Electronic Supplementary Information

Transition metal/photocatalyst-free skeletal editing of indene

with iodonium difluorodiazo reagent to access 2-

(difluoromethyl)naphthalene

Zong-Rui Yuan, Meng-Qi Sun, Wei-Chen Chen, Zhi-Qi Zhang, Jun-An Ma* and Fa-Guang Zhang*

Department of Chemistry, State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, P. R. of China

*Emails: majun_an68@tju.edu.cn (J.-A. M.), zhangfg1987@tju.edu.cn (F.-G. Z.).

Contents

General Information
General procedures for the synthesis of hypervalent iodine(III) reagents4
Optimization of the reaction conditions7
a) Optimization of conditions under light conditions and control experiments7
b) Optimization of conditions without light8
General procedure for the reaction of hypervalent iodine reagents with indene11
Synthetic transformations
a) Desulfonation to Access 2-(difluoromethyl)naphthalene24
b) Application in synthesis of drug derivatives29
Scale-up synthesis
Control Experiments and Proposed Mechanism
a) Deuterated labeling experiments
b) Radical probe experiments
c) Rhodium catalysis experiment40
References41
NMR spectra of the related compounds42
X-ray crystallographic analysis108

General Information

General Analytical Information. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AV 500 MHz instrument at 500 MHz (¹H NMR), 126 MHz (¹³C NMR), and 471 MHz (¹⁹F NMR, comp. pulse decoupling), or on Bruker AV 400 MHz instrument at 400 MHz (¹H NMR), 101 MHz (¹³C NMR), and 376 MHz (¹⁹F NMR, comp. pulse decoupling). All ¹H NMR spectra were measured in parts per million (ppm) downfield from tetramethylsilane (TMS, 0 ppm), or were measured relative to the residual proton signals of d_1 -chloroform (CDCl₃, 7.26 ppm) or methanol- d_4 (CD₃OD- d_4 , 3.31 ppm). All ¹³C NMR spectra were reported in ppm relative to residual carbon signals of CDCl₃ (77.16 ppm) or CD₃OD- d_4 (49.00 ppm) and were obtained with ¹H decoupling. All ¹⁹F NMR spectra were measured in parts per million (ppm) relative to trichlorofluoromethane (CFCl₃, 0 ppm). Coupling constants (J) are reported in hertz (Hz). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), and m (multiplet). High resolution mass spectrometry (HRMS) spectra were obtained on a Bruker micrOTOF-QII instrument. Fourier-transform infrared (FT-IR) spectra were collected by using a ThermoFisher Nicolet iS5 instrument. GC-MS analyses were performed on a Shimadzu QP-2010 SE instrument. X-ray structural analysis was conducted on a Bruker APEX-II CCD instrument.

General Reagent Information. Tetrahydrofuran (THF) and toluene were distilled from sodium/benzophenone prior to use; CH_2Cl_2 (DCM) was distilled from calcium hydride. All purchased reagents were used without further purification. Thin-layer chromatography (TLC) was performed on precoated GF254 silica gel plates (Qingdao Marine Chemical Inc.) and compounds were visualized with a UV light at 254 nm. Flash chromatography for purification of compounds were carried out using silica gel (200–300 mesh, Qingdao Marine Chemical Inc.). PhSO₂CF₂CHN₂ was prepared according to the known procedures¹. (**Cautions**: PhSO₂CF₂CHN₂ are potentially explosive compound! It should be handled with care when synthesizing it or transferring it into the reaction tubes.) Most of the indenes used in this study were purchased from commercial suppliers and used without further purification or were synthesized by ourselves from the reported literature^{2,3}.

General procedures for the synthesis of hypervalent iodine(III) reagents

According to the procedures reported previously⁴. A solution of phenyliodoso diacetate (5 mmol, 1.0 equiv) in dichloromethane (20 mL, 0.5 M) was treated with trimethylsilyl trifluoromethanesulfonate (0.9 mL, 5 mmol, 1.0 equiv) in one-pot at room temperature under Ar atmosphere. Then the ((2-diazo-1,1-difluoroethyl) sulfonyl) benzene (**Ps-DFA**) (2.55 g, 11 mmol, 2.2 equiv) was added dropwise during 10 minutes. The resulting reaction mixture was stirred at room temperature for 0.5 hours. Solvent was removed under vacuum and the crude was recrystallized from a mixture of diethyl ether/dichloromethane (5/1) during 12 hours at -20 °C. The desired product was collected by filtration washed, with cold diethyl ether, dried under high vacuum and stored a -20 °C.

(1-diazo-2,2-difluoro-2-(phenylsulfonyl)ethyl)(phenyl)-iodaneyltrifluoro-

methanesulfonate (DFDI): orange solid; 2.01 g, 69% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.0 Hz, 2H), 7.94 (d, J = 7.8 Hz, 2H), 7.79 (t, J = 7.6 Hz, 1H), 7.65 (dt, J = 19.9, 7.7 Hz, 3H), 7.50 (t, J = 7.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 136.46, 135.39, 133.35, 132.12, 131.23, 130.92, 129.95, 119.73 (q, J = 319.0 Hz), 118.72 (t, J = 295.9 Hz), 118.50, 29.47 (t, J = 42.7 Hz). ¹⁹F NMR (471 MHz, CDCl₃)

δ -78.30, -93.48. **FT-IR (KBr, film):** 3087, 3053, 2110, 1583, 1468, 1360, 1284, 1170, 1018, 806, 737, 636, 588, 514, 451 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₁N₂O₅F₅S₂I⁺ 584.9074; Found 584.9070.

(1-diazo-2,2-difluoro-2-(phenylsulfonyl)ethyl)(mesityl)-iodaneyl trifluoromethanesulfonate (DFDI-1): orange solid; 2.17 g, 72% yield; ¹H NMR (500 MHz, CDCl₃) δ 7.97 – 7.87 (m, 2H), 7.79 (q, J = 6.6 Hz, 1H), 7.62 (q, J = 6.4 Hz, 2H), 7.08 (d, J = 4.4 Hz, 2H), 2.65 (s, 6H), 2.36 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.85, 142.33, 136.43, 131.20, 130.81, 130.34, 129.95, 125.57, 119.83 (q, J = 319.5 Hz), 118.76 (t, J = 295.6 Hz), 28.09 (t, J = 43.7 Hz), 26.79, 21.27. ¹⁹F NMR (471 MHz, CDCl₃) δ -78.33, -93.94. FT-IR (KBr, film): 3083, 2921, 2110, 1583, 1449, 1352, 1249, 1166, 1051, 852, 755, 660, 584, 819, 443 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₈H₁₇N₂O₅F₅S₂I⁺ 626.9530; Found 626.9552.

(1-diazo-2,2-difluoro-2-(phenylsulfonyl)ethyl)(3-fluorophenyl)-l3-iodaneyl trifluoromethanesulfonate (DFDI-2): orange solid; 2.17 g, 72% yield; ¹H NMR (500 MHz, CD₃OD-*d*₄) δ 8.11 (d, *J* = 6.5 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.88 (t, *J* = 7.7 Hz, 1H), 7.66 (dt, *J* = 21.3, 6.9 Hz, 3H), 7.54 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (126 MHz, CD₃OD-*d*₄) δ 163.78 (d, *J* = 254.8 Hz), 137.84, 134.59 (d, J = 7.8 Hz), 132.58 (d, J = 3.4 Hz), 132.44, 131.74, 131.16, 123.63 (d, J = 25.8 Hz), 121.98 (d, J = 21.3 Hz), 121.74 (q, J = 318.7 Hz), 120.27 (t, J = 293.0 Hz), 118.34 (d, J = 7.9 Hz), 32.67 (t, J = 43.2 Hz). ¹⁹F NMR (471 MHz, CD₃OD- d_4) δ -79.97, -93.95, -107.42 (q, J = 7.2 Hz). FT-IR (KBr, film): 3088, 3069, 2111, 1589, 1469, 1359, 1279, 1211, 1020, 838, 782, 727, 636, 588, 515, 438 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₅H₉N₂O₅F₆NaS₂I⁺ 624.8786; Found 624.8795.

(1-diazo-2,2-difluoro-2-(phenylsulfonyl)ethyl)(4-(trifluoromethyl)phenyl)iodaneyl trifluoromethanesulfonate (DFDI-3): orange solid; 2.70 g, 83% yield; ¹H NMR (500 MHz, CD₃OD-*d*₄) δ 8.43 (d, *J* = 8.2 Hz, 2H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.90 (d, *J* = 8.3 Hz, 2H), 7.85 (t, *J* = 7.5 Hz, 1H), 7.67 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (126 MHz, CD₃OD-*d*₄) δ 137.79, 137.19, 135.73 (q, *J* = 33.3 Hz), 132.44, 131.77, 131.15, 129.77 (q, *J* = 3.7 Hz), 124.62 (q, *J* = 272.3 Hz), 123.07, 121.75 (q, *J* = 318.6 Hz), 120.22 (t, *J* = 293.4 Hz). ¹⁹F NMR (471 MHz, CD₃OD-*d*₄) δ -64.64, -79.97, -93.93. FT-IR (KBr, film): 3103, 2120, 1592, 1400, 1351, 1240, 1173, 1025, 832, 722, 636, 589, 516, 494 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₀N₂O₅F₈S₂I⁺ 652.8948; Found 652.8942.

Optimization of the reaction conditions

a) Optimization of conditions under light conditions and control

experiments

Entry	РС	Base	Yield (%)
1	Ru(bpz) ₃ (PF ₆) ₂	Na ₂ CO ₃	66
2	$Ru(dtbbpy)_3(PF_6)_2$	Na ₂ CO ₃	61
3	Ir[dF(CF ₃)ppy] ₂ (dtbbpy) PF ₆	Na ₂ CO ₃	38
4	Ir[dFppy]2(dtbbpy)PF6	Na ₂ CO ₃	55
5	4CzIPN	Na ₂ CO ₃	65
6	Ph ₃ N	/	tr
7	/	Na ₂ CO ₃	50
8^b	/	Na ₂ CO ₃	58

^a Reaction conditions: **DFDI** (0.15 mmol), **1** (0.1 mmol), PC (2 mol %) and base (0.2 mmol) in MeCN (2 mL), irradiation with blue LEDs (456-460 nm, 30 W) under an Ar atmosphere at room temperature for 12 h. ^{*b*} no blue light

		+ TfO	CF ₂ SO ₂ Ph Temp, ti	blvent ime	CF ₂ SO ₂ Ph	
	1a	DFI	וס	2a		
Entry	DFDI:1a	Temp	Base	Solvent	Time	Yield
	(equiv.)	(°C)	(equiv.)	(2 mL)	(h)	(%)
1	1.5:1	0	Na ₂ CO ₃ (2)	MeCN	12	NR
2	1.5:1	25	$Na_2CO_3(2)$	MeCN	6	45
3	1.5:1	25	Na ₂ CO ₃ (2)	MeCN	12	58
4	1.5:1	25	Na ₂ CO ₃ (2)	MeCN	24	56
5	1.5:1	50	Na ₂ CO ₃ (2)	MeCN	12	54
6	1.5:1	25	Na ₂ CO ₃ (2)	DCM	12	46
7	1.5:1	25	Na ₂ CO ₃ (2)	Toluene	12	tr
8	1.5:1	25	Na ₂ CO ₃ (2)	n-Hexane	12	NR
9	1.5:1	25	Na ₂ CO ₃ (2)	THF	12	29
10	1.5:1	25	Na ₂ CO ₃ (2)	DMF	12	NR
11	1.5:1	25	Na ₂ CO ₃ (2)	EA	12	39
12	1.5:1	25	Na ₂ CO ₃ (2)	acetone	12	35
13	1.5:1	25	Na ₂ CO ₃ (2)	DCE	12	40
14	1.5:1	25	$Cs_2CO_3(2)$	MeCN	12	tr
15	1.5:1	25	$K_2CO_3(2)$	MeCN	12	62
16	1.5:1	25	NaOAc (2)	MeCN	12	44
17	1.5:1	25	NaHCO ₃ (2)	MeCN	12	70

b) Optimization of conditions without light

18	1.5:1	25	Et ₃ N (2)	MeCN	12	tr
19	1.5:1	25	DABCO (2)	MeCN	12	tr
20	1.5:1	25	DBU (2)	MeCN	12	24
21	1.2:1	25	$NaHCO_3(2)$	MeCN	12	55
22	2:1	25	$NaHCO_3(2)$	MeCN	12	77
23	2:1	25	$NaHCO_3(3)$	MeCN	12	92
24	2:1	25	$NaHCO_3(4)$	MeCN	12	95
25	1.5:1	25	NaHCO ₃ (4)	MeCN	12	74
26	2:1	25	$Na_2CO_3(4)$	MeCN	12	85
27	2:1	25	$K_2CO_3(4)$	MeCN	12	74
28	2:1	25	NaOAc (4)	MeCN	12	68
29	2:1	25	DBU (4)	MeCN	12	tr
30	2:1	25	$Et_3N(4)$	MeCN	12	tr
31	2:1	25	none	MeCN	12	32
32	2:1	25	$NaHCO_3(4)$	THF	12	31
33	2:1	25	NaHCO ₃ (4)	DCM	12	55

Entry	Variation from the standard conditions	Yield (%)	
1	as above	95	
2	DFDI-1 was used	85	
3	DFDI-2 was used	90	
4	DFDI-3 was used	84	
5	Ps-DFA was used	NR	
6	DDFS was used	NR	
Na	No	Na	

General procedure for the reaction of hypervalent iodine reagents with indene

An oven dried 4 mL vial equipped with a magnetic stir bar was charged with **DFDI** (116.8 mg, 0.2 mmol, 2 equiv.) and NaHCO₃ (33.6 mg, 0.4 mmol, 4 equiv.) under Ar atmosphere. Then indene **1** (0.1 mmol, 1 equiv.) and MeCN (2 mL) were added, the mixture was stirred at 25 °C for 12 hours. The solution mixture was extracted with EtOAc, and the organic phase was washed with brine, dried over Na₂SO₄. Then the solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel to give the product **2**.

2a

2-(difluoro(phenylsulfonyl)methyl)naphthalene (2a): white solid; 30.2 mg, 95% yield; **M.p.**: 183-184 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.20 (s, 1H), 8.03 (d, J = 7.9 Hz, 2H), 7.94 (dt, J = 14.5, 8.5 Hz, 3H), 7.77 (t, J = 7.6 Hz, 1H), 7.70 (d, J = 8.7 Hz, 1H), 7.66 – 7.56 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 135.41, 135.02, 132.95, 132.30, 131.05, 129.41, 129.22 (t, J = 6.7 Hz), 129.13, 128.69, 128.52, 127.98, 127.22, 123.92 (t, J = 22.1 Hz), 123.39 (t, J = 5.3 Hz), 122.19 (t, J = 286.3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -101.39. FT-IR (KBr, film): 3062, 1599, 1581, 1448, 1338, 1288, 1169, 1116, 1063, 758, 720, 686 cm⁻¹ HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₇H₁₂O₂F₂NaS⁺ 341.0424; Found 341.0428.

2-(difluoro(phenylsulfonyl)methyl)-7-methylnaphthalene (2b): white solid; 24.2 mg, 73% yield; **M.p.**: 196-198 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 8.02 (d, *J* = 7.8 Hz, 2H), 7.90 (d, *J* = 8.6 Hz, 1H), 7.81 (d, *J* = 8.5 Hz, 1H), 7.77 (t, *J* = 7.5 Hz, 1H), 7.70 (s, 1H), 7.66 – 7.57 (m, 3H), 7.46 (d, *J* = 8.4 Hz, 1H), 2.54 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.10, 135.37, 133.33, 133.05, 132.57, 131.08, 130.86, 129.40, 128.56 (t, *J* = 6.7 Hz), 128.37, 128.04, 127.76, 123.89 (t, *J* = 21.9 Hz), 122.54 (t, *J* = 5.5 Hz), 122.28 (t, *J* = 286.5 Hz), 21.85. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.38. FT-IR (KBr, film): 3060, 2920, 2850, 1582, 1448, 1337, 1280, 1164, 1063, 844, 717, 684 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₄O₂F₂NaS⁺ 355.0580; Found 355.0583.

2c

2-(difluoro(phenylsulfonyl)methyl)-7-methoxynaphthalene (2c): white solid; 23.3 mg, 67% yield; **M.p.**: 158-159 °C; R_f =0.7 (petroleum ether/EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 8.02 (d, *J* = 7.8 Hz, 2H), 7.87 (d, *J* = 8.5 Hz, 1H), 7.83 – 7.74 (m, 2H), 7.63 (t, *J* = 7.7 Hz, 2H), 7.56 – 7.50 (m, 1H), 7.28 (dd, *J* = 9.5, 2.9 Hz, 1H), 7.22 (d, *J* = 2.8 Hz, 1H), 3.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.57, 135.38, 133.68, 133.05, 131.07, 130.64, 129.44, 129.41, 128.37, 127.85 (t, *J* = 6.6 Hz), 124.38 (t, *J* = 21.9 Hz), 122.30 (t, *J* = 286.5 Hz), 121.63, 121.27 (t, *J* = 5.5 Hz), 106.69, 55.56. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.17. FT-IR (KBr, film): 3010, 2962, 2918, 1608, 1580, 1446, 1345, 1238, 1170, 1062, 846, 735 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₄O₃F₂NaS⁺ 371.0529; Found 371.0533.

2-(difluoro(phenylsulfonyl)methyl)-7-fluoronaphthalene (2d): white solid; 23.2 mg, 69% yield; **M.p.**: 146-148 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹**H** NMR (500 MHz, CDCl₃) δ 8.13 (s, 1H), 8.03 (d, *J* = 7.8 Hz, 2H), 7.96 (d, *J* = 8.6 Hz, 1H), 7.91 (dd, *J* = 8.9, 5.7 Hz, 1H), 7.79 (t, *J* = 7.6 Hz, 1H), 7.65 (dt, *J* = 15.6, 8.4 Hz, 3H), 7.56 (d, *J* = 9.5 Hz, 1H), 7.41 (td, *J* = 8.7, 2.3 Hz, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 161.15 (d, *J* = 248.5 Hz), 135.43, 133.03 (d, *J* = 9.6 Hz), 132.67, 131.90, 130.98, 130.41 (d, *J* = 8.9 Hz), 129.36, 128.60, 128.32 (q, *J* = 6.3 Hz), 125.02 (t, *J* = 21.9 Hz), 122.75 (td, *J* = 5.3, 2.5 Hz), 121.90 (t, *J* = 286.6 Hz), 118.95 (d, *J* = 25.6 Hz), 112.09 (d, *J* = 20.9 Hz). ¹⁹**F** NMR (471 MHz, CDCl₃) δ -101.61, -112.42 (q, *J* = 8.0 Hz). **FT-IR (KBr, film):** 3070, 1610, 1580, 1448, 1342, 1270, 1170, 1115, 1065, 891, 844, 715, 607 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₇H₁₁O₂F₃NaS⁺ 359.0330; Found 359.0329.

2-bromo-7-(difluoro(phenylsulfonyl)methyl)naphthalene (2e): white solid; 19.4 mg, 49% yield; **M.p.**: 189-190 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹**H** NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 10.4 Hz, 2H), 8.03 (d, *J* = 7.9 Hz, 2H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.79 (dd, *J* = 8.6, 4.0 Hz, 2H), 7.71 (t, *J* = 10.6 Hz, 2H), 7.64 (t, *J* = 7.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 135.56, 133.41, 133.36, 132.79, 131.98, 131.11, 129.62, 129.49, 128.72, 128.21 (t, *J* = 6.6 Hz), 125.19 (t, *J* = 22.0 Hz), 123.94 (t, *J* = 5.3 Hz), 121.91 (t, *J* = 286.2 Hz), 121.36. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.69. FT-IR (KBr, film): 3056, 1587, 1499, 1447, 1337, 1274, 1163, 1125, 1066, 845, 721, 685, 598 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₇H₁₁O₂F₂NaSBr⁺ 418.9529; Found 418.9523.

7-(difluoro(phenylsulfonyl)methyl)-2-naphthonitrile (2f): white solid; 18.9 mg, 55% yield; **M.p.**: 204-205 °C; R_f =0.4 (petroleum ether/EtOAc = 10:1); ¹**H NMR** (500 MHz, CDCl₃) δ 8.35 (s, 1H), 8.25 (s, 1H), 8.07 – 7.99 (m, 4H), 7.89 (d, *J* = 8.7 Hz, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.76 (d, *J* = 8.6 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 136.12, 135.75, 135.16, 132.48, 131.26, 131.13, 129.59 (t, *J* = 6.6 Hz), 129.59, 129.44, 128.96, 128.93, 126.67 (t, *J* = 5.4 Hz), 126.17 (t, *J* = 22.3 Hz), 121.59 (t, *J* = 287.1 Hz), 118.66, 111.06.¹⁹**F NMR** (471 MHz, CDCl₃) δ -101.94. **FT-IR (KBr, film):** 3074, 2228, 1507, 1450, 1339, 1173, 1116, 1065, 856, 719, 684 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₁NO₂F₂NaS⁺ 366.0376; Found 366.0377.

2-(difluoro(phenylsulfonyl)methyl)-7-nitronaphthalene (2g): white solid; 14.5 mg, 40% yield; **M.p.**: 186-188 °C; R_f =0.3 (petroleum ether/EtOAc = 10:1); ¹**H** NMR (500 MHz, CDCl₃) δ 8.92 (s, 1H), 8.39 (d, J = 5.8 Hz, 2H), 8.12 – 8.04 (m, 4H), 7.97 – 7.91 (m, 1H), 7.82 (t, J = 7.5 Hz, 1H), 7.67 (t, J = 7.7 Hz, 2H). ¹³**C** NMR (126 MHz, CDCl₃) δ 146.44, 137.26, 135.79, 132.48, 131.14, 131.09, 131.03 (t, J = 6.4 Hz), 129.86, 129.61, 128.90, 127.31 (t, J = 5.3 Hz), 126.52 (t, J = 22.6 Hz), 125.63, 121.88, 121.55 (t, J = 286.8 Hz). ¹⁹**F** NMR (471 MHz, CDCl₃) δ -102.00. **FT-IR (KBr, film):** 3085, 1581, 1530, 1347, 1334, 1172, 1126, 1067, 852, 719, 683 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₇H₁₁NO₄F₂NaS⁺ 386.0275; Found 386.0266.

2-(4-chlorophenyl)-7-(difluoro(phenylsulfonyl)methyl)naphthalene (2h): white solid; 38.5 mg, 90% yield; **M.p.**: 153-155 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.25 (s, 1H), 8.09 (s, 1H), 8.05 (d, *J* = 7.7 Hz, 2H), 7.97 (d, *J* = 8.5 Hz, 2H), 7.87 – 7.81 (m, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.64 (p, *J* = 3.6 Hz, 4H), 7.48 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 138.93, 138.73, 135.47, 134.22, 134.10, 132.92, 132.56, 131.08, 129.45, 129.45 (d, *J* = 6.2 Hz), 129.30, 128.78, 128.70, 128.48, 127.91, 126.81, 124.58 (t, *J* = 21.5 Hz), 123.66 (t, *J* = 5.4 Hz), 122.13 (d, *J* = 286.2 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -101.47. FT-IR (KBr, film): 3060, 1583, 1448, 1339, 1171, 1092, 828, 719, 687 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₃H₁₅O₂F₂NaSCl⁺ 451.0347; Found 451.0341.

2-(difluoro(phenylsulfonyl)methyl)-7-(4-(trifluoromethyl)phenyl)naphthalene (2i): white solid; 41.1 mg, 89% yield; **M.p.**: 144-146 °C; R_f =0.6 (petroleum ether/EtOAc = 10:1); ¹**H NMR** (500 MHz, CDCl₃) δ 8.28 (s, 1H), 8.15 (s, 1H), 8.06 (d, *J* = 7.9 Hz, 2H), 8.00 (t, *J* = 8.3 Hz, 2H), 7.87 (d, *J* = 8.7 Hz, 1H), 7.78 (ddd, *J* = 21.2, 14.9, 7.9 Hz, 6H), 7.64 (t, *J* = 7.8 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 144.01, 138.47, 135.51, 134.49, 132.89, 132.51, 131.09, 129.95 (q, *J* = 32.5 Hz), 129.58 (t, *J* = 6.7 Hz), 129.48, 128.88, 128.54, 127.90, 127.85, 127.43, 126.08 (q, *J* = 3.8 Hz), 124.74 (t, *J* = 22.2 Hz), 124.37 (q, *J* = 272.1 Hz), 124.01 (t, *J* = 5.4 Hz), 122.10 (t, *J* = 286.6 Hz). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -62.40, -101.49. **FT-IR (KBr, film):** 3064, 3030, 1606, 1583, 1324, 1195, 1125, 1069, 837, 719, 618, 598 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₄H₁₅O₂F₅NaS⁺ 485.0611; Found 485.0604.

2-chloro-5-(7-(difluoro(phenylsulfonyl)methyl)naphthalen-2-yl)pyridine (2j): white solid; 20.5 mg, 48% yield; **M.p.**: 152-154 °C; R_f =0.5 (petroleum ether/EtOAc = 1:1); ¹H NMR (500 MHz, CDCl₃) δ 8.73 (d, J = 3.2 Hz, 1H), 8.28 (s, 1H), 8.11 (s, 1H), 8.07 – 7.95 (m, 5H), 7.82 – 7.73 (m, 3H), 7.65 (t, J = 7.7 Hz, 2H), 7.47 (dd, J = 8.1, 2.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 151.01, 148.34, 137.51, 135.54, 135.26, 135.04, 134.51, 132.83, 132.49, 131.09, 129.51 (t, J = 6.6 Hz), 129.49, 129.21, 128.58, 127.40, 127.26, 124.59 (t, J = 45.6 Hz), 124.23 (t, J = 5.3 Hz), 122.02 (t, J = 284.6 Hz).¹⁹F NMR (471 MHz, CDCl₃) δ -101.55. FT-IR (KBr, film): 3061, 1582, 1448, 1336, 1170, 1114, 1063, 833, 718, 615 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₅NO₂F₂SCl⁺ 430.0480; Found 430.0475.

2k

2-chloro-6-(difluoro(phenylsulfonyl)methyl)naphthalene (2k): white solid; 25.0 mg, 71% yield; **M.p.**: 162-163 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.17 (s, 1H), 8.03 (d, J = 7.7 Hz, 2H), 7.93 – 7.84 (m, 3H), 7.78 (t, J = 7.7 Hz, 1H), 7.75 – 7.69 (m, 1H), 7.63 (t, J = 7.8 Hz, 2H), 7.53 (dd, J = 8.6, 2.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 135.59, 135.53, 134.56, 132.81, 131.08, 130.68, 130.56, 129.48, 129.09 (t, J = 6.7 Hz), 128.32, 127.87, 126.79, 124.60 (t, J = 5.4 Hz), 124.34 (t, J = 22.1 Hz), 121.97 (t, J = 286.6 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ - 101.59. FT-IR (KBr, film): 3067, 1581, 1448, 1340, 1280, 1165, 1064, 824, 720 cm⁻¹ HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₇H₁₁O₂F₂NaSCl⁺ 375.0034; Found 375.0034.

1-cyclopropyl-6-(difluoro(phenylsulfonyl)methyl)naphthalene (2l): white solid; 26.5 mg, 74% yield; **M.p.**: 159-160 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹**H NMR** (500 MHz, CDCl₃) δ 8.54 (d, *J* = 8.8 Hz, 1H), 8.18 (s, 1H), 8.05 (d, *J* = 7.7 Hz, 2H), 7.78 (t, *J* = 10.3 Hz, 3H), 7.63 (t, *J* = 7.8 Hz, 2H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.40 (d, *J* = 7.3 Hz, 1H), 2.36 (q, *J* = 6.9 Hz, 1H), 1.15 – 1.07 (m, 2H), 0.79 (d, *J* = 5.4 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 139.55, 135.40, 135.28, 133.01, 132.51, 131.08, 129.66 (t, *J* = 6.7 Hz), 129.41, 127.65, 126.90, 126.45, 125.40, 123.59 (t, *J* = 22.0 Hz), 123.23 (t, *J* = 5.4 Hz), 122.29 (t, *J* = 286.6 Hz), 13.34, 6.65. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -101.40. **FT-IR (KBr, film):** 3086, 2920, 1580, 1447, 1336, 1168, 1108, 1065, 794, 716 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₀H₁₆O₂F₂NaS⁺ 381.0737; Found 381.0736.

1-bromo-6-(difluoro(phenylsulfonyl)methyl)naphthalene (2m): white solid; 28.5 mg, 72% yield; **M.p.**: 185-186 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, *J* = 8.9 Hz, 1H), 8.19 (s, 1H), 8.03 (d, *J* = 7.7 Hz, 2H), 7.92 (d, *J* = 7.8 Hz, 2H), 7.83 – 7.74 (m, 2H), 7.64 (t, *J* = 7.7 Hz, 2H), 7.43 (t, *J* = 7.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 135.57, 133.69, 133.55, 132.75, 132.48, 131.11, 129.56 (t, *J* = 6.5 Hz), 129.50, 129.12, 128.16, 127.65, 125.05 (t, *J* = 22.1 Hz), 124.85 (t, *J* = 5.4 Hz), 122.91, 121.88 (t, *J* = 286.6 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -101.69. FT-IR (KBr, film): 3059, 1560, 1447, 1338, 1261, 1169, 1112, 1094, 1059, 802, 717, 587 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₇H₁₁O₂F₂NaSBr⁺ 418.9529; Found 418.9527.

6-(difluoro(phenylsulfonyl)methyl)-1-phenylnaphthalene (2n): white solid; 35.5 mg, 90% yield; **M.p.**: 100-102 °C; R_f =0.5 (petroleum ether/EtOAc = 10:1); ¹**H NMR** (500 MHz, CDCl₃) δ 8.26 (s, 1H), 8.04 (t, *J* = 9.0 Hz, 3H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.64 (t, *J* = 7.8 Hz, 4H), 7.58 (d, *J* = 7.1 Hz, 1H), 7.50 (tq, *J* = 14.7, 7.2 Hz, 5H). ¹³**C NMR** (126 MHz, CDCl₃) δ 140.56, 140.03, 135.45, 133.31, 132.92, 132.73, 131.09, 130.14, 129.53 (t, *J* = 6.6 Hz), 129.43, 129.42, 128.80, 128.57, 127.76, 126.99, 126.78, 123.81 (t, *J* = 22.1 Hz), 123.50 (t, *J* = 5.5 Hz), 122.17 (t, *J* = 286.3 Hz). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -101.45. **FT-IR (KBr, film):** 3054, 1595, 1582, 1448, 1340, 1275, 1169, 1115, 1067, 827, 759, 715, 702, 682 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₃H₁₆O₂F₂NaS⁺ 417.0737; Found 417.0732.

2-(6-(difluoro(phenylsulfonyl)methyl)naphthalen-1-yl)thiophene (20): white solid; 21.6 mg, 54% yield; **M.p.**: 130-132 °C; R_f =0.5 (petroleum ether/EtOAc = 10:1); ¹**H NMR** (500 MHz, CDCl₃) δ 8.34 (d, J = 9.0 Hz, 1H), 8.24 (s, 1H), 8.04 (d, J = 7.8 Hz, 2H), 7.96 (d, J = 8.3 Hz, 1H), 7.79 (t, J = 7.6 Hz, 1H), 7.73 – 7.67 (m, 2H), 7.66 – 7.58 (m, 3H), 7.47 (d, J = 5.0 Hz, 1H), 7.26 (s, 1H), 7.24 – 7.19 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 140.93, 135.48, 133.59, 132.88, 132.87, 132.83, 131.11, 130.63, 129.55 (t, J = 6.4 Hz), 129.50, 129.46, 127.92, 127.61, 126.77, 126.67, 126.29, 124.13 (t, J = 22.3 Hz), 123.92 (t, J = 5.4 Hz), 122.10 (t, J = 286.3 Hz). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -101.57. **FT-IR (KBr, film):** 3095, 3059, 1595, 1581, 1331, 1263, 1160, 1121, 1092, 1043, 823, 801, 717, 681 cm⁻¹ **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₂₁H₁₄O₂F₂NaS₂⁺ 423.0301; Found 423.0303.

6-(difluoro(phenylsulfonyl)methyl)-1,4-dimethylnaphthalene (**2p**): white solid; 14.2 mg, 41% yield; **M.p.**: 124-126 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹**H NMR** (500 MHz, CDCl₃) δ 8.25 (s, 1H), 8.12 (d, *J* = 8.7 Hz, 1H), 8.02 (d, *J* = 7.7 Hz, 2H), 7.76 (q, *J* = 8.7 Hz, 2H), 7.62 (t, *J* = 7.7 Hz, 2H), 7.37 – 7.28 (m, 2H), 2.68 (d, *J* = 9.4 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 135.36, 134.52, 133.66, 133.04, 132.59, 131.85, 131.12, 129.38, 128.89, 127.64, 125.84 (t, *J* = 6.6 Hz), 125.54, 123.24 (t, *J* = 22.0 Hz), 122.94 (t, *J* = 5.4 Hz), 122.41 (t, *J* = 286.5 Hz), 19.47, 19.40. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -101.48. **FT-IR (KBr, film):** 3063, 2923, 1601, 1583, 1449, 1341, 1280, 1168, 1119, 1073, 880, 833, 717 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₉H₁₆O₂F₂NaS⁺ 369.0737; Found 369.0741.

3-(difluoro(phenylsulfonyl)methyl)-1-methylnaphthalene (2q): white solid; 24.6 mg, 74% yield; **M.p.**: 101-103 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 7.8 Hz, 4H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.62 (ddt, *J* = 22.0, 15.1, 7.4 Hz, 4H), 7.54 (s, 1H), 2.75 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 135.63, 135.37, 134.36, 133.06, 132.45, 131.08, 129.85, 129.40, 128.39, 127.74 (t, *J* = 6.7 Hz), 126.86, 124.31, 123.74 (t, *J* = 5.3 Hz), 123.47 (t, *J* = 22.1 Hz), 122.22 (t, *J* = 286.1 Hz), 19.66. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.36. FT-IR (KBr, film): 3071, 2923, 1582, 1448, 1345, 1296, 1202, 1161, 1094, 1077, 751, 716 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₄O₂F₂NaS⁺ 355.0580; Found 355.0582.

1-benzyl-3-(difluoro(phenylsulfonyl)methyl)naphthalene (2r): white solid; 22.0 mg, 54% yield; **M.p.**: 111-112 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹**H NMR** (500 MHz, CDCl₃) δ 8.13 (s, 1H), 8.01 (d, J = 7.6 Hz, 3H), 7.95 (d, J = 7.3 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.63 – 7.52 (m, 5H), 7.28 (d, J = 7.6 Hz, 2H), 7.19 (q, J = 7.5 Hz, 3H), 4.49 (s, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 139.93, 137.77, 135.38, 133.89, 133.03, 132.96, 131.07, 130.02, 129.41, 128.71, 128.69, 128.63, 128.56 (t, J = 6.6 Hz), 126.90, 126.44, 124.70 (t, J = 5.5 Hz), 124.67, 123.61 (t, J = 21.9 Hz), 122.17 (t, J = 286.6 Hz), 39.39. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -101.57. **FT-IR (KBr, film):** 3063, 3021, 2920, 1602, 1581, 1493, 1448, 1344, 1173, 1112, 888, 746, 684 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₄H₁₈O₂F₂NaS⁺ 431.0893; Found 431.0889.

1-(chloromethyl)-3-(difluoro(phenylsulfonyl)methyl)naphthalene (2s): white solid; 20.5 mg, 56% yield; **M.p.**: 100-102 °C; R_f =0.4 (petroleum ether/EtOAc = 20:1); ¹H **NMR** (500 MHz, CDCl₃) δ 8.21 (s, 2H), 8.01 (dd, *J* = 13.6, 8.1 Hz, 3H), 7.77 (dt, *J* = 21.8, 7.8 Hz, 2H), 7.71 (s, 1H), 7.64 (t, *J* = 7.8 Hz, 3H), 5.06 (s, 2H). ¹³C **NMR** (126 MHz, CDCl₃) δ 135.56, 134.25, 132.99, 132.81, 132.76, 131.10, 130.84 (t, *J* = 6.5 Hz), 130.21, 129.52, 129.37, 127.51, 124.83 (t, *J* = 5.4 Hz), 123.96, 123.55 (t, *J* = 22.4 Hz), 121.81 (t, *J* = 286.6 Hz), 43.95. ¹⁹F **NMR** (471 MHz, CDCl₃) δ -101.73. **FT-IR (KBr, film):** 3068, 2922, 1583, 1452, 1342, 1167, 1121, 785, 759, 719 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₃O₂F₂NaSCl⁺ 389.0191; Found 389.0190.

2t

1-(2-bromoethyl)-3-(difluoro(phenylsulfonyl)methyl)naphthalene (2t): white solid; 34.3 mg, 81% yield; **M.p.**: 124-125 °C; R_f =0.4 (petroleum ether/EtOAc = 20:1); ¹**H NMR** (500 MHz, CDCl₃) δ 8.13 (s, 1H), 8.05 (dd, *J* = 13.3, 8.7 Hz, 3H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.79 (t, *J* = 7.5 Hz, 1H), 7.70 (t, *J* = 7.7 Hz, 1H), 7.63 (q, *J* = 7.7 Hz, 3H), 7.58 (d, *J* = 5.1 Hz, 1H), 3.68 (s, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 136.21, 135.47, 133.31, 132.92, 131.09, 130.33, 129.47, 129.02, 129.00 (t, *J* = 6.7 Hz), 127.14, 124.22 (t, *J* = 5.4 Hz), 123.63 (t, *J* = 22.0 Hz), 123.39, 122.00 (t, *J* = 286.3 Hz), 36.70, 31.42.¹⁹**F NMR** (471 MHz, CDCl₃) δ -101.58. **FT-IR (KBr, film):** 3071, 2922, 1581, 1447, 1347, 1216, 1169, 1117, 1095, 1077, 746, 684, 592 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₉H₁₅O₂F₂NaSBr⁺ 446.9842; Found 446.9845.

3-(difluoro(phenylsulfonyl)methyl)-1-(3-methoxypropyl)naphthalene (2u): colorless oil; 32.0 mg, 82% yield; R_f =0.6 (petroleum ether/EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, *J* = 8.5 Hz, 1H), 8.08 – 8.00 (m, 3H), 7.94 (d, *J* = 8.2 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.63 (q, *J* = 6.0 Hz, 3H), 7.60 – 7.51 (m, 2H), 3.45 (t, *J* = 6.2 Hz, 2H), 3.39 (s, 3H), 3.21 (t, *J* = 7.7 Hz, 2H), 2.03 (t, *J* = 7.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.42, 135.36, 133.71, 133.08, 132.83, 131.06, 130.06, 129.40, 128.42, 127.88 (t, *J* = 6.8 Hz), 126.77, 124.09, 123.47 (t, *J* = 21.8 Hz), 123.37 (t, *J* = 5.3 Hz), 122.22 (t, *J* = 286.1 Hz), 71.85, 58.82, 30.59, 29.50. ¹⁹F NMR (471 MHz, CDCl₃) δ - 101.47. FT-IR (KBr, film): 3067, 2924, 2872, 1583, 1448, 1343, 1168, 1011, 1024, 752, 719, 685 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₁H₂₀O₃F₂NaS⁺ 413.0999; Found 413.1002.

4-(3-(difluoro(phenylsulfonyl)methyl)naphthalen-1-yl)butanenitrile (2v): white solid; 19.2 mg, 50% yield; **M.p.**: 139-140 °C; R_f =0.5 (petroleum ether/EtOAc = 5:1); ¹**H NMR** (500 MHz, CDCl₃) δ 8.12 (s, 1H), 8.06 (t, J = 9.5 Hz, 3H), 7.98 (d, J = 8.2 Hz, 1H), 7.79 (t, J = 7.5 Hz, 1H), 7.65 (tt, J = 19.4, 7.5 Hz, 4H), 7.55 (s, 1H), 3.30 (t, J = 7.6 Hz, 2H), 2.43 (t, J = 6.9 Hz, 2H), 2.14 (p, J = 7.4 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 137.08, 135.49, 133.31, 132.94, 132.88, 131.07, 130.31, 129.48, 128.92, 128.64 (t, J = 6.7 Hz), 127.12, 123.60 (t, J = 5.3 Hz), 123.51, 123.42 (t, J = 22.1 Hz), 122.05 (t, J = 286.6 Hz), 119.53, 31.65, 26.17, 16.97. ¹⁹**F NMR** (471 MHz, CDCl₃) δ - 101.69. **FT-IR (KBr, film):** 3065, 2920, 2887, 2247, 1580, 1508, 1452, 1342, 1276, 1167, 1123, 751, 717, 627 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₁H₁₇NO₂F₂NaS⁺ 408.0846; Found 408.0849.

3-(difluoro(phenylsulfonyl)methyl)-1-(2-methylallyl)naphthalene (2w): colorless oil; 13.0 mg, 35% yield; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.5 Hz, 2H), 8.02 (d, J = 7.7 Hz, 2H), 7.94 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.62 (t, J = 7.5 Hz, 3H), 7.57 (d, J = 7.7 Hz, 1H), 7.53 (s, 1H), 4.90 (s, 1H), 4.62 (s, 1H), 3.82 (s, 2H), 1.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 143.92, 137.03, 135.37, 134.18, 133.07, 132.79, 131.07, 129.93, 129.41, 128.38, 128.26 (t, J = 6.9 Hz), 126.82, 124.56, 124.45 (t, J = 5.2 Hz), 123.50 (t, J = 22.1 Hz), 122.20 (t, J = 286.6 Hz), 113.07. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.61. FT-IR (KBr, film): 3069, 2963, 2920, 2849, 1646, 1583, 1448, 1343, 1168, 1096, 991, 895, 748, 719, 685 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₁H₁₈O₂F₂NaS⁺ 395.0893; Found

395.0884.

2x

2-(difluoro(phenylsulfonyl)methyl)-3-methylnaphthalene (2x): white solid; 20.6 mg, 62% yield; **M.p.**: 133-135 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹**H** NMR (500 MHz, CDCl₃) δ 8.09 (s, 1H), 8.04 (d, *J* = 7.7 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.82 – 7.75 (m, 2H), 7.73 (s, 1H), 7.63 (t, *J* = 7.8 Hz, 2H), 7.57 (t, *J* = 7.5 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 2.74 (t, *J* = 3.4 Hz, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 135.35, 135.16, 134.28, 133.22, 131.36 (t, *J* = 8.8 Hz), 131.07, 130.89, 130.77, 129.40, 128.82, 128.66, 127.06, 126.39, 123.72 (t, *J* = 288.3 Hz), 123.40 (t, *J* = 20.1 Hz), 21.28 (t, *J* = 4.7 Hz).¹⁹**F** NMR (471 MHz, CDCl₃) δ -95.37. **FT-IR (KBr, film):** 3063, 2926, 1596, 1447, 1338, 1165, 1031, 883, 770, 718, 681 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₄O₂F₂NaS⁺ 355.0580; Found 355.0584.

Synthetic transformations

a) Desulfonation to Access 2-(difluoromethyl)naphthalene

According to the procedures reported previously⁵. To a solution of compound **2** (0.1 mmol, 1.0 equiv.) in 2 mL THF was added dropwise LiAlH₄ in THF (0.5 mL, 1.0 M, 0.5 mmol, 5.0 equiv.) at room temperature. The reaction mixture was reacted 4-12 hours until completion indicated by TLC. The obtained solution was subsequently quenched with a saturated ammonium chloride solution, extracted with EtOAc, and the organic phase was washed with brine, dried over Na₂SO₄ and concentrated under vacuum to yield the crude expected product **3**, which was purified by column chromatography on silica gel.

2-(difluoromethyl)naphthalene (3a): white solid; 15.1 mg, 85% yield; **M.p.**: 68-70 °C; R_f =0.6 (petroleum ether); ¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (s, 1H), 7.95 – 7.88 (m, 3H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.59 – 7.53 (m, 2H), 6.81 (t, *J* = 56.4 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 134.45, 132.68, 131.75 (t, *J* = 22.3 Hz), 129.04, 128.67, 128.02, 127.54, 126.95, 126.03 (t, *J* = 7.6 Hz), 122.17 (t, *J* = 4.7 Hz), 115.18 (t, *J* = 238.5 Hz). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -109.84 (d, *J* = 56.4 Hz). **FT-IR (KBr, film)**: 3061, 2923, 1558, 1506, 1340, 1083, 1016, 871, 832, 751 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₁H₈F₂Na⁺ 201.0492; Found 201.0489.

2-(difluoromethyl)-7-methylnaphthalene (3b): white solid; 15.3 mg, 80% yield; **M.p.**: 112-114 °C; R_f =0.6 (petroleum ether); ¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (s, 2H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.67 (s, 1H), 7.53 (d, *J* = 8.6 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 1H), 6.79 (t, *J* = 56.5 Hz, 1H), 2.54 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 136.76, 132.92, 132.70, 131.75 (t, *J* = 22.1 Hz), 129.84, 128.72, 127.79, 127.60, 125.37 (t, *J* = 7.6 Hz), 121.28 (t, *J* = 4.8 Hz), 115.29 (t, *J* = 238.3 Hz), 21.86. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -109.72 (d, *J* = 56.4 Hz). **FT-IR (KBr, film):** 3061, 2921, 1507, 1337, 1022, 916, 847, 807 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₂H₁₀F₂Na⁺ 215.0648; Found 215.0648.

2-(difluoromethyl)-7-methoxynaphthalene (3c): white solid; 16.9 mg, 81% yield; **M.p.**: 68-70 °C; R_f =0.4 (petroleum ether); ¹**H NMR** (500 MHz, CDCl₃) δ 7.96 – 7.78 (m, 3H), 7.49 (d, J = 8.5 Hz, 1H), 7.29 (d, J = 9.6 Hz, 1H), 7.23 (s, 1H), 6.82 (t, J = 56.5 Hz, 1H), 3.97 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 158.42, 134.01, 132.28 (t, J = 22.2 Hz), 129.95, 129.48, 128.71, 124.73 (t, J = 7.4 Hz), 120.45, 119.98 (t, J = 4.9 Hz), 115.26 (t, J = 238.5 Hz), 106.43, 55.51. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -109.93 (d, J = 56.6 Hz). **FT-IR (KBr, film):** 3022, 2962, 1515, 1265, 1017, 848, 813, 724 cm⁻¹ **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₂H₁₀OF₂Na⁺231.0597; Found 231.0591.

2-chloro-6-(difluoromethyl)naphthalene (3d): white solid; 14.8 mg, 70% yield; **M.p.**: 80-82 °C; R_f =0.6 (petroleum ether); ¹**H NMR** (500 MHz, CDCl₃) δ 7.96 (s, 1H), 7.86 (dd, *J* = 10.1, 6.6 Hz, 3H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.50 (d, *J* = 8.7 Hz, 1H), 6.79 (t, *J* = 56.3 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 135.00, 133.45, 132.08 (t, *J* = 22.4 Hz), 130.92, 130.21, 128.20, 127.97, 125.87 (t, *J* = 7.5 Hz), 123.36 (t, *J* = 4.9 Hz), 114.86 (t, *J* = 238.8 Hz). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -110.28 (d, *J* = 56.2 Hz). **FT-IR (KBr, film):** 3059, 2923, 1558, 1507, 1456, 1340, 1016, 870, 787, 751 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₁H₇F₂NaCl⁺ 235.0102; Found 235.0098.

2-(4-chlorophenyl)-7-(difluoromethyl)naphthalene (3e): white solid; 26.2 mg, 91% yield; **M.p.**: 97-98 °C; R_f =0.5 (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 13.9 Hz, 2H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.78 (d, *J* = 8.6 Hz, 1H), 7.63 (t, *J* = 9.6 Hz, 3H), 7.47 (d, *J* = 8.7 Hz, 2H), 6.82 (t, *J* = 56.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 139.14, 138.43, 133.97, 133.63, 132.91, 132.36 (t, *J* = 22.3 Hz), 129.26, 128.81, 128.77, 128.72, 126.92, 126.39, 126.23 (t, *J* = 7.5 Hz), 122.46 (t, *J* = 4.9 Hz), 115.06 (t, *J* = 238.7 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -110.06 (d, *J* = 56.4 Hz). **FT-IR (KBr, film):** 3052, 2922, 1495, 1059, 911, 815, 735 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₇H₁₁F₂NaCl⁺ 311.0415; Found 311.0420.

1-cyclopropyl-6-(difluoromethyl)naphthalene (3f): colorless oil; 15.5 mg, 71% yield; R_f=0.5 (petroleum ether); ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, J = 8.7 Hz, 1H), 7.98 (s, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 7.2 Hz, 1H), 6.82 (t, J = 56.4 Hz, 1H), 2.36 (dt, J = 9.9, 5.9 Hz, 1H), 1.10 (ddt, J = 8.5, 6.3, 3.0 Hz, 2H), 0.79 (dd, J = 5.8, 3.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.51, 134.61, 132.84, 131.45 (t, J = 22.5 Hz), 127.20, 126.62, 126.51 (t, J = 7.5 Hz), 125.67, 125.47, 121.97 (t, J = 4.8 Hz), 115.25 (t, J = 238.3 Hz), 13.38, 6.63. ¹⁹F NMR (471 MHz, CDCl₃) δ -109.83 (d, J = 56.5 Hz). FT-IR (KBr, film): 3080, 2961, 2919, 1506, 1260, 1020, 800 cm⁻¹ HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₂F₂Na⁺ 241.0805; Found 241.0803.

3-(difluoromethyl)-1-(3-methoxypropyl)naphthalene (3g): yellow oil; 19.3 mg, 77% yield; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.85 (s, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.47 (s, 1H), 6.78 (t, J = 56.4 Hz, 1H), 3.48 – 3.43 (m, 2H), 3.39 (t, J = 1.8 Hz, 3H), 3.21 (t, J = 7.9 Hz, 2H), 2.08 – 2.01 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 139.72, 133.17, 133.06, 131.30 (t, J = 22.0 Hz), 129.53, 127.44, 126.52, 124.67 (t, J = 7.6 Hz), 124.10, 122.11 (t, J = 4.7 Hz), 115.28 (t, J = 238.3 Hz), 72.00, 58.81, 30.64, 29.60. ¹⁹F NMR (471 MHz, CDCl₃) δ -109.90 (d, J = 56.4 Hz). FT-IR (KBr, film): 3056, 2920, 2850, 1507, 1457, 1261, 1180, 1020, 888, 784, 750 cm⁻¹ HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₅H₁₆OF₂Na⁺ 273.1067; Found 273.1066.

Failed methods

1) Into a 50 mL flask containing compound 2a (31.8 mg, 0.1 mmol, 1 equiv.) in DMF(1.5 mL) at room temperature was added HOAc/NaOAc (1:1) buffer solution (8 mol/L, 4 mL). Magnesium turnings (36.0 mg, 3 mmol, 15 equiv.) were added in portions. The reaction mixture was stirred at room temperature for 12 hours. The reaction process was monitored by TLC, and the desulfonylation product 3a was not found.

2) To a solution of compound 2a (31.8 mg, 0.1 mmol, 1 equiv.) in DMF (1.5 mL) was added NaBH₄(7.6 mg, 0.2 mmol, 2 equiv.) slowly at room temperature. The reaction mixture was stirred 12 hours and monitored by TLC, but the desulfonylation product 3a was not found.

3) To a solution of compound **2a** (31.8 mg, 0.1 mmol, 1 equiv.) in DMF (1.5 mL) was added dropwise 'BuOK (22.5 mg, 0.2 mmol, 2 equiv.) at room temperature. The reaction mixture was stirred 12 hours and monitored by TLC, but the desulfonylation product **3a** was not found.

b) Application in synthesis of drug derivatives

General procedure for the substrates 4a-4c

According to the procedures reported previously², to a stirred solution of 1-indanone (3 mmol) in MeOH (3 mL) and THF (1.5 mL) was added NaBH₄ (4.5 mmol, 170.2 mg, 1.5 equiv.) at 0 °C. After stirring at room temperature for 2 h, the reaction was quenched with water (3 mL). The resulting mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude product of alcohol was used directly for the next step without further purification. To a stirred solution of crude product of alcohol in toluene (22 mL) was added TsOH·H₂O (*p*TSA, 0.3 mmol, 57.1 mg, 10 mol%). The reaction mixture was heated at reflux for 1 h. After cooling down to ambient temperature, K₂CO₃ (10% aq., 15 ml) was added. The organic phase was further washed with brine, dried over MgSO₄ and concentrated under reduced pressure. The organic phase was further washed with brine, dried over MgSO₄ and concentrated under reduced pressure.

ethyl 2-(1*H*-inden-6-yl)propanoate (4a): colorless oil; 434.4 mg, 67% yield; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.22 (dd, J = 7.8, 1.7 Hz, 1H), 6.90 – 6.83 (m, 1H), 6.55 (dt, J = 5.6, 2.0 Hz, 1H), 4.23 – 4.03 (m, 2H), 3.76 (q, J = 7.1 Hz, 1H), 3.40 (d, J = 2.1 Hz, 2H), 1.53 (d, J = 7.2 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.01, 144.26, 143.96, 137.24, 134.36, 131.81, 125.76, 122.93, 120.96, 60.78, 45.64, 39.10, 19.03, 14.25. FT-IR (KBr, film): 3054, 2982, 2928, 1728, 1501, 1375, 1265, 1179,

1093, 946, 875, 799, 739, 704 cm⁻¹ **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₁₆O₂Na⁺ 239.1048; Found 239.1051.

1*H*-inden-7-yl dimethylcarbamate (4b): colorless oil; 377.8 mg, 62% yield; R_{f} =0.7(petroleum ether/EtOAc = 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.20 (m, 2H), 6.95 (d, J = 7.5 Hz, 1H), 6.84 (s, 1H), 6.52 (s, 1H), 3.34 (s, 2H), 3.09 (s, 3H), 2.99 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.35, 147.38, 147.10, 134.96, 134.12, 131.83, 127.71, 118.33, 118.24, 36.69, 36.52, 36.46. FT-IR (KBr, film): 3066, 2931, 1722, 1617, 1591, 1554, 1466, 1314, 1234, 1162, 1032, 943, 848, 782, 705 cm⁻¹ HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₂H₁₄NO₂⁺ 204.1025; Found 204.1030.

1-benzyl-4-((5,6-dimethoxy-1*H***-inden-2-yl)methyl)piperidine (4c)**: white solid; 991.6 mg, 91% yield; **M.p.**: 110-112 °C; R_f =0.5 (petroleum ether/EtOAc = 1:5); ¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (d, *J* = 4.4 Hz, 4H), 7.26 (s, 1H), 7.00 (s, 1H), 6.86 (s, 1H), 6.41 (s, 1H), 3.89 (d, *J* = 3.0 Hz, 6H), 3.50 (s, 2H), 3.24 (s, 2H), 2.88 (d, *J* = 11.7 Hz, 2H), 2.39 (d, *J* = 7.3 Hz, 2H), 1.95 (t, *J* = 11.7 Hz, 2H), 1.69 (d, *J* = 13.3 Hz, 2H), 1.54 (s, 1H), 1.31 (q, *J* = 10.2 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 148.21, 147.59, 146.37, 138.63, 138.40, 135.40, 129.27, 128.20, 127.21, 126.96, 108.17, 103.92, 63.55, 56.41, 56.18, 53.93, 41.34, 38.44, 36.17, 32.58. **FT-IR (KBr, film):** 3037, 2941, 2918, 2789, 1608, 1575, 1490, 1464, 1299, 1220, 1101, 995, 865, 738, 695 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₂₄H₃₀NO₂⁺ 364.2277; Found 364.2278.

General procedure for the substrates 5a-5c

An oven dried 4 mL vial equipped with a magnetic stir bar was charged with **DFDI** (116.8 mg, 0.2 mmol, 2 equiv.) and NaHCO₃ (33.6 mg, 0.4 mmol, 4 equiv.) under Ar atmosphere. Then indene **4** (0.1 mmol, 1 equiv.) and MeCN (2 mL) were added, the mixture was stirred at 25 °C for 12 hours. The solution mixture was extracted with EtOAc, and the organic phase was washed with brine, dried over Na₂SO₄. Then the solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel to give the product **5**.

ethyl 2-(6-(difluoro(phenylsulfonyl)methyl)naphthalen-2-yl)propanoate (5a): white solid; 36.4 mg, 87% yield; M.p.: 86-88 °C; R_f =0.3 (petroleum ether/EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.16 (s, 1H), 8.02 (d, *J* = 7.6 Hz, 2H), 7.91 (t, *J* = 8.2 Hz, 2H), 7.82 (s, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.68 (d, *J* = 8.7 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 1H), 4.22 – 4.08 (m, 2H), 3.92 (q, *J* = 6.9 Hz, 1H), 1.61 (dd, *J* = 7.1, 2.6 Hz, 3H), 1.21 (td, *J* = 7.2, 4.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.21, 141.09, 135.40, 135.11, 132.92, 131.42, 131.03, 129.48, 129.40, 128.91 (t, *J* = 6.6 Hz), 128.55, 127.23, 126.19, 123.80 (t, *J* = 22.2 Hz), 123.68 (t, *J* = 5.5 Hz), 122.16 (t, *J* = 286.4 Hz), 61.09, 45.87, 18.60, 14.23. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.43. FT-IR (KBr, film): 3060, 2962, 2931, 1716, 1581, 1450, 1345, 1254, 1174, 1108, 1096, 1062, 824, 717, 684 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₂H₂₀O₄F₂NaS⁺ 441.0948; Found 441.0953.

6-(difluoro(phenylsulfonyl)methyl)naphthalen-1-yl dimethylcarbamate (5b): yellow oil; 34.4 mg, 85% yield; R_f =0.7 (petroleum ether/EtOAc = 1:1); ¹H NMR (500 MHz, CDCl₃) δ 8.18 (s, 1H), 8.08 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 7.8 Hz, 2H), 7.79 (d, J = 8.3 Hz, 1H), 7.75 (q, J = 8.1 Hz, 2H), 7.59 (dt, J = 20.9, 7.8 Hz, 3H), 7.44 (d, J = 7.6 Hz, 1H), 3.27 (s, 3H), 3.08 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.60, 147.30, 135.45, 133.35, 132.70, 130.99, 129.40, 129.13 (t, J = 6.7 Hz), 129.01, 127.05, 126.42, 124.45 (t, J = 22.1 Hz), 123.72 (t, J = 5.4 Hz), 122.38, 121.97 (t, J = 286.5 Hz), 120.82, 37.00, 36.70. ¹⁹F NMR (471 MHz, CDCl₃) δ -101.73. FT-IR (KBr, film): 3068, 2921, 1725, 1646, 1606, 1582, 1448, 1366, 1339, 1276, 1166, 1065, 977, 814, 752, 717, 686 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₀H₁₇NO₄F₂NaS⁺ 428.0744; Found 428.0746.

1-benzyl-4-((3-(difluoro(phenylsulfonyl)methyl)-6,7-dimethoxynaphthalen-2-yl)methyl)piperidine (5c): white solid; 26.6 mg, 47% yield; **M.p.**: 93-94 °C; R_f =0.4 (petroleum ether/EtOAc = 1:5); ¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (d, *J* = 7.9 Hz, 2H), 7.96 (s, 1H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.62 (t, *J* = 7.7 Hz, 2H), 7.54 (s, 1H), 7.30 (d, *J* = 4.3 Hz, 4H), 7.25 (s, 1H), 7.13 (s, 1H), 7.07 (s, 1H), 4.00 (d, *J* = 15.7 Hz, 6H), 3.48 (s, 2H), 2.88 (d, *J* = 7.3 Hz, 4H), 1.88 (t, *J* = 11.8 Hz, 2H), 1.67 (d, *J* = 12.9 Hz, 2H), 1.58 (s, 1H), 1.49 – 1.39 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 151.72, 149.97, 135.27, 135.21, 133.27, 131.15, 130.95, 129.69, 129.59 (t, *J* = 8.9 Hz), 129.40, 129.36, 128.24, 127.06, 126.62, 123.90 (t, *J* = 288.4 Hz), 120.71 (t, *J* = 19.9 Hz), 106.74, 105.39, 63.48, 56.10, 56.06, 53.96, 41.10, 38.42, 32.37. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -93.75. **FT-IR** (**KBr, film**): 3062, 2934, 2800, 1628, 1583, 1508, 1485, 1448, 1340, 1234, 1163, 1150, 1038, 900, 722, 686 cm⁻¹ **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₃₂H₃₄NO₄F₂S⁺ 566.2177; Found 566.2175.

General procedure for the substrate 6

To a solution of compound **5c** (56.5 mg, 0.1 mmol, 1.0 equiv.) in 2 mL THF was added dropwise LiAlH₄ in THF (0.5 mL, 1.0 M, 0.5 mmol, 5.0 equiv.) at room temperature. The reaction mixture was reacted 24 hours until completion indicated by TLC. The obtained solution was subsequently quenched with a saturated ammonium chloride solution, extracted with EtOAc, and the organic phase was washed with brine, dried over Na₂SO₄ and concentrated under vacuum to yield the crude expected product **6**, which was purified by column chromatography on silica gel.

1-benzyl-4-((3-(difluoromethyl)-6,7-dimethoxynaphthalen-2-yl)methyl)piperidine (6): white solid; 38.3 mg, 90% yield; **M.p.**: 129-131 °C; $R_f = 0.5$ (petroleum ether/EtOAc = 1:5); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (s, 1H), 7.48 (s, 1H), 7.31 (d, J = 4.3 Hz, 4H), 7.25 (s, 1H), 7.14 (s, 1H), 7.07 (s, 1H), 6.89 (t, J = 55.4 Hz, 1H), 4.00 (d, J = 5.8 Hz, 6H), 3.48 (s, 2H), 2.88 (d, J = 11.0 Hz, 2H), 2.77 (d, J = 6.8 Hz, 2H),

1.91 (t, J = 11.7 Hz, 2H), 1.67 (d, J = 13.5 Hz, 2H), 1.61 (s, 1H), 1.40 (q, J = 12.2 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 150.84, 149.76, 138.60, 133.73 (t, J = 3.7 Hz), 130.24, 129.32, 128.97 (t, J = 20.4 Hz), 128.24, 128.21, 127.01, 124.92 (t, J = 8.1 Hz), 114.69 (t, J = 237.6 Hz), 106.61, 105.63, 63.53, 56.03, 56.01, 53.90, 39.27, 37.74, 32.50. ¹⁹F NMR (471 MHz, CDCl₃) δ -109.05 (d, J = 55.4 Hz). FT-IR (KBr, film): 3060, 2920, 2849, 2759, 1633, 1611, 1489, 1437, 1256, 1218, 1157, 1013, 902, 800, 739, 699 cm⁻¹ HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₂₆H₃₀NO₂F₂⁺ 426.2245; Found 426.2244.

Scale-up Synthesis

An oven dried 50 mL Schlenk tube equipped with a magnetic stir bar was charged with NaHCO₃ (336.0 mg, 4.0 mmol, 4 equiv.), indene **1a** (116.2 mg, 1 mmol, 1 equiv.) and MeCN (10 mL) under Ar. The solution of **DFDI** (583.9 mg, 1 mmol, 1 equiv.) in 5 mL of MeCN was added dropwise into the Schlenk tube. After the mixture was stirred at 25 °C for 12 hours, a second solution of **DFDI** (583.9 mg, 1 mmol, 1 equiv.) in 5 mL of MeCN was also slowly introduced. The solution mixture was extracted with EtOAc, and the organic phase was washed with brine, dried over Na₂SO₄. Then the solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel to give the product **2a** (201.0 mg, 63%). Additionally, we also conducted the model reaction on a 1.0 mmol scale under standard conditions, but the desired product **2a** was obtained in only 37% isolated yield after 48 hours. We observed a significant release of bubbles initially, indicating rapid decomposition of the iodonium diazo reagent.

Control Experiments and Proposed Mechanism

The 1*H*-indene-1,1,3-d₃ (d₃-1a) was prepared according to literature⁶. To a solution of 1,5,7-Triazabicyclo [4.4.0] dec-5-ene (TBD) (CAS: 5807-14-7, 41.7 mg, 0.3mmol, 10 mol%) in 10 mL of CDCl₃ was added indene (348.5 mg, 3.0 mmol, 1 equiv.). The reaction mixture was stirred at room temperature for 12 h and quenched with 1 N HCl (1 mL). The organic layer was washed with water (2 × 2 mL) and brine (1 mL), dried over anhydrous Na₂SO₄, and filtered. Filtrate was concentrated to afford d₃-1a.

An oven dried 4 mL vial equipped with a magnetic stir bar was charged with **DFDI** (116.8 mg, 0.2 mmol, 2 equiv.) and NaHCO₃ (33.6 mg, 0.4 mmol, 4 equiv.) under Ar atmosphere. Then 1*H*-indene-1,1,3-d₃ (d₃-1a) (0.1 mmol, 1 equiv.) and MeCN (2 mL) were added, the mixture was stirred at 25 °C for 12 hours. The solution mixture was extracted with EtOAc, and the organic phase was washed with brine, dried over Na₂SO₄. Then the solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel to give the product d₂-2a.

a) Deuterated labeling experiments

An oven dried 4 mL vial equipped with a magnetic stir bar was charged with **DFDI** (116.8 mg, 0.2 mmol, 2 equiv.) and NaHCO₃ (33.6 mg, 0.4 mmol, 4 equiv.) under Ar atmosphere. Then 1*H*-Indene-2-*d* (d-1a) (0.1 mmol, 1 equiv.) and MeCN (2 mL) were added, the mixture was stirred at 25 °C for 12 hours. The solution mixture was extracted with EtOAc, and the organic phase was washed with brine, dried over Na₂SO₄. Then the solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel to give the product d-2a.

1*H***-indene-1,1,3-d₃ (d₃-1a)**: ¹**H NMR** (500 MHz, CDCl₃) δ 7.49 (d, J = 7.3 Hz, 1H), 7.42 (d, J = 7.4 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 6.57 (s, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 144.97, 143.77, 134.15, 126.37, 124.65, 123.86, 121.04.

91% D

$$CF_2SO_2Ph$$

98% D
 d_2-2a

2-(difluoro(phenylsulfonyl)methyl)naphthalene-1,4- d_2 (d₂-2a): white solid; 20.7 mg, 65% yield; **M.p.**: 183-184 °C; R_f=0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 7.7 Hz, 2H), 7.99 – 7.88 (m, 2H), 7.77 (t, J = 7.6 Hz, 1H),

7.70 (s, 1H), 7.61 (dt, J = 13.0, 7.3 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 135.42, 134.95, 132.95, 132.22, 131.08, 129.42, 129.09, 128.52, 127.94, 127.22, 123.82 (t, J = 22.0 Hz), 123.27 (t, J = 5.5 Hz), 122.20 (t, J = 286.6 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -101.41. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₇H₁₀D₂O₂F₂NaS⁺ 343.0549 Found 343.0552.

2-(difluoro(phenylsulfonyl)methyl)naphthalene-3-*d* (d-2a): white solid; 16.0 mg, 50% yield; **M.p.**: 183-184 °C; R_f =0.5 (petroleum ether/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.20 (s, 1H), 8.03 (d, *J* = 7.8 Hz, 2H), 7.99 – 7.88 (m, 3H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.61 (dt, *J* = 20.3, 7.5 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 135.43, 135.01, 132.92, 132.30, 131.06, 129.42, 129.22 (t, *J* = 6.7 Hz), 129.14, 128.57, 128.52, 127.98, 127.22, 123.82 (t, *J* = 22.2 Hz), 122.18 (t, *J* = 286.4 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -101.40. HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₂DO₂F₂S⁺ 320.0667; Found 320.0670.

b) Radical probe experiments

An oven dried 4 mL vial equipped with a magnetic stir bar was charged with **DFDI** (116.8 mg, 0.2 mmol, 2 equiv.), NaHCO₃ (33.6 mg, 0.4 mmol, 4 equiv.) and TEMPO (39.1 mg, 0.25 mmol, 2.5 equiv.) under Ar atmosphere. Then indene **1a** (11.6 mg, 0.1 mmol, 1 equiv.) and MeCN (2 mL) were added, the mixture was stirred at 25 °C for 12 hours. After irradiation, the resulting solution was analysis by GC-MS. The analysis showed that 55% desired product was detected. The expected TEMPO-adduct was not observed in the **Supplementary Figure S1**.

Supplementary Figure S1. GC-MS Spectra for the crude reaction with TEMPO.

An oven dried 4 mL vial equipped with a magnetic stir bar was charged with **DFDI** (116.8 mg, 0.2 mmol, 2 equiv.), NaHCO₃ (33.6 mg, 0.4 mmol, 4 equiv.) and 2,6-DTBP (51.6 mg, 0.25 mmol, 2.5 equiv.) under Ar atmosphere. Then indene **1a** (11.6 mg, 0.1

mmol, 1 equiv.) and MeCN (2 mL) were added, the mixture was stirred at 25 °C for 12 hours. After irradiation, the resulting solution was analysis by GC-MS. The analysis showed that 84% desired product was detected. The expected 2,6-DTBP-adduct was observed in the **Supplementary Figure S2**.

Supplementary Figure S2. GC-MS Spectra for the crude reaction with 2,6-DTBP.

c) Rhodium catalysis experiment

An oven-dried 25 mL Schlenk tube equipped with a magnetic stir bar was charged with $Rh_2(OAc)_4$ (0.4 mg, 1 mol%). Then the vessel was evacuated and re-filled with Ar for four times. After the indene **1a** (11.6 mg, 0.1 mmol, 1 equiv.) and dry DCM (1 mL) were added, the solution of **DFDI** (116.8 mg, 0.2 mmol, 2 equiv.) in 1 mL of DCM was added dropwise into the Schlenk tube at -50 °C and stirred for 2 hours. Then the mixture was warmed to 25 °C and stirred for 12 hours. Then the solvent was removed under reduced pressure and the residue was purified by chromatography on silica gel to give the product **2a**.

References

- [1] J.-L. Zeng, Z. Chen, F.-G. Zhang and J.-A. Ma, Org. Lett., 2018, 20, 4562–4565.
- [2] F.-P. Wu, C. C. Chintawar, R. Lalisse, P. Mukherjee, S. Dutta, J. Tyler, C. G. Daniliuc, O. Gutierrez and F. Glorius, *Nat. Catal.*, 2024, 7, 242–251.
- [3] M. Umeda, H. Noguchi and T. Nishimura, Org. Lett., 2020, 22, 9597–9602.
- [4] Z. Wang, A. G. Herraiz, A. M. del Hoyo and M. G. Suero, *Nature*, 2018, 554, 86–91.
- [5] X. Peng, F.-G. Zhang and J.-A. Ma, Adv. Synth. Catal., 2020, 362, 4432–4437.
- [6] C. Sabot, K. A. Kumar, C. Antheaume and C. Mioskowski, J. Org. Chem., 2007, 72, 5001–5004.

NMR spectra of the related compounds

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **DFDI**

¹³C NMR spectrum (126 MHz, Chloroform-d) of DFDI

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **DFDI-1**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of DFDI-1

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **DFDI-1**

¹H NMR spectrum (500 MHz, Methanol- d_4) of **DFDI-2**

¹³C NMR spectrum (126 MHz, Methanol- d_4) of **DFDI-2**

¹H NMR spectrum (500 MHz, Methanol- d_4) of **DFDI-3**

¹³C NMR spectrum (126 MHz, Methanol- d_4) of **DFDI-3**

¹⁹F NMR spectrum (471 MHz, Methanol- d_4) of **DFDI-3**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **2a**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2a**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2a**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **2b**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2b**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2**c

¹³C NMR spectrum (126 MHz, Chloroform-d) of **2c**

¹⁹F NMR spectrum (471 MHz, Chloroform-d) of **2c**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **2d**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2d**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2d**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2e**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2e**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2e**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2f**

¹³C NMR spectrum (126 MHz, Chloroform-d) of **2f**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2f**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of 2g

 ^{13}C NMR spectrum (126 MHz, Chloroform-d) of **2g**

 $^{19}\mathrm{F}$ NMR spectrum (471 MHz, Chloroform-d) of $\mathbf{2g}$

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **2h**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2h**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2h**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **2i**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2i**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2i**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2**j

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2j**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2j**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2**k

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2k**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2k**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **2**I

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2**l

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **21**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2m**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2m**

 $^{19}\mathrm{F}$ NMR spectrum (471 MHz, Chloroform-d) of $2\mathrm{m}$

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **2n**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2n**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2n**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **20**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **20**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **20**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **2p**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2p**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2p**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2**q

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2q**

¹⁹F NMR spectrum (471 MHz, Chloroform-d) of **2**q

¹H NMR spectrum (500 MHz, Chloroform-d) of **2r**

¹⁹F NMR spectrum (471 MHz, Chloroform-d) of **2r**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2s**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2s**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2s**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2t**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2t**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2t**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2u**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2u**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **2u**

¹H NMR spectrum (500 MHz, Chloroform-d) of **2v**

 $^{13}\mathrm{C}$ NMR spectrum (126 MHz, Chloroform-d) of 2v

¹⁹F NMR spectrum (471 MHz, Chloroform-d) of 2v

¹H NMR spectrum (500 MHz, Chloroform-d) of **2w**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **2w**

 $^{19}\mathrm{F}$ NMR spectrum (471 MHz, Chloroform-d) of $\mathbf{2w}$

¹H NMR spectrum (500 MHz, Chloroform-d) of 2x

¹⁹F NMR spectrum (471 MHz, Chloroform-d) of 2x

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **3a**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **3a**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **3a**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **3b**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **3b**

¹H NMR spectrum (500 MHz, Chloroform-d) of **3**c

¹³C NMR spectrum (126 MHz, Chloroform-d) of **3c**

¹⁹F NMR spectrum (471 MHz, Chloroform-d) of **3**c

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **3d**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **3d**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **3d**

¹H NMR spectrum (500 MHz, Chloroform-d) of **3e**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **3e**

¹H NMR spectrum (500 MHz, Chloroform-d) of **3f**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **3f**

¹⁹F NMR spectrum (471 MHz, Chloroform-d) of **3f**

¹H NMR spectrum (500 MHz, Chloroform-d) of **3g**

 $^{13}\mathrm{C}$ NMR spectrum (126 MHz, Chloroform-d) of **3g**

¹H NMR spectrum (400 MHz, Chloroform-*d*) of **4a**

¹³C NMR spectrum (126 MHz, Chloroform-d) of **4a**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **4b**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **4b**

¹H NMR spectrum (500 MHz, Chloroform-d) of **4**c

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **5a**

¹³C NMR spectrum (126 MHz, Chloroform-d) of **5a**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **5a**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **5b**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **5b**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **5b**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **5c**

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of **5c**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of **6**

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of **6**

 $^{19}\mathrm{F}$ NMR spectrum (471 MHz, Chloroform-d) of **6**

¹H NMR spectrum (500 MHz, Chloroform-*d*) of d₃-1a

¹³C NMR spectrum (126 MHz, Chloroform-d) of d₃-1a

¹H NMR spectrum (500 MHz, Chloroform-*d*) of d₂-2a

 $^{19}\mathrm{F}$ NMR spectrum (471 MHz, Chloroform-d) of d₂-2a

¹H NMR spectrum (500 MHz, Chloroform-*d*) of d-2a

¹³C NMR spectrum (126 MHz, Chloroform-*d*) of d-2a

¹⁹F NMR spectrum (471 MHz, Chloroform-*d*) of d-2a

X-ray crystallographic analysis

The X-ray crystallographic structure for **DFDI**. Crystal data has been deposited to CCDC, number 2421062.

Vacuum-dried pure sample **DFDI** (around 50-80 mg) was transferred into a vial and dissolved in 1 mL of DCM followed by the layering of 5 mL Diethyl ether. The vial was kept at room temperature to allow for slow evaporation. Orange yellow, blocky crystals were formed after 1-2 days. The crystals were subjected to the single crystal X-ray crystallographic analysis.

Empirical formula	$C_{15}H_{10}F_5IN_2O_5S_2$
Formula weight	584.27
Temperature/K	296.15
Crystal system	monoclinic
Space group	P21/c
a/Å	13.9965(4)
b/Å	9.6084(3)
c/Å	15.2172(5)
$\alpha / ^{\circ}$	90
β/°	90.1610(10)
γ/°	90
---------------------------------------	--
Volume/Å3	2046.46(11)
Z	4
pcalcg/cm3	1.896
µ/mm-1	1.844
F(000)	1136.0
Crystal size/mm3	0.2 imes 0.15 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.014 to 50.068
Index ranges	$-16 \le h \le 14, -11 \le k \le 10, -18 \le l \le 18$
Reflections collected	22518
Independent reflections	3592 [Rint = 0.0480, Rsigma = 0.0383]
Data/restraints/parameters	3592/1/271
Goodness-of-fit on F2	1.050
Final R indexes [I>= 2σ (I)]	R1 = 0.0446, wR2 = 0.0886
Final R indexes [all data]	R1 = 0.0696, wR2 = 0.1018
Largest diff. peak/hole / e Å-3	1.02/-0.71

The X-ray crystallographic structure for **6**. Crystal data has been deposited to CCDC, number 2426298.

Vacuum-dried pure sample **6** (around 30-50 mg) was transferred into a vial and dissolved in 1 mL of DCM followed by the layering of 2 mL n-Hexane. The vial was kept at room temperature

to allow for slow evaporation. Colorless, blocky crystals were formed after 3-4 days. The crystals were subjected to the single crystal X-ray crystallographic analysis.

F(000)	1808.0
Crystal size/mm ³	0.12 imes 0.1 imes 0.08
Radiation	Cu K α (λ = 1.54184)
2Θ range for data collection/°	5.482 to 145.6
Index ranges	$-9 \le h \le 8, -79 \le k \le 77, -9 \le l \le 10$
Reflections collected	16726
Independent reflections	4231 [$R_{int} = 0.0353$, $R_{sigma} = 0.0218$]
Data/restraints/parameters	4231/0/282
Goodness-of-fit on F ²	1.154
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0742, wR_2 = 0.1928$
Final R indexes [all data]	$R_1 = 0.0764, wR_2 = 0.1939$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.50