.00 1.111)		
T	<i>1/T</i>	I_{Mn}	I_{singal}	I_{signal}/I_{Mn}	χT [arb. unit]
292.3	0.003421	1572	33918	21.58	6307
197	0.005076	1391	40764	29.31	5773
177	0.00565	1361	42684	31.36	5551
127	0.007874	1130	47646	42.16	5355
158	0.006329	971	35007	36.05	5696
187	0.005348	822	25206	30.66	5734
197	0.005076	877	25428	28.99	5712
206	0.004854	896	24660	27.52	5670
216	0.00463	901	24461	27.15	5864
228	0.004386	979	25463	26.01	5930
237	0.004219	1043	26126	25.05	5937
248	0.004032	1082	26719	24.69	6124
258	0.003876	1170	27930	23.87	6159
268	0.003731	1272	29599	23.27	6236
276	0.003623	1425	32672	22.93	6328
284	0.003521	1552	33947	21.87	6212
292.3	0.003421	1518	32980	21.73	6350

S6. Theoretical Calculations

All theoretical calculations of [Dpa₂DBAB](SbF₆)₂ were performed with Gaussian 16 (Revision C.02) program package.^[S6] The method (U)B3LYP density functional and the 6-311G(d) basis sets were employed for geometry optimizations. All optimized structures were verified by frequency analysis that corresponded to the equilibrium structures.

Supplemental details of optimizations

Table S3. Summary of methods used for optimizations^[a]

Compound	Compound Method				Additional Conditions	
Dpa ₂ DBAB	-	DFT	6-311G(d)	Default Spin	B3LYP	-
Dpa ₂ DBAB ¹⁺	-	DFT	6-311G(d)	Unrestricted	B3LYP	-
	CS	DFT	6-311G(d)	Default Spin	B3LYP	-
Dpa_2DBAB^{2+}	OS	DFT	6-311G(d)	Unrestricted	B3LYP	guess=mix,read ^[b]
	T	DFT	6-311G(d)	Unrestricted	B3LYP	-
	CS	DFT	6-311G(d)	Default Spin	B3LYP	-
1 ²⁺	OS	DFT	6-311G(d)	Unrestricted	B3LYP	guess=mix
	T	DFT	6-311G(d)	Unrestricted	B3LYP	-
	CS	DFT	6-311G(d)	Default Spin	B3LYP	<u> </u>
2^{2+}	OS	DFT	6-311G(d)	Unrestricted	B3LYP	guess=mix
	T	DFT	6-311G(d)	Unrestricted	B3LYP	-

[[]a] CS = closed-shell singlet, OS = open-shell singlet, T = triplet. [b] Molecular orbitals of optimized **Dpa₂DBAB²⁺** (T) were used as initial conditions.

Calculations on the harmonic oscillator model of aromaticity

The harmonic oscillator model of aromaticity (HOMA) was calculated with the experimental an optimized bond lengths (R_i) of **Dpa₂DBAB²⁺** according to the following equation:^[12S7]

$$HOMA = 1 - \frac{\alpha}{n} \sum_{i}^{n} (R_{opt} - R_i)^2$$
 [Eq. S6]

with an empirical normalization constant $\alpha = 98.89$, which gives HOMA = 0 for a model nonaromatic system and HOMA = 1 for a benzene-approximated system where all bonds are equal to the optimal bond length ($R_{opt} = 1.397$ Å).

Here, the R_{opt} can be represented using the reference values of CC bond lengths in ethane ($R_{C-C} = 1.524 \text{ Å}$) and ethene ($R_{C-C} = 1.334 \text{ Å}$) according to the following equation:^[S7]

$$R_{opt} = \frac{(R_{C-C} + 2R_{C=C})}{3} = 1.397 \text{ Å}$$
 [Eq. S7]

where the relation between force constants for single and double bonds are assumed to be 1:2. [S7]

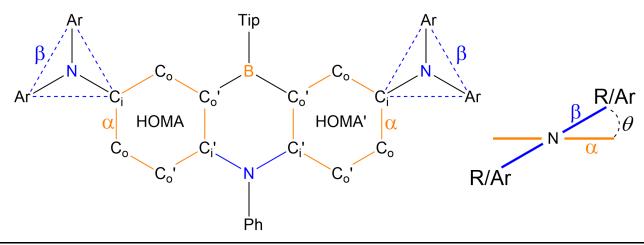
Calculations on the diradical characters and singlet-triplet energy gap

The diradical character y was calculated from the occupation number of the highest occupied natural orbital (n_{HONO}) and of the lowest unoccupied natural orbital (n_{LUNO}) according to the following equation:^[14S8]

$$y = 1 - \frac{2T}{1 + T^2}$$
 [Eq. S8]

where T is the orbital overlap between the corresponding orbital pairs, which can be represented using the n_{HONO} and n_{LUNO} :[14S8]

$$T = \frac{n_{HONO} - n_{LUNO}}{2}$$
 [Eq. S9]


The singlet-triplet energy gap (ΔE_{S-T}) was calculated with the Yamaguchi spin decontamination correction according to the following equation:^[21S9]

$$\Delta E_{S-T} = \frac{(E_{OS} - E_T) < S^2 >_T}{< S^2 >_{T} - < S^2 >_{OS}}$$
 [Eq. S10]

where E_T and E_{OS} represent the summary of the electronic and zero-point energies calculated at triplet (T) and open-shell state (OS). $(S^2)_T$ and $(S^2)_{OS}$ correspond to their respective spin contamination.

Supplemental date on comparisons of structures and diradical characters

Table S4. Summary of optimized structures of Dpa₂DBAB²⁺.

Structure	avg C _i -N [Å]	$avg C_o$ - C_o [Å]	avg θ [deg]	avg HOMA ^[e]
scXRD	1.374	1.364	33.3 ^[c]	0.932
$\mathbf{CS}^{[a,b]}$	1.383	1.380	$30.9^{[d]}$	0.945
$\mathbf{OS}^{[a,b]}$	1.399	1.387	$38.3^{[d]}$	0.966
$\mathbf{T}^{[a,b]}$	1.404	1.389	41.1 ^[d]	0.968

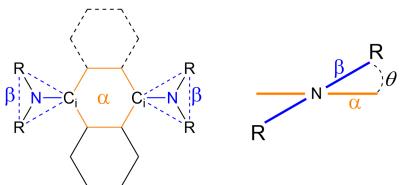
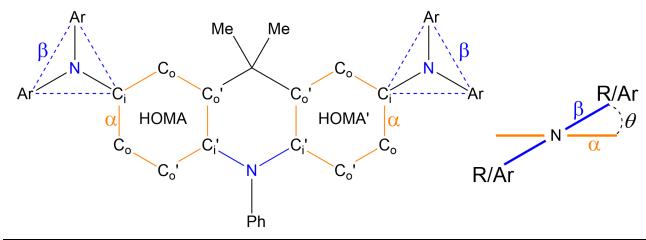

[a] Optimized at (U)B3LYP/6-311G(d) level. [b] **CS** = closed-shell singlet, **OS** = open-shell singlet, **T** = triplet. [c] Estimated from the scXRD-detected structure with Olex₂. [S3] [d] Estimated using the optimized structures with Mercury 4.0 (ver 4.2.0). [S10] [e] The harmonic oscillator model of aromaticity. [S7]

Table S5. Summary of calculated energy gaps and diradical characters of Dpa₂DBAB²⁺.

Structure	E_X [Eh] ^[d,e]	ΔE_{X-os} [kcal mol ⁻¹] ^[e]	$\mathcal{Y}^{[\mathrm{f}]}$	n_{HONO}	n_{LUNO}	s^2
scXRD	-	-	$0.324^{[g]}$	1.38953 ^[g]	$0.61047^{[g]}$	
$\mathbf{CS}^{[a,b]}$	$-3021.480598^{[b]}$	+5.87	$0.326^{[g]}$	$1.38774^{[g]}$	$0.61226^{[g]}$	0.8733
$\mathbf{OS}^{[a,c]}$	-3021.489955 ^[c]	0	$0.478^{[c]}$	1.28198 ^[c]	$0.71802^{[c]}$	0.9462
$\mathbf{T}^{[\mathrm{a,c}]}$	-3021.488694 ^[c]	+1.48	-	-	-	

[a] CS = closed-shell singlet, OS = open-shell singlet, T = triplet. [b] Optimized/calculated at B3LYP/6-311G(d) level. [c] Optimized/calculated at UB3LYP/6-311G(d) level. [d] The summary of the electronic and zero-point energies. [e] X = CS, OS, T. [f] Diradical character. [g] Calculated on the scXRD/CS geometry at UB3LYP/6-311G(d) level.


Table S6. Selected calculated data of reference compounds dication 1^{2+} and 2^{2+} with reported data

			avg C _i -N	$avg\theta$	ΔE_{X-os}	\mathcal{Y}^f	n_{HONO}	n_{LUNO}
			[Å]	[deg]	[kcal mol ⁻¹] ^e			
	$\mathbf{CS}^{a,b}$		1.385	41.1^{d}	1.96	-	-	-
	$\mathbf{OS}^{a,b}$	This work	1.420	51.1^{d}	0	0.251^{b}	1.45007	0.54993
	$\mathbf{T}^{a,b}$		1.440	60.7^{d}	2.78	-	-	-
12+	scXRD		1.354 (3)	33.0	-	-	-	-
	$\mathbf{CS}^{a,c}$	Dof [C11]	1.380	-	1.82	-	-	-
	$\mathbf{OS}^{a,c}$	Ref. [S11]	1.400	-	0	0.18^{g}	-	-
	$\mathbf{T}^{a,c}$		1.439	-	3.26	-	-	-
1	$CS^{a,c}$		1.399	54.85^d	3.71	-	-	-
	$\mathrm{OS}^{a,c}$	This work	1.439	68.67^{d}	0	0.516^{b}	1.25831	0.74169
	$T^{a,c}$		1.450	72.86^{d}	1.42	-	-	
2^{2+}	scXRD		1.405(4)	56.2	-	-	-	-
	$\mathbf{CS}^{a,c}$	Dof [C11]	1.394	-	3.26	-	-	-
	$\mathbf{OS}^{a,c}$	Ref. [S11]	1.437	-	0	0.63^{g}	-	-
	$\mathbf{T}^{a,c}$		1.445	-	1.47	-	-	-

[a] \mathbf{CS} = closed-shell singlet, \mathbf{OS} = open-shell singlet, \mathbf{T} = triplet. [b] Optimized at (U)B3LYP/6-31IG(d) level. [c] Optimized at (U)B3LYP/6-31G(d) level. [d] Estimated using the DFT-optimized structures with Mercury 4.0 (ver 4.2.0). [S10] [e] \mathbf{X} = \mathbf{CS} , \mathbf{OS} , \mathbf{T} . [f] Diradical character. [g] Calculated at UBHandHLYP/6-31G(d) level. [S11]

Table S7. Summary of optimized structures of Dpa_2DDAD^{2+} (Ar = 4-*tert*-butylphenyl).

Structure	avg C _i -N [Å]	$avg C_o$ - $C_o [Å]$	$avg \ \theta[\deg]$	avg HOMA ^[e]
$\mathbf{CS}^{[a,b]}$	1.379	1.372	26.4 ^[d]	0.941
$\mathbf{OS}^{[a,b]}$	1.376	1.372	$26.4^{[d]}$	0.941
$\mathbf{T}^{[a,b]}$	1.400	1.382	$36.7^{[d]}$	0.980

[a] Optimized at (U)B3LYP/6-311G(d) level. [b] **CS** = closed-shell singlet, **OS** = open-shell singlet, **T** = triplet. [c] Estimated from the scXRD-detected structure with Olex₂. [S3] [d] Estimated using the optimized structures with Mercury 4.0 (ver 4.2.0). [S10] [e] The harmonic oscillator model of aromaticity. [S7]

Table S8. Summary of calculated energy gaps and diradical characters of Dpa2DDAD²⁺.

Structure	$E_X[\mathrm{Eh}]^{[\mathrm{d,e}]}$	ΔE_{X-os} [kcal mol ⁻¹] ^[e]	$\mathcal{Y}^{[\mathrm{f}]}$	n_{HONO}	n_{LUNO}
$\mathbf{CS}^{[a,b]}$	$-2529.226087^{[b]}$	0	-	-	-
$\mathbf{OS}^{[\mathrm{a,c}]}$	$-2529.225087^{[c]}$	0	0	-	-
$\mathbf{T}^{[\mathrm{a,c}]}$	$-2529.227747^{[c]}$	+1.04	-	-	-

[a] CS = closed-shell singlet, OS = open-shell singlet, T = triplet. [b] Optimized/calculated at B3LYP/6-311G(d) level. [c] Optimized/calculated at UB3LYP/6-311G(d) level. [d] The summary of the electronic and zero-point energies. [e] X = CS, OS, T. [f] Diradical character. [g] Calculated on the scXRD/CS geometry at UB3LYP/6-311G(d) level.

Supplemental details of TD-DFT calculations

Based on the optimized ground state structure of **Dpa2DBAB**²⁺ at **CS**, **OS** and **T** sates, respectively, twenty excited singlet states and twenty excited triplet states were calculated. Additionally, twenty excited singlet states and twenty excited triplet states of **Dpa2DBAB** as well as twenty excited doublet states of **Dpa2DBAB**⁺ were calculated based on the optimized structure at the same level. Simulated absorption spectra and selected MOs relevant for calculated excited states of **Dpa2DBAB**, **Dpa2DBAB**¹⁺ and **Dpa2DBAB**²⁺ are shown below

Table S9. Summary of methods used for TD-DFT calculations^[a,b]

Compound			Method			Additional Conditions
Dpa ₂ DBAB		DFT	6-311G(d)	Default Spin	B3LYP	-
Dpa ₂ DBAB ¹⁺		DFT	6-311G(d)	Unrestricted	B3LYP	-
	CS	DFT	6-311G(d)	Default Spin	B3LYP	-
Dpa_2DBAB^{2+}	OS	DFT	6-311G(d)	Unrestricted	B3LYP	guess=mix
	T	DFT	6-311G(d)	Unrestricted	B3LYP	-

[a] CS = closed-shell singlet, OS = open-shell singlet, T = triplet. [b] Calculated on geometries optimized at (U)B3LYP/6-311G(d) level.

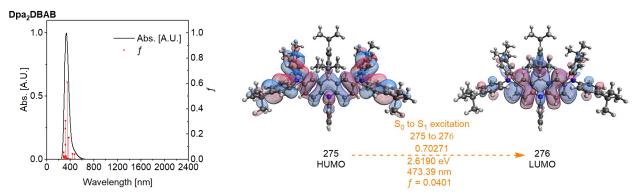


Figure S8. Simulated absorption spectra of Dpa₂DBAB with selected MOs relevant for calculated first allowed excited state.

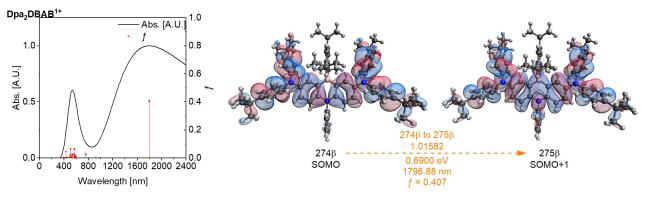


Figure S9. Simulated absorption spectra of Dpa₂DBAB⁺ with selected MOs relevant for calculated first allowed excited state

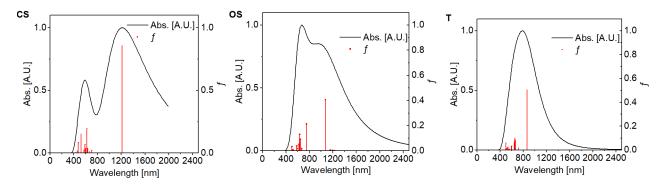


Figure S10. Simulated absorption spectra of Dpa₂DBAB²⁺ (right: CS, middle: OS, left: T)

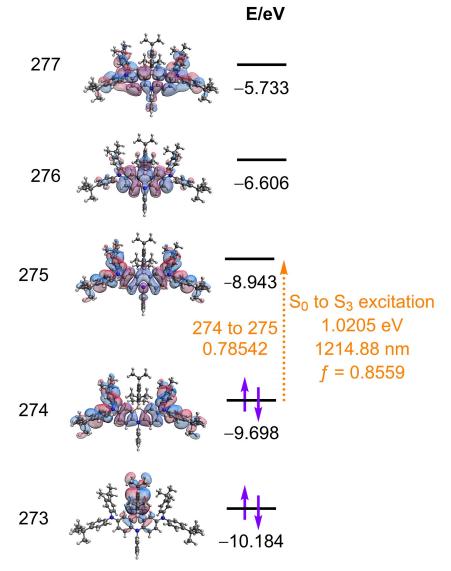


Figure S11. Selected MOs relevant for calculated first allowed excited state of Dpa₂DBAB²⁺ at CS state.

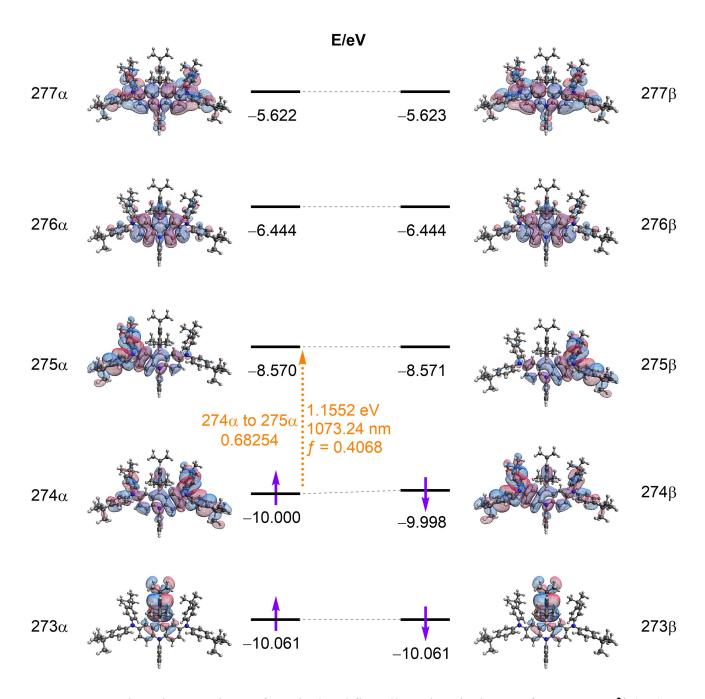
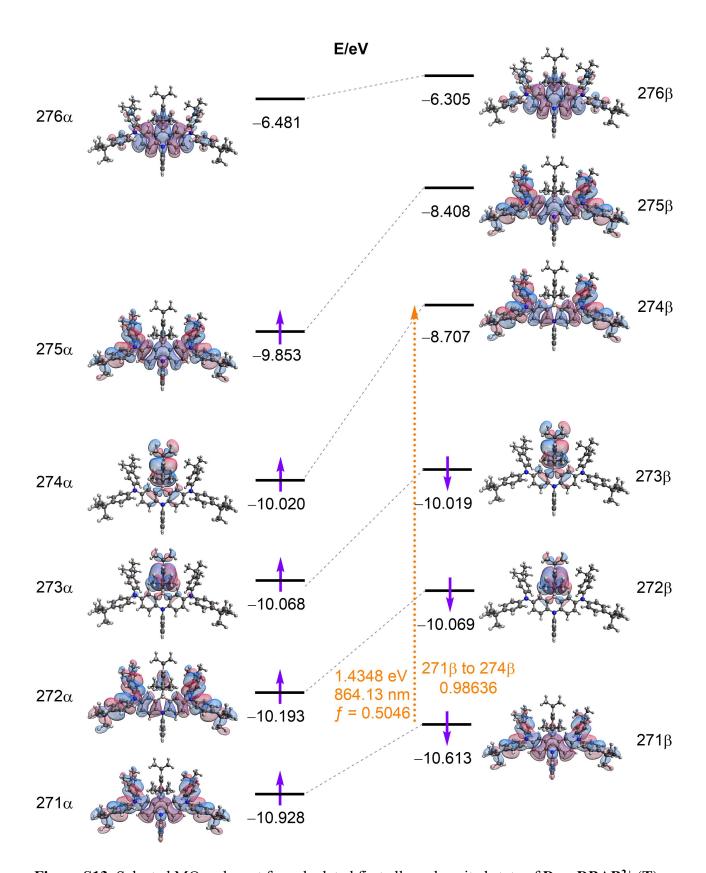



Figure S12. Selected MOs relevant for calculated first allowed excited state of Dpa₂DBAB²⁺ (OS).

 $Figure~S13.~Selected~MOs~relevant~for~calculated~first~allowed~excited~state~of~Dpa_2DBAB^{2+}~(T).$

Supplemental details of NICS calculations

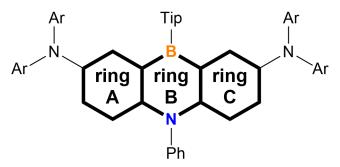

Based on the optimized ground state structure of **Dpa₂DBABA** and **Dpa₂DBAB²⁺** at **CS**, **OS** and **T** sates, respectively, NICS(0) and NICS(1) values of the rings in dibenzo-1,4-azaborine moiety were calculated.^[S12] The Bq atoms were added with py.Aroma (version 4.1.0).^[S13] The XY Cartesian plane of geometries used to NICS(1)_{zz} calculations were operated to parallel to the plane defined by the [1,4]-azaborine moiety with Multiwfn(version 3.8). ^[S14]

Table S10. Summary of methods used for TD-DFT calculations^[a]

Compound			M	lethod	Additional Conditions	
Dpa ₂ DBAB ^[b]		HF	6-311+G(d)	Default Spin	B3LYP	-
	scXRD ^[c]	HF	6-311G+(d)	Default Spin	B3LYP	-
	$\mathbf{CS}^{[b]}$	HF	6-311G+(d)	Default Spin	B3LYP	-
Dpa ₂ DBAB ²⁺	$\mathbf{OS}^{[b]}$	UHF	6-311+G(d)	Unrestricted	B3LYP	guess=mix
	$\mathbf{T}^{[b]}$	UHF	6-311+G(d)	Unrestricted	B3LYP	-

[a] CS = closed-shell singlet, OS = open-shell singlet, T = triplet. [b] Calculated on geometries optimized at (U)B3LYP/6-311G(d) level. [c] Calculated on the scXRD geometry.

Table S11. Summary of calculated NICS(1)_{zz} values of the rings in dibenzo-1,4-azaborine moiety

		ring A		ring B		ring C	
		NICS	NICS	NICS	NICS	NICS	NICS
Compound		$(1)_{zz}$	$(-1)_{zz}$	$(1)_{zz}$	$(-1)_{zz}$	$(1)_{zz}$	$(-1)_{zz}$
		[ppm]	[ppm]	[ppm]	[ppm]	[ppm]	[ppm]
Dpa ₂ DBAB		-26.9221	-26.4566	-6.2138	-5.7637	-26.9260	-26.4145
	scXRD	-8.4502	-7.9671	+8.5886	+9.9581	-7.1072	-7.0676
DroaDD A D2+	CS	-7.2121	-6.8684	+9.3248	+10.3244	-7.2831	-6.9468
Dpa ₂ DBAB ²⁺	OS	-14.3435	-13.9333	-1.0983	-0.5336	-14.3516	-13.9483
	T	-16.7545	-16.2792	-2.9244	-2.4023	-16.7546	-16.2885

[a] CS = closed-shell singlet, OS = open-shell singlet, T = triplet. [b] Calculated on geometries optimized at (U)B3LYP/6-311G(d) level. [c] Calculated on the scXRD geometry.

Supplemental details of calculations on the Mulliken charge distribution

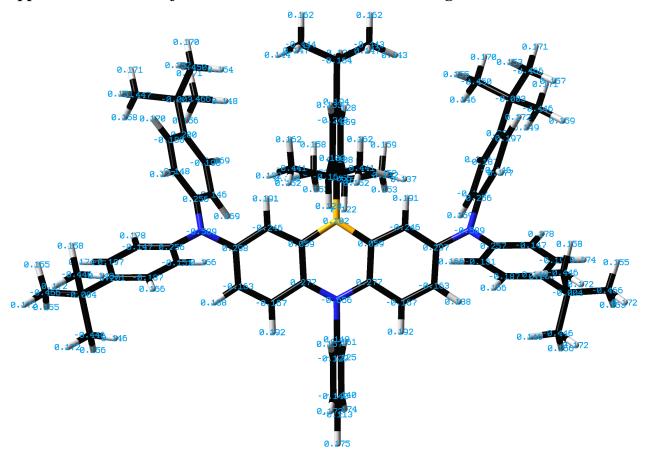
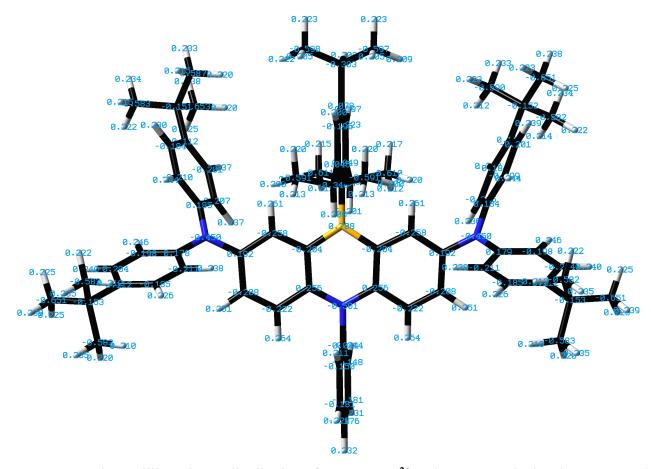
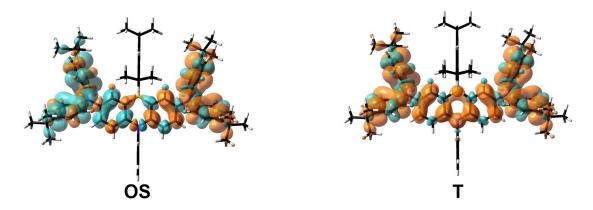



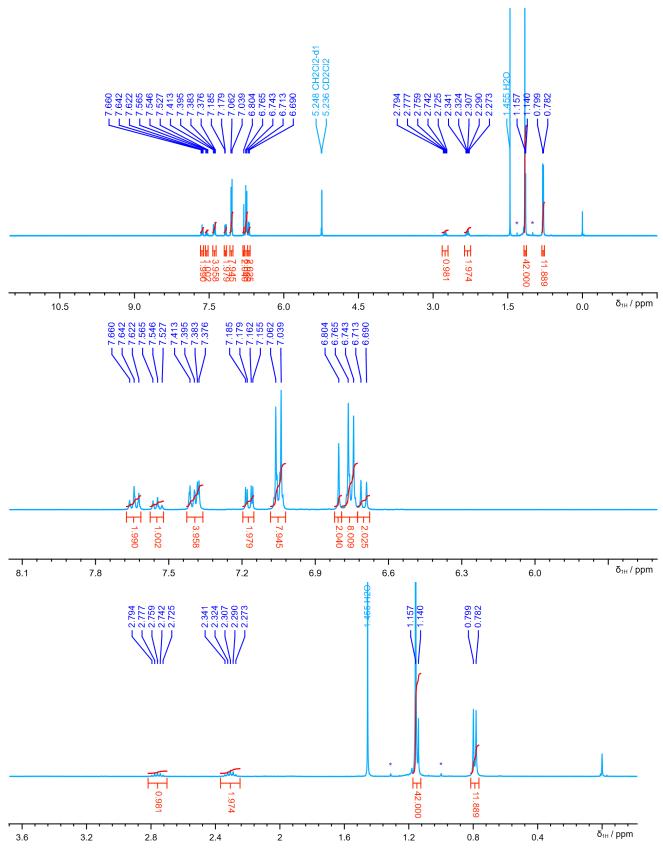
Figure S14. The Mulliken charge distribution of Dpa₂DBAB²⁺ at the OS state calculated at UB3LYP/6-311G(d) level.

Figure S15. The Mulliken charge distribution of **Dpa₂DBAB²⁺** at the **T** state calculated at UB3LYP/6-311G(d) level.

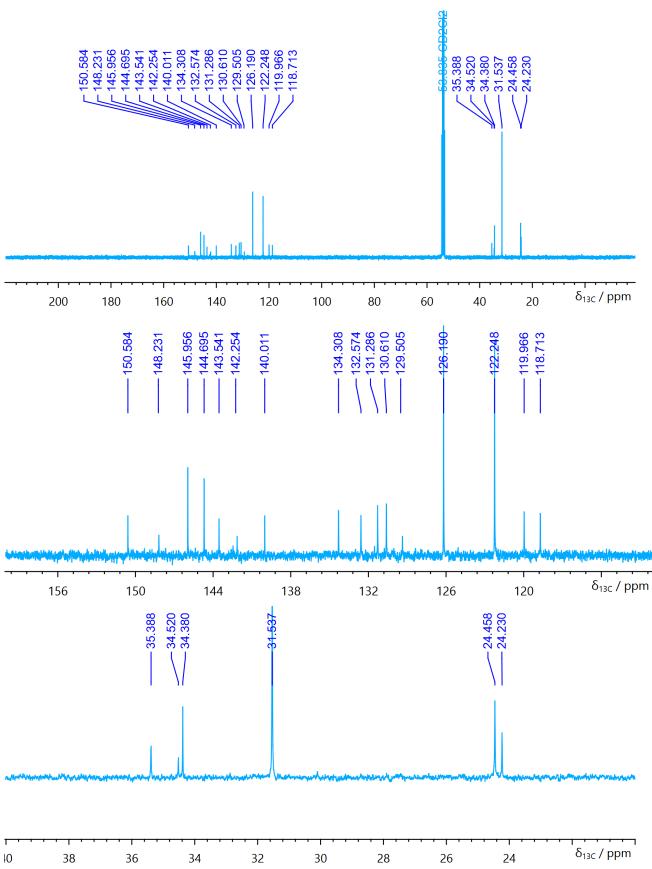
Supplemental details of calculations on spin density

Based on the optimized ground state structure of **Dpa₂DBAB²⁺** at **OS** and **T** states, respectively, spin densities were calculated at UB3LYP/6-311G(d) level.




Figure S16. The spin density maps of Dpa₂DBAB²⁺ at the OS (right) and T (left) states calculated at UB3LYP/6-311G(d) level.

S7. References


- [S1] T.-L. Wu, S.-H. Lo, Y.-C. Chang, M.-J. Huang, C.-H. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 10768– 10776.
- [S2] S. Suzuki, K. Okada, Organic Redox Systems, (Ed.: T. Nishinaga), John Wiley & Sons, New Jersey, 2016, Chapter 8, pp. 269–285.
- [S3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339–341, (2009).
- [S4] G. M. Sheldrick, Acta Cryst. 2015, 71, 3-8.
- [S5] Deposition number 2387211 (for [Dpa₂DBAB](SbF₆)₂) contains the supplementary crystallographic data for this paper. This data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- [S6] Gaussian 16, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- [S7] a) T. M. Krygowski, H. Szatylowicz, O. A. Stasyuk, J. Dominikowska, M. Palusiak, Chem Rev. 2014, 114, 6383–6422; b) J. Kruszewski, T.M. Krygowski, Tetrahedron Lett. 1972, 13, 3839; c) O. Bastiansen, M. Trætteberg, Tetrahedron 1962, 17, 147. d) Wilson, E. B., Jr.; Decius, J. C.; Cross, P. C. Molecular Vibrations, Dover, New York, 1955, p. 174; e) Physical Methods in Organic Chemistry, Ed.: J. C. P. Schwarz, OLIVER & BOYD, Edinburgh & London, 1964, p. 148. f) G. A. Jeffrey, J. R. Ruble, R. K. McMullan, J. A. Pople, Proc. R. Soc. London 1987, A414, 47.
- [S8] K. Yamaguchi, Chem. Phys. Lett. 1975, 33, 330-335.
- [S9] a) K. Yamaguchi, Y. Takahara, T. Fueno, K. Nasu, Jpn. J. Appl. Phys. 1987, 26, L1362–L1364; b) K. Yamaguchi, F. Jensen, A. Dorigo, K. N. Houk, Chem. Phys. Lett. 1988, 149, 537–542.
- [S10] C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Cryst. 2020, 53, 226–235.
- [S11] Y. Su, X. Wang, Y. Li, Y. Song, Y. Sui, X. Wang, Angew. Chem. Int. Ed. 2015, 54, 1634–1637
- [S12] a) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, *Chem. Rev.* 2005, 105, 3842–3888;
 b) H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, *Org. Lett.* 2006, 8, 863–866.
 c) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. v. E. Hommes, *J. Am. Chem. Soc.* 1996, 118, 6317–6318.
- [S13] Z. Wang, ChemRxiv preprint 2024, DOI: 10.26434/chemrxiv-2024-mjmj8.

[S14] a) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592. b) T. Lu, J. Chem. Phys. 2024, 161, 082503.

S8. NMR Charts

Figure S17. ¹H-NMR charts of **Dpa₂DBAB** in CD₂Cl₂ at 293 K(top: fullscale, middle: enlarged view of aromatic region, bottom: enlarged view of aliphatic region). *: side band.

Figure S18. ¹³C-NMR charts of **Dpa₂DBAB** in CD₂Cl₂ at 293 K (top: fullscale, middle: enlarged view of aromatic region, bottom: enlarged view of aliphatic region).

S9. HR-MS

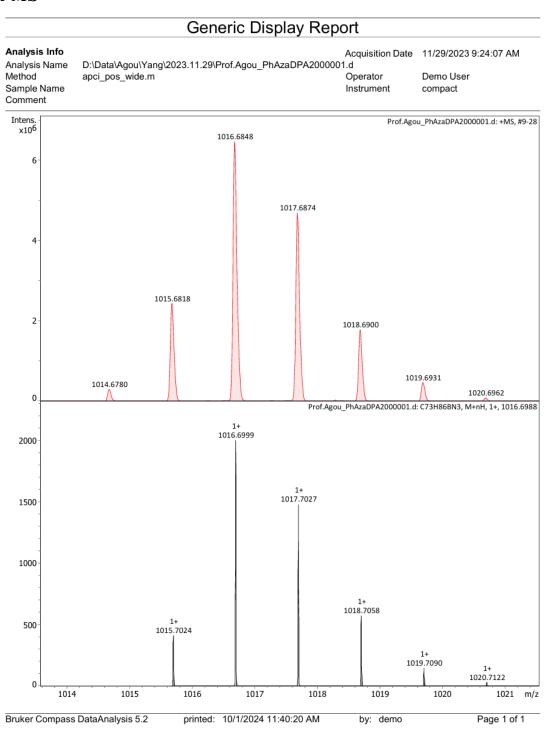


Figure S19. Isotopic patterns of the found parent ions Dpa₂DBABA⁺+nH of recorded HR-MS of Dpa₂DBABA (APCI, Positive, in DCM).

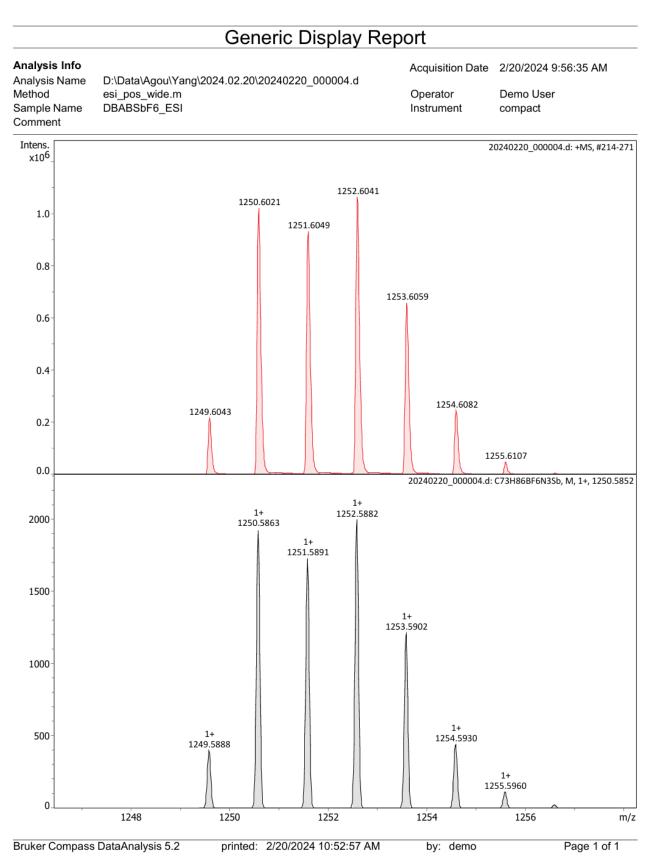


Figure S20. Isotopic patterns of the found parent ions [Dpa₂DBABA](SbF₆)⁺ recorded in the HR-MS. of [Dpa₂DBABA](SbF₆)₂ (ESI, Positive, in DCM).