Supporting Information

Two-step preparation of cyano-functionalized linkage-hybrid covalent organic frameworks for efficient H₂O₂ photosynthesis in air

Han Ren,^{†a} Yuxuan Liu, ^{†a} Zhecheng Huang, ^a Liecheng Guo, ^a and Feng Luo^a*

East China University of Technology, Nanchang 330013, China

E-mail: ecitluofeng@163.com

EXPERIMENTAL SECTION

1. Materials and general methods

The raw materials for synthesizing COF and these organic solvents (99%) were purchased from Aladdin Bio chemical Technology Co., Ltd. All these reagents were used as received without further purification. X-ray powder diffraction was collected by a Bruker AXSD8 Discover or D8 ADVANCE powder diffractometer. The simulated powder patterns were calculated by Mercury 1.4. Infrared Spectra (IR) was measured by a Bruker VERTEX70 spectrometer in the 700–3600 cm⁻¹ region. The gas adsorption isotherms were collected on a Belsorp-max. Ultrahigh-purity-grade (>99.999%) N₂ gases were used during the adsorption measurement. X-ray photoelectron spectrum (XPS) were collected by Thermo Scientific ESCALAB 250 Xi spectrometer. Scanning electron microscopy (SEM) images were recorded on a Hitachi SU 8100 Scanning Electron Microscope. Photoelectrochemical experiments measurements were performed on a CHI760 workstation. UV-vis spectroscopy results were recorded in diffuse reflectance (DR) mode at room temperature on a SHIMADZU UV-2700 spectrophotometer equipped with an integrating sphere attachment. Solid-state NMR experiments were performed on Varian Infinityplus 300 solid-state NMR spectrometer (300 MHz). The photoluminescence decay profiles were measured by using time-correlated single photon counting (TCSPC) mode on a Picosecond Lifetime Fluorescence Spectrometer (QUANTAURUS-TAU C11367-11). Electron spin resonance (ESR) was used to investigate the reactive species, which was recorded using a Bruker A300 spectrometer. Specifically, the 5,5-dimethyl-1pyrroline-N-oxide (DMPO) was used to trap the superoxide radical ($\cdot O_2^{-}$).

2. Synthesis of BTAC

The BTAC is synthesized using benzene-1,3,5-tricarbaldehyde (BT, 0.5 mmol) and 2-(4-aminophenyl) acetonitrile (AC, 1.5 mmol) in a mixture of water (10 mL), ethanol (10 mL) and sodium hydroxide (500 mg), which is stirred and heated at 85 °C for 2 hours. The precipitate is collected by filtration, washed with NaOH, C_2H_5OH

and water for many times, and finally dried at 80 °C under vacuum overnight to give BTAC in a yield of 46%.

3. Synthesis of ECUT-COF-95

The ECUT-COF-95 is synthesized using 1,3, 5-triformyl-phloroglucinol (TP) (21 mg, 0.1 mmol), BTAC (56 mg, 0.1 mmol) in a mixture of o-dichlorobenzene (2 mL), 1-butanol (2 mL) and acetic acid (6 M, 0.4 mL), which is degassed in a Pyrex tube (25 mL) by three freeze-pump-thaw cycles. The tube is sealed and heated at 120 °C for 3 days. The precipitate is collected by filtration, washed with DMF and methanol for many times, and finally dried at 80 °C under vacuum overnight to give ECUT-COF-95 in a yield of 65%.

4. Synthesis of ECUT-COF-96

The ECUT-COF-96 is synthesized using BT (16 mg, 0.1 mmol), BTAC (56 mg, 0.1 mmol) in a mixture of o-dichlorobenzene (2 mL), 1-butanol (2 mL) and acetic acid (6 M, 0.4 mL), which is degassed in a Pyrex tube (25 mL) by three freeze-pump-thaw cycles. The tube is sealed and heated at 120 °C for 3 days. The precipitate is collected by filtration, washed with DMF and methanol many times, and finally dried at 80 °C under vacuum overnight to give ECUT-COF-96 in a yield of 57%.

5. Photosynthesis of hydrogen peroxide

5 mg of catalyst, 50 mL of deionized water (or 48 mL of water and 2 mL of active species trapping agent). The mixture was stirred continuously under a xenon lamp for various time. The solution was filtered through an organic filter membrane and the content of H2O2 was determined by UV-Vis spectrophotometry as follows. Typically, 1 mL testing solution, 1 mL potassium hydrogen phthalate (0.1 mol/L), and 1 mL potassium iodide (0.4 mol/L) were mixed and added into a 10 mL volumetric flask, and palced for one hour. A maximum absorption wavelength of 350 nm was used to measure the concentration of hydrogen peroxide.

6. Apparent quantum yield (AQY)

The measurement of apparent quantum yield (AQY) is similarly carried out according to literature (*Nat. Catal. 2024, 7, 195-206; Angew. Chem. Int. Ed. 2024, 63, e202400999*). The apparent quantum yield (AQY) is calculated by measuring H_2O_2 photosynthesis of ECUT-COF-95 and ECUT-COF-96 under 400 nm monochromatic light irradiation. The light intensity is measured by a digital optical power and energy meter of PROVA-1010. The light intensity is maintained about 0.1 W/m². The photocata tic reaction is carried out in deionized water (50 mL) with photocatalyst (5 mg). The active area of the reactor is approximately 3 cm². AQY is then calculated by the following formula:

$$AQY (\%) = \frac{[GH_2O_2 \ produced \ (mol)] \times 2}{photons \ entered \ the \ reactor \ (mol)} \times 100\%$$
$$= \frac{[N_a \times h \times c][GH_2O_2 \ produced \ (mol)] \times 2}{t \times S \times I \times \lambda} \times 100\%$$

where N_a is the Avogadro's constant (6.022×10²³), h is the Planck constant (6.626×10⁻³⁴), c is the speed of light (3×10⁸), S is the irradiation area (cm²), I is the intensity of light irradiation (W/m²), t is the irradiation time (3600 s) and λ is the irradiation wavelength (4 × 10⁻⁷ m).

7. Photocatalytic experiments in different environments

The efficient H_2O_2 production of them in open air further prompts us to explore the application of them in real-time H_2O_2 production from various waters. First, we find that both of them are efficient for H_2O_2 production in acidic and basic water with pH=1 and 9, showing a H_2O_2 production rate of respectively 2318 and 1845 µmol h⁻¹ g⁻¹ for ECUT-COF-95 and 2398 and 2522 µmol h⁻¹ g⁻¹ for ECUT-COF-96 (Fig. S12). This value is comparable with that observed in pure water for both of them. Next, we investigate the H_2O_2 production upon them in the common water sources around us such as tap water, river water, lake water, and seawater. The results are shown in Fig. S13. Clearly, both of COFs are efficient for H_2O_2 production in these medium with the H_2O_2 production rate of >1300µmol h⁻¹ g⁻¹ for ECUT-COF-95 and >1500µmol h⁻¹ g⁻¹ for ECUT-COF-96. The above results strongly confirm the superior potential of the two COFs for the real-time H_2O_2 production in various water environments.

8. Rhodamine B degradation assay

In industry, one important application of H₂O₂ is the degradation of organic

dyes. Subsequently, in light of the real-time H_2O_2 production performance in both of COFs in open air and various water environments, we then carried out the investigation of H_2O_2 photosynthesis upon both of COFs coupling with in-situ degradation of Rhodamine B from a 10 mg/L Rhodamine B solution. Clearly, both of them are efficient for the photocatalytic degradation of Rhodamine B in open air. For ECUT-COF-96, it can enable a 100% removal rate within 30 minutes, while ECUT-COF-95 needs 60 minutes to perform the same outcome (Fig. S14). The results strongly suggest their superior application in water cleanup.

Fig. S2 The ¹H NMR of BTAC.

Fig. S3 MS of BTAC.

Fig. S4 SEM image of ECUT-COF-95 (above) and ECUT-COF-96 (below).

Fig. S5 AA stacking structural representations of ECUT-COF-95 (above) and ECUT-COF-96 (below).

Fig. S6 Mott–Schottky plots of ECUT-MCOF-95 (above) and ECUT-MCOF-96 (below).

Fig. S7 Photocurrent response of ECUT-COF-95 and ECUT-COF-96.

Fig. S8 electrochemical impedance (EIS) profiles of ECUT-MCOF-95 and ECUT-MCOF-96.

Fig. S9 TD-PL of ECUT-COF-95 and ECUT-COF-96.

Fig. S10 Comparison of H₂O₂ production rates and O₂ utilisation and conversion rates.

Fig. S11 ECUT-COF-96 40-hour cycling test.

Fig. S12 H_2O_2 production under different pH conditions of ECUT-COF-95 and ECUT-COF-96.

Fig. S13 H₂O₂ production in different waters of ECUT-COF-95 and ECUT-COF-96.

Fig. S14 Decomposition of Rhodamine B under different conditions.

Fig. S15 AQY of ECUT-COF-95 and ECUT-COF-96 at different wavelengths.

data_ECUT-COF-95										
_audit	_creatio	n_date		2024-07-09						
_audit	_creatio	n_method		'Materials Studio'						
_symr	netry_sp	bace_group_n	ame_H-M	'P-6'						
_symr	netry_Ir	nt_Tables_nu	nber	174						
_symr	netry_ce	ell_setting		hexagonal						
loop_										
_symmetry_equiv_pos_as_xyz										
x,y,z										
-y,x	к-y,z									
-x+	y,-x,z									
x,y,	,-Z									
-y,x	к - у,-z									
-x+	y,-x,-z									
cell	length_a	1		22.8197						
cell	length_b	0		22.8197						
cell	length_o	e		3.5006						
cell	angle_a	lpha		90.0000						
cell	angle_b	eta		90.0000						
cell	angle_g	amma		120.0000						
loop_										
_atom	_site_la	bel								
_atom	_site_ty	pe_symbol								
_atom	_site_fr	act_x								
_atom	_site_fr	act_y								
_atom	_site_fr	act_z								
_atom_site_U_iso_or_equiv										
_atom_site_adp_type										
_atom_site_occupancy										
C1	С	0.96514	0.92958	0.50000	0.00000	Uiso	1.00			
C2	С	0.03603	0.96491	0.50000	0.00000	Uiso	1.00			
C3	С	0.07695	0.93120	0.50000	0.00000	Uiso	1.00			
C4	С	0.05616	0.86468	0.50000	0.00000	Uiso	1.00			
C5	С	0.08708	0.77353	0.50000	0.00000	Uiso	1.00			
C6	С	0.13504	0.75256	0.50000	0.00000	Uiso	1.00			
C7	С	0.20427	0.80051	0.50000	0.00000	Uiso	1.00			
C8	С	0.22493	0.86936	0.50000	0.00000	Uiso	1.00			

 Table S1. Calculated crystal data of ECUT-COF-95.

C9	С	0.17694	0.89030	0.50000	0.00000	Uiso	1.00
C10	С	0.10736	0.84265	0.50000	0.00000	Uiso	1.00
N11	Ν	0.25432	0.78037	0.50000	0.00000	Uiso	1.00
C12	С	0.23763	0.71110	0.50000	0.00000	Uiso	1.00
C13	С	0.35810	0.74023	0.50000	0.00000	Uiso	1.00
C14	С	0.28409	0.69139	0.50000	0.00000	Uiso	1.00
015	0	0.37901	0.80105	0.50000	0.00000	Uiso	1.00
C16	С	0.18613	0.17125	0.50000	0.00000	Uiso	1.00
N17	Ν	0.22696	0.15530	0.50000	0.00000	Uiso	1.00
H18	Η	0.93621	0.87189	0.50000	0.00000	Uiso	1.00
H19	Η	0.13454	0.96278	0.50000	0.00000	Uiso	1.00
H20	Η	0.03082	0.73438	0.50000	0.00000	Uiso	1.00
H21	Η	0.11773	0.69625	0.50000	0.00000	Uiso	1.00
H22	Η	0.28113	0.90870	0.50000	0.00000	Uiso	1.00
H23	Η	0.19404	0.94657	0.50000	0.00000	Uiso	1.00
H24	Η	0.30886	0.81926	0.50000	0.00000	Uiso	1.00
H25	Η	0.18236	0.66915	0.50000	0.00000	Uiso	1.00

 Table S2. Calculated crystal data of ECUT-COF-96.

data_ECUT-COF-96						
_audit_creation_date	2024-07-09					
_audit_creation_method	'Materials Studio'					
_symmetry_space_group_name_H-M	'P-6'					
_symmetry_Int_Tables_number	174					
_symmetry_cell_setting	hexagonal					
loop_						
_symmetry_equiv_pos_as_xyz						
x,y,z						
-y,x-y,z						
-x+y,-x,z						
x,y,-z						
-y,x-y,-z						
-x+y,-x,-z						
_cell_length_a	22.6692					
_cell_length_b	22.6692					
_cell_length_c	3.5124					

_cell_a	ngle_	alpha		90.0000				
_cell_angle_beta			90.0000					
_cell_angle_gamma				120.0000				
loop_								
_atom_site_label								
atom	_site_t	ype_symbol						
atom_site_fract_x								
atom	_site_f	ract_y						
atom	_site_f	ract_z						
atom	_site_U	U_iso_or_equiv	V					
atom	_site_a	udp_type						
atom	_site_c	occupancy						
C1	С	0.96358	0.92912	0.50000	0.00000	Uiso	1.00	
C2	С	0.03492	0.96333	0.50000	0.00000	Uiso	1.00	
C3	С	0.07473	0.92795	0.50000	0.00000	Uiso	1.00	
C4	С	0.05240	0.86069	0.50000	0.00000	Uiso	1.00	
C5	С	0.08083	0.76703	0.50000	0.00000	Uiso	1.00	
C6	С	0.12797	0.74446	0.50000	0.00000	Uiso	1.00	
C7	С	0.19810	0.79159	0.50000	0.00000	Uiso	1.00	
C8	С	0.22024	0.86121	0.50000	0.00000	Uiso	1.00	
C9	С	0.17306	0.88375	0.50000	0.00000	Uiso	1.00	
C10	С	0.10273	0.83695	0.50000	0.00000	Uiso	1.00	
N11	Ν	0.24773	0.77016	0.50000	0.00000	Uiso	1.00	
C12	С	0.23174	0.70669	0.50000	0.00000	Uiso	1.00	
C13	С	0.35360	0.73586	0.50000	0.00000	Uiso	1.00	
C14	С	0.28413	0.68689	0.50000	0.00000	Uiso	1.00	
C15	С	0.83019	0.01949	0.50000	0.00000	Uiso	1.00	
N16	Ν	0.84748	0.07694	0.50000	0.00000	Uiso	1.00	
H17	Н	0.93337	0.87107	0.50000	0.00000	Uiso	1.00	
H18	Η	0.13277	0.95868	0.50000	0.00000	Uiso	1.00	
H19	Н	0.02393	0.72856	0.50000	0.00000	Uiso	1.00	
H20	Н	0.10929	0.68751	0.50000	0.00000	Uiso	1.00	
H21	Н	0.27707	0.89997	0.50000	0.00000	Uiso	1.00	
H22	Н	0.19146	0.94064	0.50000	0.00000	Uiso	1.00	
H23	Н	0.17591	0.66493	0.50000	0.00000	Uiso	1.00	
H24	Н	0.37027	0.79237	0.50000	0.00000	Uiso	1.00	

 H_2O_2 H_2O_2 production production Light (AQY O_2 Photocatalyst rate (µmol rate (µmol Reference nm) utilization(%) (%) g-1 h-1) at g-1 h-1) at \mathbf{O}_2 air **400** ECUT-COF-95 2075 97 2.48 2002 λ≥400 This work ECUT-COF-96 2648 2575 97 1.42 420 Angew. Chem. Int. PyIm-COF 5850 4120 $\lambda \Box 420$ 70 3.7 Ed. 2024, e202404563 \ Angew. \ TD-COF 4620 3364 400-700 73 Chem. Int. \ Ed. 2023, 62, TTCOF 2890 400-700 \ 4245 68 e202309624. 420 Angew. Chem. Int. FS-OHOMe-COF 1100 500 λ≥420 45 9.6 Ed. 2024, e202403926. 550 Angew. Chem. Int. HCOF 3.41 2113.9 1421.6 λ≥420 67.3 Ed. 2024, 63, e202408041. 420 Angew. Chem. Int. FS-COFs 3904 3162 $\lambda\Box400$ 81 6.21 Ed. 2023, 62, e202305355 400 Angew. Chem. Int. CuX-dptz 2685 1874 $\lambda\Box400$ 70 0.4 Ed. 2024, 63, e202316998. 420 Angew. Chem. Int. TTP 3132 2412 λ≥420 77 7.61 Ed. 2024, 63, e202317214.

Table S3. A comparison in sacrificial-agent-free H_2O_2 photosynthesis performance among reported materials and our cases.

	1601	1518	λ≥420	95	١	١.	Angew.
							Chem. Int.
SI-PIL-TIO ₂							Ed. 2024,
							e202403926.
D 710	2652	500	λ≥420	19	١	\	Angew.
							Chem. Int.
P ₂ Z15							Ed. 2024, 63,
							e202317816.
	1706	928	λ□400	54	9.9	420	J. Am. Chem.
S., 715							Soc. 2023,
50-215							145, 27757-
							27766.