Electronic Supplementary Information

Lewis Acid-Catalyzed Intramolecular Cyclization of 7-Alkynylcycloheptatrienes with Carbonyls: Access to 3,4-Disubstituted 2,5-Dihydropyrroles

Xiang Huang and Jin-Ming Yang*

School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China. E-mail: jmyang@scuec.edu.cn.

CONTENTS

1. General information	S1
2. Screening of reaction conditions	S2
3. Experimental procedures and characterization data for substrates	S6
3.1. General procedure for the synthesis of 1a-1ab	S6
3.2. Characterization of 1a-1ab	S12
4. Experimental procedure and characterization data for products 2a-2y, 5 and	d 6 S55
4.1 General procedure B for products 2a-2y , 5 and 6	S55
4.2. Characterization date of products 2a-2y, 5 and 6.	
5. Experimental procedure and characterization data for products 3a-3y, 8 and	d 9 S94
5.1 General procedure C for products 3a-3y , 8 and 9	
5.2. Characterization date of products 3a-3y , 8 and 9	
6. Gram scale experiment of 2a and 3a	S135
6.1 Gram scale experiment of 2a	S135
6.2 Gram scale experiment of 3a	S135
7. Product transformations	S136
8. Control experiments and isotopic labeling experiments	S150
8.1 Control experiments	S150
8.2 Isotopic labeling experiments	S151
9. X-ray crystal data of compound 2x	S156
10. X-ray crystal data of compound 3a	S157
11. References	S159

1. General information

Unless otherwise stated, all reactions were performed in sealed tube (capacity 15 mL). Commercially available reagents were used without further purification. NMR spectra were recorded on Bruker Avance NEO 500 or Bruker Avance III 600 instruments and calibrated using residual solvent peaks as internal reference. Chemical shifts (δ) were expressed in ppm with reference to the solvent signals. Coupling constants *J* are given in Hz. High-resolution mass spectra (HRMS) were obtained using electrospray ionization (ESI) [quantitative time-of-flight (Q-TOF)] ionization sources on an Agilent 6200 Q-TOF MS. Melting points were determined on a SGW X-4A melting point apparatus. X-ray diffraction was obtained by Bruker D8 QUEST. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel GF254. Silica gel (Huanghai 300-400 mesh) was used for flash column chromatography.

2. Screening of reaction conditions.

Ts		catalyst (1	0 mol%)		
0	\neq	DCE (0	.1 M)		
		80 °C. tir	me. No	$\gamma >$	$\gamma > \gamma$
		,	, · · <u>∠</u>		
				2-	20
	Ta			Za	Ja
Entry ^a	Catalyst	Solvent	Time	Conversion (%)	yield of 2a/3a (%) ^b
1	AgOTf	DCE	14 h	94	40 / <5
2	AgNTf ₂	DCE	14 h	95	21 / trace
3	CuOTf	DCE	14 h	95	45 / <5
4	Cu(OTf) ₂	DCE	14 h	>95	57 / <5
5	Fe(OTf) ₂	DCE	14 h	0	NR
6	Sc(OTf) ₃	DCE	10 h	>95	70 / <5
7	B(C ₆ F ₅) ₃	DCE	14 h	<10	trace / trace
8	Hg(OTf) ₂	DCE	14 h	>95	13 / <5
9	Sn(OTf) ₂	DCE	14 h	>95	54 / <5
10	Zn(OTf) ₂	DCE	14 h	0	NR
11	Ni(OTf) ₂	DCE	14 h	0	NR
12	In(OTf) ₃	DCE	14 h	90	40 / <5
13	HOT	DCE	14 h	73	52 / trace
14	HNTf ₂	DCE	14 h	>95	43 / <5
15	TMSOTf	DCE	14 h	82	45 / trace
16	Yb(OTf) ₃	DCE	10 h	63	42 / trace
17	BF ₃ •Et ₂ O	DCE	10 h	>95	42 / 28
18	$Y(OTf)_3$	DCE	10 h	60	37 / trace
19	La(OTf) ₃	DCE	10 h	30	13 / trace
20	$Er(OTf)_3$	DCE	10 h	73	39 / trace
21	TsOH	DCE	14 h	46	trace / ND
22	TsOH•H ₂ O	DCE	14 h	47	trace / ND
23	Fe(OTf) ₃	DCE	10 h	>95	54 / <5
24		DCE	14 h	<10	ND / ND
25°		DCE	14 h	>95	11 / 15 11 / trace
20 27	$S_{C}(OTf)_{0}$		14 fi 10 h	52 505	trace / 60
28	Yb(OTf) ₂	TFF	10 h	>95	trace / 51
29	BF ₃ •Et ₂ O	TFE	10 h	>99	trace / 51
30	$Y(OTf)_3$	TFE	10 h	>99	14 / 50
31	La(OTf) ₃	TFE	10 h	>99	18 / 37
32	Er(OTf) ₃	TFE	10 h	>99	<10 / 47
33	Fe(OIf) ₃	TFE	10 h	>99	11 / 57
34			10 h	U	
35		IFE	iu n	U	

Table S1 Optimization of the catalyst.

^a Reaction conditions: **1a** (0.1 mmol), catalyst (10 mol%), additive (1.0 equiv), dry solvent (1.0 mL), at 80 °C, N₂.

^b Isolated yields. ^c CuCl₂ (10 mol%) / NaBAr_F (20 mol%) was used. NR = no reaction. ND = not dectected.

Table S2 Optimization of the solvent.

Ts− O=		Sc(OTf) ₃ (10 m solvent (0.1 f 80 °C, time, f	<mark>ol%)</mark> M) N ₂	or TsN	
	1a			2a	3a
Entry ^a	Catalyst	Solvent	Time	Conversion (%)	yield of 2a/3a (%) ^b
1	Sc(OTf) ₃	toluene	10 h	>95	45 / <10
2	Sc(OTf) ₃	THF	10 h	45	13 / <10
3	Sc(OTf) ₃	DMF	10 h	0	NR
4	Sc(OTf) ₃	DMSO	10 h	0	NR
5	Sc(OTf) ₃	acetone ^c	10 h	30	trace / 14
6	Sc(OTf) ₃	MeCN	10 h	66	10 / 22
7	Sc(OTf) ₃	MeOH	10 h	<10	trace / trace
8	Sc(OTf) ₃	DCM	10 h	>95	38 / <5
9	Sc(OTf) ₃	CHCl ₃ ^c	10 h	>95	43 / 22
10	Sc(OTf) ₃	PhCl	10 h	>95	41 / <5
11	Sc(OTf) ₃	CCl ₄ ^c	10 h	91	31 / 13
12	Sc(OTf) ₃	HFIP ^c	10 h	>95	trace / trace
13	Sc(OTf) ₃	TFE ^c	10 h	>95	trace / 60

^a Reaction conditions: **1a** (0.1 mmol), catalyst (10 mol%), additive (1.0 equiv), dry solvent (1.0 mL), at 80 °C, N₂. ^b Isolated yields. ^c The solvent was not dry. NR = no reaction. ND = not dectected.

Table S3 Optimization of the additive.

		Sc(OT Additi solvent,	f) ₃ (10 mol%) ve (1.0 equiv) 80 °C, time, N _j	TsN	or TsN	
	1a			2a	3a	1
Entry ^a	Catalyst	Additive	Solvent	Time	Conversion (%) ^b	yield of 2a/3a (%) ^b
1	Sc(OTf) ₃	K ₂ CO ₃	DCE	10 h	>95	39 / trace
2	Sc(OTf) ₃	K ₂ CO ₃	TFE	10 h	>95	Messy
3 ^c	Sc(OTf) ₃	K ₂ CO ₃	DCE	10 h	<10	ND / ND
4 ^c	Sc(OTf) ₃	K ₂ CO ₃	TFE	10 h	<10	ND / ND
5 ^d	Sc(OTf) ₃	K ₂ CO ₃	DCE	10 h	<10	trace / ND
6 ^d	Sc(OTf) ₃	K ₂ CO ₃	TFE	10 h	<10	ND / ND
7 ^c	Sc(OTf) ₃	NaOAc	DCE	10 h	<5	ND / ND
8 ^c	Sc(OTf) ₃	NaOAc	TFE	10 h	<5	ND / ND
9 ^c	Sc(OTf) ₃	DIPEA	DCE	10 h	<5	ND / ND
10 ^c	Sc(OTf) ₃	DIPEA	TFE	10 h	>95	<5 / <5
11 ^c	Sc(OTf) ₃	DBU	DCE	10 h	<10	ND / ND
12 ^c	Sc(OTf) ₃	DBU	TFE	10 h	<5	ND / ND
13 ^c	Sc(OTf) ₃	Et ₃ N	DCE	10 h	<10	trace / trace
14 ^c	Sc(OTf) ₃	Et ₃ N	TFE	10 h	<5	ND / ND
15 ^c	Sc(OTf) ₃	KOMe	DCE	10 h	<10	ND / ND
16 ^c	Sc(OTf) ₃	KOMe	TFE	10 h	<10	ND / ND
17 ^c	Sc(OTf) ₃	HOAc	DCE	10 h	<10	<5 / trace
18 ^c	Sc(OTf) ₃	HOAc	TFE	10 h	>95	<5 / 43
19	Sc(OTf) ₃	3 A MS	DCE	10 h	>95	56 / <5
20	Sc(OTf) ₃	3 Å MS	TFE	10 h	>99	8 / 21
21	Sc(OTf) ₃	4 A MS	DCE	10 h	>95	51 / <5

22	Sc(OTf) ₃	4 Å MS	TFE	10 h	>99	<10 / 51
23	Sc(OTf) ₃	Na ₂ SO ₄	DCE	10 h	>90	51 / <5
24	Sc(OTf) ₃	Na ₂ SO ₄	TFE	10 h	>99	<10 / 50
25	Sc(OTf) ₃	MgSO ₄	DCE	10 h	>90	46 / <5
26	Sc(OTf) ₃	MgSO ₄	TFE	10 h	>99	5 / 47
27	Sc(OTf) ₃	H ₂ O	TFE	10 h	>99	<10 / 50

^a Reaction conditions: **1a** (0.1 mmol), catalyst (10 mol%), additive (1.0 equiv), dry solvent (1.0 mL), at 80 °C, N₂.

1

^b Isolated yields. ^c At room temperature. ^d At 50 °C. ND = not dectected.

Table S4 Optimization of the temperature.

		Sc s temp	(OTf) ₃ (10 mol%) olvent (0.1 M) berature, time, N ₂	TsN	or TsN	
	1a			2a	38	a
Entry ^a	Catalyst	Solvent	Temp. (^o C)	Time	Conversion (%) ^b	yield of 2a/3a (%) ^b
1	Sc(OTf) ₃	DCE	60	10 h	>95	37 / <5
2	Sc(OTf) ₃	TFE	60	10 h	>95	<5 / 37
3	Sc(OTf) ₃	DCE	100	10 h	>95	49 / trace
4	Sc(OTf) ₃	TFE	100	10 h	>95	trace / 52
5	Sc(OTf) ₃	DCE	90	10 h	>95	51 / trace
6	Sc(OTf) ₃	TFE	90	10 h	>95	ND / 54
7	Sc(OTf) ₃	DCE	85	10 h	>95	63 / trace
8	Sc(OTf) ₃	TFE	85	10 h	>95	trace / 55

^a Reaction conditions: **1a** (0.1 mmol), catalyst (10 mol%), additive (1.0 equiv), dry solvent (1.0 mL), at temperature, N₂. ^b Isolated yields. ND = not dectected.

Ts C		Sc(OTf) ₃ (x m solvent (0.1 80 °C, time,	$\frac{100\%}{M} \rightarrow TsN$	or TSN	
_	1a			2a	3a
Entry ^a	Catalyst (x mol%)	Solvent	Time	Conversion (%)	^b yield of 2a/3a (%) ^t
1	Sc(OTf) ₃ (5)	DCE	10 h	>95	63 / 13
2	$Sc(OTf)_3$ (5)	TFE	10 h	>99	9 / 59
3	Sc(OTf) ₃ (20)	DCE	10 h	>95	49 / 18
4	$Sc(OTf)_3$ (20)	TFE	10 h	>99	7 / 50
5	HOTf (20)	DCE	14 h	>99	46 / <5

Table S5 Optimization of the equivalent of catalyst.

^a Reaction conditions: **1a** (0.1 mmol), catalyst (x mol%), additive (1.0 equiv), dry solvent (1.0 mL), at 80 °C, N₂. ^b Isolated yields.

Table S6 Optimization of the concentration.

^a Reaction conditions: **1a** (0.1 mmol), catalyst (10 mol%), additive (1.0 equiv), dry solvent (y mL), at 80 °C, N₂. ^b Isolated yields.

dihydropyrrole core.

3. Experimental procedures and characterization data for substrates.

3.1. General procedure for the synthesis of 1a-1ab

Except for **1s**, **1aa** and **1ab**, all other substrates were obtained following general procedure (a). Substrate **1s** was obtained following general procedure (b). Substrate **1aa** was obtained following general procedure (c). Substrate **1ab** was obtained following general procedure (d). Unless otherwise stated, all yields reported only refer to the final step.

Preparation for $S1^{[1]}$: After prop-2-yn-1-amine in DCM (0.3 M) and triethylamine (1.3 equiv) was added to a round-bottomed flask (100 mL) equipped with a stir bar, the reaction mixture was cooled down to 0 °C, followed by the addition of sulfonyl chlorides (1.0 equiv) in DCM (1.0 M). The reaction mixture was stirred at 0 °C

overnight. After consumption of sulfonyl chloride indicated by TLC, the reaction was quenched with water, and extracted with DCM. The organic phase was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 4/1) to give the corresponding product **S1** (76~95% yield) as yellow solids.

Preparation for $S3^{[1]}$: The above crude product S1 was dissolved in DMF (0.5 M) in a 100 mL round-bottomed flask, and then 2-bromo-1-ones (S2, 1.1 equiv) and TBAI (10 mmol%) were added to the solution. The reaction mixture was cooled down to 0 °C and then K₂CO₃ (1.5 equiv) was added and stirred at 0 °C for 6 hours. After reaction completed, reaction mixture was poured into ice-cold water and extracted into ethyl acetate. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 4/1) to give the corresponding product S3 (47~98% yield) as yellow solids.

$$\begin{split} &\mathsf{R}^1 = \mathsf{Ph}, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \mathbf{1a}, 634.1 \, \text{mg}, 76\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{p}\text{-}(\mathsf{Me})\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1b}, \, 466.7 \, \text{mg}, 54\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{p}\text{-}(\mathsf{OMe})\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1c}, \, 365.2 \, \mathsf{g}, \, 41\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{p}\text{-}(\mathsf{C})\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1c}, \, 365.2 \, \mathsf{g}, \, 41\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{p}\text{-}(\mathsf{C})\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1c}, \, 239.6 \, \mathsf{mg}, \, 63\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{p}\text{-}(\mathsf{C})\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1c}, \, 242.0 \, \mathsf{mg}, \, 49\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{p}\text{-}(\mathsf{D})\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1g}, \, 224.0 \, \mathsf{mg}, \, 41\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{p}\text{-}(\mathsf{C}\mathsf{C}_3\mathsf{)}\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1h}, \, 465.3 \, \mathsf{mg}, \, 48\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{p}\text{-}(\mathsf{C}\mathsf{N})\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1h}, \, 451.1 \, \mathsf{mg}, \, 57\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{p}\text{-}(\mathsf{C}\mathsf{N})\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1h}, \, 216.4 \, \mathsf{mg}, \, 33\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{m}\text{-}(\mathsf{OM}\mathsf{e})\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1h}, \, 272.4 \, \mathsf{mg}, \, 48\% \, \text{yield}; \\ &\mathsf{R}^1 = \mathit{m}\text{-}(\mathsf{C}\mathsf{I})\mathsf{C}_6\mathsf{H}_4, \mathsf{R}^2 = \mathsf{Ts}, \mathsf{n} = \mathsf{1}, \, \mathbf{1m}, \, 189.3 \, \mathsf{mg}, \, 42\% \, \text{yield}; \end{split} \end{split}$$

Preparation for $1^{[2]}$: A 25 mL round-bottomed flask was charged with a mixture of S3, S4 (1.2 equiv), CuTc (10 mmol%) and Na₂SO₃ (0.5 equiv). After three cycles of nitrogen replacement, THF (0.2 M) was added to the mixture, and the resulting solution was stirred at 50 °C in an oil bath for 8 hours, then cooled to room temperature, filtered through celite, and washed with ethyl acetate. The mixture was concentrated and purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 8/1) to give the corresponding product 1 (24~76% yield) as yellow solids or yellow oils.

Preparation for $S5^{[3]}$: After *N*-bromosuccinimide (2.672 g, 15 mmol) and 4-methylbenzenesulfonic acid (179.9 mg, 1 mmol) dissolved in DCM (12 mL) and added to a round-bottomed flask (100 mL) equipped with a stir bar, the reaction mixture was cooled down to 0 °C, followed by the addition of 1-(furan-2-yl)ethan-1-one (0.5 mL, 5 mmol) in DCM (3 mL). Then, the resulting solution was stirred at 80 °C in an oil bath for 10 hours. After reaction completed, the reaction mixture was quenched with water, and extracted with ethyl acetate. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 11/1) to give the corresponding product S5 (605.3 mg, 48% yield) as a yellow solid.

Preparation for S6^[1]: S1 (418.7 mg, 2.0 mmol) was dissolved in DMF (6 mL) in a 100

mL round-bottomed flask, and then **S5** (605.3 mg, 2.4 mmol) and TBAI (74.1 mg, 0.2 mmol) were added to the solution. The reaction mixture was cooled down to 0 °C and then K₂CO₃ (415.1 mg, 3.0 mmol) was added and stirred at 0 °C for 10 hours. After reaction completed, reaction mixture was poured into ice-cold water and extracted into ethyl acetate. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 6/1) to give the corresponding product **S6** (435.1 mg, 46% yield) as a yellow oil.

Preparation for $1s^{[2]}$: A 50 mL round-bottomed flask was charged with a mixture of S4 (293.0 mg, 1.63 mmol), CuTc (17.9 mg, 0.14 mmol) and Na₂SO₃ (130.4 mg, 0.68 mmol). After three cycles of nitrogen replacement, S6 (430.1 mg, 1.09 mmol) in THF (5 mL) was added to the mixture, and the resulting solution was stirred at 50 °C in an oil bath for 8 hours, then cooled to room temperature, filtered through celite, and washed with ethyl acetate. The mixture was concentrated and purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 8/1) to give the corresponding product 1s (253.6 mg, 48% yield) as a yellow solid.

Preparation for $S7^{[4]}$: A 50 mL round-bottomed flask was charged with a mixture of PhI(OAc)₂ (4.841 g, 15 mmol) and KOH (2.522 g, 45 mmol). After three cycles of nitrogen replacement, the reaction mixture was cooled down to 0 °C and then acetophenone (1.17 mL, 10 mmol) in MeOH (15 mL) was added and stirred at 0 °C for 12 hours. After reaction completed, reaction mixture was poured into ice-cold water and extracted into ethyl acetate. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 6/1) to give the corresponding product **S7** (722.7 mg, 39% yield) as a yellow oil.

Preparation for S8^[4]: Step 1: A 50 mL round-bottomed flask was charged with a mixture

of **S7** (722.7 mg, 4 mmol) and NaH (201.7 mg, 5 mmol, 60% in mineral oil). After three cycles of nitrogen replacement, THF (8 mL) was added and the reaction mixture was cooled down to 0 °C. 3-bromoprop-1-yne (0.43 mL, 5 mmol) was added dropwise after above mixture was stirred at 0 °C for 1 hour and stirred at 0 °C for another 4 hours. After reaction completed, reaction mixture was poured into ice-cold water and extracted into ethyl acetate. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude mixture was used for the next step without further purification.

Step 2: The above crude product was dissolved in THF/H₂O (3:1, 8 mL) in a 25 mL round-bottomed flask, and then *p*-TsOH•H₂O (1.522 g, 8 mmol) was added to the solution. The resulting solution was stirred at 50 °C in an oil bath for 6 hours. After reaction completed, reaction mixture was quenched with saturated NaHCO₃ solution and extracted into ethyl acetate. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 8/1) to give the corresponding product **S8** (369.7 mg, 53% yield) as a yellow oil.

Preparation for $1aa^{[2]}$: A 50 mL round-bottomed flask was charged with a mixture of **S4** (443.2 mg, 2.47 mmol), CuTc (28.4 mg, 0.21 mmol) and Na₂SO₃ (200.6 mg, 1.03 mmol). After three cycles of nitrogen replacement, **S8** (359.3 mg, 2.06 mmol) in THF (10 mL) was added to the mixture, and the resulting solution was stirred at 50 °C in an oil bath for 8 hours, then cooled to room temperature, filtered through celite, and washed with ethyl acetate. The mixture was concentrated and purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 8/1) to give the corresponding product **1aa** (180.8 mg, 33% yield) as a yellow oil.

Preparation for **S9**^[5]: A 50 mL round-bottomed flask was charged with a mixture of NaH (203.7 mg, 5.1 mmol, 60% in mineral oil) and DMF (10 mL), the reaction mixture was cooled down to -15 °C and then dimethyl malonate (0.57 mL, 5 mmol) was added

dropwise and stirred at -15 °C for 2 hours. After that, **S2** (1.083 g, 5.5 mmol) was added to above mixture and the resulting solution was stirred at 120 °C in an oil bath for 10 hours. After reaction completed, reaction mixture was poured into ice-cold water and extracted into ethyl acetate. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 8/1) to give the corresponding product **S9** (608.5 mg, 44% yield) as a yellow oil.

Preparation for **S10**^[5]: A 50 mL round-bottomed flask was charged with a mixture of **S9** (608.5 mg, 2.4 mmol), NaH (129.1 mg, 3.6 mmol, 60% in mineral oil) and THF (24 mL), the reaction mixture stirred at room temperature for 45 mins. After that, 3-bromoprop-1-yne (0.32 mL, 3.7 mmol) was added to above mixture and the resulting solution was stirred at 50 °C in an oil bath for 10 hours. After reaction completed, reaction mixture was poured into ice-cold water and extracted into ethyl acetate. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 8/1) to give the corresponding product **S10** (241.4 mg, 35% yield) as a yellow oil.

Preparation for $1ab^{[2]}$: A 50 mL round-bottomed flask was charged with a mixture of **S4** (171.8 mg, 0.94 mmol), CuTc (10.2 mg, 0.08 mmol) and Na₂SO₃ (74.6 mg, 0.39 mmol). After three cycles of nitrogen replacement, **S10** (224.8 mg, 0.78 mmol) in THF (5 mL) was added to the mixture, and the resulting solution was stirred at 50 °C in an oil bath for 8 hours, then cooled to room temperature, filtered through celite, and washed with ethyl acetate. The mixture was concentrated and purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 8/1) to give the corresponding product **1ab** (219.9 mg, 75% yield) as a yellow oil.

3.2. Characterization of 1a-1ab

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-4-methyl-N-(2-oxo-2-

phenylethyl)benzenesulfonamide (1a)

Compound **1a**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.25$. 634.1 mg, 76% yield. m.p. 50-54 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.00-7.98 (m, 2H), 7.80-7.77 (m, 2H), 7.61 (tt, *J* = 7.5, 1.5 Hz, 1H), 7.51-7.47 (m, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 6.61-6.57 (m, 2H), 6.09-6.06 (m, 2H), 4.97 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.76 (s, 2H), 4.30 (d, *J* = 2.0 Hz, 2H), 2.40 (s, 3H), 2.23-2.20 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 193.6, 143.9, 136.1, 135.0, 134.0, 131.0, 129.8, 129.0, 128.3, 127.8, 124.8, 122.7, 88.1, 72.6, 52.0, 38.0, 31.5, 21.7.

HRMS (ESI) m/z: calcd for $[C_{25}H_{23}NO_3S+H]^+$ requires: 418.1471, found: 418.1473.

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-4-methyl-N-(2-oxo-2-(p-

tolyl)ethyl)benzenesulfonamide (1b)

Compound **1b**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.32$. 446.7 mg, 54% yield. m.p. 86-89 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.90-7.87 (m, 2H), 7.79-7.77 (m, 2H), 7.31-7.27 (m, 4H), 6.61-6.57 (m, 2H), 6.09-6.06 (m, 2H), 4.96 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.73 (s, 2H), 4.29 (d, *J* = 2.5 Hz, 2H), 2.42 (s, 3H), 2.39 (s, 3H), 2.22-2.19 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 193.2, 144.9, 143.9, 136.1, 132.5, 131.0, 129.8, 129.6, 128.4, 127.9, 124.8, 122.8, 88.0, 72.7, 51.8, 37.9, 31.5, 21.9, 21.7.

HRMS (ESI) m/z: calcd for $[C_{26}H_{25}NO_3S+H]^+$ requires: 432.1628, found: 432.1630.

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-*N*-(2-(4-methoxyphenyl)-2oxoethyl)-4-methylbenzenesulfonamide (1c)

Compound 1c: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.20$. 365.2 mg, 41% yield. m.p. 64-68 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.00-7.97 (m, 2H), 7.79-7.77 (m, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.97-6.94 (m, 2H), 6.61-6.57 (m, 2H), 6.09-6.06 (m, 2H), 4.97 (dd, *J* = 8.5, 5.5 Hz, 2H), 4.70 (s, 2H), 4.28 (d, *J* = 2.0 Hz, 2H), 3.88 (s, 3H), 2.39 (s, 3H), 2.22-2.18 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 192.0, 164.1, 143.9, 136.1, 131.0, 130.7, 129.8, 128.0, 127.9, 124.8, 122.8, 114.1, 88.0, 72.6, 55.7, 51.7, 37.9, 31.5, 21.7.

HRMS (ESI) m/z: calcd for $[C_{26}H_{25}NO_4S+H]^+$ requires: 448.1577, found: 448.1578.

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-*N*-(2-(4-fluorophenyl)-2oxoethyl)-4-methylbenzenesulfonamide (1d)

Compound 1d: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.34$. 239.6 mg, 55% yield. m.p. 79-84 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.06-8.02 (m, 2H), 7.78-7.76 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.18-7.13 (m, 2H), 6.62-6.57 (m, 2H), 6.09-6.06 (m, 2H), 4.96 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.70 (s, 2H), 4.26 (d, *J* = 2.5 Hz, 2H), 2.40 (s, 3H), 2.22-2.19 (m, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 192.2, 166.2 (d, *J* = 254.5 Hz), 144.0, 135.9, 131.4 (d, *J* = 2.9 Hz), 131.15 (d, *J* = 9.3 Hz), 131.05, 129.9, 127.9, 124.9, 122.7, 116.2 (d, *J* = 21.9 Hz), 88.3, 72.5, 52.0, 38.0, 31.5, 21.7.

¹⁹**F NMR** (470 MHz, Chloroform-*d*) δ (m) (-103.44)-(-103.50).

HRMS (ESI) m/z: calcd for $[C_{25}H_{22}FNO_3S+H]^+$ requires: 436.1377, found: 436.1380.

N-(2-(4-chlorophenyl)-2-oxoethyl)-*N*-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1e)

Compound 1e: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.35$. 285.0 mg, 63% yield. m.p. 110-114 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.88-7.86 (m, 2H), 7.78-7.76 (m, 2H), 7.64-7.62 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.62-6.57 (m, 2H), 6.10-6.06 (m, 2H), 4.95 (dd, J = 9.0, 5.5 Hz, 2H), 4.68 (s, 2H), 4.25 (d, J = 2.0 Hz, 2H), 2.40 (s, 3H), 2.22-2.18 (m, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 192.9, 144.1, 135.8, 133.7, 132.3, 131.1, 129.89, 129.87, 129.2, 127.9, 124.9, 122.6, 88.3, 72.4, 52.1, 38.1, 31.5, 21.7.

HRMS (ESI) m/z: calcd for $[C_{25}H_{22}CINO_3S+H]^+$ requires: 452.1082, found: 452.1084.

N-(2-(4-bromophenyl)-2-oxoethyl)-*N*-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1f)

Compound **1f**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.41.242.6$ mg, 49% yield. m.p. 94-98 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.96-7.93 (m, 2H), 7.79-7.76 (m, 2H), 7.47-7.45 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.62-6.57 (m, 2H), 6.10-6.06 (m, 2H), 4.95 (dd, J = 9.0, 5.5 Hz, 2H), 4.69 (s, 2H), 4.26 (d, J = 2.5 Hz, 2H), 2.40 (s, 3H), 2.22-2.18 (m, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 192.6, 144.1, 140.5, 135.8, 133.3, 131.1, 129.9, 129.8, 129.3, 127.9, 124.9, 122.6, 88.3, 72.4, 52.1, 38.1, 31.5, 21.7.

HRMS (ESI) m/z: calcd for $[C_{25}H_{22}BrNO_3S+H]^+$ requires: 496.0577, found: 496.0579.

7.4467.3217.3217.3257.2606.6006.5946.5946.5886.5886.5946.5946.5946.5946.59386.5926.0956.0956.0926.0026.0.961 .956 .952 .943 .939 934 785 780 1,950 1,939 1,689 1,689 1,255 1,255 1,255 2,397 2,219 2,219 2,219 2,215 2,215 2,215 2,215 2,205 468 455 464 451 .087 .082 .082 .070 957 10 20 07 80. 90 00

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-*N*-(2-(4-iodophenyl)-2oxoethyl)-4-methylbenzenesulfonamide (1g)

Compound 1g: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.28$. 224.0 mg, 41% yield. m.p. 130-133 °C.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.87-7.84 (m, 2H), 7.78-7.75 (m, 2H), 7.72-7.69 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.62-6.57 (m, 2H), 6.10-6.06 (m, 2H), 4.95 (dd, J = 9.0, 5.5 Hz, 2H), 4.67 (s, 2H), 4.25 (d, J = 2.5 Hz, 2H), 2.40 (s, 3H), 2.21-2.18 (m, 1H).
¹³C NMR (125 MHz, Chloroform-*d*) δ 193.2, 144.1, 138.3, 135.8, 134.2, 131.1, 129.9, 129.7, 127.9, 124.9, 122.6, 102.1, 88.3, 72.4, 52.1, 38.1, 31.5, 21.7.

HRMS (ESI) m/z: calcd for [C₂₅H₂₂INO₃S+H]⁺ requires: 544.0438, found: 544.0442.

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-4-methyl-*N*-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)benzenesulfonamide (1h)

Compound **1h**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.48$. 465.3 mg, 48% yield. m.p. 96-100 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 8.0 Hz, 2H), 7.78-7.75 (m, 4H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.62-6.57 (m, 2H), 6.09-6.06 (m, 2H), 4.95 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.73 (s, 2H), 4.26 (d, *J* = 2.0 Hz, 2H), 2.40 (s, 3H), 2.22-2.18 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 193.1, 144.2, 137.7, 135.6, 135.1 (q, J = 32.5 Hz), 131.1, 129.9, 128.8, 127.9, 126.0 (q, J = 3.8 Hz), 124.9, 123.6 (q, J = 271.1 Hz), 122.6, 88.5, 72.3, 52.5, 38.2, 31.4, 21.7.

¹⁹**F NMR** (470 MHz, CDCl₃) δ (s) (-63.21).

HRMS (ESI) m/z: calcd for $[C_{26}H_{22}F_3NO_3S+H]^+$ requires: 486.1345, found: 486.1346.

N-(2-(4-cyanophenyl)-2-oxoethyl)-*N*-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1i)

Compound 1i: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, R_f = 0.24. 411.1 mg, 57% yield. m.p. 118-122 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.12-8.10 (m, 2H), 7.80-7.75 (m, 4H), 7.32 (d, J

= 8.0 Hz, 2H), 6.62-6.57 (m, 2H), 6.10-6.06 (m, 2H), 4.94 (dd, J = 9.0, 5.5 Hz, 2H),

4.68 (s, 2H), 4.23 (d, *J* = 2.0 Hz, 2H), 2.40 (s, 3H), 2.21-2.17 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 192.9, 144.3, 138.0, 135.4, 132.8, 131.1, 129.9,

128.9, 127.9, 125.0, 122.5, 117.9, 117.1, 88.6, 72.2, 52.7, 38.3, 31.4, 21.7.

HRMS (ESI) m/z: calcd for $[C_{26}H_{22}N_2O_3S+H]^+$ requires: 443.1424, found: 443.1425. WQY-5-37.1.fid

.3354 .315 6.6206.6036.5976.5976.5976.5976.5926.0946.0926.0896.0866.0866.0866.0816.08117 13 04 8 300 797 793 793 784 780 771 2.207 2.204 2.204 2.200 2.196 2.193 2.189 297 202 6 207 òg

N-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-*N*-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2yn-1-yl)-4-methylbenzenesulfonamide (1j)

Compound 1j: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.30$. 164.9 mg, 33% yield. m.p. 153-155 °C.

¹**H** NMR (500 MHz, Chloroform-*d*) δ 8.09-8.06 (m, 2H), 7.82-7.79 (m, 2H), 7.71 (dt, J = 8.5, 2.0 Hz, 2H), 7.64-7.62 (m, 2H), 7.50-7.47 (m, 2H), 7.44-7.40 (m, 1H), 7.32 (d, J = 8.0 Hz, 2H), 6.62-6.57 (m, 2H), 6.09-6.06 (m, 2H), 4.98 (dd, J = 9.0, 5.5 Hz, 2H), 4.79 (s, 2H), 4.31 (d, J = 2.0 Hz, 2H), 2.41 (s, 3H), 2.24-2.20 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 193.2, 146.6, 143.9, 139.8, 136.1, 133.7, 131.1, 129.8, 129.2, 129.0, 128.6, 127.9, 127.6, 127.4, 124.8, 122.8, 88.2, 72.6, 52.1, 38.0, 31.5, 21.7.

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-4-methyl-*N*-(2-oxo-2-(m-tolyl)ethyl)benzenesulfonamide (1k)

Compound 1k: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.26$. 216.4 mg, 50% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.79-7.77 (m, 4H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.38-7.35 (m, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.61-6.57 (m, 2H), 6.09-6.06 (m, 2H), 4.97 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.76 (s, 2H), 4.30 (d, *J* = 2.5 Hz, 2H), 2.41 (s, 3H), 2.40 (s, 3H), 2.24-2.20 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 193.7, 143.9, 138.8, 136.2, 135.1, 134.7, 131.0, 129.8, 128.8, 128.7, 127.8, 125.5, 124.8, 122.8, 88.0, 72.7, 51.9, 37.9, 31.5, 21.7, 21.5. **HRMS** (ESI) m/z: calcd for [C₂₆H₂₅NO₃S+H]⁺ requires: 432.1628, found: 432.1630.

 $\begin{array}{c} 7.73\\ 7.789\\ 7.776\\ 7.777\\ 7.777\\ 7.789\\ 7.789\\ 7.789\\ 7.789\\ 7.789\\ 7.789\\ 7.789\\ 7.789\\ 7.789\\ 7.789\\ 7.7356\\ 7.3373\\ 7.3356\\ 7.3373\\ 7.33232\\ 7.33232\\ 7.33232\\ 7.33232\\ 7.33232\\ 7.33232\\ 7.33232\\ 7.33232\\ 7.3323\\$

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-*N*-(2-(3-methoxyphenyl)-2oxoethyl)-4-methylbenzenesulfonamide (11)

Compound 11: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.18$. 272.4 mg, 48% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.79-7.77 (m, 2H), 7.57-7.55 (m, 1H), 7.52-7.51 (m, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.15 (ddd, *J* = 8.0, 2.5, 1.0 Hz, 1H), 6.61-6.57 (m, 2H), 6.09-6.06 (m, 2H), 4.97 (dd, *J* = 8.5, 5.5 Hz, 2H), 4.74 (s, 2H), 4.29 (d, *J* = 2.0 Hz, 2H), 3.86 (s, 3H), 2.40 (s, 3H), 2.23-2.19 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 193.5, 160.0, 143.9, 136.3, 136.1, 131.0, 130.0, 129.8, 127.8, 124.8, 122.7, 120.8, 120.6, 112.5, 88.1, 72.6, 55.7, 52.1, 38.0, 31.5, 21.7.
HRMS (ESI) m/z: calcd for [C₂₆H₂₅NO₄S+H]⁺ requires: 448.1577, found: 448.1578.

N-(2-(3-chlorophenyl)-2-oxoethyl)-*N*-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1m)

Compound **1m**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.33$. 189.3 mg, 42% yield. m.p. 88-94 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.94 (t, J = 2.0 Hz, 1H), 7.89 (dt, J = 8.0, 1.0 Hz, 1H), 7.79-7.76 (m, 2H), 7.57 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 6.62-6.57 (m, 2H), 6.10-6.07 (m, 2H), 4.97 (dd, J = 8.5, 5.5 Hz, 2H), 4.71 (s, 2H), 4.27 (d, J = 2.0 Hz, 2H), 2.40 (s, 3H), 2.24-2.21 (m, 1H).

¹³**C NMR** (125 MHz, Chloroform-*d*) δ 192.6, 144.1, 136.5, 135.9, 135.3, 133.9, 131.1, 130.3, 129.9, 128.4, 127.9, 126.5, 124.9, 122.6, 88.3, 72.5, 52.1, 38.1, 31.4, 21.7.

HRMS (ESI) m/z: calcd for $[C_{25}H_{22}CINO_3S+H]^+$ requires: 452.1082, found: 452.1084.

$\begin{array}{c} 7.941\\ 7.933\\ 7.933\\ 7.895\\ 7.895\\ 7.895\\ 7.895\\ 7.882\\ 7.882\\ 7.882\\ 7.882\\ 7.882\\ 7.882\\ 7.882\\ 7.882\\ 7.788\\ 7.776\\ 7.777\\ 7.766\\ 7.777\\ 7.766\\ 7.777\\ 7.766\\ 7.777\\ 7.766\\ 7.776\\ 7.766\\ 7.776\\ 7.776\\ 7.766\\ 7.766\\ 7.$

N-(2-(3-bromophenyl)-2-oxoethyl)-*N*-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1n)

Compound **1n**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.26$. 231.0 mg, 41% yield. m.p. 110-113 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.09 (t, J = 2.0 Hz, 1H), 7.93 (dt, J = 7.5, 1.5 Hz, 1H), 7.79-7.77 (m, 2H), 7.73 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 6.62-6.57 (m, 2H), 6.10-6.07 (m, 2H), 4.97 (dd, J = 9.0, 5.5 Hz, 2H), 4.70 (s, 2H), 4.27 (d, J = 2.0 Hz, 2H), 2.40 (s, 3H), 2.25-2.21 (m, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 192.5, 144.1, 136.8, 136.7, 135.9, 131.3, 131.1, 130.6, 129.9, 127.8, 126.9, 124.9, 123.3, 122.6, 88.3, 72.5, 52.1, 38.1, 31.4, 21.7. **HRMS** (ESI) m/z: calcd for [C₂₅H₂₂BrNO₃S+H]⁺ requires: 496.0577, found: 496.0579.

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-4-methyl-*N*-(2-oxo-2-(o-tolyl)ethyl)benzenesulfonamide (10)

Compound **10**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.26$. 655.1 mg, 76% yield. m.p. 74-78 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.78-7.75 (m, 2H), 7.68-7.67 (m, 1H), 7.41 (td, J = 7.5, 1.0 Hz, 1H), 7.31-7.26 (m, 4H), 6.62-6.57 (m, 2H), 6.10-6.07 (m, 2H), 4.98 (dd, J = 9.0, 5.5 Hz, 2H), 4.63 (s, 2H), 4.32 (d, J = 2.0 Hz, 2H), 2.48 (s, 3H), 2.39 (s, 3H), 2.26-2.22 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 197.3, 143.9, 138.8, 136.1, 135.5, 132.3, 132.1, 131.0, 129.8, 128.4, 127.8, 125.9, 124.9, 122.7, 88.1, 72.6, 53.7, 37.9, 31.4, 21.7, 21.2. HRMS (ESI) m/z: calcd for [C₂₆H₂₅NO₃S+H]⁺ requires: 432.1628, found: 432.1630.

7.778 7.776 7.776 7.775 7.757 7.757 7.757 7.756 7.758 7.758 7.758 7.758 7.758 7.412 7.239 7.239 7.2314 7.223 7.2231 7.22333 7.22333 7.22333 7.2233 7.2233 7.22333 7.22333 7.22333 7.22333

N-(2-(2-chlorophenyl)-2-oxoethyl)-*N*-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1yl)-4-methylbenzenesulfonamide (1p)

Compound **1p**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.25$. 281.4 mg, 49% yield. m.p. 138-143 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.76-7.74 (m, 2H), 7.58-7.56 (m, 1H), 7.43-7.41 (m, 2H), 7.37-7.34 (m, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 6.62-6.57 (m, 2H), 6.10-6.07 (m, 2H), 4.97 (dd, *J* = 8.5, 5.5 Hz, 2H), 4.70 (s, 2H), 4.32 (d, *J* = 2.0 Hz, 2H), 2.38 (s, 3H), 2.24-2.20 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.9, 144.0, 136.9, 136.0, 132.6, 131.2, 131.1, 130.7, 129.8, 129.7, 127.8, 127.2, 124.9, 122.7, 88.2, 72.6, 55.0, 38.1, 31.5, 21.7.
HRMS (ESI) m/z: calcd for [C₂₅H₂₂ClNO₃S+H]⁺ requires: 452.1082, found: 452.1083.

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(naphthalen-2-yl)-2-oxoethyl)benzenesulfonamide (1q)

Compound 1q: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.30$. 538.4 mg, 63% yield. m.p. 92-97 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.55 (d, *J* = 1.5 Hz, 1H), 8.01 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.99 (d, *J* = 8.5 Hz, 1H), 7.92-7.88 (m, 2H), 7.83-7.81 (m, 2H), 7.65-7.61 (m, 1H), 7.59-7.56 (m, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 6.60-6.56 (m, 2H), 6.07-6.04 (m, 2H), 4.98 (dd, *J* = 9.0, 6.0 Hz, 2H), 4.90 (s, 2H), 4.34 (d, *J* = 2.0 Hz, 2H), 2.41 (s, 3H), 2.24-2.21 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 193.6, 143.9, 136.1, 136.0, 132.5, 132.3, 131.0, 130.2, 129.8, 129.0, 128.9, 128.0, 127.9, 127.1, 124.8, 123.7, 122.8, 88.1, 72.7, 52.1, 38.0, 31.5, 21.7.

HRMS (ESI) m/z: calcd for $[C_{29}H_{25}NO_3S+H]^+$ requires: 468.1628, found: 468.1631.

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-4-methyl-*N*-(2-oxo-2-(thiophen-2-yl)ethyl)benzenesulfonamide (1r)

Compound 1r: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.16$. 210.0 mg, 50% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.95 (dd, *J* = 4.0, 1.0 Hz, 1H), 7.78-7.76 (m, 2H), 7.69 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.16 (dd, *J* = 5.0, 1.5 Hz, 1H), 6.62-6.57 (m, 2H), 6.09-6.06 (m, 2H), 4.96 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.63 (s, 2H), 4.28 (d, *J* = 2.0 Hz, 2H), 2.39 (s, 3H), 2.22-2.19 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 186.8, 144.0, 141.2, 135.8, 134.7, 133.2, 131.0, 129.8, 128.5, 127.9, 124.8, 122.7, 88.3, 72.4, 52.4, 38.2, 31.5, 21.7.

HRMS (ESI) m/z: calcd for $[C_{23}H_{21}NO_3S_2+H]^+$ requires: 424.1036, found: 424.1037.

N-(2-(5-bromofuran-2-yl)-2-oxoethyl)-*N*-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2yn-1-yl)-4-methylbenzenesulfonamide (1s)

Compound **1s**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.23$. 253.6 mg, 48% yield. m.p. 95-99 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.78-7.76 (m, 2H), 7.35 (d, *J* = 3.5 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.63-6.58 (m, 2H), 6.53 (d, *J* = 3.5 Hz, 1H), 6.11-6.08 (m, 2H), 4.98 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.55 (s, 2H), 4.28 (d, *J* = 2.0 Hz, 2H), 2.40 (s, 3H), 2.24-2.21 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 181.6, 152.7, 144.0, 135.9, 131.1, 129.9, 129.2, 127.9, 124.9, 122.7, 120.8, 114.9, 88.3, 72.5, 51.5, 38.3, 31.5, 21.7.

HRMS (ESI) m/z: calcd for $[C_{23}H_{20}BrNO_4S+H]^+$ requires: 486.0369, found: 486.0371.

4-bromo-N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-N-(2-oxo-2-

phenylethyl)benzenesulfonamide (1t)

Compound **1t**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.39$. 315.4 mg, 36% yield. m.p. 77-81 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.98-7.95 (m, 2H), 7.78-7.75 (m, 2H), 7.67-7.65 (m, 2H), 7.64-7.60 (m, 1H), 7.51-7.48 (m, 2H), 6.62-6.58 (m, 2H), 6.13-6.09 (m, 2H), 4.99 (dd, J = 9.0, 5.5 Hz, 2H), 4.80 (s, 2H), 4.31 (d, J = 2.0 Hz, 2H), 2.30-2.27 (m, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 193.2, 138.3, 134.8, 134.1, 132.4, 131.1, 129.3, 129.0, 128.21, 128.19, 125.1, 122.3, 88.4, 72.5, 51.9, 38.1, 31.4.

HRMS (ESI) m/z: calcd for $[C_{24}H_{20}BrNO_3S+H]^+$ requires: 482.0420, found: 482.0423.

4-bromo-*N*-(2-(4-bromophenyl)-2-oxoethyl)-*N*-(3-(cyclohepta-2,4,6-trien-1yl)prop-2-yn-1-yl)benzenesulfonamide (1u)

Compound 1u: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.43$. 215.0 mg, 38% yield. m.p. 138-142 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.85-7.83 (m, 2H), 7.77-7.74 (m, 2H), 7.68-7.62 (m, 4H), 6.63-6.58 (m, 2H), 6.13-6.10 (m, 2H), 4.98 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.72 (s, 2H), 4.28 (d, *J* = 2.0 Hz, 2H), 2.29-2.26 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 192.4, 138.1, 133.5, 132.5, 132.4, 131.1, 129.8, 129.4, 129.3, 128.3, 125.2, 122.2, 88.6, 72.3, 52.0, 38.1, 31.4.

HRMS (ESI) m/z: calcd for $[C_{24}H_{19}Br_2NO_3S+H]^+$ requires: 559.9525, found: 559.9532.

$\begin{array}{c} 7.853\\ 7.849\\ 7.8331\\ 7.8333\\ 7.8333\\ 7.7642\\ 7.7642\\ 7.7642\\ 7.7664\\ 7.7666\\ 7.747\\ 7.775\\ 7.775\\ 7.756\\ 7.766\\ 7.7656\\ 7.7666\\ 7.7656\\ 7.766\\ 7.7666\\$

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-4-nitro-N-(2-oxo-2-

phenylethyl)benzenesulfonamide (1v)

Compound **1v**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.19$. 251.0 mg, 56% yield. m.p. 110-114 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.37-8.34 (m, 2H), 8.09-8.06 (m, 2H), 7.94-7.92 (m, 2H), 7.63 (tt, *J* = 7.0, 1.0 Hz, 1H), 7.52-7.48 (m, 2H), 6.61-6.56 (m, 2H), 6.09-6.06 (m, 2H), 4.99 (dd, *J* = 8.5, 5.5 Hz, 2H), 4.89 (s, 2H), 4.35 (d, *J* = 2.0 Hz, 2H), 2.28-2.24 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 192.8, 150.3, 145.3, 134.6, 134.3, 131.1, 129.1, 129.0, 128.1, 125.2, 124.4, 122.0, 88.6, 72.4, 52.0, 38.3, 31.3.

HRMS (ESI) m/z: calcd for [C₂₄H₂₀N₂O₅S+H]⁺ requires: 449.1166, found: 449.1166.

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-*N*-(2-oxo-2-phenylethyl)benzeneesulfonamide (1w)

Compound **1w**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.23$. 221.8 mg, 55% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.98-7.97 (m, 2H), 7.92-7.90 (m, 2H), 7.62-7.57 (m, 2H), 7.55-7.52 (m, 2H), 7.50-7.48 (m, 2H), 6.60-6.57 (m, 2H), 6.09-6.06 (m, 2H), 4.99 (dd, J = 7.5, 4.5 Hz, 2H), 4.80 (s, 2H), 4.34 (d, J = 1.5 Hz, 2H), 2.27-2.24 (m, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 193.4, 139.2, 135.0, 134.0, 133.1, 131.1, 129.2, 129.0, 128.2, 127.8, 124.9, 122.6, 88.2, 72.7, 51.9, 38.0, 31.4.

HRMS (ESI) m/z: calcd for $[C_{24}H_{21}NO_3S+H]^+$ requires: 404.1315, found: 404.1317.

$\begin{array}{c} 7,983\\ 7,972\\ 7,972\\ 7,972\\ 7,969\\ 7,972\\ 7,969\\ 7,916\\ 7,916\\ 7,916\\ 7,916\\ 7,916\\ 7,916\\ 7,916\\ 7,916\\ 7,916\\ 7,916\\ 7,916\\ 7,916\\ 7,579\\ 7,$

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-3-methyl-N-(2-oxo-2-

phenylethyl)benzenesulfonamide (1x)

Compound 1x: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.25$. 306.8 mg, 48% yield. m.p. 79-84 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.99-7.97 (m, 2H), 7.71-7.69 (m, 2H), 7.62-7.59 (m, 1H), 7.50-7.47 (m, 2H), 7.43-7.37 (m, 2H), 6.61-6.56 (m, 2H), 6.09-6.06 (m, 2H), 4.98 (dd, *J* = 9.0, 6.0 Hz, 2H), 4.78 (s, 2H), 4.33 (d, *J* = 2.0 Hz, 2H), 2.42 (s, 3H), 2.28-2.24 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 193.5, 139.3, 139.0, 135.0, 134.0, 133.9, 131.1, 129.03, 128.96, 128.3, 128.1, 124.89, 124.87, 122.7, 88.1, 72.7, 51.9, 38.0, 31.4, 21.6.
HRMS (ESI) m/z: calcd for [C₂₅H₂₃NO₃S+H]⁺ requires: 418.1471, found: 418.1473.

N-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-*N*-(2-cyclopropyl-2-oxoethyl)-4methylbenzenesulfonamide (1y)

9.0

8 5

8.0

7.0

6.0

5.5

Compound **1y**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.31$. 127.2 mg, 24% yield. m.p. 84-88 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.75-7.73 (m, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 6.63-6.59 (m, 2H), 6.11-6.08 (m, 2H), 4.98 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.23 (d, *J* = 1.5 Hz, 2H), 4.17 (s, 2H), 2.38 (s, 3H), 2.25-2.19 (m, 2H), 1.10-1.07 (m, 2H), 0.99-0.95 (m, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 205.6, 144.0, 135.7, 131.1, 129.8, 127.8, 124.8, 122.7, 88.1, 72.4, 55.6, 38.4, 31.5, 21.7, 18.0, 12.0.

HRMS (ESI) m/z: calcd for $[C_{22}H_{23}NO_3S+H]^+$ requires: 382.1471, found: 382.1472.

5.0 4.5 fl (ppm)

3.5 3.0 2.5 2.0

4.0

1.5

1.0

0.5 0.0

N-(4-(cyclohepta-2,4,6-trien-1-yl)but-3-yn-1-yl)-4-methyl-N-(2-oxo-2-

phenylethyl)benzenesulfonamide (1z)

Compound 1z: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.24$. 494.1 mg, 62% yield. m.p. 57-61 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.92-7.90 (m, 2H), 7.77-7.74 (m, 2H), 7.59 (tt, *J* = 7.0, 1.5 Hz, 1H), 7.48-7.45 (m, 2H), 7.30 (d, *J* = 7.5 Hz, 2H), 6.63-6.58 (m, 2H), 6.10-6.07 (m, 2H), 5.17 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.97 (s, 2H), 3.46 (t, *J* = 7.0 Hz, 2H), 2.53 (td, *J* = 7.0, 2.5 Hz, 2H), 2.42 (s, 3H), 2.31-2.27 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 193.8, 143.6, 136.9, 134.9, 134.0, 131.0, 129.7, 129.0, 128.1, 127.6, 124.7, 123.6, 83.7, 77.5, 53.9, 47.6, 31.7, 21.7, 19.6.

HRMS (ESI) m/z: calcd for $[C_{26}H_{25}NO_3S+H]^+$ requires: 432.1628, found: 432.1630.

2-((3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)oxy)-1-phenylethan-1-one (1aa)

HX-7-83.1.fid

Compound **1aa**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.50$. 180.8 mg, 33% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.97-7.95 (m, 2H), 7.61-7.58 (m, 1H), 7.50-7.47 (m, 2H), 6.67-6.63 (m, 2H), 6.19-6.16 (m, 2H), 5.31 (dd, *J* = 9.0, 5.5 Hz, 2H), 4.90 (s, 2H), 4.43 (d, *J* = 2.0 Hz, 2H), 2.57-2.53 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.9, 134.9, 133.8, 131.1, 128.9, 128.0, 125.0, 122.9, 89.3, 75.4, 71.8, 59.1, 31.7.

HRMS (ESI) m/z: calcd for [C₁₈H₁₆O₂+H]⁺ requires: 265.1223, found: 265.1224.

Dimethyl 2-(3-(cyclohepta-2,4,6-trien-1-yl)prop-2-yn-1-yl)-2-(2-oxo-2-

phenylethyl)malonate (1ab)

Compound **1ab**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.30$. 219.9 mg, 75% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.03-8.01 (m, 2H), 7.59 (tt, *J* = 7.5, 1.5 Hz, 1H), 7.50-7.47 (m, 2H), 6.63-6.59 (m, 2H), 6.13-6.10 (m, 2H), 5.19 (dd, *J* = 8.5, 5.5 Hz, 2H), 3.93 (s, 2H), 3.78 (s, 6H), 3.14 (d, *J* = 2.0 Hz, 2H), 2.43-2.39 (m, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 197.0, 170.1, 136.5, 133.7, 131.1, 128.8, 128.3, 124.8, 123.6, 85.4, 75.3, 55.1, 53.3, 41.2, 31.7, 23.8.

HRMS (ESI) m/z: calcd for [C₂₃H₂₂O₅+H]⁺ requires: 379.1540, found: 379.1541.

4. Experimental procedure and characterization data for products 2a-

2y, 5 and 6

4.1 General procedure B for products 2a-2y, 5 and 6.

Under N₂ atmosphere, 1,2-Dichloroethane (DCE) (1.0 mL, 1.0 M) was added to a mixture of **1a** (41.8 mg, 0.1 mmol), Sc(OTf)₃ (4.9 mg, 0.01 mmol). The reaction system was stirred at 80 °C in a parallel reactor for 10 hours. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/ethyl acetate, 8/1) to give the product **2a** (28.0 mg, 70% yield) as a yellow solid

4.2. Characterization date of products 2a-2y, 5 and 6.

3-phenyl-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2a)

Compound **2a**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.33$. 28.0 mg, 70% yield. m.p. 144-149 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.78 (dt, *J* = 8.5, 2.0 Hz, 2H), 7.70 (dt, *J* = 9.0, 2.0 Hz, 2H), 7.45-7.43 (m, 2H), 7.38-7.33 (m, 7H), 7.26 (s, 1H), 4.58-4.57 (m, 2H), 4.40-4.38 (m, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.1, 137.6, 134.9, 133.6, 131.7, 131.0, 130.1, 129.3, 128.9, 128.7, 128.0, 127.7, 122.3, 113.8, 98.1, 83.2, 58.5, 56.3, 21.7.

3-(phenylethynyl)-4-(*p*-tolyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2b)

Compound **2b**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.41$. 28.4 mg, 66% yield. m.p. 132-136 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.80-7.78 (m, 2H), 7.69-7.67 (m, 2H), 7.47-7.43 (m, 2H), 7.37-7.34 (m, 5H), 7.19 (d, *J* = 8.0 Hz, 2H), 4.60 (t, *J* = 4.0 Hz, 2H), 4.40 (t, *J* = 4.0 Hz, 2H), 2.42 (s, 3H), 2.37 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.0, 139.4, 138.8, 133.6, 131.6, 130.1, 129.7, 129.3, 129.0, 128.6, 127.7, 126.6, 122.7, 111.9, 97.2, 83.7, 58.4, 56.4, 21.7, 21.5.

HRMS (ESI) m/z: calcd for [C₂₆H₂₃NO₂S+H]⁺ requires: 414.1522, found: 414.1524.

3-(4-methoxyphenyl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2c)

Compound **2c**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.31$. 20.1 mg, 45% yield. m.p. 114-118 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.79-7.78 (m, 2H), 7.74 (dt, J = 9.0, 2.5 Hz, 2H), 7.47-7.43 (m, 2H), 7.36-7.33 (m, 5H), 6.92-6.89 (m, 2H), 4.58 (t, J = 4.0 Hz, 2H), 4.38 (t, J = 4.0 Hz, 2H), 3.83 (s, 3H), 2.42 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 160.2, 144.0, 138.4, 133.7, 131.6, 130.1, 128.9, 128.6, 128.2, 127.7, 125.3, 122.7, 114.0, 110.6, 96.9, 83.8, 58.4, 56.5, 55.5, 21.7.

HRMS (ESI) m/z: calcd for $[C_{26}H_{23}NO_3S+H]^+$ requires: 430.1471, found: 430.1473.

3-(4-fluorophenyl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2d)

Compound **2d**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.36$. 31.0 mg, 71% yield. m.p. 158-162 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.80-7.74 (m, 4H), 7.46-7.42 (m, 2H), 7.37-7.34 (m, 5H), 7.10-7.05 (m, 2H), 4.58 (t, *J* = 4.0 Hz, 2H), 4.40 (t, *J* = 4.0 Hz, 2H), 2.43 (s, 3H).

¹³**C NMR** (125 MHz, Chloroform-*d*) δ 162.9 (d, J = 248.9 Hz), 144.1, 137.7, 133.6, 131.7, 130.1, 129.2, 128.8 (d, J = 3.5 Hz), 128.7, 128.6 (d, J = 7.9 Hz), 127.7, 122.4, 115.7 (d, J = 21.5 Hz), 112.7 (d, J = 2.1 Hz), 97.4, 83.2, 58.4, 56.4, 21.7.

¹⁹**F NMR** (470 MHz, CDCl₃) δ (m) (-110.70)-(-110.76).

HRMS (ESI) m/z: calcd for $[C_{25}H_{20}FNO_2S+H]^+$ requires: 418.1272, found: 418.1272.

3-(4-chlorophenyl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2e)

Compound **2e**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.39$. 37.2 mg, 82% yield. m.p. 145-149 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.80-7.78 (m, 2H), 7.64 (dt, *J* = 9.5, 2.0 Hz, 2H), 7.50 (dt, *J* = 9.5, 2.0 Hz, 2H), 7.45-7.43 (m, 2H), 7.38-7.33 (m, 5H), 4.57 (t, *J* = 4.0 Hz, 2H), 4.38 (t, *J* = 4.0 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.1, 137.6, 133.6, 131.8, 131.7, 131.4, 130.1, 129.3, 128.7, 128.2, 127.7, 123.2, 122.3, 113.9, 98.2, 83.1, 58.5, 56.2, 21.7.

HRMS (ESI) m/z: calcd for $[C_{25}H_{20}CINO_2S+H]^+$ requires: 434.0976, found: 434.0978.

3-(4-bromophenyl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2f)

Compound **2f**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.44$. 32.4 mg, 65% yield. m.p. 151-155 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.80-7.78 (m, 2H), 7.71 (dt, *J* = 9.0, 2.0 Hz, 2H), 7.45-7.43 (m, 2H), 7.38-7.33 (m, 7H), 4.58 (t, *J* = 4.0 Hz, 2H), 4.39 (t, *J* = 4.0 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.1, 137.6, 134.9, 133.6, 131.7, 131.0, 130.1, 129.3, 128.9, 128.7, 128.0, 127.7, 122.3, 113.7, 98.1, 83.1, 58.5, 56.3, 21.7.

HRMS (ESI) m/z: calcd for $[C_{25}H_{20}BrNO_2S+H]^+$ requires: 478.0471, found: 478.0457.

3-(4-iodophenyl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2g)

Compound **2g**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.32$. 32.0 mg, 59% yield. m.p. 178-182 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.79-7.77 (m, 2H), 7.71 (dt, *J* = 9.0, 2.0 Hz, 2H), 7.50 (dt, *J* = 9.0, 2.0 Hz, 2H), 7.45-7.42 (m, 2H), 7.39-7.33 (m, 5H), 4.57 (t, *J* = 4.0 Hz, 2H), 4.38 (t, *J* = 4.0 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.1, 137.75, 137.71, 133.6, 131.9, 131.7, 130.1, 129.3, 128.7, 128.3, 127.7, 122.3, 114.0, 98.4, 95.0, 83.1, 58.5, 56.1, 21.7.

HRMS (ESI) m/z: calcd for $[C_{25}H_{20}INO_2S+H]^+$ requires: 526.0332, found: 526.0336.

3-(phenylethynyl)-1-tosyl-4-(4-(trifluoromethyl)phenyl)-2,5-dihydro-1*H*-pyrrole (2h)

Compound **2h**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.51$. 15.0 mg, 31% yield. m.p. 173-178 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.87 (d, J = 8.0 Hz, 2H), 7.81-7.79 (m, 2H), 7.64 (d, J = 8.5 Hz, 2H), 7.46-7.44 (m, 2H), 7.41-7.35 (m, 5H), 4.62 (t, J = 4.0 Hz, 2H), 4.43 (t, J = 4.0 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.2, 137.3, 135.8, 133.6, 131.8, 130.7 (q, J = 32.3 Hz), 130.2, 129.5, 128.7, 127.7, 126.9, 125.6 (q, J = 3.8 Hz), 124.0 (q, J = 270.5 Hz), 122.1, 115.8, 98.7, 82.8, 58.6, 56.3, 21.7.

¹⁹**F NMR** (470 MHz, CDCl₃) δ (s) (-62.76).

HRMS (ESI) m/z: calcd for [C₂₆H₂₀F₃NO₂S+H]⁺ requires: 468.1240, found: 468.1242.

S67

4-(4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)benzonitrile (2i)

Compound **2i**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.26$. 6.7 mg, 15% yield. m.p. 162-166 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.87-7.85 (m, 2H), 7.80-7.78 (m, 2H), 7.67-7.66 (m, 2H), 7.45-7.43 (m, 2H), 7.40-7.35 (m, 5H), 4.60 (t, *J* = 4.0 Hz, 2H), 4.43 (t, *J* = 4.0 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.2, 136.75, 136.69, 133.5, 132.4, 131.8, 130.2, 129.6, 128.8, 127.7, 127.1, 121.9, 118.6, 117.1, 112.2, 99.6, 82.7, 58.6, 56.0, 21.7.

HRMS (ESI) m/z: calcd for [C₂₆H₂₀N₂O₂S+H]⁺ requires: 425.1318, found: 425.1318.

3-([1,1'-biphenyl]-4-yl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2j)

Compound **2j**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.36$. 29.3 mg, 59% yield. m.p. 181-185 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.88-7.86 (m, 2H), 7.83-7.81 (m, 2H), 7.64-7.60 (m, 4H), 7.50-7.44 (m, 4H), 7.39-7.36 (m, 6H), 4.66 (t, *J* = 4.0 Hz, 2H), 4.44 (t, *J* = 4.0 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.0, 141.8, 140.2, 138.4, 133.6, 131.7, 131.4, 130.1, 129.1, 129.0, 128.6, 127.9, 127.7, 127.19, 127.15, 127.1, 122.6, 113.0, 97.8, 83.6, 58.5, 56.4, 21.7.

HRMS (ESI) m/z: calcd for $[C_{31}H_{25}NO_2S+H]^+$ requires: 476.1679, found: 476.1681.

3-(phenylethynyl)-4-(m-tolyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2k)

Compound **2k**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.30$. 21.7 mg, 51% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.80-7.78 (m, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.29-7.20 (m, 7H), 7.17 (td, *J* = 7.5, 2.0 Hz, 1H), 7.12 (dd, *J* = 7.5, 1.0 Hz, 1H), 4.45 (t, *J* = 4.0 Hz, 2H), 4.41 (t, *J* = 4.0 Hz, 2H), 2.45 (s, 3H), 2.22 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.0, 142.8, 136.3, 133.8, 132.6, 131.6, 130.7, 130.1, 128.8, 128.7, 128.4, 127.7, 125.7, 122.5, 116.6, 95.4, 82.4, 58.3, 57.7, 21.7, 20.1.
HRMS (ESI) m/z: calcd for [C₂₆H₂₃NO₂S+H]⁺ requires: 414.1522, found: 414.1523.

3-(3-methoxyphenyl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2l)

Compound 21: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.23$. 25.5 mg, 57% yield. m.p. 136-140 °C.

¹H NMR (500 MHz, Chloroform-*d*, TMS) δ 7.79-7.77 (m, 2H), 7.46-7.43 (m, 3H), 7.36-7.33 (m, 5H), 7.30-7.25 (m, 2H), 6.89 (ddd, J = 8.0, 2.5, 1.5 Hz, 1H), 4.60 (t, J =4.0 Hz, 2H), 4.40 (t, *J* = 4.0 Hz, 2H), 3.78 (s, 3H), 2.42 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 159.7, 144.0, 138.7, 133.7, 133.6, 131.6, 130.1, 129.6, 129.1, 128.6, 127.7, 122.5, 119.2, 115.1, 113.2, 112.0, 97.8, 83.4, 58.5, 56.5, 55.4, 21.7.

HRMS (ESI) m/z: calcd for $[C_{26}H_{23}NO_3S+H]^+$ requires: 430.1471, found: 430.1471. HX-7-127.1.fid -- 0.000 TMS

3-(3-chlorophenyl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2m)

Compound **2m**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.37$. 23.8 mg, 53% yield. m.p. 150-154 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.95 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.54-7.52 (m, 1H), 7.49-7.47 (m, 2H), 7.37-7.35 (m, 5H), 7.32-7.31 (m, 2H), 4.58 (t, *J* = 4.0 Hz, 2H), 4.41 (t, *J* = 4.0 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.1, 137.2, 134.6, 134.2, 133.6, 131.7, 130.1, 129.9, 129.3, 129.1, 128.7, 127.7, 126.8, 124.7, 122.2, 114.6, 98.6, 83.1, 58.4, 56.2, 21.7.

HRMS (ESI) m/z: calcd for [C₂₅H₂₀ClNO₂S+H]⁺ requires: 434.0976, found: 434.0978.

3-(3-bromophenyl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2n)

Compound **2n**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.29$. 26.7 mg, 54% yield. m.p. 164-167 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.13 (t, J = 2.0 Hz, 1H), 7.80-7.78 (m, 2H), 7.56 (dt, J = 8.0, 1.5 Hz, 1H), 7.50-7.48 (m, 2H), 7.47-7.45 (m, 1H), 7.38-7.34 (m, 5H), 7.25 (t, J = 8.0 Hz, 1H), 4.57 (t, J = 4.0 Hz, 2H), 4.41 (t, J = 4.0 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.1, 137.1, 134.4, 133.5, 131.9, 131.8, 130.2, 130.1, 129.7, 129.3, 128.7, 127.7, 125.1, 122.8, 122.2, 114.6, 98.7, 83.0, 58.4, 56.2, 21.7.

HRMS (ESI) m/z: calcd for $[C_{25}H_{20}BrNO_2S+H]^+$ requires: 478.0471, found: 478.0472.

3-(phenylethynyl)-4-(*o*-tolyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (20)

Compound **20**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.33$. 15.4 mg, 36% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.80-7.78 (m, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.28-7.20 (m, 7H), 7.17 (td, *J* = 7.5, 1.5 Hz, 1H), 7.12 (dd, *J* = 7.5, 1.5 Hz, 1H), 4.45 (t, *J* = 4.0 Hz, 2H), 4.41 (t, *J* = 4.0 Hz, 2H), 2.45 (s, 3H), 2.22 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.0, 142.8, 136.3, 133.8, 132.6, 131.6, 130.7, 130.1, 128.9, 128.7, 128.4, 127.7, 125.7, 122.5, 116.6, 95.4, 82.4, 58.3, 57.7, 21.7, 20.1.
HRMS (ESI) m/z: calcd for [C₂₆H₂₃NO₂S+H]⁺ requires: 414.1522, found: 414.1523.

3-(naphthalen-2-yl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2q)

Compound **2q**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.36$. 24.1 mg, 52% yield. m.p. 203-207 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.11 (dd, *J* = 9.0, 2.0 Hz, 1H), 8.06 (s, 1H), 7.85-7.81 (m, 5H), 7.52-7.48 (m, 4H), 7.39-7.35 (m, 5H), 4.74 (t, *J* = 4.0 Hz, 2H), 4.45 (t, *J* = 4.0 Hz, 2H), 2.42 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.0, 138.8, 133.7, 133.4, 133.1, 131.7, 130.1, 130.0, 129.1, 128.7, 128.5, 128.2, 127.78, 127.75, 127.1, 126.8, 126.4, 124.1, 122.6, 113.4, 97.7, 83.7, 58.6, 56.6, 21.7.

HRMS (ESI) m/z: calcd for $[C_{29}H_{23}NO_2S+H]^+$ requires: 450.1522, found: 450.1524.

3-(phenylethynyl)-4-(thiophen-2-yl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2r)

Compound **2r**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.24$. 26.0 mg, 62% yield. m.p. 165-168 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.79-7.77 (m, 2H), 7.55-7.51 (m, 2H), 7.38-7.34 (m, 6H), 7.12 (dd, *J* = 4.0, 1.0 Hz, 1H), 7.05 (dd, *J* = 5.0, 4.0 Hz, 1H), 4.61-4.59 (m, 2H), 4.37 (t, *J* = 4.0 Hz, 2H), 2.42 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 144.1, 135.5, 134.5, 133.6, 131.6, 130.1, 129.1, 128.6, 127.7, 127.5, 127.0, 126.9, 122.6, 111.2, 100.1, 83.5, 57.6, 56.3, 21.7.

HRMS (ESI) m/z: calcd for $[C_{23}H_{19}NO_2S_2+H]^+$ requires: 406.0930, found: 406.0930.

3-(5-bromofuran-2-yl)-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2s)

Compound **2s**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.28$. 34.6 mg, 71% yield. m.p. 152-156 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.78-7.76 (m, 2H), 7.49-7.47 (m, 2H), 7.37-7.34 (m, 5H), 6.83 (d, *J* = 3.5 Hz, 1H), 6.39 (d, *J* = 3.5 Hz, 1H), 4.52 (t, *J* = 4.0 Hz, 2H), 4.34 (t, *J* = 4.0 Hz, 2H), 2.43 (s, 3H).

¹³**C NMR** (125 MHz, Chloroform-*d*) δ 150.3, 144.1, 133.5, 131.7, 130.1, 129.4, 129.2, 128.7, 127.7, 123.1, 122.4, 113.8, 112.7, 110.9, 99.2, 82.8, 57.5, 54.6, 21.7.

HRMS (ESI) m/z: calcd for $[C_{23}H_{18}BrNO_3S+H]^+$ requires: 468.0264, found: 468.0264.

1-((4-bromophenyl)sulfonyl)-3-phenyl-4-(phenylethynyl)-2,5-dihydro-1*H*-pyrrole (2t)

Compound **2t**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.56$. 25.5 mg, 53% yield. m.p. 191-196 °C.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.78-7.76 (m, 4H), 7.70 (dt, *J* = 9.0, 2.0 Hz, 2H), 7.47-7.43 (m, 2H), 7.41-7.33 (m, 6H), 4.62 (t, *J* = 4.0 Hz, 2H), 4.41 (t, *J* = 4.0 Hz, 2H).
¹³C NMR (125 MHz, Chloroform-*d*) δ 138.6, 135.8, 132.8, 132.3, 131.7, 129.3, 129.2, 129.1, 128.71, 128.66, 128.3, 126.7, 122.5, 112.9, 97.7, 83.2, 58.5, 56.5.
HDMS (ESD m/m erlad for [C, H, DrNO, S+HI[±] merginese 4(4.0214, form dt 4(4.0215)).

HRMS (ESI) m/z: calcd for $[C_{24}H_{18}BrNO_2S+H]^+$ requires: 464.0314, found: 464.0315.

3-(4-bromophenyl)-1-((4-bromophenyl)sulfonyl)-4-(phenylethynyl)-2,5-dihydro-1*H*-pyrrole (2u)

Compound **2u**: a white solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.54$. 30.2 mg, 55% yield. m.p. 154-159 °C.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.76 (dt, J = 9.0, 2.0 Hz, 2H), 7.70 (dt, J = 9.0, 2.0 Hz, 2H), 7.64 (dt, J = 9.0, 2.0 Hz, 2H), 7.52 (dt, J = 9.0, 2.0 Hz, 2H), 7.46-7.42 (m, 2H), 7.40-7.34 (m, 3H), 4.58 (t, J = 4.0 Hz, 2H), 4.39 (t, J = 4.0 Hz, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 137.5, 135.8, 132.8, 131.9, 131.7, 131.2, 129.4, 129.1, 128.7, 128.3, 128.2, 123.4, 122.2, 113.8, 98.4, 82.9, 58.5, 56.2.

HRMS (ESI) m/z: calcd for $[C_{24}H_{17}Br_2NO_2S+H]^+$ requires: 541.9420, found: 541.9426.

7,777 7,775 7,775 7,775 7,757 7,758 7,758 7,778 1,778 1,778 1,778 1,758

3-phenyl-4-(phenylethynyl)-1-(phenylsulfonyl)-2,5-dihydro-1*H*-pyrrole (2w)

Compound **2w**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.28$. 27.7 mg, 69% yield. m.p. 133-137 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.93-7.91 (m, 2H), 7.79-7.77 (m, 2H), 7.64-7.60 (m, 1H), 7.58-7.55 (m, 2H), 7.47-7.44 (m, 2H), 7.41-7.33 (m, 6H), 4.65 (t, *J* = 4.0 Hz, 2H), 4.43 (t, *J* = 4.0 Hz, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 138.7, 136.7, 133.2, 132.4, 131.7, 129.5, 129.2, 129.1, 128.7, 128.6, 127.6, 126.7, 122.5, 113.0, 97.5, 83.4, 58.5, 56.4.

HRMS (ESI) m/z: calcd for [C₂₄H₁₉NO₂S+H]⁺ requires: 386.1209, found: 386.1207.

3-phenyl-4-(phenylethynyl)-1-(m-tolylsulfonyl)-2,5-dihydro-1*H*-pyrrole (2x)

Compound **2x**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.33$. 25.4 mg, 61% yield. m.p. 112-116 °C. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.79 (d, J = 7.0 Hz, 2H), 7.71 (d, J = 9.0 Hz, 2H), 7.47-7.33 (m, 10H), 4.64 (t, J = 4.0 Hz, 2H), 4.43 (t, J = 4.0 Hz, 2H), 2.45 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 139.7, 138.8, 136.5, 134.0, 132.5, 131.7, 129.3, 129.2, 129.1, 128.65, 128.62, 128.0, 126.7, 124.8, 122.5, 113.0, 97.5, 83.4, 58.5, 56.4, 21.6.

HRMS (ESI) m/z: calcd for $[C_{25}H_{21}NO_2S+H]^+$ requires: 400.1366, found: 400.1365.

3-cyclopropyl-4-(phenylethynyl)-1-tosyl-2,5-dihydro-1*H*-pyrrole (2y)

Compound **2y**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.45$. 24.8 mg, 65% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.72-7.71 (m, 2H), 7.42-7.39 (m, 2H), 7.35-7.30 (m, 5H), 4.20 (t, *J* = 4.0 Hz, 2H), 3.90 (t, *J* = 4.0 Hz, 2H), 2.44 (s, 3H), 1.90-1.84 (m, 1H), 0.86-0.82 (m, 2H), 0.69-0.66 (m, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 145.8, 143.9, 133.8, 131.5, 130.0, 128.6, 128.5, 127.6, 122.9, 112.3, 95.1, 82.0, 57.3, 54.5, 21.7, 11.2, 6.4.

HRMS (ESI) m/z: calcd for [C₂₂H₂₁NO₂S+H]⁺ requires: 364.1366, found: 364.1364.

3-phenyl-4-(phenylethynyl)-2,5-dihydrofuran (5)

Compound 5: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.64$. 18.3 mg, 68% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.84-7.81 (m, 2H), 7.54-7.49 (m, 2H), 7.44-7.40 (m, 2H), 7.39-7.33 (m, 4H), 5.19 (t, *J* = 4.5 Hz, 2H), 4.93 (t, *J* = 4.5 Hz, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 140.2, 132.3, 131.7, 128.84, 128.83, 128.7, 128.6, 126.8, 123.0, 114.6, 98.0, 83.0, 79.3, 77.4.

HRMS (ESI) m/z: calcd for $[C_{18}H_{14}O+H]^+$ requires:247.1117, found: 247.1118.

dimethyl 3-phenyl-4-(phenylethynyl)cyclopent-3-ene-1,1-dicarboxylate (6)

Compound 6: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.37$. 16.3 mg, 43% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.91-7.89 (m, 2H), 7.48-7.46 (m, 2H), 7.41-7.37 (m, 2H), 7.35-7.29 (m, 4H), 3.79 (s, 6H), 3.59 (t, *J* = 2.0 Hz, 2H), 3.46 (t, *J* = 2.0 Hz, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 172.0, 142.2, 135.1, 131.6, 128.53, 128.52, 128.4, 128.3, 127.1, 123.4, 115.3, 95.6, 86.6, 57.4, 53.3, 45.6, 43.1.

HRMS (ESI) m/z: calcd for $[C_{23}H_{20}O_4+H]^+$ requires:361.1434, found: 361.1433.

HX-7-91.1.fid

5. Experimental procedure and characterization data for products 3a-

3y, 8 and 9

5.1 General procedure C for products 3a-3y, 8 and 9.

Under N₂ atmosphere, 2,2,2-Trifluoroethanol (TFE) (2.0 mL, 0.05 M) was added to a mixture of **1a** (41.8 mg, 0.1 mmol), Sc(OTf)₃ (4.9 mg, 0.01 mmol). The reaction system was stirred at 80 °C in a parallel reactor for 10 hours until **1a** was completely consumed by TLC monitoring. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/ethyl acetate, 8/1) to give the product **3a** (29.4 mg, 70% yield) as a yellow solid.

5.2. Characterization date of products 3a-3y, 8 and 9.

2-phenyl-1-(4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)ethan-1-one (3a)

Compound **3a**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.18$. 29.4 mg, 70% yield. m.p. 106-110 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74-7.72 (m, 2H), 7.43-7.39 (m, 3H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.23-7.16 (m, 5H), 6.85-6.83 (m, 2H), 4.51 (t, *J* = 4.0 Hz, 2H), 4.44 (t, *J* = 4.0 Hz, 2H), 3.48 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.5, 145.3, 144.1, 133.6, 133.4, 133.0, 132.7,

2-phenyl-1-(4-(*p*-tolyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)ethan-1-one (3b)

Compound **3b**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.26$. 24.9 mg, 58% yield. m.p. 137-141 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.73-7.71 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.23-7.18 (m, 5H), 7.08-7.07 (m, 2H), 6.87 (dd, *J* = 7.5, 2.0 Hz, 2H), 4.50 (t, *J* = 4.0 Hz, 2H), 4.42 (t, *J* = 4.0 Hz, 2H), 3.51 (s, 2H), 2.44 (s, 3H), 2.38 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.7, 145.5, 144.0, 140.2, 133.6, 132.5, 130.1, 129.8, 129.7, 129.4, 128.6, 127.9, 127.7, 127.1, 60.2, 56.9, 47.9, 21.7, 21.5.

HRMS (ESI) m/z: calcd for [C₂₆H₂₅NO₃S+H]⁺ requires: 432.1628, found: 432.1633.

1-(4-(4-methoxyphenyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3c)

Compound **3c**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.18$. 20.2 mg, 45% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.73-7.71 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.24-7.19 (m, 3H), 7.14 (dt, *J* = 9.5, 2.5 Hz, 2H), 6.93-6.88 (m, 4H), 4.49 (t, *J* = 4.0 Hz, 2H), 4.41 (t, *J* = 4.0 Hz, 2H), 3.83 (s, 3H), 3.54 (s, 2H), 2.44 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.8, 160.9, 145.1, 144.0, 133.64, 133.56, 131.8, 130.1, 129.6, 129.4, 128.6, 127.7, 127.1, 124.7, 114.4, 60.0, 56.9, 55.5, 48.0, 21.7.

HRMS (ESI) m/z: calcd for [C₂₆H₂₅NO₄S+H]⁺ requires: 448.1577, found: 448.1582.

TsN OMe ¹H NMR, 500 MHz, CDCl₃

1-(4-(4-fluorophenyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3d)

Compound **3d**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.20$. 23.4 mg, 54% yield. m.p. 93-96 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) *δ* 7.73-7.71 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.25-7.20 (m, 3H), 7.18-7.15 (m, 2H), 7.11-7.06 (m, 2H), 6.87 (dd, *J* = 7.5, 2.0 Hz, 2H), 4.49-4.47 (m, 2H), 4.45-4.43 (m, 2H), 3.51 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.1, 163.4 (d, J = 249.4 Hz), 144.14, 144.08, 133.5, 133.2, 133.0, 130.1, 130.0 (d, J = 8.3 Hz), 129.3, 128.7, 128.6 (d, J = 3.5 Hz), 127.7, 127.2, 116.2 (d, J = 21.6 Hz), 60.1, 56.8, 48.2, 21.7.

¹⁹**F NMR** (470 MHz, CDCl₃) δ (m) (-110.03)-(-110.08).

HRMS (ESI) m/z: calcd for $[C_{25}H_{22}FNO_3S+H]^+$ requires: 436.1377, found: 436.1380.

1-(4-(4-chlorophenyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3e)

Compound **3e**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.29$. 30.8 mg, 68% yield.

¹H NMR (500 MHz, Chloroform-*d*) δ 7.73-7.71 (m, 2H), 7.52 (dt, *J* = 9.0, 2.0 Hz, 2H),
7.34 (d, *J* = 8.0 Hz, 2H), 7.25-7.21 (m, 3H), 7.04 (dt, *J* = 8.0, 2.5 Hz, 2H), 6.87 (dd, *J* = 7.5, 2.0 Hz, 2H), 4.48-4.46 (m, 2H), 4.44-4.43 (m, 2H), 3.51 (s, 2H), 2.44 (s, 3H).
¹³C NMR (125 MHz, Chloroform-*d*) δ 196.0, 144.2, 143.8, 133.5, 133.3, 133.1, 132.3,
131.4, 130.1, 129.5, 129.3, 128.7, 127.7, 127.3, 124.2, 59.9, 56.8, 48.3, 21.7.

HRMS (ESI) m/z: calcd for [C₂₅H₂₂ClNO₃S+H]⁺ requires: 452.1082, found: 452.1081.

1-(4-(4-bromophenyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3f)

Compound **3f**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.22$. 34.2 mg, 69% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.73-7.71 (m, 2H), 7.38-7.33 (m, 4H), 7.25-7.19 (m, 3H), 7.11 (dt, *J* = 8.0, 2.0 Hz, 2H), 6.87 (dd, *J* = 7.5, 2.0 Hz, 2H), 4.48-4.44 (m, 4H), 3.52 (s, 2H), 2.44 (s, 3H).

HRMS (ESI) m/z: calcd for $[C_{25}H_{22}BrNO_3S+H]^+$ requires: 496.0577, found: 496.0580.

1-(4-(4-iodophenyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3g)

Compound **3g**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.19$. 37.5 mg, 69% yield. m.p. 99-103 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.73 (d, J = 3.0 Hz, 2H), 7.71 (d, J = 3.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.25-7.20 (m, 3H), 6.91-6.89 (m, 2H), 6.87 (dd, J = 7.5, 2.5 Hz, 2H), 4.46 (t, J = 4.0 Hz, 2H), 4.43 (t, J = 4.0 Hz, 2H), 3.51 (s, 2H), 2.44 (s, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 196.0, 144.2, 143.9, 138.2, 133.5, 133.3, 133.1, 132.0, 130.1, 129.6, 129.3, 128.7, 127.7, 127.2, 95.9, 59.8, 56.8, 48.3, 21.7.

HRMS (ESI) m/z: calcd for [C₂₅H₂₂INO₃S-H]⁻ requires: 542.0292, found: 542.0315.

2-phenyl-1-(1-tosyl-4-(4-(trifluoromethyl)phenyl)-2,5-dihydro-1*H*-pyrrol-3yl)ethan-1-one (3h)

Compound **3h**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.36$. 30.2 mg, 62% yield. m.p. 107-112 °C.

¹**H NMR** (500 MHz, Chloroform-*d*, TMS) δ 7.74-7.72 (m, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 9.0 Hz, 2H), 7.24-7.21 (m, 3H), 6.86-6.84 (m, 2H), 4.49 (s, 4H), 3.51 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.6, 144.3, 143.5, 136.3 (q, J = 1.1 Hz), 134.0,
133.5, 132.9, 131.7 (q, J = 32.6 Hz), 130.2, 129.2, 128.8, 128.4, 127.7, 127.3, 126.0 (q, J = 3.8 Hz), 123.7 (q, J = 270.8 Hz), 60.0, 56.8, 48.4, 21.7.

¹⁹**F NMR** (470 MHz, CDCl₃) δ (s) (-62.88)

HRMS (ESI) m/z: calcd for [C₂₆H₂₂F₃NO₃S+H]⁺ requires: 486.1345, found: 486.1346.

4-(4-(2-phenylacetyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)benzonitrile (3i)

Compound **3i**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.10$. 26.1 mg, 59% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.72-7.70 (m, 2H), 7.65-7.63 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.26-7.22 (m, 5H), 6.88-6.86 (m, 2H), 4.49-4.45 (m, 4H), 3.52 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.3, 144.3, 142.8, 137.2, 134.2, 133.4, 132.6, 130.2, 129.2, 128.8, 128.7, 127.6, 127.4, 118.1, 113.4, 59.6, 56.7, 48.6, 21.7.

HRMS (ESI) m/z: calcd for $[C_{26}H_{22}N_2O_3S+H]^+$ requires: 443.1424, found: 443.1426.

1-(4-([1,1'-biphenyl]-4-yl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1one (3j)

Compound **3j**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.23$. 28.9 mg, 59% yield. m.p. 110-114 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.76-7.74 (m, 2H), 7.65-7.60 (m, 4H), 7.49-7.46 (m, 2H), 7.41-7.38 (m, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.27-7.19 (m, 5H), 6.91-6.89 (m, 2H), 4.56 (t, *J* = 4.0 Hz, 2H), 4.48 (t, *J* = 4.0 Hz, 2H), 3.59 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.6, 144.8, 144.1, 142.7, 139.9, 133.5, 133.4, 132.8, 131.4, 130.1, 129.3, 129.1, 128.6, 128.5, 128.1, 127.7, 127.6, 127.2, 127.1, 60.1, 56.9, 48.1, 21.7.

HRMS (ESI) m/z: calcd for $[C_{31}H_{27}NO_3S+H]^+$ requires: 494.1784, found: 494.1790.

$\label{eq:constraint} \begin{array}{c} 7.7.61\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.56\\ 5.639\\ 7.7.56\\ 7.56\\ 5.639\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.56\\ 7.7.75\\ 7.7.7\\ 7.7.7\\ 7.7.26\\ 7.7.7\\$

2-phenyl-1-(4-(*m*-tolyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)ethan-1-one (3k)

Compound **3k**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.22$. 8.9 mg, 21% yield. m.p. 111-115 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.76-7.73 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.33-7.29 (m, 1H), 7.23 (d, *J* = 7.5 Hz, 2H), 7.19-7.16 (m, 3H),6.98-6.96 (m, 1H), 6.74-6.72 (m, 2H), 4.51 (t, *J* = 4.0 Hz, 2H), 4.42 (t, *J* = 4.0 Hz, 2H), 3.30 (s, 2H), 2.45 (s, 3H), 2.00 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.0, 147.5, 144.1, 135.2, 134.4, 133.6, 133.3, 132.7, 131.1, 130.1, 129.5, 129.3, 128.5, 127.80, 127.76, 127.0, 126.6, 61.0, 56.2, 47.1, 21.7, 19.3.

HRMS (ESI) m/z: calcd for $[C_{26}H_{25}NO_3S+H]^+$ requires: 432.1628, found: 432.1629.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1-(4-(3-methoxyphenyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3l)

Compound **31**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.13$. 11.3 mg, 25% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74-7.71 (m, 2H), 7.34-7.30 (m, 3H), 7.23-7.19 (m, 3H), 6.95 (ddd, *J* = 8.5, 2.5, 1.0 Hz, 1H), 6.86-6.83 (m, 2H), 6.75 (dt, *J* = 7.5, 1.0 Hz, 1H), 6.64 (dd, *J* = 2.5, 1.5 Hz, 1H), 4.50-4.49 (m, 2H), 4.44-4.42 (m, 2H), 3.77 (s, 3H), 3.51 (s, 2H), 2.44 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.6, 160.0, 145.2, 144.1, 134.0, 133.6, 133.5, 133.2, 130.3, 130.1, 129.3, 128.6, 127.7, 127.1, 120.2, 115.3, 113.5, 60.4, 56.8, 55.5, 47.9, 21.7.

HRMS (ESI) m/z: calcd for $[C_{26}H_{25}NO_4S+H]^+$ requires: 448.1577, found: 448.1575.

7,7,7,38

¹H NMR, 500 MHz, CDCl₃

1-(4-(3-chlorophenyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3m)

Compound **3m**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.28$. 28.3 mg, 63% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.72 (dt, *J* = 9.5, 2.0 Hz, 2H), 7.39 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1H), 7.35-7.32 (m, 3H), 7.25-7.21 (m, 3H), 7.09 (t, *J* = 2.0 Hz, 1H), 7.05 (dt, *J* = 7.5, 1.5 Hz, 1H), 6.86 (dd, *J* = 7.5, 2.5 Hz, 2H), 4.48-4.44 (m, 4H), 3.51 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.9, 144.2, 143.5, 135.1, 134.4, 133.8, 133.5, 133.0, 130.4, 130.1, 129.9, 129.3, 128.7, 128.0, 127.7, 127.2, 126.1, 60.1, 56.8, 48.2, 21.7.

HRMS (ESI) m/z: calcd for [C₂₅H₂₂ClNO₃S+H]⁺ requires: 452.1082, found: 452.1088.

1-(4-(3-bromophenyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3n)

Compound **3n**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.18$. 17.0 mg, 35% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.72 (dt, *J* = 7.5, 2.0 Hz, 2H), 7.54 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.29-7.21 (m, 5H), 7.10 (dt, *J* = 7.5, 1.0 Hz, 1H), 6.86-6.85 (m, 2H), 4.46 (s, 4H), 3.51 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.9, 144.2, 143.4, 134.6, 133.8, 133.5, 133.0, 132.8, 130.8, 130.6, 130.2, 129.3, 128.7, 127.7, 127.3, 126.5, 123.1, 60.1, 56.8, 48.2, 21.7.

HRMS (ESI) m/z: calcd for $[C_{25}H_{22}BrNO_3S+H]^+$ requires: 496.0577, found: 496.0577.

$\begin{array}{c} 7.729\\ 7.725\\ 7.725\\ 7.716\\ 7.77554\\ 7.77554\\ 7.5524\\ 7.5523\\ 7.5534\\ 7.5534\\ 7.55334\\ 7.5533\\ 7.53334\\ 7.5333\\ 7.3505\\ 7.7353\\ 7.2335\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\ 7.2355\\$

2-phenyl-1-(4-(o-tolyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)ethan-1-one (30)

Compound **30**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.12$. 8.1 mg, 20% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74 (dt, *J* = 7.5, 1.5 Hz, 2H), 7.34 (d, *J* = 6.5 Hz, 2H), 7.32-7.30 (m, 1H), 7.23 (d, *J* = 6.5 Hz, 2H), 7.19-7.17 (m, 3H), 6.97-6.96 (m, 1H), 6.74-6.72 (m, 2H), 4.51 (t, *J* = 3.5 Hz, 2H), 4.42 (t, *J* = 3.5 Hz, 2H), 3.29 (s, 2H), 2.45 (s, 3H), 1.99 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.0, 147.5, 144.1, 135.2, 134.4, 133.6, 133.3, 132.6, 131.1, 130.1, 129.5, 129.3, 128.5, 127.80, 127.75, 127.0, 126.6, 61.0, 56.2, 47.1, 21.7, 19.3.

HRMS (ESI) m/z: calcd for [C₂₆H₂₅NO₃S+H]⁺ requires: 432.1628, found: 432.1628.

1-(4-(2-chlorophenyl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3p)

Compound **3p**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.18$. 20.6 mg, 46% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74 (dt, *J* = 9.0, 2.0 Hz, 2H), 7.44 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.38-7.33 (m, 3H), 7.30 (td, *J* = 8.0, 1.0 Hz, 1H), 7.23-7.17 (m, 3H), 7.08 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.82-6.80 (m, 2H), 4.51 (s, 4H), 3.36 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 194.4, 144.1, 144.0, 135.4, 133.6, 133.1, 132.3, 132.2, 130.9, 130.4, 130.1, 129.6, 129.4, 128.5, 127.7, 127.6, 127.1, 60.3, 56.2, 47.3, 21.7.

HRMS (ESI) m/z: calcd for $[C_{25}H_{22}CINO_3S+H]^+$ requires: 452.1082, found: 452.1080.

1-(4-(naphthalen-2-yl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3q)

Compound **3q**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.22$. 7.8 mg, 17% yield. m.p. 54-58 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.89-7.86 (m, 2H), 7.79-7.77 (m, 1H), 7.76-7.74 (m, 2H), 7.63 (s, 1H), 7.58-7.53 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.27-7.25 (m, 1H), 7.18-7.15 (m, 3H), 6.81-6.79 (m, 2H), 4.61 (t, *J* = 4.0 Hz, 2H), 4.49 (t, *J* = 4.0 Hz, 2H), 3.51 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.7, 145.2, 144.1, 133.6, 133.4, 133.2, 133.0, 130.1, 130.0, 129.3, 129.0, 128.6, 128.3, 128.0, 127.79, 127.75, 127.5, 127.3, 127.1, 125.0, 60.3, 57.0, 48.1, 21.7.

HRMS (ESI) m/z: calcd for [C₂₉H₂₅NO₃S+H]⁺ requires: 468.1628, found: 468.1642.

2-phenyl-1-(4-(thiophen-2-yl)-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)ethan-1-one (3r)

Compound **3r**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.17$. 5.4 mg, 13% yield. m.p. 133-136 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.70-7.68 (m, 2H), 7.48 (dd, *J* = 5.0, 1.0 Hz, 1H), 7.37 (dd, *J* = 4.0, 1.0 Hz, 1H), 7.33-7.29 (m, 4H), 7.28-7.25 (m, 1H), 7.12-7.10 (m, 2H), 7.07 (dd, *J* = 5.0, 4.0 Hz, 1H), 4.64 (t, *J* = 4.0 Hz, 2H), 4.52 (t, *J* = 4.0 Hz, 2H), 3.76 (s, 2H), 2.42 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 194.4, 144.3, 138.4, 133.25, 133.22, 133.15, 131.5, 130.7, 130.2, 129.5, 128.9, 127.6, 127.39, 127.38, 127.2, 58.8, 56.5, 49.0, 21.7. HRMS (ESI) m/z: calcd for [C₂₃H₂₁NO₃S₂+H]⁺ requires: 424.1036, found: 424.1036. ^{IIX-7-96.1.fid}

1-(1-((4-bromophenyl)sulfonyl)-4-phenyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2phenylethan-1-one (3t)

Compound **3t**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.33$. 30.6 mg, 63% yield. m.p. 133-137 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.71-7.67 (m, 4H), 7.45-7.40 (m, 3H), 7.24-7.18 (m, 5H), 6.84-6.82 (m, 2H), 4.52 (t, *J* = 4.0 Hz, 2H), 4.43 (t, *J* = 4.0 Hz, 2H), 3.50 (s, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.4, 145.1, 135.7, 133.3, 132.83, 132.77, 132.5, 130.0, 129.3, 129.2, 129.1, 128.6, 128.3, 127.9, 127.2, 60.3, 56.9, 47.9.

HRMS (ESI) m/z: calcd for $[C_{24}H_{20}BrNO_3S+H]^+$ requires: 482.0420, found: 482.0421.

1-(4-(4-bromophenyl)-1-((4-bromophenyl)sulfonyl)-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3u)

Compound **3u**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.32$. 40.7 mg, 73% yield. m.p. 112-116 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.68 (s, 4H), 7.54-7.52 (m, 2H), 7.24-7.21 (m, 3H), 7.06 (dt, *J* = 9.0, 2.0 Hz, 2H), 6.87-6.85 (m, 2H), 4.48-4.46 (m, 2H), 4.43-4.41 (m, 2H), 3.52 (s, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 195.9, 143.5, 135.6, 133.2, 133.0, 132.8, 132.3, 131.2, 129.5, 129.2, 129.0, 128.7, 128.4, 127.3, 124.3, 59.9, 56.9, 48.2.

HRMS (ESI) m/z: calcd for $[C_{24}H_{19}Br_2NO_3S+H]^+$ requires: 559.9525, found: 559.9547.

1-(1-((4-nitrophenyl)sulfonyl)-4-phenyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2phenylethan-1-one (3v)

Compound **3v**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.17$. 32.7 mg, 73% yield. m.p. 137-140 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.38 (dt, J = 9.0, 2.0 Hz, 2H), 8.02 (dt, J = 9.0, 2.0 Hz, 2H), 7.46-7.41 (m, 3H), 7.21-7.18 (m, 5H), 6.83-6.81 (m, 2H), 4.56 (t, J = 4.0 Hz, 2H), 4.47 (t, J = 4.0 Hz, 2H), 3.50 (s, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.3, 150.4, 144.8, 142.7, 133.2, 132.7, 132.3, 130.2, 129.3, 128.71, 128.67, 128.0, 127.3, 124.8, 60.4, 57.0, 48.0.

HRMS (ESI) m/z: calcd for [C₂₄H₂₀N₂O₅S+H]⁺ requires: 449.1166, found: 449.1168.

2-phenyl-1-(4-phenyl-1-(phenylsulfonyl)-2,5-dihydro-1*H*-pyrrol-3-yl)ethan-1-one (3w)

Compound **3w**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.18$. 27.8 mg, 69% yield. m.p. 112-116 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.86-7.84 (m, 2H), 7.63 (tt, *J* = 7.5, 2.0 Hz, 1H), 7.57-7.54 (m, 2H), 7.45-7.39 (m, 3H), 7.23-7.16 (m, 5H), 6.84 (dd, *J* = 6.5, 2.0 Hz, 2H), 4.54 (t, *J* = 4.0 Hz, 2H), 4.47 (t, *J* = 4.0 Hz, 2H), 3.48 (s, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.4, 145.3, 136.6, 133.4, 133.2, 133.0, 132.6, 129.9, 129.5, 129.3, 129.1, 128.6, 127.9, 127.6, 127.1, 60.4, 56.9, 47.9.

HRMS (ESI) m/z: calcd for $[C_{24}H_{21}NO_3S+H]^+$ requires: 404.1315, found: 404.1313.

2-phenyl-1-(4-phenyl-1-(*m*-tolylsulfonyl)-2,5-dihydro-1*H*-pyrrol-3-yl)ethan-1-one (3x)

Compound **3x**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.21$. 23.7 mg, 57% yield. m.p. 119-122 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.66-7.63 (m, 2H), 7.45-7.39 (m, 5H), 7.23-7.17 (m, 5H), 6.84 (dd, *J* = 7.5, 2.0 Hz, 2H), 4.53 (t, *J* = 4.0 Hz, 2H), 4.46 (t, *J* = 4.0 Hz, 2H), 3.49 (s, 2H), 2.44 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.5, 145.4, 139.7, 136.4, 134.0, 133.4, 133.0, 132.7, 129.9, 129.3, 129.1, 128.6, 128.0, 127.1, 124.8, 60.3, 56.8, 47.9, 21.6.

HRMS (ESI) m/z: calcd for [C₂₅H₂₃NO₃S+H]⁺ requires: 418.1471, found: 418.1476.

1-(4-cyclopropyl-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-2-phenylethan-1-one (3y)

Compound **3y**: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.27$. 31.5 mg, 83% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.65-7.63 (m, 2H), 7.34-7.30 (m, 4H), 7.28-7.25 (m, 1H), 7.14-7.12 (m, 2H), 4.37 (t, *J* = 4.0 Hz, 2H), 3.87 (t, *J* = 4.0 Hz, 2H), 3.76 (s, 2H), 2.72-2.66 (m, 1H), 2.43 (s, 3H), 0.93-0.89 (m, 2H), 0.67-0.63 (m, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 194.3, 154.2, 144.0, 133.3, 130.0, 129.7, 129.5, 128.8, 127.5, 127.2, 55.9, 54.9, 49.2, 21.7, 11.4, 8.2.

HRMS (ESI) m/z: calcd for $[C_{22}H_{23}NO_3S+H]^+$ requires: 382.1471, found: 382.1471.

7,7654 7,7654 7,7654 7,5654 7,7654 7,5654 7,7335 7,7356 7,7335 7,7256 7,7335 7,7256 7,7335 7,7256 7,7335 7,7256 7,7335 7,7256 7,7256 7,7256 7,7256 7,7256 7,7256 7,7257 7,7256 7,7256 7,7256 7,7256

2-phenyl-1-(4-phenyl-2,5-dihydrofuran-3-yl)ethan-1-one (8)

Compound 8: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.41$. 12.4 mg, 47% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.46-7.43 (m, 3H), 7.32-7.30 (m, 2H), 7.26-7.19 (m, 3H), 6.94-6.93 (m, 2H), 5.04 (s, 4H), 3.62 (s, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 196.4, 147.7, 134.2, 133.8, 132.4, 129.5, 129.4, 129.0, 128.6, 128.1, 127.0, 81.0, 78.3, 48.2.

HRMS (ESI) m/z: calcd for [C₁₈H₁₆O₂+H]⁺ requires: 265.1223, found: 265.1224.

dimethyl 3-phenyl-4-(2-phenylacetyl)cyclopent-3-ene-1,1-dicarboxylate (9)

HX-7-92.1.fid

Compound 9: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.27$. 15.5 mg, 41% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.41-7.38 (m, 3H), 7.29-7.27 (m, 2H), 7.24-7.16 (m, 3H), 6.94-6.92 (m, 2H), 3.75 (s, 6H), 3.52-3.51 (m, 4H), 3.44 (t, *J* = 2.0 Hz, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 198.9, 171.8, 148.1, 135.8, 135.4, 134.2, 129.5,

129.1, 128.8, 128.5, 128.0, 126.8, 56.9, 53.2, 48.3, 47.5, 43.0.

HRMS (ESI) m/z: calcd for $[C_{23}H_{22}O_5+H]^+$ requires: 379.1540, found: 379.1541.

7.412 7.4209 7.4209 7.3381 7.3385 7.3376 7.3376 7.3376 7.3376 7.3375 7.7385 7.7385 7.7385 7.7385 7.7385 7.7385 7.7385 7.7385 7.7385 7.7385 7.7385 7.7385 7.7385 7.7385 7.72857.728

6. Gram scale experiment of 2a and 3a

6.1 Gram scale experiment of 2a

Under N₂ atmosphere, dry 1,2-dichloroethane (DCE) (25 mL, 0.1 M) was added to a mixture of **1a** (1.044 g, 2.5 mmol), Sc(OTf)₃ (123.2 mg, 0.25 mmol). The reaction system was stirred at 80 °C for 10 hours in oil bath until **1a** was completely consumed by TLC monitoring. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/ethyl acetate, 8/1) to give the product **2a** (0.5572 g, 56% yield) as a yellow solid.

6.2 Gram scale experiment of 3a

Under N₂ atmosphere, 2,2,2-Trifluoroethanol (TFE) (50 mL, 0.05 M) was added to a mixture of **1a** (1.047 g, 2.5 mmol), Sc(OTf)₃ (123.4 mg, 0.25 mmol). The reaction system was stirred at 80 °C for 10 hours in oil bath until **1a** was completely consumed by TLC monitoring. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/ethyl acetate, 8/1) to give the product **3a** (0.6316 g, 60% yield) as a yellow solid.

7. Product transformations

3-phenyl-4-(phenylethynyl)-1-tosyl-1*H*-pyrrole (10)

Under air atmosphere, toluene (2 mL, 0.05 M) was added to a mixture of **2a** (40.1 mg, 0.1 mmol) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 68.3 mg, 0.3 mmol) in a dried reaction tube. The reaction system was stirred at 120 °C for 3 hours in parallel reactor until **2a** was completely consumed by TLC monitoring. Then the system was filtered through celite, and washed with ethyl acetate. The mixture was concentrated and purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 8/1) to give the product **10** (33.4 mg, 84% yield) as a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.40$. 33.4 mg, 84% yield. m.p. 107-111 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.84-7.82 (m, 2H), 7.76-7.74 (m, 2H), 7.49 (d, J = 2.5 Hz, 1H), 7.46-7.44 (m, 2H), 7.42-7.39 (m, 2H), 7.35-7.31 (m, 7H), 2.42 (s, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 145.7, 135.5, 132.8, 131.4, 130.33, 130.28, 128.6, 128.5, 128.3, 127.6, 127.3, 127.2, 124.9, 123.3, 117.4, 109.1, 92.5, 82.5, 21.8. **HRMS** (ESI) m/z: calcd for [C₂₅H₁₉NO₂S+H]⁺ requires: 398.1209, found: 398.1212.

3-phenyl-4-(phenylethynyl)-1*H*-pyrrole (11)

LiAlH₄ (20.1 mg, 0.5 mmol) was added to a solution of **2a** (40.0 mg, 0.1 mmol) dissolved in THF (2 mL) in a dried reaction tube. The reaction system was stirred at 50 °C for 20 hours in parallel reactor until **2a** was completely consumed by TLC monitoring. Then the mixture was extracted with ethyl acetate and water. The organic phase was dried over anhydrous Na₂SO₄. The crude residue was obtained after evaporating the solvent under vacuum and was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 8/1) to give the product **11** (5.2 mg, 21% yield) as a yellow oil.

Compound 11: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.23$. 5.2 mg, 21% yield.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.31 (broad, 1H), 7.83-7.81 (m, 2H), 7.49-7.46 (m, 2H), 7.42-7.38 (m, 2H), 7.34-7.25 (m, 4H), 7.14 (t, *J* = 2.5 Hz, 1H), 6.97 (t, *J* = 2.5 Hz, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 134.9, 131.3, 128.5, 128.4, 127.6, 127.1, 126.4, 126.3, 124.4, 123.6, 115.8, 103.4, 90.3, 84.9.

HRMS (ESI) m/z: calcd for $[C_{18}H_{13}N+H]^+$ requires: 244.1121, found: 244.1122.

2-phenyl-1-(4-phenyl-1-tosyl-1*H*-pyrrol-3-yl)ethan-1-one (12)

Under air atmosphere, toluene (2 mL, 0.05 M) was added to a mixture of **3a** (41.9 mg, 0.1 mmol) and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 68.3 mg, 0.3 mmol) in a dried reaction tube. The reaction system was stirred at 120 °C for 3 hours in parallel reactor until **3a** was completely consumed by TLC monitoring. Then the system was filtered through celite, and washed with ethyl acetate. The mixture was concentrated and purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 8/1) to give the product **12** (26.8 mg, 64% yield) as a yellow solid. Compound **12**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 8/1, $R_f = 0.27$. 26.8 mg, 64% yield. m.p. 115-119 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.83-7.80 (m, 3H), 7.36-7.27 (m, 9H), 7.25-7.22 (m, 1H), 7.18-7.16 (m, 2H), 7.12 (d, *J* = 2.0 Hz, 1H), 3.98 (s, 2H), 2.45 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 193.3, 146.2, 135.0, 134.5, 132.9, 130.5, 129.9,

129.6, 129.2, 128.7, 128.2, 127.7, 127.4, 127.0, 126.29, 126.25, 120.0, 47.8, 21.8.

HRMS (ESI) m/z: calcd for $[C_{25}H_{21}NO_3S+H]^+$ requires: 416.1315, found: 416.1313.

2-phenyl-1-(4-phenyl-1H-pyrrol-3-yl)ethan-1-one (13)

3a, 41.8 mg, 0.1 mmol

13, 12.8 mg, 49% yield

Under N₂ atmosphere, Lithium bis(trimethylsilyl)amide (LiHMDS) (0.24 mL, 1.0 M in THF, 0.24 mmol) was added dropwise to a mixture of **3a** (41.8 mg, 0.1 mmol) dissolved in THF (1 mL) in a 0 °C ice bath. Then, the ice bath was removed and the reaction system was stirred at 70 °C for 10 hours in parallel reactor until **3a** was completely consumed by TLC monitoring. After that, the mixture was extracted with ethyl acetate and water. The organic phase was dried over anhydrous Na₂SO₄. The crude residue was obtained after evaporating the solvent under vacuum and was purified by flash column chromatography (eluent: petroleum ether/ethyl acetate = 4/1) to give the product **13** (12.8 mg, 49% yield) as a yellow powder.

Compound 13: a yellow powder. Column chromatography, eluent: petroleum ether/ethyl acetate, 4/1, $R_f = 0.16$. 12.8 mg, 49% yield. m.p. 198-202 °C.

¹**H NMR** (500 MHz, DMSO-*d*₆) δ 11.62 (broad, 1H), 7.91 (dd, *J* = 3.0, 2.0 Hz, 1H), 7.37-7.35 (m, 2H), 7.30-7.24 (m, 6H), 7.21-7.16 (m, 2H), 6.94 (t, *J* = 2.0 Hz, 1H), 4.05 (s, 2H).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 192.5, 136.5, 135.5, 129.4, 128.8, 128.2, 127.9, 127.5, 126.2, 125.8, 124.9, 121.1, 120.1, 46.5.

HRMS (ESI) m/z: calcd for [C₁₈H₁₅NO+H]⁺ requires: 262.1226, found: 262.1226.

2-phenyl-1-(4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)ethan-1-one oxime (14)

3a, 41.8 mg, 0.1 mmol

14, 31.1 mg, 72 % yield, *E/Z*=1:3

To a magnetically stirred solution of **3a** (41.8 mg, 0.1 mmol) in methanol (1 mL) was added hydroxylamine hydrochloride (13.8 mg, 0.2 mmol), and NaOAc (16.8 mg, 0.2 mmol) at room temperature. The reaction mixture stirred at 90 °C for 10 hours in parallel reactor. After reaction was monitored by TLC, the solvent was evaporated upon completion, quenched with water, extracted with ethyl acetate and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure and purification of the crude by a flash column chromatography (eluent: petroleum ether/ethyl acetate = 4/1) to give the inseparable mixture of diastereomers (*E*/*Z*=1:3) **14** (31.1 mg, 72%)

Compound 14: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 4/1, $R_f = 0.25$. 31.1 mg, 72% yield. m.p. 116-119 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 8.52 (s, 0.25H), 8.45 (s, 0.75H), 7.72-7.70 (m, 2H), 7.33-7.24 (m, 5H), 7.14-7.10 (m, 3H), 7.02-6.99 (m, 2H), 6.74-6.72 (m, 2H), 4.43-4.39 (m, 4H), 3.58 (s, 2H), 2.43 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 154.6, 143.8, 137.5, 135.9, 133.7, 133.3, 130.0, 128.9, 128.6, 128.38, 128.36, 128.02, 127.99, 127.6, 126.3, 59.7, 57.9, 31.8, 21.7.
HRMS (ESI) m/z: calcd for [C₂₅H₂₄N₂O₃S+H]⁺ requires: 433.1580, found: 433.1574.

2-phenyl-1-(4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)ethan-1-ol (15)

3a, 42.3 mg, 0.1 mmol

15, 42.8 mg, equivalent yield

To a solution of the **3a** (42.3 mg, 0.1 mmol) in dry MeOH (1 mL) was added NaBH₄ (8.0 mg, 0.2 mmol) and the reaction mixture stirred at 50 °C for 10 hours in parallel reactor. After reaction was monitored by TLC, the solvent was evaporated upon completion, quenched with water, extracted with ethyl acetate and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure and purification of the crude by a flash column chromatography (eluent: petroleum ether/ethyl acetate = 4/1) to give the product **15** (42.8 mg, equivalent yield).

Compound 15: a yellow oil. Column chromatography, eluent: petroleum ether/ethyl acetate, 4/1, $R_f = 0.18$. 42.8 mg, equivalent yield.

¹**H NMR** (500 MHz, Chloroform-*d*, TMS) *δ* 7.80-7.78 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.28-7.26 (m, 3H), 7.23-7.21 (m, 3H), 7.03-7.01 (m, 2H), 6.91-6.90 (m, 2H), 4.65 (dd, *J* = 8.0, 6.0 Hz, 1H), 4.53-4.48 (m, 1H), 4.44-4.39 (m, 3H), 2.87-2.78 (m, 2H), 2.45 (s, 3H), 1.84 (broad, 1H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 143.8, 137.1, 134.1, 133.9, 133.7, 133.0, 130.0, 129.3, 128.7, 128.6, 128.3, 127.72, 127.70, 127.0, 68.5, 58.5, 54.6, 42.2, 21.7.

HRMS (ESI) m/z: calcd for [C₂₅H₂₅NO₃S+H]⁺ requires: 420.1628, found: 420.1623.

3-phenyl-2-(4-phenyl-1-tosyl-2,5-dihydro-1*H*-pyrrol-3-yl)-1*H*-indole (16)

Under nitrogen atmosphere, a flame-dried 15 mL vial charged with a stir bar was subsequently added phenylhydrazine (43.8 mg, 0.4 mmol) and acetic acid (1 mL). The mixture was heated to 50 °C before **3a** (41.6 mg, 0.1 mmol) was added in one portion. Then the reaction was stirred at 100 °C for 24 hours in parallel reactor. Upon completion, the reaction mixture was quenched with NaHCO₃ and extracted with ethyl acetate and water. The combined organic layers were washed with saturated aqueous NaCl solution, dried over Na₂SO₄, and concentrated under vacuum. The residue was then purified by a flash column chromatography (eluent: petroleum ether/ethyl acetate = 5/1) to give the product **16** (29.4 mg, 60% yield).

Compound **16**: a yellow solid. Column chromatography, eluent: petroleum ether/ethyl acetate, 5/1, $R_f = 0.27$. 29.4 mg, 60% yield. m.p. 150-154 °C.

¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.78 (s, 1H), 7.62-7.60 (m, 3H), 7.36-7.33 (m, 5H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.27-7.23 (m, 3H), 7.20-7.16 (m, 4H), 7.12-7.09 (m, 1H), 4.54 (t, *J* = 4.0 Hz, 2H), 4.18 (t, *J* = 4.0 Hz, 2H), 2.46 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 143.8, 135.7, 134.4, 134.2, 133.6, 132.8, 130.0, 129.6, 129.0, 128.9, 128.7, 127.79, 127.77, 127.69, 127.0, 126.7, 124.5, 123.4, 120.5, 119.7, 118.2, 111.1, 57.7, 57.5, 21.7.

HRMS (ESI) m/z: calcd for [C₃₁H₂₆N₂O₂S+H]⁺ requires: 491.1788, found: 491.1787.

S149

8. Control experiments and isotopic labeling experiments

8.1 Control experiments

Under N₂ atmosphere, 2,2,2-Trifluoroethanol (TFE) (1 mL, 0.1 M) was added to a mixture of **1a** (41.9 mg, 0.1 mmol), Sc(OTf)₃ (4.8 mg, 0.01 mmol) and 3 Å MS (40 mg). The reaction system was stirred at 80 °C for 10 hours in oil bath and monitored by TLC. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/ethyl acetate, 8/1) to give the product **3a** (8.8 mg, 21% yield) as a yellow solid.

Under N₂ atmosphere, 2,2,2-Trifluoroethanol (TFE) (2 mL, 0.05 M) was added to a mixture of **2a** (39.9 mg, 0.1 mmol), Sc(OTf)₃ (5.0 mg, 0.01 mmol) and H₂O (18 μ L, 1.0 mmol). The reaction system was stirred at 80 °C for 10 hours in oil bath and monitored by TLC. Unfortunately, we found that no reaction occurred.

8.2 Isotopic labeling experiments

Procedure for 3a-d: Under N₂ atmosphere, 2,2,2-Trifluoroethanol (TFE) (1 mL, 0.1 M) and D₂O (0.1 mL) was added to a mixture of **1a** (41.9 mg, 0.1 mmol), Sc(OTf)₃ (5.0 mg, 0.01 mmol). The reaction system was stirred at 80 °C for 20 hours in oil bath and monitored by TLC. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/ethyl acetate, 8/1) to give the product **3a-d** (12.4 mg, 30% yield) as a yellow solid. The percentage of deuterium incorporation was measured by ¹H NMR.

Procedure for 3a-*d***:** Under N₂ atmosphere, 2,2,2-Trifluoroethanol (TFE) (1 mL, 0.1 M) and D₂O (0.2 mL) was added to a mixture of **1a** (41.8 mg, 0.1 mmol), Sc(OTf)₃ (5.1 mg, 0.01 mmol). The reaction system was stirred at 80 °C for 20 hours in oil bath and monitored by TLC. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/ethyl acetate, 8/1) to give the product **3a-***d* (9.8 mg, 24% yield) as a yellow solid. The percentage of deuterium incorporation was measured by ¹H NMR.

¹H NMR, 500 MHz, CDCI₃

Procedure for 3a-¹⁸*O*: Under N₂ atmosphere, 2,2,2-Trifluoroethanol (TFE) (2 mL, 0.1 M) was added to a mixture of **1a** (41.8 mg, 0.1 mmol), Sc(OTf)₃ (5.1 mg, 0.01 mmol) and H₂¹⁸O (20 μ L, 1.0 mmol). The reaction system was stirred at 80 °C for 10 hours in oil bath and monitored by TLC. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/ethyl acetate, 8/1) to give the product **3a** (25.0 mg, 60% yield) as a yellow solid, in which the ¹⁸O content was *ca*. 83% (detected by HRMS; calcd for [C₂₅H₂₃O₂¹⁸ONS+H]⁺ requires: 420.1514, found: 420.1511).

9. X-ray crystal data of compound 2x

Crystal Growth Process: The compound 2x was synthesized according to General **Procedure B** and then dissolved in dichloromethane to obtain a homogeneous solution. An appropriate amount of petroleum ether was added, and the solvent evaporation method was utilized to allow crystal growth at room temperature.

A suitable crystal was selected and put on a Super Nova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 170.00(10) K during data collection.

View of a molecule of 7_72 with 50% probability thermal ellipsoids.

CCDC Number	2414218
Identification code	7_72
Empirical formula	$C_{25}H_{21}NO_2S$
Formula weight	399.49
Temperature/K	170.00(10)
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	5.18890(10)
b/Å	17.9266(5)
c/Å	21.5874(6)
$\alpha/^{\circ}$	90

β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2008.05(9)
Z	4
$\rho_{calc}g/cm^3$	1.321
μ/mm^{-1}	1.596
F(000)	840.0
Crystal size/mm ³	$0.16 \times 0.12 \times 0.11$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/ ^c	6.408 to 147.172
Index ranges	$\textbf{-2} \leq h \leq 6, \textbf{-22} \leq k \leq 21, \textbf{-22} \leq l \leq 26$
Reflections collected	7771
Independent reflections	3959 [$R_{int} = 0.0371$, $R_{sigma} = 0.0541$]
Data/restraints/parameters	3959/0/263
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0457, wR_2 = 0.1135$
Final R indexes [all data]	$R_1 = 0.0508, wR_2 = 0.1194$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.31
Flack parameter	0.003(16)

10. X-ray crystal data of compound 3a

Crystal Growth Process: The compound **3a** was synthesized according to **General Procedure C** and then dissolved in dichloromethane to obtain a homogeneous solution. An appropriate amount of petroleum ether was added, and the solvent evaporation method was utilized to allow crystal growth at room temperature.

A suitable crystal was selected and put on a diffractometer. The crystal was kept at 100.00 K during data collection.

View of a molecule of 6_148 with 50% probability thermal ellipsoids.

CCDC number	2414219
Identification code	6_148
Empirical formula	$C_{25}H_{23}NO_3S$
Formula weight	417.50
Temperature/K	100.00
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	13.6274(4)
b/Å	13.9439(4)
c/Å	22.4596(7)
α/°	90
β/°	99.9330(10)
γ/°	90
Volume/Å ³	4203.8(2)
Ζ	8
$\rho_{calc}g/cm^3$	1.319
μ/mm^{-1}	1.583
F(000)	1760.0
Crystal size/mm ³	$0.16 \times 0.14 \times 0.12$

Radiation	$CuK\alpha \ (\lambda = 1.54178)$	
20 range for data collection/° 6.584 to 136.512		
Index ranges	$-16 \le h \le 15, -16 \le k \le 16, -27 \le l \le 27$	
Reflections collected	62383	
Independent reflections	7655 [$R_{int} = 0.0448, R_{sigma} = 0.0268$]	
Data/restraints/parameters	7655/0/543	
Goodness-of-fit on F ²	1.171	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0506, wR_2 = 0.1311$	
Final R indexes [all data]	$R_1 = 0.0556, wR_2 = 0.1334$	
Largest diff. peak/hole / e Å ⁻³ 0.44/-0.55		

11. References

- [1] X.-Y. Yang, J.-M. Yang, B. Wu, Org. Lett. 2024, 26, 1105.
- [2] Z. Fan, S.-F. Ni, J.-Y. Pang, et al. J. Org. Chem. 2022, 87, 3066.
- [3] V. K. Vyas, B. M. Bhanage, Tetrahedron: Asymmetry, 2017, 28, 974.
- [4] X.-W. Zhang, M.-H. Zhu, H.-X. Zeng, et al. Angew. Chem. Int. Ed. 2021, 60, 27225.
- [5] F. Cambeiro, S. López, J. A. Varela, et al. Angew. Chem. Int. Ed. 2014, 53, 5959.