Supporting Information (SI)

HFIP-promoted synthesis of bicyclo[2.1.1]-hexanes through formal [$2\pi+2\sigma$] cycloaddition of bicyclo[1.1.0]butanes with α -cyano chalcones

Kai Hu,‡a Haijian Wu,‡a,b Manman Sun,*a Jing Zhang,a Zhiming Wang,a Jianguo Yang,a Gangguo Zhub and Guo-Bo Huang*a

E-mail: sunmm@tzc.edu.cn gbhuang973@163.com

^a Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.

^b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.

Content

General information	S3
Table S1. Optimization of solvents	S3
General procedure for the synthesis of α -cyano chalcones	S4
General procedure for preparation of products 3	S4
Procedure for scale-up synthesis of compound 3aa	S4
Control experiment	S4
Procedure for preparation of compound 6	S5
Procedure for preparation of compound 7	S5
Procedure for preparation of compound 8	S8
Characterization data of products	S8
Inapplicable substrates	S21
Unsuccessful transformations	S22
References	S22
NMR spectra of the related compounds	S23
X-Ray crystallographic data	S61

General information

 1 H and 13 C NMR spectra were recorded on a Bruker Avance 400 instrument at 400 (1 H NMR), 100 (13 C NMR) as well as 376 MHz (19 F NMR). Tetramethylsilane (TMS) and CDCl₃ (7.26 ppm for 1 H NMR, 77.0 ppm for 13 C NMR) or THF-d8 (1.72 ppm and 3.58 ppm for 1 H NMR, 67.2 ppm and 25.3 ppm for 13 C NMR) were used as references. Data for 1 H NMR were reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (Hz), and integration. Data for 13 C NMR were reported as ppm. High-resolution mass spectra (HRMS) analyses were performed by the electrospray ionization (ESI) method on a Waters SYNAPT G2-Si mass spectrometer with a Q-TOF analyzer. Melting points were determined using a X-4 digital micro melting point apparatus. Thin-layer chromatography (TLC) was performed, and visualization of the compounds was accomplished with UV light (254 nm). Flash column chromatography was performed on silica gel (200–300 mesh). Known BCBs 1^{1} and α -cyano chalcones 2^{2} were prepared according to literature procedures. Other purchased reagents and solvents were used without further purification, if not stated otherwise.

Table S1. Optimization of solvents^a

Entry	1a:2a	Solvent	Yield $(\%)^b$
1	1:1	toluene/HFIP (4:1)	50
2	1:1	p-xylene/HFIP (4:1)	24
3	1:1	CF ₃ Ph/HFIP (4:1)	40
4	1:1	MeCN/HFIP (4:1)	42
5	1:1	DCE/HFIP (4:1)	26
6	1:1	THF/HFIP (4:1)	43
7	1:1	1,4-dioxane/HFIP (4:1)	30
8	1:1	DMF/HFIP (4:1)	8

^a Reaction conditions: **1a**, **2a** (0.2 mmol, 1.0 eq.) in solvent (4.0 mL) at room temperature for 2 h.

^b Isolated yields with >20:1 dr.

General procedure for the synthesis of α -cyano chalcones

$$R^4$$
 $CN + R^3$ H piperidine R^4 CN R^3

To a round-bottom flask with a magnetic stirring bar was added cyanoketone (10 mmol, 1.0 eq.), aldehyde (10 mmol, 1.0 eq.), piperidine (8.5 mg, 1.0 mmol, 0.1 eq.) and EtOH (40 mL). The reaction mixture was heated in an oil bath to reflux overnight. Upon completion, the reaction mixture was concentrated under the reduced pressure. The crude product was purified by recrystallisation from EtOH to afford the α -cyano chalcones 2.

General procedure for preparation of products 3

$$R^{1}$$
 $CO_{2}R^{2}$
 R^{3}
 CN
 R^{3}
 CN
 R^{3}
 CN
 R^{4}
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}

BCB 1 (0.4 mmol, 2.0 eq.) was added to a mixture of α -cyano chalcone 2 (0.2 mmol, 1.0 eq.) and toluene/HFIP (3.0 mL:1.0 mL) under room temperature. The resulting mixture was stirred for 2 hours until chalcone was used up by TLC monitoring. The solvent was removed in vacuo on a rotary evaporator and the residue was purified by silica gel column chromatography (PE/EA = 20/1) to give the pure product 3.

Procedure for scale-up synthesis of compound 3aa

BCB **1a** (1.88 g, 10.0 mmol, 2.0 eq.) was added to a mixture of α -cyano chalcone **2a** (1.17 g, 5.0 mmol, 1.0 eq.) and toluene/HFIP (75 mL:25 mL) under room temperature. The resulting mixture was stirred for 2 hours until chalcone was used up by TLC monitoring. The solvent was removed in vacuo on a rotary evaporator and the residue was purified by silica gel column chromatography (PE/EA = 20/1) to give the pure product **3aa** in 80% yield (1.68 g) as a white solid.

Control experiment

$$\begin{array}{c} \text{CO}_2\text{Me} \\ \text{Ph} \\ \hline \\ \textbf{1a} \end{array} \begin{array}{c} \text{toluene/HFIP (3:1)} \\ \text{Ph} \\ \hline \\ \textbf{4} \end{array} \begin{array}{c} \text{Ph} \\ \text{CO}_2\text{Me} \\ \text{Ph} \\ \textbf{4} \end{array} \begin{array}{c} \text{CO}_2\text{Me} \\ \text{Ph} \\ \textbf{5} \end{array} \begin{array}{c} \text{CO}_2\text{Me} \\ \text{CO}_2\text{Me} \\ \text{CO}_2\text{Me} \end{array}$$

A mixture of BCB **1a** (75.2 mg, 0.4 mmol) and toluene/HFIP (3.0 mL:1.0 mL) was stirred for 10 hours under room temperature. The solvent was removed in vacuo on a rotary evaporator and the residue was purified by silica gel column chromatography (PE/EA = 20/1) to give product **4** (26.3 mg, 35% yield), product **5** (5.3 mg, 7% yield) and unreacted **1a** (30.1 mg, 40%). Physical and spectral properties of products **4** and **5** were identical to those previously reported in literature.³

Procedure for preparation of compound 6

An oven-dried 25 mL Schlenk tube was charged with 3aa (84.2 mg, 0.2 mmol, 1.0 eq.) and dry DCM (2.0 mL) under N₂. The solution was cooled to -80 °C in a dry alcohol bath. A solution of DIBAL-H in toluene (0.4 mL, 0.4 mmol, 2.0 eq., 1.0 M) of was added dropwise to the reaction mixture over 10 min. After stirring at -80 °C for 0.5 h, the reaction was quenched with saturated NH₄Cl aqueous solution (5 mL). The aqueous layer was extracted with ethyl acetate (10 mL × 3), the combined organic layer was dried over Na₂SO₄, filtered and concentrated under the reduced pressure. The residue was purified by silica gel column chromatography (PE/EA = 8/1) to afford product 6 (67.7 mg, 86% yield) as a white solid.

Procedure for preparation of compound 7

An oven-dried 25 mL Schlenk tube was charged with **3aa** (84.2 mg, 0.2 mmol, 1.0 eq.) and dry DCM (2.0 mL) under N_2 . The solution was cooled to -45 °C in a dry alcohol bath. A solution of DIBAL-H in toluene (0.8 mL, 0.8 mmol, 4.0 eq., 1.0 M) of was added dropwise to the reaction mixture over 10 min. After stirring at -45 °C for 0.5 h, the reaction was quenched with saturated NH₄Cl aqueous solution (5 mL). The aqueous layer was extracted with ethyl acetate (10 mL \times 3), the combined organic layer was dried over Na_2SO_4 , filtered and concentrated under the reduced pressure. The residue was purified by silica gel column chromatography (PE/EA = 5/1) to afford product **7** (63.2 mg, 80% yield) as a white solid.

Procedure for preparation of compound 8

An oven-dried 25 mL Schlenk tube was charged with **3aa** (84.2 mg, 0.2 mmol, 1.0 eq.), Pd/C (64.0 mg, 10 wt %) and MeOH (4.0 mL). The mixture was degassed, and charged with hydrogen balloon and stirred at 50 °C for 48 h. Then the mixture was filtered by celite, concentrated and purified by silica gel column chromatography (PE/EA = 10/1) to give the product **8** (60.9 mg, 72% yield) as a colorless oil.

Characterization data of products

Methyl 3-benzoyl-3-cyano-2,4-diphenylbicyclo[2.1.1]hexane-1-carboxylate (3aa): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3aa (white solid, 71.7 mg, 0.17 mmol, 85% yield). M.p.: 120 – 121 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 6H), 7.29 – 7.17 (m, 7H), 7.12 (t, J = 7.8 Hz, 2H), 4.99 (s, 1H), 3.64 (s, 3H), 3.21 (dd, J = 9.9, 8.3 Hz, 1H), 3.01 (dd, J = 9.9, 7.5 Hz, 1H), 2.66 (dd, J = 8.3, 2.2 Hz, 1H), 2.29 (d, J = 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 171.1, 137.4, 136.9, 135.7, 133.1, 129.5, 129.0, 128.7, 128.3, 128.1, 128.0, 127.8, 126.6, 119.2, 64.3, 60.2, 56.9, 52.2, 50.7, 44.3, 44.1; HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₈H₂₃NO₃Na 444.1570, found 444.1578.

Methyl 3-benzoyl-3-cyano-2-phenyl-4-(*p*-tolyl)bicyclo[2.1.1]hexane-1-carboxylate (3ba): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3ba (white solid, 76.7 mg, 0.176 mmol, 88% yield). M.p.: 65 – 66 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 6H), 7.25 – 7.18 (m, 2H), 7.15 – 7.03 (m, 6H), 4.96 (d, J = 2.1 Hz, 1H), 3.63 (s, 3H), 3.19 (dd, J = 9.9, 8.3 Hz, 1H), 3.00 (dd, J = 9.9, 7.5 Hz, 1H), 2.62 (dd, J = 8.3, 2.2 Hz, 1H), 2.29 (s, 3H), 2.26 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 171.2, 138.2, 137.0, 135.8, 134.4, 133.1, 129.6, 129.3, 129.0, 128.1, 128.0, 127.8, 126.5,

119.3, 64.3, 60.1, 57.0, 52.1, 50.7, 44.4, 44.1, 21.2; **HRMS (ESI)** m/z calcd for [M + Na]⁺ $C_{29}H_{25}NO_3Na$ 458.1727, found 458.1734.

Methyl 3-benzoyl-4-(4-(*tert***-butyl)phenyl)-3-cyano-2-phenylbicyclo[2.1.1]hexane-1-carboxylate** (**3ca**): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3ca** (white solid, 85.9 mg, 0.18 mmol, 90% yield). M.p.: 125 - 126 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 - 7.08 (m, 10H), 7.07 - 6.93 (m, 4H), 4.96 (s, 1H), 3.56 (s, 3H), 3.12 (t, J = 9.2 Hz, 1H), 2.88 (t, J = 8.8 Hz, 1H), 2.57 (d, J = 8.4 Hz, 1H), 2.18 (d, J = 7.6 Hz, 1H), 1.18 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃) δ 193.8, 171.2, 151.7, 137.1, 135.8, 134.4, 133.0, 129.6, 129.0, 128.0, 127.9, 127.7, 126.2, 125.6, 119. 3, 64.6, 60.2, 56.6, 52.2, 50.6, 44.2, 44.0, 34.6, 31.3; **HRMS** (**ESI**) m/z calcd for [M + Na]⁺ C₃₂H₃₁NO₃Na 500.2196, found 500.2206.

Methyl 3-benzoyl-3-cyano-4-(4-fluorophenyl)-2-phenylbicyclo[2.1.1]hexane-1-carboxylate (3da): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3da (white solid, 67.7 mg, 0.154 mmol, 77% yield). M.p.: 160 – 161 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 5H), 7.32 – 7.28 (m, 1H), 7.25 – 7.15 (m, 6H), 6.96 – 6.91 (m, 2H), 4.90 (d, J = 2.1 Hz, 1H), 3.63 (s, 3H), 3.19 (dd, J = 9.9, 8.3 Hz, 1H), 2.97 (dd, J = 9.9, 7.5 Hz, 1H), 2.62 (dd, J = 8.4, 2.2 Hz, 1H), 2.28 (d, J = 7.5 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -113.04 (s, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 170.9, 162.6 (d, J = 247.8 Hz), 136.7, 135.5, 133.4, 133.3 (d, J = 3.6 Hz), 129.5, 129.0, 128.5 (d, J = 8.0 Hz), 128.2,

128.1, 128.0, 119.2, 115.6 (d, J = 21.8 Hz), 63.9, 59.3, 56.9, 52.2, 50.8, 44.6, 44.1; **HRMS (ESI)** m/z calcd for [M + Na]⁺ C₂₈H₂₂FNO₃Na 462.1476, found 462.1481.

Methyl 3-benzoyl-4-(4-chlorophenyl)-3-cyano-2-phenylbicyclo[2.1.1]hexane-1-carboxylate (3ea): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3ea (white solid, 67.5 mg, 0.148 mmol, 74% yield). M.p.: 64 - 65 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 3H), 7.39 – 7.30 (m, 3H), 7.26 – 7.19 (m, 5H), 7.19 – 7.14 (m, 3H), 4.86 (d, J = 2.1 Hz, 1H), 3.63 (s, 3H), 3.19 (dd, J = 9.9, 8.3 Hz, 1H), 2.95 (dd, J = 9.9, 7.5 Hz, 1H), 2.60 (dd, J = 8.3, 2.2 Hz, 1H), 2.28 (d, J = 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 170.8, 136.5, 135.9, 135.4, 134.3, 133.5, 129.6, 129. 0, 128.7, 128.23, 128.21, 128.20, 128.0, 119.1, 63.8, 59.1, 57.0, 52.2, 51.0, 44.6, 44.0; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₈H₂₂ClNO₃Na 478.1180, found 478.1185.

Methyl 3-benzoyl-4-(4-bromophenyl)-3-cyano-2-phenylbicyclo[2.1.1]hexane-1-carboxylate (3fa): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3fa (white solid, 75.1 mg, 0.15 mmol, 75% yield). M.p.: 86 – 87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.32 (m, 8H), 7.24 (d, J = 8.7 Hz, 2H), 7.18 (t, J = 7.2 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 4.85 (s, 1H), 3.62 (s, 3H), 3.19 (t, J = 9.1 Hz, 1H), 2.94 (dd, J = 9.9, 7.5 Hz, 1H), 2.60 (dd, J = 8.4, 2.2 Hz, 1H), 2.28 (d, J = 7.6 Hz, 1H); 13 C NMR (100 MHz, CDCl₃) δ 193.2, 170.8, 136.5, 136.4, 135.3, 133.5, 131.7, 129.6, 129.0, 128.5, 128.3, 128.1, 126.6, 122.4, 119.1, 63.7, 59.1, 57.0, 52.2, 51.0, 44.6, 44.0; HRMS (ESI) m/z calcd for [M + Na]⁺ $C_{28}H_{22}$ BrNO₃Na 522.0675, found 522.0685.

Methyl 3-benzoyl-3-cyano-2-phenyl-4-(m-tolyl)bicyclo[2.1.1]hexane-1-carboxylate (3ga): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3ga (white solid, 77.5 mg, 0.178 mmol, 89% yield). M.p.: 83 – 84 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 6H), 7.22 (d, J = 7.6 Hz, 2H), 7.17 – 7.09 (m, 3H), 7.08 – 7.00 (m, 2H), 6.94 (s, 1H), 5.00 (s, 1H), 3.65 (s, 3H), 3.19 (t, J = 9.1 Hz, 1H), 2.97 (dd, J = 9.9, 7.5 Hz, 1H), 2.64 (dd, J = 8.4, 2.2 Hz, 1H), 2.26 (d, J = 7.5 Hz, 1H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 171.2, 138.4, 137.3, 137.0, 135.8, 133.1, 129.5, 129.04, 128.95, 128.6, 128.0, 127.9, 127.8, 127.2, 123.6, 119.2, 64.3, 60.2, 56.8, 52.1, 50.6, 44.3, 44.1, 21.3; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₉H₂₅NO₃Na 458.1727, found 458.1729.

Methyl 3-benzoyl-3-cyano-2-phenyl-4-(*o*-tolyl)bicyclo[2.1.1]hexane-1-carboxylate (3ha): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3ha (white solid, 74.1 mg, 0.17 mmol, 85% yield). M.p.: 107 – 108 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 5H), 7.28 – 7.14 (m, 6H), 7.09 (t, J = 7.8 Hz, 2H), 6.95 – 6.92 (m, 1H), 5.24 (s, 1H), 3.67 (s, 3H), 3.31 (t, J = 9.0 Hz, 1H), 3.02 (t, J = 8.7 Hz, 1H), 2.78 (d, J = 8.1 Hz, 1H), 2.38 (d, J = 7.6 Hz, 1H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 171.2, 137.2, 136.8, 135.5, 135.3, 133.3, 131.7, 129.7, 129.0, 128.6, 128.1, 127.77, 127.76, 126.5, 119.5, 64.7, 61.0, 55.8, 52.2, 50.3, 45.9, 45.6, 20.4; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₉H₂₅NO₃Na 458.1727, found 458.1731.

Methyl 3-benzoyl-4-(4-bromothiophen-2-yl)-3-cyano-2-phenylbicyclo[2.1.1]hexane-1-carboxylate (**3ia**): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3ia** (white solid, 79.0 mg, 0.156 mmol, 78% yield). M.p.: 120 - 121 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.8 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.39 – 7.37 (m, 3H), 7.31 – 7.27 (m, 4H), 7.10 (s, 1H), 6.94 (s, 1H), 4.48 (s, 1H), 3.57 (s, 3H), 3.16 (t, J = 9.3 Hz, 1H), 2.86 (t, J = 8.8 Hz, 1H), 2.65 (d, J = 8.5 Hz, 1H), 2.41 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 170.1, 141.2, 135.7, 134.9, 133.9, 129.7, 129.2, 129.0, 128.8, 128.6, 128.3, 123.0, 118.8, 109.6, 62.9, 57.5, 55.0, 52.3, 52.2, 46.9, 44.9; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₆H₂₀BrNO₃SNa 528.0239, found 528.0247.

Ethyl 3-benzoyl-3-cyano-2,4-diphenylbicyclo[2.1.1]hexane-1-carboxylate (3ja): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3ja (white solid, 65.3 mg, 0.15 mmol, 75% yield). M.p.: 87 – 88 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 5H), 7.31 – 7.19 (m, 8H), 7.11 (d, J = 7.4 Hz, 2H), 4.95 (d, J = 2.1 Hz, 1H), 4.17 – 3.96 (m, 2H), 3.22 (dd, J = 9.9, 8.3 Hz, 1H), 3.01 (dd, J = 9.9, 7.5 Hz, 1H), 2.64 (dd, J = 8.3, 2.2 Hz, 1H), 2.29 (d, J = 7.5 Hz, 1H), 1.09 (t, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 170.6, 137.5, 136.9, 135.7, 133.2, 129.5, 128.9, 128.7, 128.3, 128.2, 128.0, 127.9, 126.7, 119.3, 64.2, 60.9, 60.0, 57.1, 50.9, 44.4, 44.1, 14.0; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₉H₂₅NO₃Na 458.1727, found 458.1737.

Isopropyl 3-benzoyl-3-cyano-2,4-diphenylbicyclo[2.1.1]hexane-1-carboxylate (3ka): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3ka** (white solid, 71.9 mg, 0.16 mmol, 80% yield). M.p.: 75 – 76 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 5H), 7.31 – 7.21 (m, 8H), 7.13 (t, J = 7.7 Hz, 2H), 5.00 – 4.93 (m, 1H), 4.89 (s, 1H), 3.21 (t, J = 9.1 Hz, 1H), 2.99 (dd, J = 9.9, 7.5 Hz, 1H), 2.63 (dd, J = 8.4, 2.1 Hz, 1H), 2.28 (d, J = 7.5 Hz, 1H), 1.15 (d, J = 6.2 Hz, 1H), 0.97 (d, J = 6.2 Hz, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 193.9, 170.1, 137.5, 136.9, 135.6, 133.1, 129.5, 128.8, 128.6, 128.4, 128.2, 128.0, 127.8, 126. 7, 119.3, 68.4, 64.1, 59.9, 57.2, 51.2, 44.3, 44.0, 21.6, 21.4; **HRMS (ESI)** m/z calcd for [M + Na]⁺ C₃₀H₂₇NO₃Na 472.1883, found 472.1886.

Phenyl 3-benzoyl-3-cyano-2,4-diphenylbicyclo[2.1.1]hexane-1-carboxylate (3la): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3la** (white solid, 56.1 mg, 0.116 mmol, 58% yield). M.p.: 164 - 165 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.27 (m, 13H), 7.25 – 7.07 (m, 5H), 6.80 (d, J = 8.0 Hz, 2H), 5.09 (s, 1H), 3.34 (t, J = 9.1 Hz, 1H), 3.17 (t, J = 8.7 Hz, 1H), 2.77 (d, J = 8.4 Hz, 1H), 2.47 (d, J = 7.5 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 193.7, 169.2, 150.3, 137.3, 136.7, 135.6, 133.3, 129.6, 129.5, 129.1, 128.7, 128.5, 128.3, 127.9, 126.7, 126.1, 121.3, 119.2, 64.1, 60.2, 57.3, 51.1, 44.6, 44.1; **HRMS** (**ESI**) m/z calcd for [M + Na] + C₃₃H₂₅NO₃Na 506.1727, found 506.1729.

2,4-Dibenzoyl-1,3-diphenylbicyclo[2.1.1]hexane-2-carbonitrile (3ma): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3ma** (white solid, 71.9 mg, 0.154 mmol, 77% yield). M.p.: 177 – 178 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, J = 7.3 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.34 (d, J = 7.6 Hz, 2H), 7.29 – 7.20 (m, 10H), 7.14 (t, J = 7.9 Hz, 2H), 5.30 (d, J = 2.1 Hz, 1H), 3.43 – 3.37 (m, 2H), 2.77 (dt, J = 5.2, 2.4 Hz, 1H), 2.48 (dd, J = 5.2, 2.0 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃) δ 199.1, 194.4, 137.4, 136.5, 136.0, 135.6, 133.3, 129.6, 128.9, 128.84, 128.75, 128.43, 128.40, 128.2, 128.0, 127.9, 126.7, 119.2, 65.5, 59.7, 58.6, 58.1, 45.9, 45.2; **HRMS** (**ESI**) m/z calcd for [M + Na]⁺ C₃₃H₂₅NO₂Na 490.1778, found 490.1785.

Methyl 2-([1,1'-biphenyl]-4-yl)-3-benzoyl-3-cyano-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3ab): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3ab** (white solid, 63.6 mg, 0.146 mmol, 73% yield). M.p.: 155 – 156 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.31 (m, 3H), 7.27 – 7.19 (m, 5H), 7.18 – 7.07 (m, 6H), 4.91 (s, 1H), 3.63 (s, 3H), 3.21 (t, J = 9.1 Hz, 1H), 3.01 (t, J = 8.7 Hz, 1H), 2.63 (d, J = 8.3 Hz, 1H), 2.31 (s, 3H), 2.28 (d, J = 6.8 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 194.0, 171.1, 137.7, 137.5, 135.8, 133.8, 133.1, 129.7, 129.5, 128.7, 128.3, 128.0, 127.9, 126.7, 119.4, 64.3, 60.1, 56.9, 52.1, 50.8, 44.4, 44.1, 21.2; **HRMS** (**ESI**) m/z calcd for [M + Na]⁺ C₂₉H₂₅NO₃Na 458.1727, found 458.1732.

Methyl 3-benzoyl-3-cyano-2-(4-fluorophenyl)-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3ac): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3ac (white solid, 56.3 mg, 0.128 mmol, 64% yield). M.p.: 160 - 161 °C; 1 H NMR (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 3H), 7.28 – 7.16 (m, 7H), 7.12 (t, J = 7.8 Hz, 2H), 7.04 (t, J = 8.5 Hz, 2H), 4.97 (s, 1H), 3.65 (s, 3H), 3.19 (t, J = 9.1 Hz, 1H), 2.98 (dd, J = 9.9, 7.6 Hz, 1H), 2.65 (dd, J = 8.4, 2.2 Hz, 1H), 2.29 (d, J = 7.6 Hz, 1H); 19 F NMR (376 MHz, CDCl₃) δ -113.69 (s, 1F); 13 C NMR (100 MHz, CDCl₃) δ 193.5, 170.9, 162.2 (d, J = 247.1 Hz), 137.2, 135.5, 133.3, 132.7 (d, J = 3.6 Hz), 129.8 (d, J = 8.0 Hz), 129.5, 128.7, 128.4, 127.9, 126.6, 119.2, 116.0 (d, J = 21.8 Hz), 64.2, 60.1, 56.1, 52.2, 50.8, 44.2, 44.0; HRMS (ESI) m/z calcd for

 $[M + Na]^+ C_{28}H_{22}FNO_3Na$ 462.1476, found 462.1485.

Methyl 3-benzoyl-2-(4-chlorophenyl)-3-cyano-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3ad): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3ad (white solid, 63.8 mg, 0.14 mmol, 70% yield).

M.p.: 190 – 191 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 7.28 – 7.22 (m, 3H), 7.21 – 7.09 (m, 6H), 4.97 (d, J = 2.2 Hz, 1H), 3.65 (s, 3H), 3.17 (dd, J = 10.0, 8.4 Hz, 1H), 2.97 (dd, J = 9.9, 7.6 Hz, 1H), 2.66 (dd, J = 8.3, 2.2 Hz, 1H), 2.29 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 170.9, 137.2, 135.51, 135.48, 133.9, 133.3, 129.6, 129.5, 129.2, 128.7, 128.5, 127.9, 126.6, 119.1, 64.1, 60.2, 56.1, 52.2, 50.7, 44.2, 44.1; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₈H₂₂CINO₃Na 478.1180, found 478.1190.

Methyl 3-benzoyl-2-(4-bromophenyl)-3-cyano-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3ae): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3ae (white solid, 69.1 mg, 0.138 mmol, 69% yield). M.p.: 179 – 180 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.5 Hz, 2H), 7.38 – 7.35 (m, 1H), 7.33 – 7.30 (m, 2H), 7.26 – 7.22 (m, 3H), 7.19 – 7.17 (m, 2H), 7.14 – 7.08 (m, 4H), 4.96 (d, J = 2.1 Hz, 1H), 3.65 (s, 3H), 3.16 (dd, J = 9.9, 8.4 Hz, 1H), 2.97 (dd, J = 9.9, 7.6 Hz, 1H), 2.66 (dd, J = 8.4, 2.2 Hz, 1H), 2.29 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 170.8, 137.1, 136.0, 135.5, 133.3, 132.2, 129.8, 129.5, 128.7, 128.5, 127.9, 126.5, 122.1, 119.1, 64.1, 60.2, 56.2, 52.3, 50.6, 44.2, 44.1; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₈H₂₂BrNO₃Na 522.0675, found 522.0674.

Methyl 2-([1,1'-biphenyl]-4-yl)-3-benzoyl-3-cyano-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3af): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3af** (white solid, 67.7 mg, 0.136 mmol, 68% yield). M.p.: 125 – 126 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, J = 7.8 Hz, 4H), 7.44 – 7.28 (m, 8H), 7.28 – 7.18 (m, 5H), 7.12 (t, J = 7.8 Hz, 2H), 5.01 (d, J = 2.2 Hz, 1H), 3.66 (s, 3H), 3.25 (t, J = 9.1 Hz, 1H), 3.03 (dd, J = 9.9, 7.5 Hz, 1H), 2.68 (dd, J = 8.3, 2.3 Hz, 1H), 2.31 (d, J = 7.5 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 193.8, 171.1, 140.7, 140.5, 137.4, 135. 9, 135.7, 133.2,

129.6, 128.8, 128.7, 128.6, 128.4, 127.9, 127.6, 127.4, 127.1, 126.7, 119.3, 64.3, 60.2, 56.8, 52.2, 50.8, 44.4, 44.2; **HRMS (ESI)** *m/z* calcd for [M + Na]⁺ C₃₄H₂₇NO₃Na 520.1883, found 520.1892.

Methyl 3-benzoyl-3-cyano-4-phenyl-2-(4-(trifluoromethyl)phenyl)bicyclo[2.1.1]hexane-1-carboxylate (3ag): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3ag** (white solid, 63.6 mg, 0.13 mmol, 65% yield). M.p.: 99 – 100 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 2H), 7.39 – 7.29 (m, 5H), 7.27 – 7.23 (m, 3H), 7.20 – 7.15 (m, 2H), 7.12 (t, J = 7.9 Hz, 2H), 5.11 (s, 1H), 3.67 (s, 3H), 3.18 (dd, J = 10.0, 8.4 Hz, 1H), 2.99 (dd, J = 9.9, 7.6 Hz, 1H), 2.71 (dd, J = 8.4, 2.2 Hz, 1H), 2.31 (d, J = 7.6 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.64 (s, 3F); ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 170.7, 141.2, 137.0, 135.4, 133.3, 130.1 (q, J = 32.5 Hz), 129.5, 128.8, 128.5, 128.4, 127.9, 126.5, 126.0 (q, J = 3.7 Hz), 124.0 (q, J = 273.4 Hz), 119.0, 64.2, 60.4, 56.1, 52.3, 50.5, 44.1; **HRMS** (**ESI**) m/z calcd for [M + Na]⁺ C₂₉H₂₂F₃NO₃Na 512.1444, found 512.1453.

Methyl 3-benzoyl-3-cyano-2-(4-nitrophenyl)-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3ah): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3ah** (white solid, 62.5 mg, 0.134 mmol, 67% yield). M.p.: 135 - 136 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.3 Hz, 2H), 7.41 – 7.35 (m, 3H), 7.33 (d, J = 7.9 Hz, 2H), 7.27 – 7.21 (m, 3H), 7.17 – 7.05 (m, 4H), 5.20 (s, 1H), 3.69 (s, 3H), 3.17 (t, J = 9.2 Hz, 1H), 2.96 (dd, J = 9.9, 7.7 Hz, 1H), 2.75 (dd, J = 8.4, 2.3 Hz, 1H), 2.33 (d, J = 7.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 170.5, 147.4, 144.7, 136.7, 135.2, 133.5, 129.6, 129.0, 128.8, 128.7, 127.9, 126.4, 124.2, 118.9, 64.2, 60.5, 55.7, 52.4, 50.4, 44.2, 44.0; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₈H₂₂N₂O₃Na 489.1421, found 489.1421.

Methyl 3-benzoyl-3-cyano-2-(4-cyanophenyl)-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3ai): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3ai (white solid, 64.3 mg, 0.144 mmol, 72% yield). M.p.: 142 - 143 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.40 – 7.29 (m, 5H), 7.29 – 7.20 (m, 3H), 7.16 – 7.08 (m, 4H), 5.14 (d, J = 2.1 Hz, 1H), 3.68 (s, 3H), 3.14 (dd, J = 9.9, 8.4 Hz, 1H), 2.95 (dd, J = 9.9, 7.7 Hz, 1H), 2.72 (dd, J = 8.4, 2.2 Hz, 1H), 2.31 (d, J = 7.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 170.6, 142.7, 136.8, 135.2, 133.5, 132.8, 129.6, 128.83, 128.80, 128.6, 127.9, 126.4, 118.9, 118.5, 111.9, 64.2, 60.5, 56.0, 52.4, 50.3, 44.1, 44.0; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₈H₂₂N₂O₃Na 469.1523, found 469.1531.

Methyl 3-benzoyl-3-cyano-2-(3-fluorophenyl)-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (**3aj**): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3aj** (white solid, 59.8 mg, 0.136 mmol, 68% yield). M.p.: 134 - 135 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 4H), 7.27 – 7.21 (m, 3H), 7.20 – 7.16 (m, 2H), 7.12 (t, J = 7.9 Hz, 2H), 7.02 – 6.90 (m, 3H), 5.03 (d, J = 2.2 Hz, 1H), 3.67 (s, 3H), 3.18 (dd, J = 9.9, 8.3 Hz, 1H), 2.97 (dd, J = 9.9, 7.6 Hz, 1H), 2.68 (dd, J = 8.3, 2.2 Hz, 1H), 2.28 (d, J = 7.6 Hz, 1H); 19 F NMR (376 MHz, CDCl₃) δ -111.69 (s, 1F); 13 C NMR (100 MHz, CDCl₃) δ 193.4, 170.8, 162.9 (d, J = 247.9 Hz), 139.5 (d, J = 7.2 Hz), 137.1, 135.5, 133.3, 130.6 (d, J = 8.0 Hz), 129.6, 128.7, 128.5, 127.9, 126.5, 123.8 (d, J = 2.9 Hz), 119.0, 115.2 (d, J = 5.8 Hz), 115.0 (d, J = 5.8 Hz), 64.2, 60.3, 56.2 (d, J = 1.5 Hz), 52.3, 50.5, 44.2, 44.1; HRMS (ESI) m/z calcd for [M + Na]+ C₂₈H₂₂FNO₃Na 462.1476, found 462.1471.

Methyl 3-benzoyl-3-cyano-4-phenyl-2-(p-tolyl)bicyclo[2.1.1]hexane-1-carboxylate (3ak): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3ak (white solid, 66.1 mg, 0.132 mmol, 66% yield). M.p.: 115 – 116 °C; 1 H NMR (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 5H), 7.28 – 7.21 (m, 4H), 7.18 – 7.10 (m, 5H), 4.98 (s, 1H), 3.67 (s, 3H), 3.18 (t, J = 9.2 Hz, 1H), 2.94 (dd, J = 9.9, 7.6 Hz, 1H), 2.67 (dd, J = 8.4, 2.2 Hz, 1H), 2.28 (d, J = 7.6 Hz, 1H); 13 C NMR (100 MHz, CDCl₃) δ 193.1, 170.7, 139.3, 137.1, 135.4, 133.3, 131.2, 130.5, 129.3, 128.7, 128.5, 127. 9, 126. 6, 126.5, 123.0, 119.0, 64.1, 60.2, 56.0, 52.3, 50.5, 44.2, 44.1; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₈H₂₂BrNO₃Na 522.0675, found 522.0677.

Methyl 3-benzoyl-2-(2-chlorophenyl)-3-cyano-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3al): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3al (white solid, 79.3 mg, 0.174 mmol, 87% yield). M.p.: 180 - 181 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 7.7 Hz, 1H), 7.34 – 7.23 (m, 7H), 7.21 – 7.17 (m, 2H), 7.14 – 7.06 (m, 4H), 5.01 (d, J = 2.2 Hz, 1H), 3.70 (s, 3H), 3.39 (dd, J = 9.9, 7.5 Hz, 1H), 3.07 (dd, J = 9.9, 8.2 Hz, 1H), 2.72 (dd, J = 8.2, 2.3 Hz, 1H), 2.27 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 171.2, 137.1, 136.4, 135.6, 135.5, 132.5, 130.2, 129.1, 129.0, 128.6, 127.2, 127.5, 127.3, 126.3, 118.8, 63.3, 60.9, 55.6, 52.3, 50.3, 43.9, 42.9; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₈H₂₂ClNO₃Na 478.1180, found 478.1190.

Methyl 2-(4-chlorophenyl)-3-cyano-3-(4-fluorobenzoyl)-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3am): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3am** (white solid, 61.6 mg, 0.13 mmol, 65% yield). M.p.: 160 - 161 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.28 – 7.21 (m, 3H), 7.18 – 7.13 (m, 4H), 6.78 (t, J = 8.6 Hz, 2H), 5.01 (d, J = 2.1 Hz, 1H), 3.66 (s, 3H), 3.16 (dd, J = 9.9, 8.4 Hz, 1H), 2.90 (dd, J = 9.9, 7.6 Hz, 1H), 2.67 (dd, J = 8.3, 2.2 Hz, 1H), 2.28 (d, J = 7.6 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.46 (s, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 191.4, 170.8, 165.6 (d, J = 257.4 Hz), 137.1, 135.4, 133.9, 132.6 (d, J = 9.3 Hz), 131.7 (d, J = 3.4 Hz), 129.4, 129.2, 128.8, 128.6, 126.5, 119.1, 115.1 (d, J = 21.7 Hz), 64.1, 60.1, 55.7, 52.3, 50.6, 44.1, 44.0; **HRMS (ESI)** m/z calcd for [M + Na] + C₂₈H₂₁ClFNO₃Na 496.1086, found 496.1095.

Methyl 3-(4-chlorobenzoyl)-2-(4-chlorophenyl)-3-cyano-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3an): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **3an** (white solid, 73.5 mg, 0.150 mmol, 75% yield). M.p.: 170 – 171 °C; ¹**H NMR** (400 MHz, CDCl₃) δ7.32 (d, J = 8.5 Hz, 2H), 7.29 – 7.22 (m, 5H), 7.18 – 7.12 (m, 4H), 7.08 (d, J = 8.7 Hz, 2H), 4.99 (d, J = 2.2 Hz, 1H), 3.66 (s, 3H), 3.16 (dd, J = 9.9, 8.4 Hz, 1H), 2.91 (dd, J = 9.9, 7.7 Hz, 1H), 2.67 (dd, J = 8.4, 2.2 Hz, 1H), 2.28 (d, J = 7.7 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 192.2, 170.7, 140.0, 137.0, 135.4, 133.9, 133.7, 131.0, 129.4, 129.3, 128.8, 128.6, 128.2, 126.5, 119.0, 64.2, 60.2, 55.9, 52.3, 50.6, 44.1, 44.0; **HRMS (ESI)** m/z calcd for [M + Na]⁺ C₂₈H₂₁Cl₂NO₃Na 512.0791, found 512.0793.

Methyl 3-benzoyl-3-cyano-2-(4-hydroxyphenyl)-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3ao): The crude product was purified by column chromatography with petroleum ether/ethyl

acetate (5/1, v/v) as eluent to give compound **3ao** (white solid, 84.0 mg, 0.192 mmol, 96% yield). M.p.: 121 - 122 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (t, J = 7.4 Hz, 1H), 7.33 (d, J = 7.9 Hz, 2H), 7.26 – 7.20 (m, 5H), 7.17 – 7.07 (m, 4H), 6.76 (d, J = 8.5 Hz, 2H), 5.42 (s, 1H), 4.84 (s, 1H), 3.65 (s, 3H), 3.21 (t, J = 9.1 Hz, 1H), 3.00 (dd, J = 9.9, 7.6 Hz, 1H), 2.62 (dd, J = 8.4, 2.1 Hz, 1H), 2.29 (d, J = 7.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 171.7, 155.8, 137.4, 135.6, 133.3, 129.5, 128.7, 128.6, 128.3, 128.1, 127.9, 126.7, 119.4, 115.9, 64.2, 59.9, 56.9, 52.3, 51.1, 44.5, 44.1; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₈H₂₃NO₄Na 460.1519, found 460.1528.

Methyl 3-benzoyl-3-cyano-2-(naphthalen-2-yl)-4-phenylbicyclo[2.1.1]hexane-1-carboxylate (3ap): The crude product was purified by column chromatography with petroleum ether/ethyl

(Sap): The crude product was purified by column chromatography with petroleum ether/ethylacetate (20/1, v/v) as eluent to give compound **3ap** (white solid, 78.3 mg, 0.166 mmol, 83% yield). M.p.: 119 - 120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 - 7.79 (m, 3H), 7.71 (s, 1H), 7.51 - 7.43 (m, 2H), 7.38 - 7.32 (m, 3H), 7.28 - 7.20 (m, 6H), 7.11 (t, J = 7.7 Hz, 2H), 5.15 (s, 1H), 3.62 (s, 3H), 3.34 (t, J = 9.1 Hz, 1H), 3.06 (dd, J = 9.9, 7.6 Hz, 1H), 2.73 (dd, J = 8.4, 2.3 Hz, 1H), 2.33 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 171.2, 137.4, 135.7, 134.5, 133.4, 133.2, 132.9, 129.6, 128.8, 128.7, 128.4, 128.2, 127.9, 127.8, 126.6, 126.4, 126.31, 126.28, 119.3, 64.2, 60.3, 57.0, 52.2, 50.8, 44.4, 44.2; **HRMS (ESI)** m/z calcd for [M + Na]⁺ C₃₂H₂₅NO₃Na 494.1727, found 494.1735.

 $Methyl \qquad \hbox{$3$-benzoyl-$3$-cyano-$4$-phenyl-$2$-(thiophen-$2$-yl) bicyclo[2.1.1] hexane-1-carboxylate}$

(3aq): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3aq (white solid, 59.9 mg, 0.14 mmol, 70% yield). M.p.: 110 - 111 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 - 7.41 (m, 2H), 7.41 - 7.36 (m, 1H), 7.30 - 7.25 (m, 6H), 7.19 - 7.13 (m, 2H), 7.11 (d, J = 3.5 Hz, 1H), 7.02 (dd, J = 5.1, 3.6 Hz, 1H), 5.00

(d, J = 2.1 Hz, 1H), 3.62 (s, 3H), 3.24 (dd, J = 9.9, 8.6 Hz, 1H), 2.95 (dd, J = 9.9, 7.7 Hz, 1H), 2.59 (dd, J = 8.6, 2.2 Hz, 1H), 2.33 (d, J = 7.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 170.3, 138.9, 137.2, 135.2, 133.4, 129.6, 128.6, 128.3, 128.0, 127.4, 127.1, 126.9, 125.7, 119.0, 63.8, 59.9, 53.1, 52.6, 52.2, 44.4, 44.0; **HRMS (ESI)** m/z calcd for [M + Na]⁺ C₂₆H₂₁NO₃SNa 450.1134, found 450.1144.

Methyl 3-benzoyl-3-nitro-2,4-diphenylbicyclo[2.1.1]hexane-1-carboxylate (3au): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound 3au (Light yellow solid, 56.4 mg, 0.128 mmol, 64% yield). M.p.: 179 – 180 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 9H), 7.23 (d, J = 7.4 Hz, 1H), 7.12 – 7.03 (m, 5H), 5.29 (d, J = 2.7 Hz, 1H), 3.65 (dd, J = 10.2, 8.6 Hz, 1H), 3.52 (s, 3H), 2.87 (dd, J = 10.2, 7.8 Hz, 1H), 2.70 (dd, J = 8.6, 2.7 Hz, 1H), 2.19 (d, J = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 170.2, 136.7, 135.1, 134.7, 132.8, 129.5, 128.5, 128.2, 128.1, 127.9, 127.81, 127.80, 105.7, 60.2, 58.0, 52.6, 51.9, 46.1, 43.4; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₇H₂₃NO₅Na 464.1468, found 464.1469.

Methyl 3-phenylcyclobut-2-ene-1-carboxylate (4): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **4** (colorless liquid, 26.3 mg, 35% yield). ¹**H NMR** (400 MHz, THF-d8) δ 7.23 (d, J = 7.0 Hz, 2H), 7.17 (t, J = 7.3 Hz, 2H), 7.11 (t, J = 7.1 Hz, 1H), 6.15 (d, J = 1.1 Hz, 1H), 3.50 (s, 3H), 3.48–3.44 (m, 1H), 2.91–2.82 (m, 2H); ¹³**C NMR** (100 MHz, THF-d8) δ 173.4, 149.0, 134.9, 129.1, 129.0, 125.7, 125.4, 51.7, 42.1, 33.0. Physical and spectral properties of this material were identical to those previously reported in literature.³

Ph
$$CO_2Me$$
 Ph CO_2Me

Dimethyl 1',3-diphenyl-[1,1'-bi(cyclobutan)]-2-ene-1,3'-dicarboxylate (5): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (20/1, v/v) as eluent to give compound **5** (colorless liquid, 5.3 mg, 7% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.38 (m, 3H), 7.37–7.28 (m, 7H), 6.39 (s, 1H), 3.67 (s, 3H), 3.46 (s, 3H), 3.06–2.98 (m, 2H), 2.94–2.84 (m, 3H), 2.73–2.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 173.6, 148.1, 143.5, 133.3, 128.6, 128.4, 128.1, 127.0, 126.7, 126.3, 125.0, 58.4, 51.7, 51.4, 46.3, 34.6, 33.2, 32.8, 31.6. Physical and spectral properties of this material were identical to those previously reported in literature.³

2-Benzoyl-4-(hydroxymethyl)-1,3-diphenylbicyclo[2.1.1]hexane-2-carbonitrile (6): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (8/1, v/v) as eluent to give compound **6** (white solid, 67.7 mg, 0.172 mmol, 86% yield). M.p.: 114 – 115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 10H), 7.29 – 7.24 (m, 3H), 7.12 (t, J = 7.7 Hz, 2H), 4.38 (d, J = 2.1 Hz, 1H), 3.76 (d, J = 11.9 Hz, 1H), 3.67 (d, J = 11.8 Hz, 1H), 3.08 (dd, J = 10.2, 8.2 Hz, 1H), 2.61 (dd, J = 10.2, 7.6 Hz, 1H), 2.23 (dd, J = 8.3, 2.1 Hz, 1H), 2.09 (d, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 138.4, 136.7, 135.4, 133.1, 129.63, 129.57, 128.9, 128.4, 128.3, 127.84, 127.82, 127.1, 119.8, 64.3, 62.0, 59.4, 56.9, 52.1, 43.3, 41.9; HRMS (ESI) m/z calcd for $[M + Na]^+ C_{27}H_{23}NO_2Na$ 416.1621, found 416.1618.

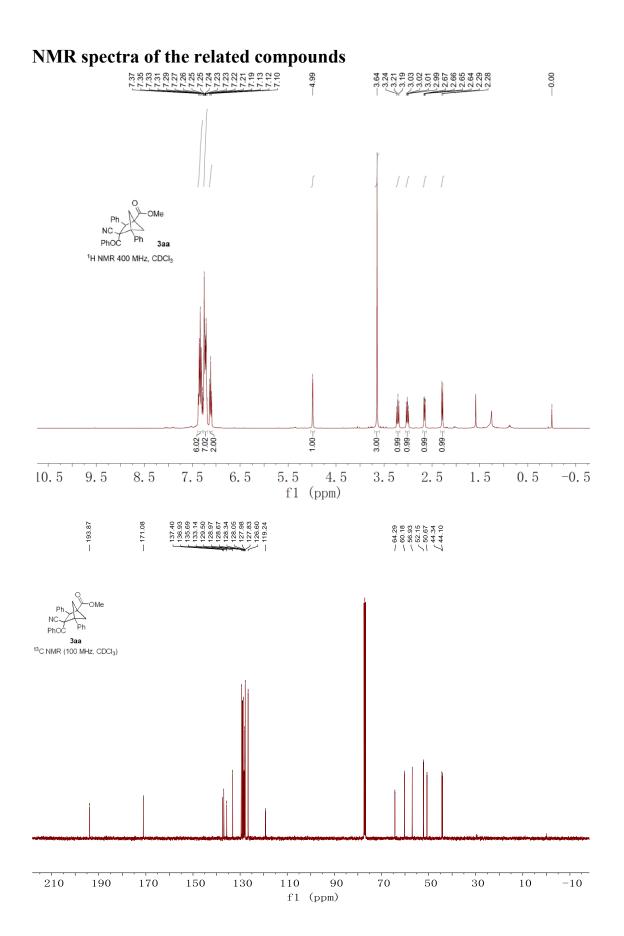
2-(Hydroxy(phenyl)methyl)-4-(hydroxymethyl)-1,3-diphenylbicyclo[2.1.1]hexane-2-

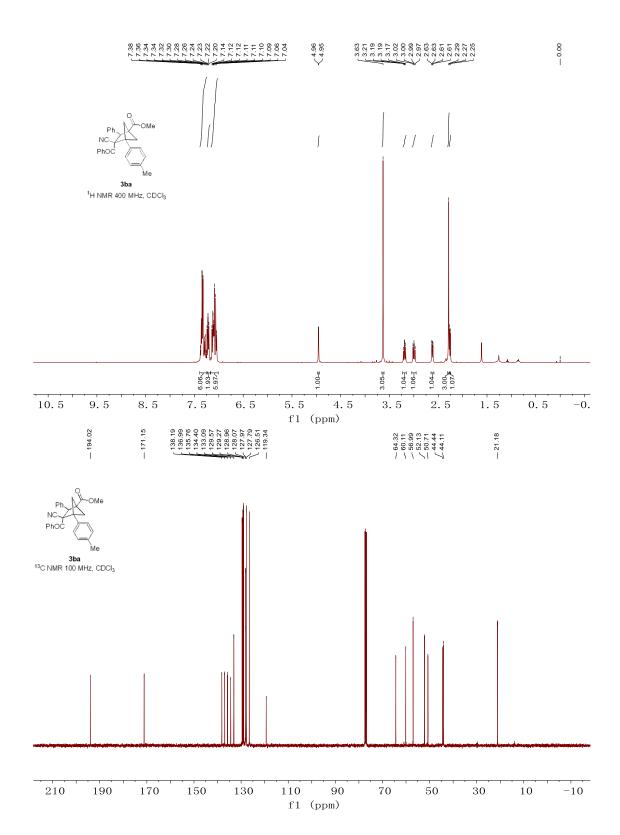
carbonitrile (7): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (5/1, v/v) as eluent to give compound 7 (white solid, 63.2 mg, 0.16 mmol, 80% yield). M.p.: 104 - 105 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 7.49 – 7.45 (m, 4H), 7.41 – 7.32 (m, 4H), 7.13 (t, J = 7.3 Hz, 1H), 7.05 (t, J = 7.5 Hz, 2H), 6.41 (d, J = 7.5 Hz, 2H), 4.97 (s, 1H), 3.65 (d, J = 11.8 Hz, 1H), 3.56 (d, J = 11.7 Hz, 1H), 3.13 (d, J = 2.1 Hz, 1H), 3.03 (dd, J = 10.0, 8.1 Hz, 1H), 2.29 (dd, J = 10.0, 7.8 Hz, 1H), 2.19 (d, J = 7.8 Hz, 1H), 2.11 (dd, J = 8.1, 2.1 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃) δ 139.1, 138.6, 136.1, 129.4, 129.1, 128.9, 128.8, 128.3,

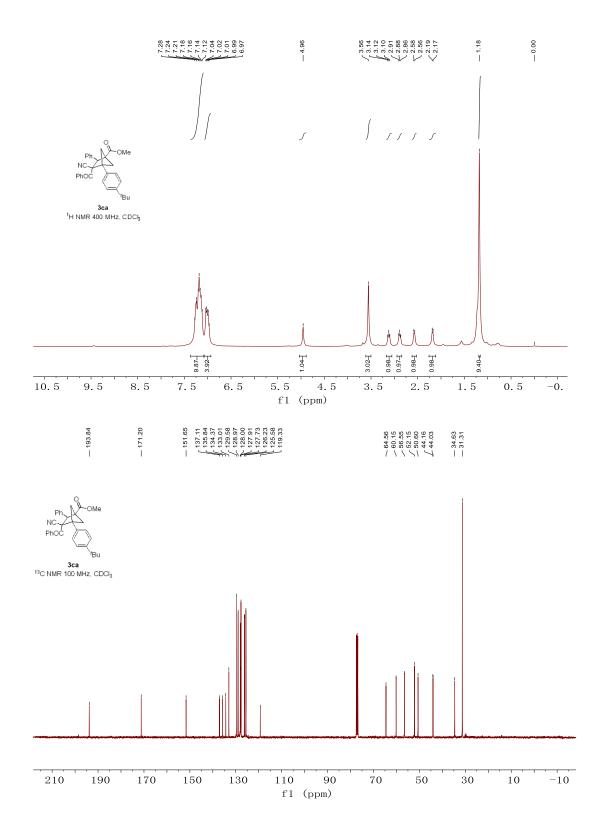
128.0, 127.5, 126.2, 119.9, 76.0, 63.1, 61.8, 56.4, 54.6, 52.2, 42.5, 42.3; **HRMS (ESI)** *m/z* calcd for [M + Na]⁺ C₂₇H₂₅NO₂Na 418.1778, found 418.1776.

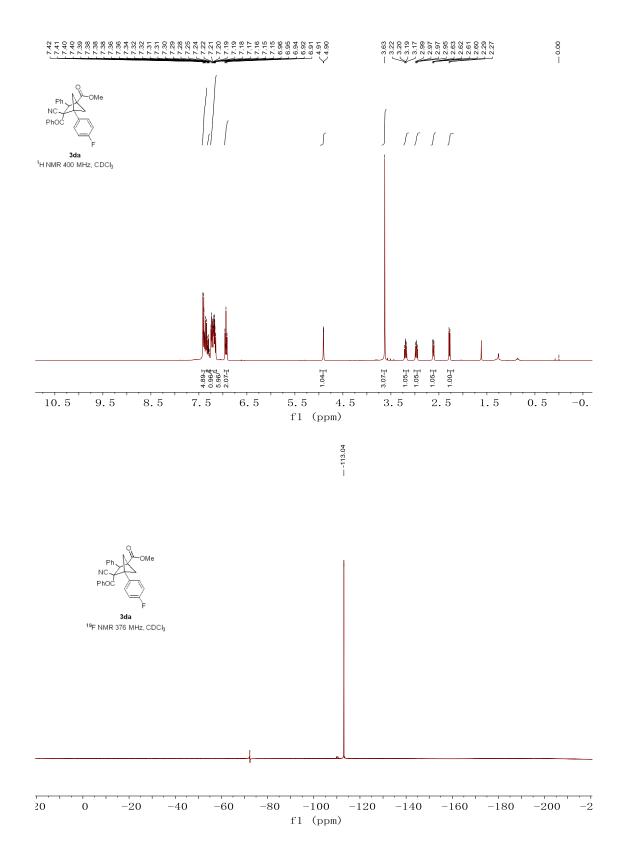
Methyl 1-(2-cyano-3-oxo-1,3-diphenylpropyl)-3-phenylcyclobutane-1-carboxylate (8): The crude product was purified by column chromatography with petroleum ether/ethyl acetate (10/1, v/v) as eluent to give compound 8 (colorless liquid, 60.9 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) For major isomer: δ 7.81 (d, J = 7.3 Hz, 2H), 7.52 (t, J = 7.8 Hz, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.37–7.08 (m, 9H), 5.49 (d, J = 11.0 Hz, 1H), 3.90 (s, 3H), 3.89 (d, J = 8.1 Hz, 1H), 3.67–3.60 (m, 1H), 3.11–3.05 (m, 1H), 2.80 (dd, J = 19.2, 10.4 Hz, 1H), 2.72–2.65 (m, 1H), 2.31 (dd, J = 19.6, 10.5 Hz, 1H); For major isomer: δ 7.98 (d, J = 7.2 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.37–7.08 (m, 9H), 6.91 (d, J = 7.1 Hz, 2H), 5.37 (d, J = 8.0 Hz, 1H), 3.98 (d, J = 8.0 Hz, 1H), 3.80 (s, 3H), 3.45–3.35 (m, 1H), 2.84–2.79 (m, 1H), 2.49–2.42 (m, 1H), 2.34–2.29 (m, 1H), 2.15 (t, J = 10.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 190.3, 176.6, 176.3, 144.4, 143.9, 136.3, 135.9, 134.8, 134.7, 134.4, 134.3, 129.5, 129.1, 128.92, 128.90, 128.8, 128.7, 128.47, 128.45, 128.4, 128.0, 126.32, 126.26, 117.0, 116.7, 54.2, 52.64, 52.55, 52.0, 48.2, 48.0, 42.1, 41.5, 39.9, 39.7, 38.0, 36.9, 34.9, 34.7; HRMS (ESI) m/z calcd for [M + Na]⁺ C₂₈H₂₅NO₃Na 446.1727, found 446.1733.

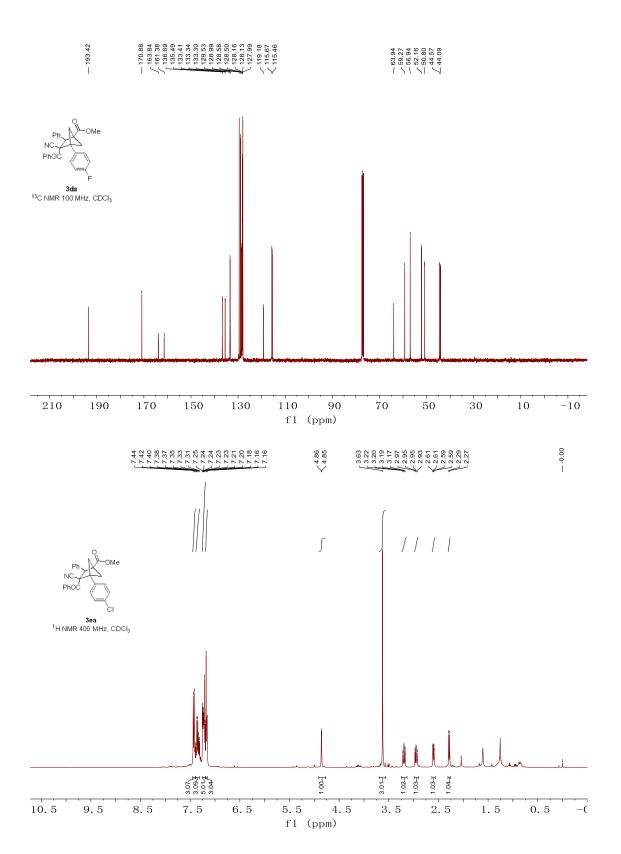
Inapplicable substrates

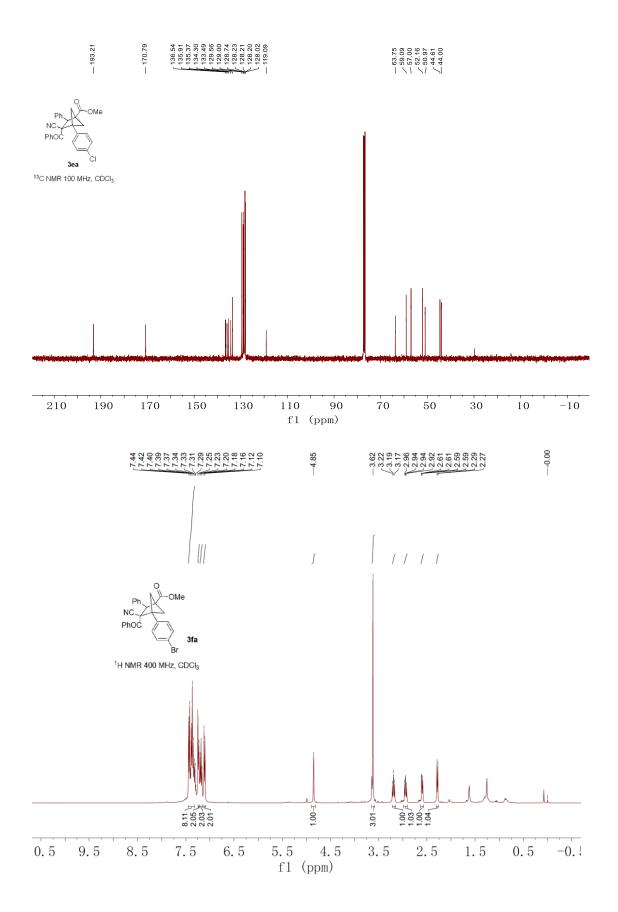

Unsuccessful transformations

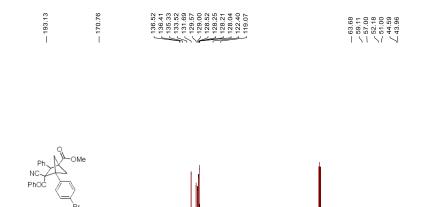

conditions and result:

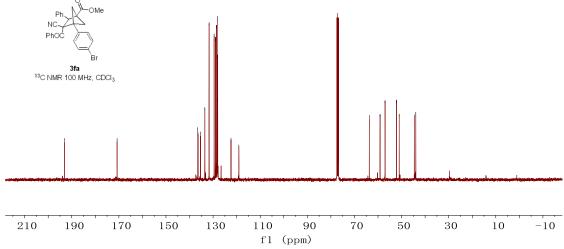

- 1) LiOH (1.0 eq),THF: H₂O (1:1), rt, 24 h; **3aa** was partially consumed. **A** was obtained in major, but an unknown by-product was also obtained which could not be separated.
- 2) LiOH (3.0 eq),THF: H₂O (1:1), rt, 24 h; 3aa was completely consumed. The ratio of unknown by-product increase
- 3) LiOH (6.0 eq), THF: H2O (1:1), rt, 24 h; 3aa was completely consumed. But no desired product was obtained.
- 4) KOH (4.0 eq), EtOH: H₂O (1:1), 90 °C, 4 h; 3aa was completely consumed. However, no product was detected.
- 5) 6N HCl aq., 100 °C, 5 h; 3aa remained unreacted, and no product was detected.

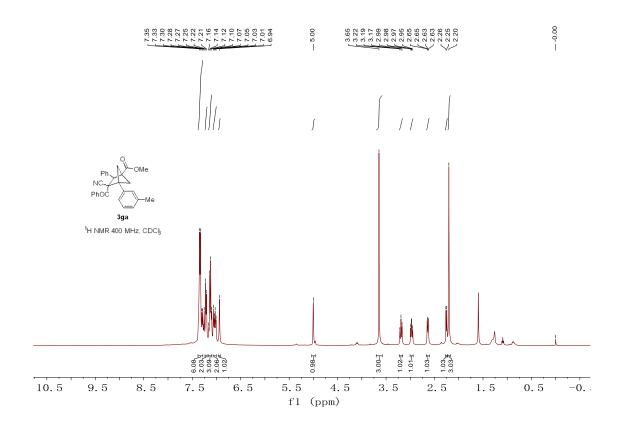

References

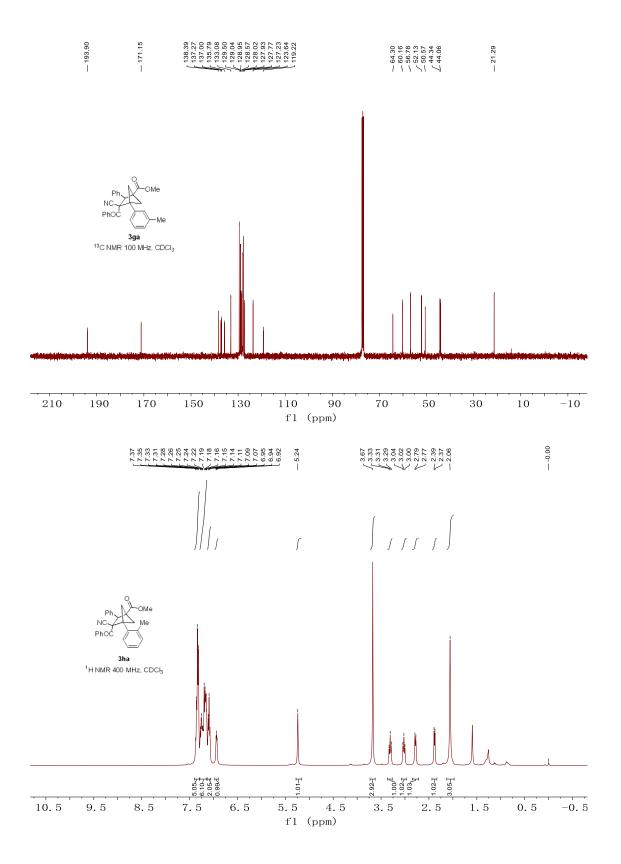

- (1) S.-L. Lin, Y.-H. Chen, H.-H. Liu, S.-H. Xiang and B. Tan, *J. Am. Chem. Soc.*, 2023, **145**, 21152–21158.
- (2) J. Zhang, D. Xiong, Z. Jiang, S. Chen, G.-B. Huang, J. Li, Z. Wang and J. Yang, *Org. Lett.*, 2024, **26**, 1447–1451.
- (3) H. Wu, M. Sun, J. Zhang, Z. Wang, J. Yang and G. Zhu, *Org. Chem. Front.*, 2025, **12**, 1951–1957.

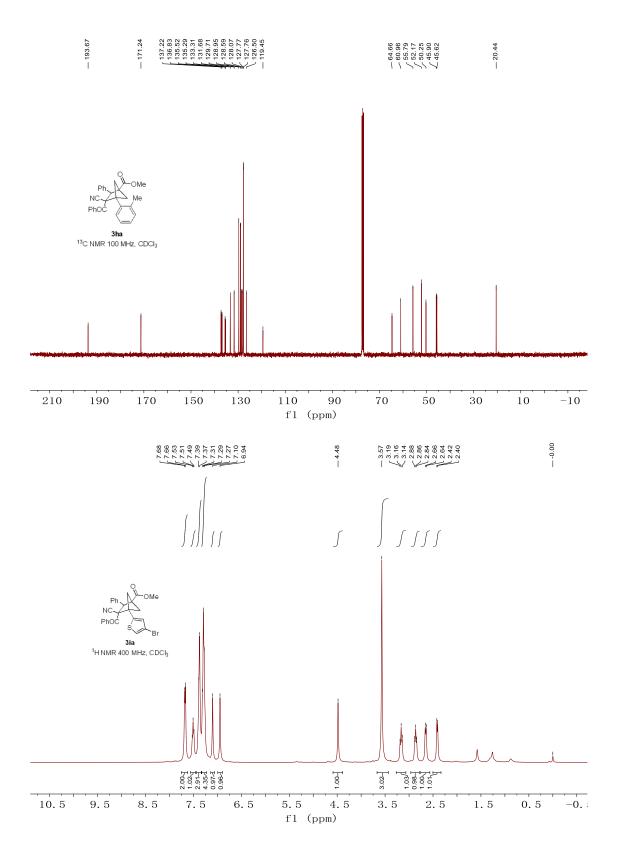


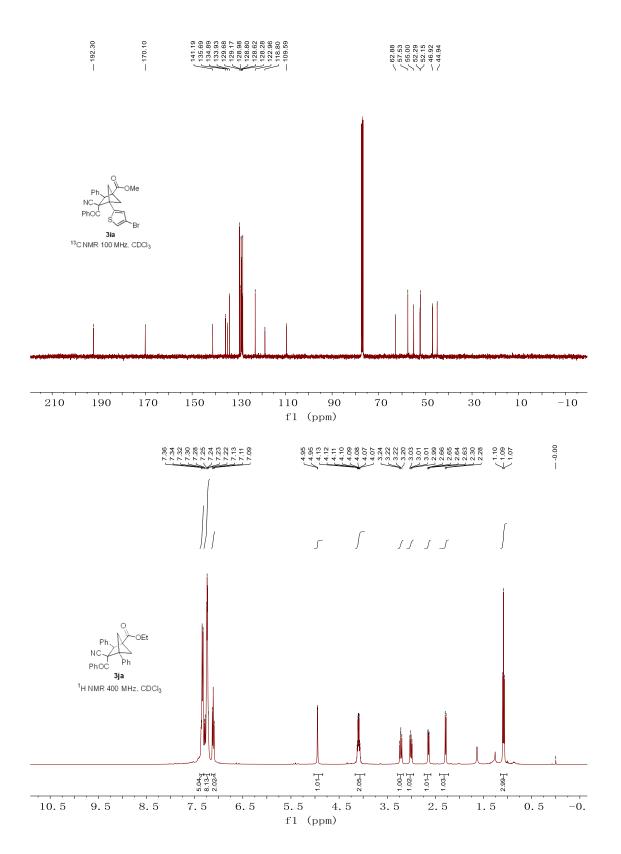


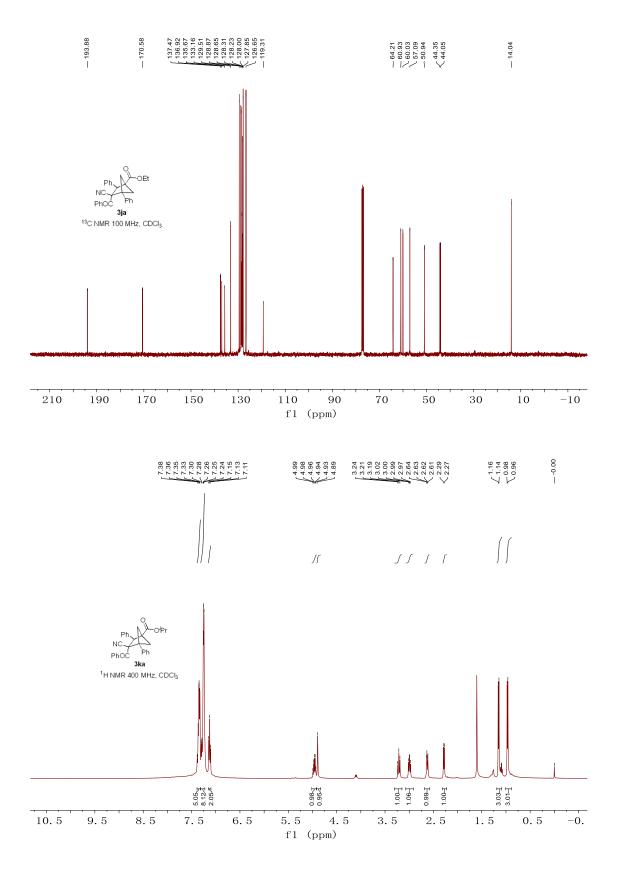


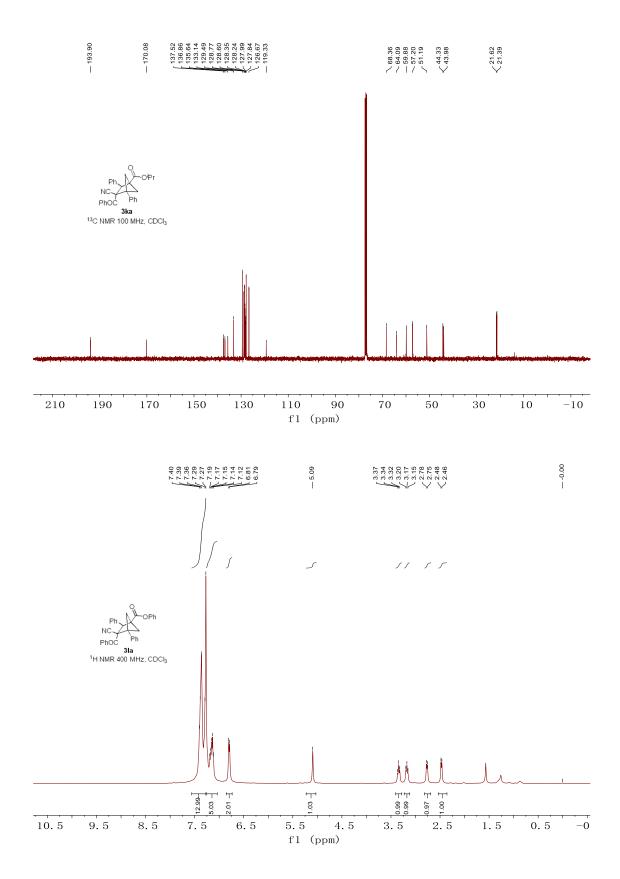


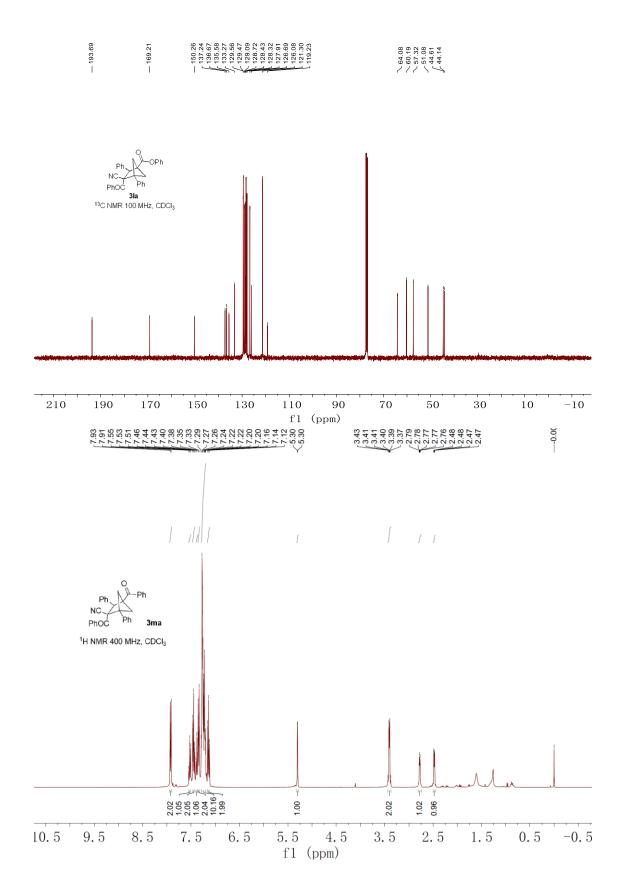


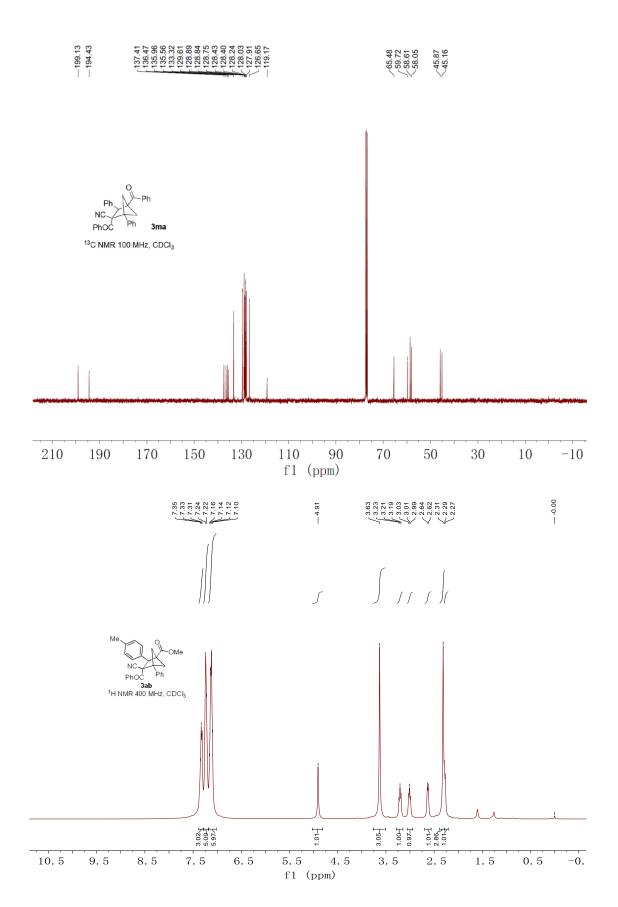


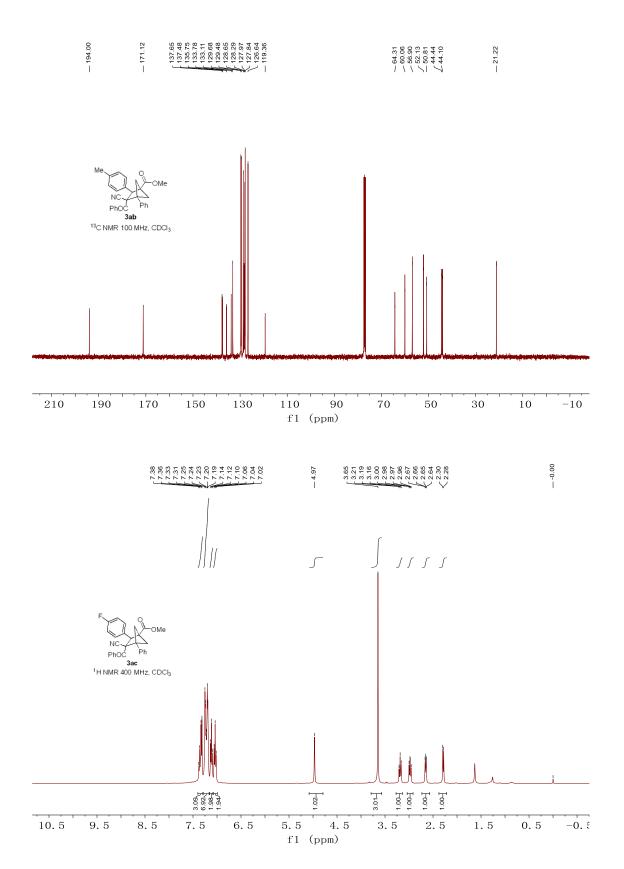


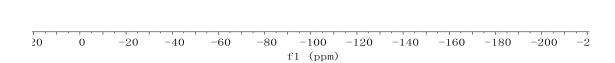


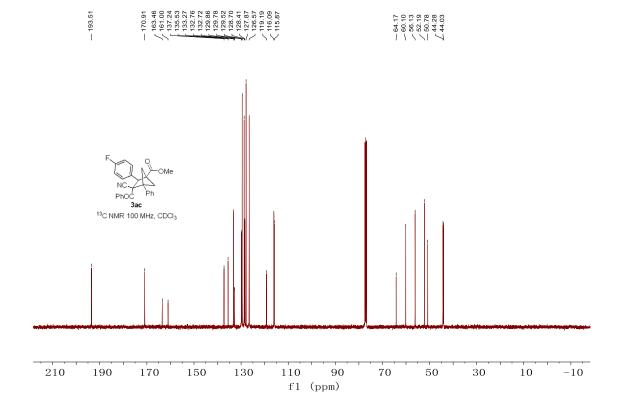


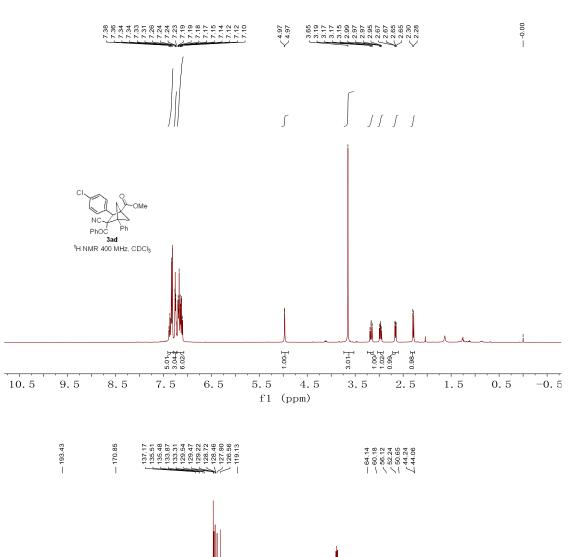


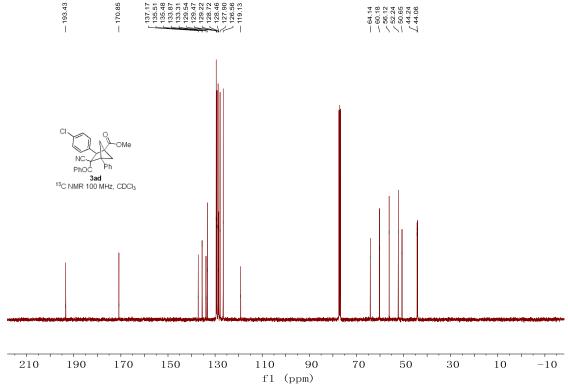


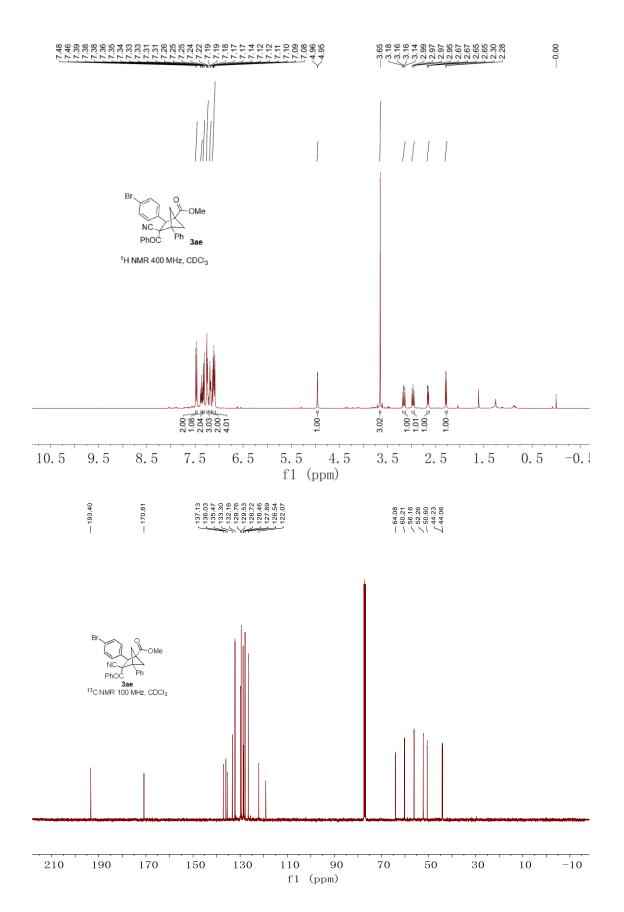


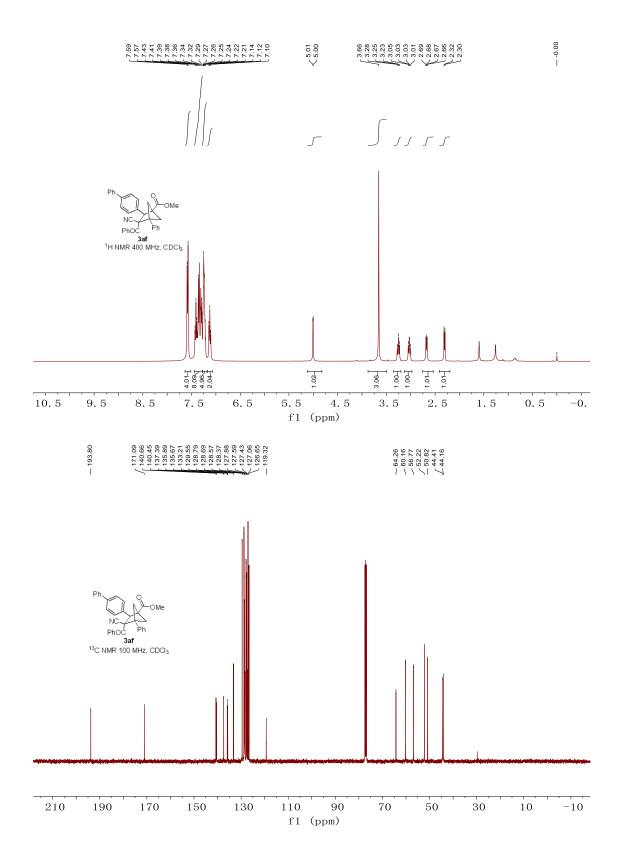


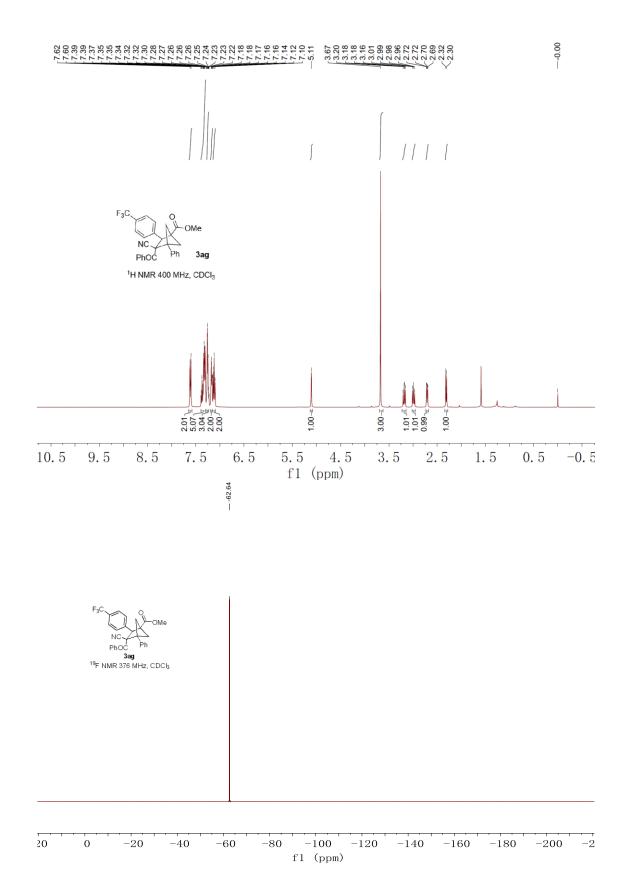


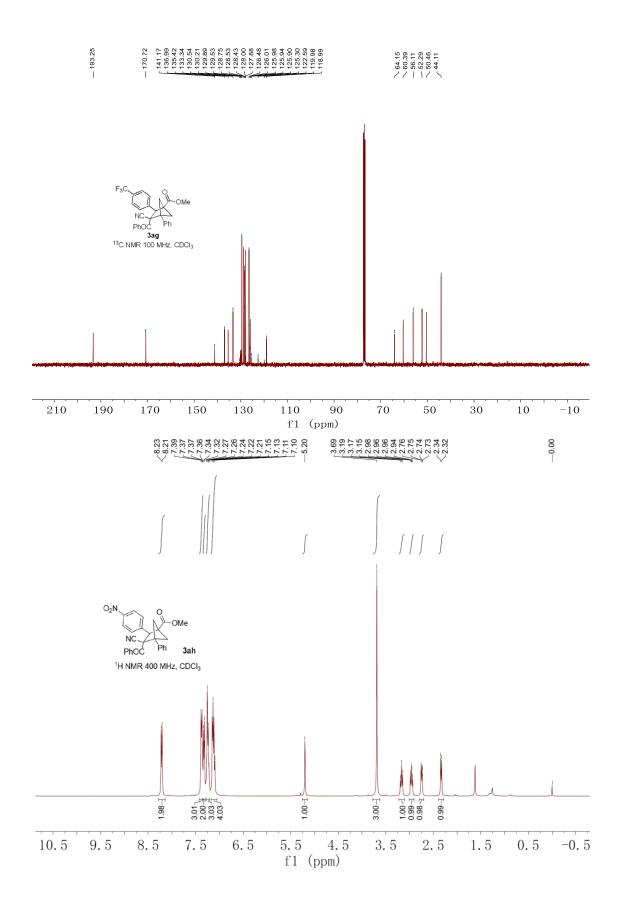


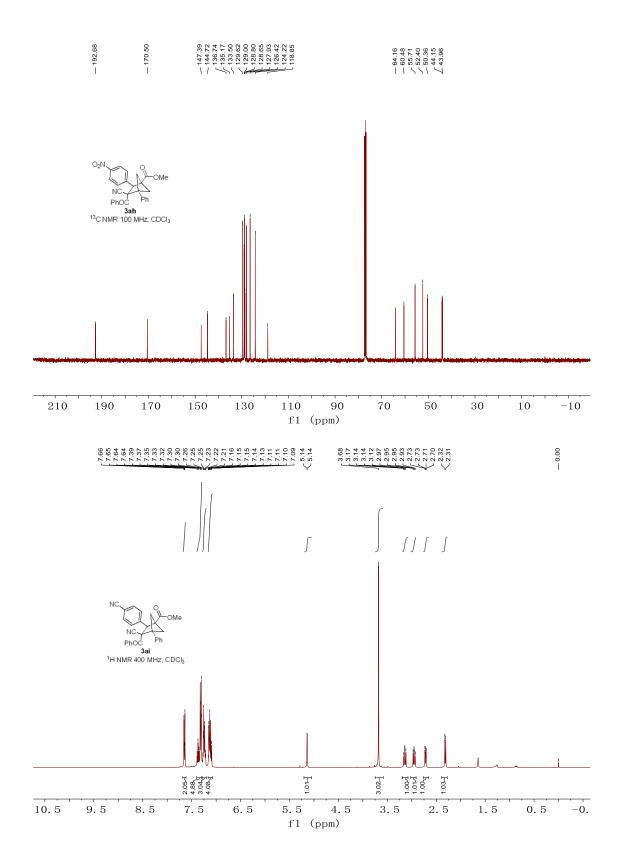


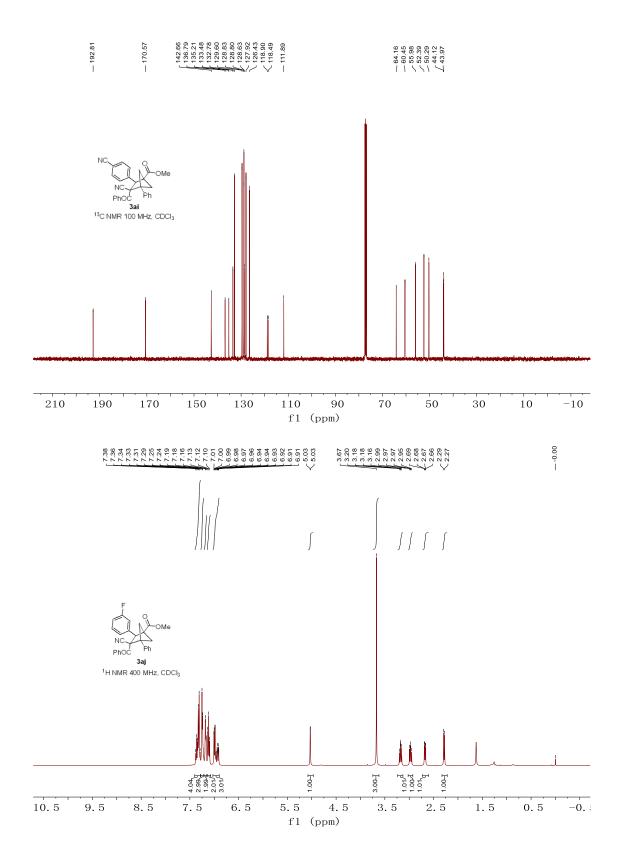


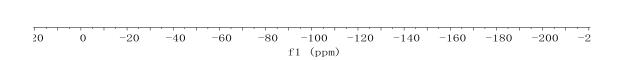


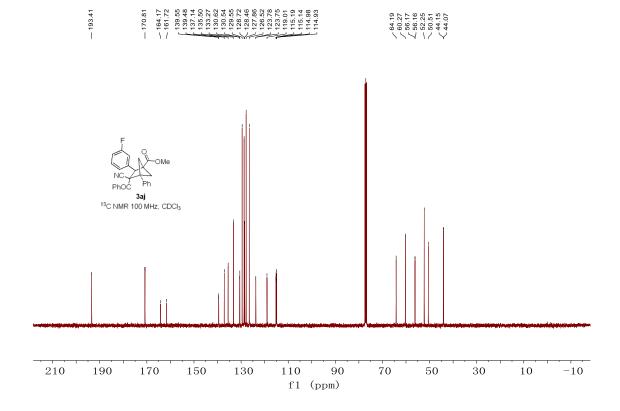


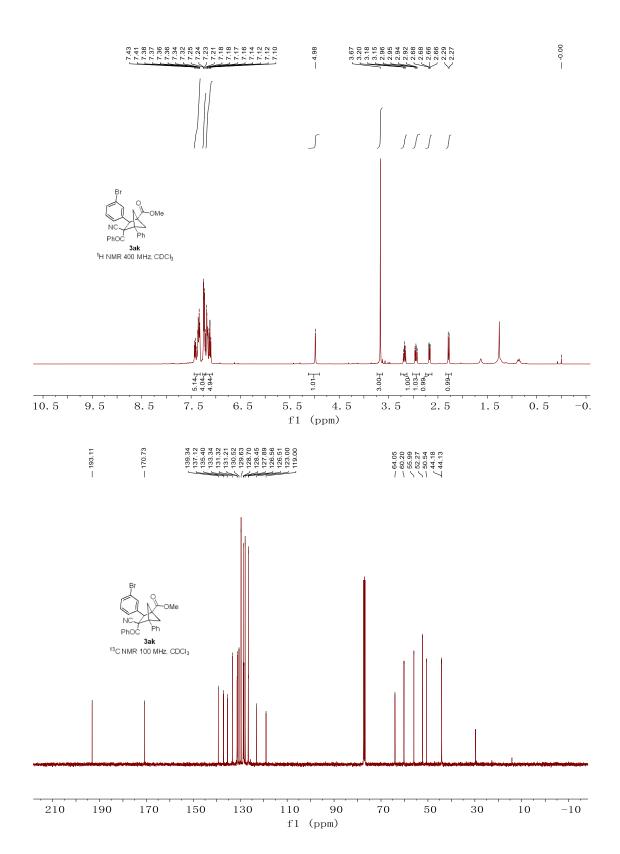


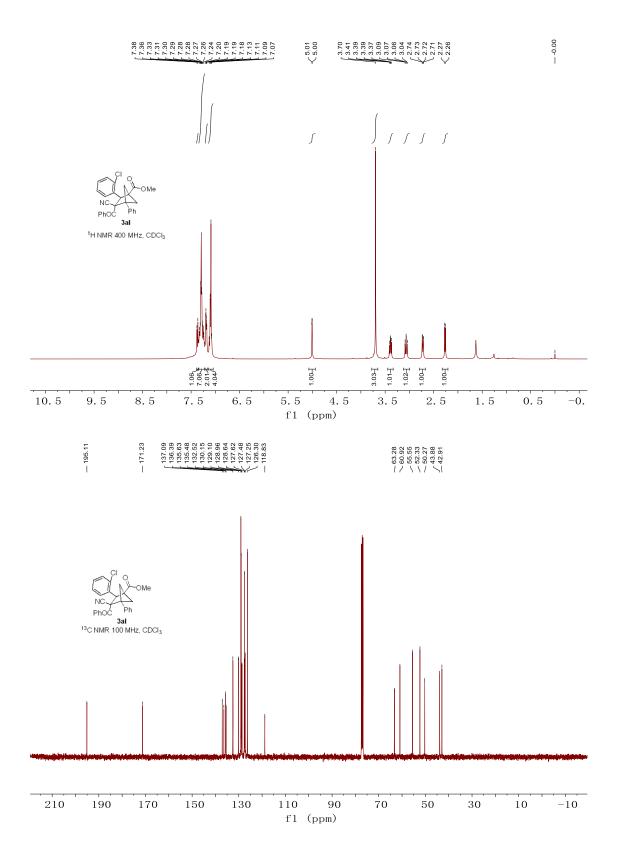


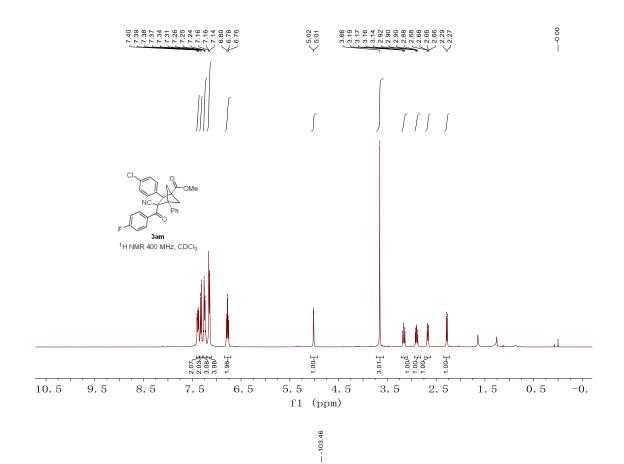


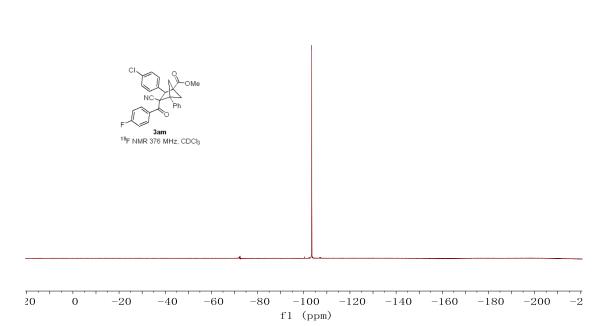


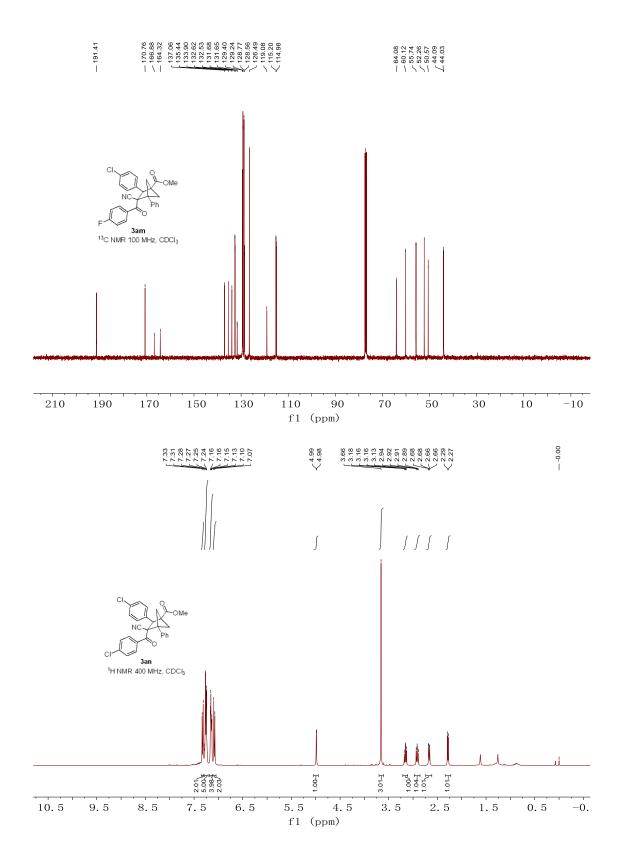


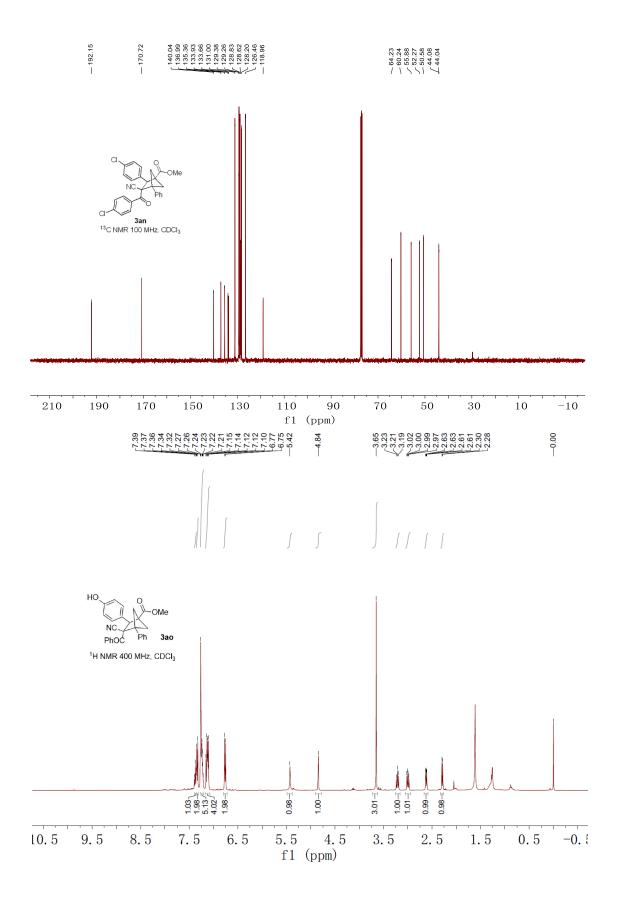


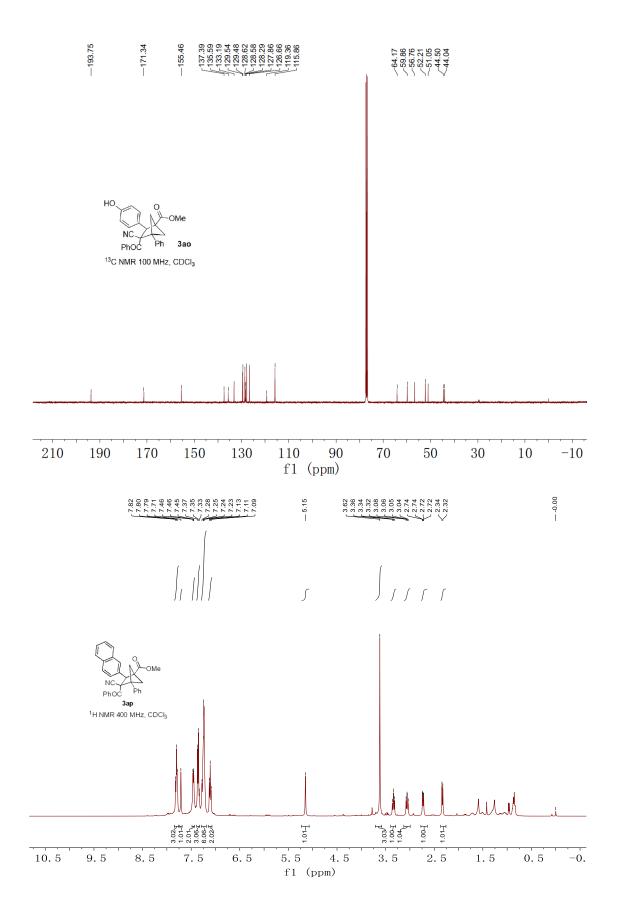


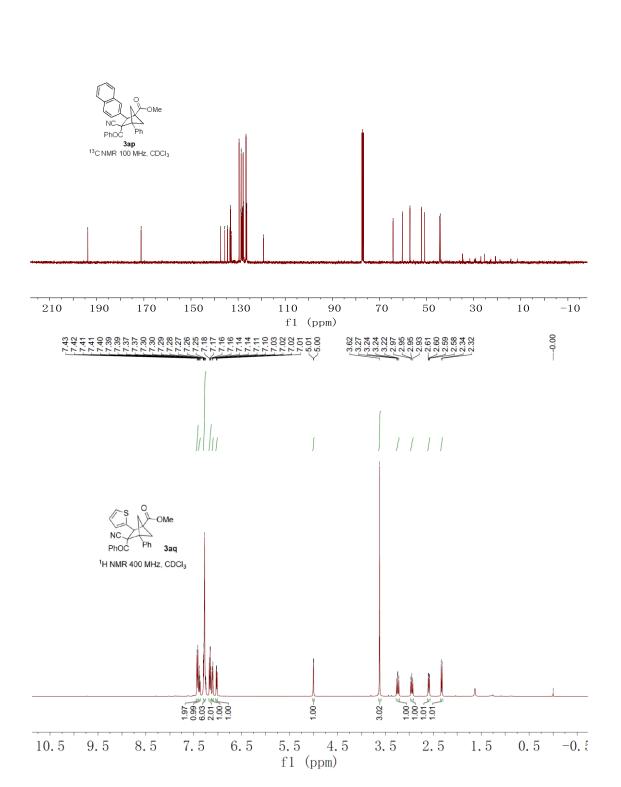


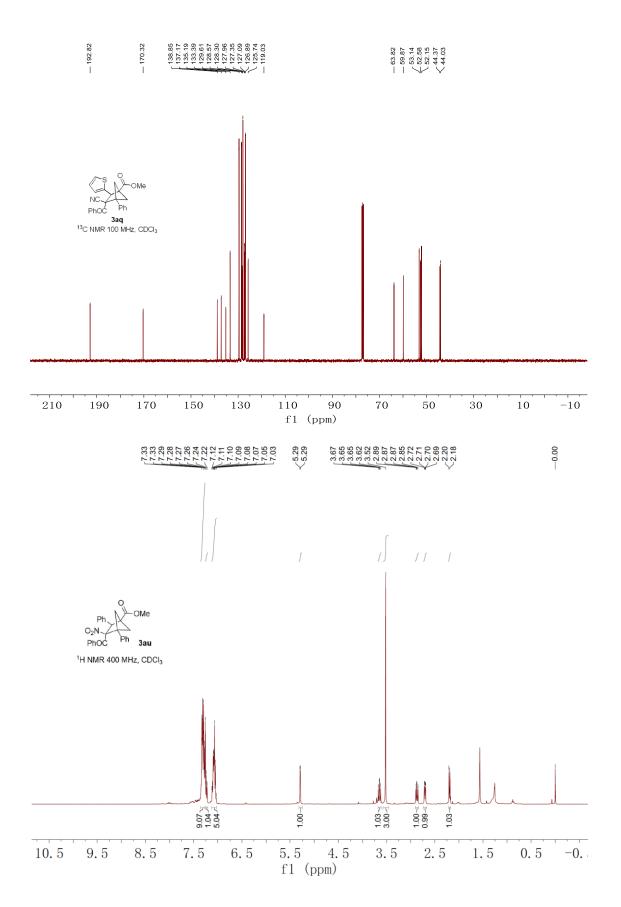


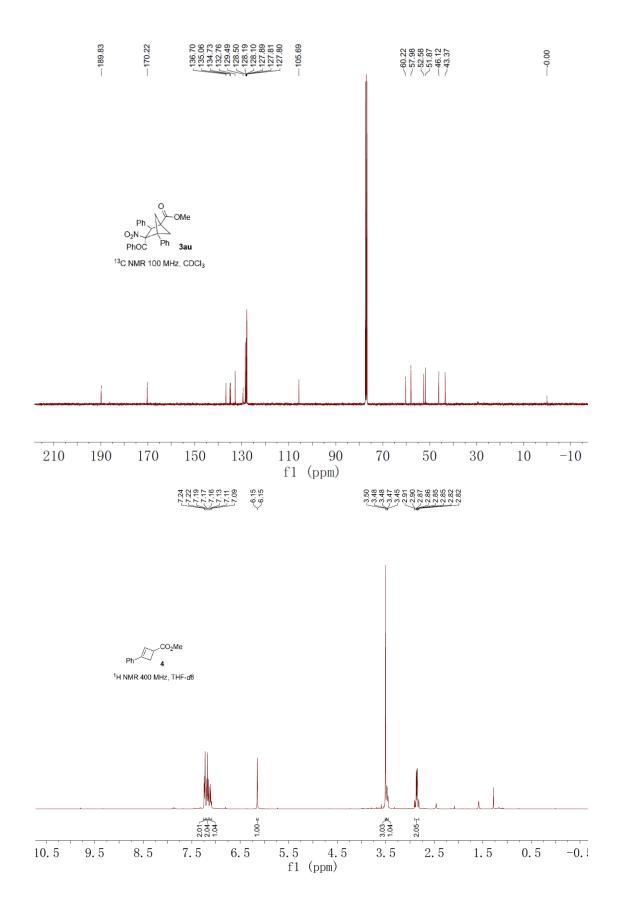


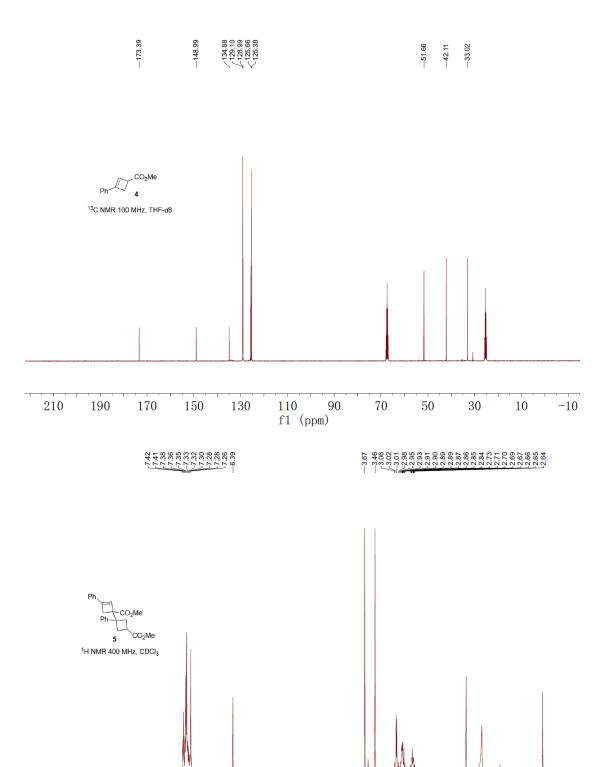












5.5 4. f1 (ppm)

4.5

3.5

2.15년 3.20년 2.10년

2.5

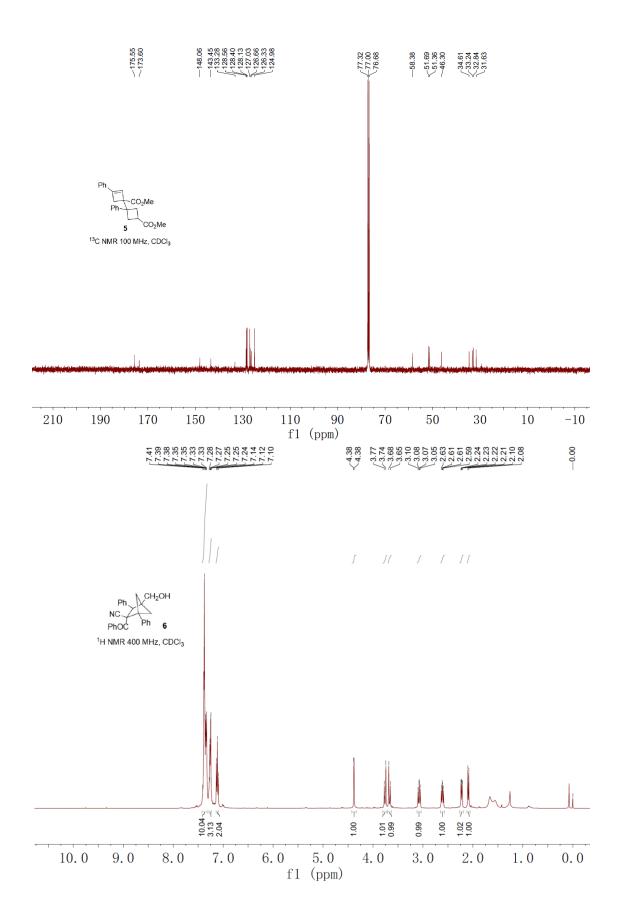
1.5

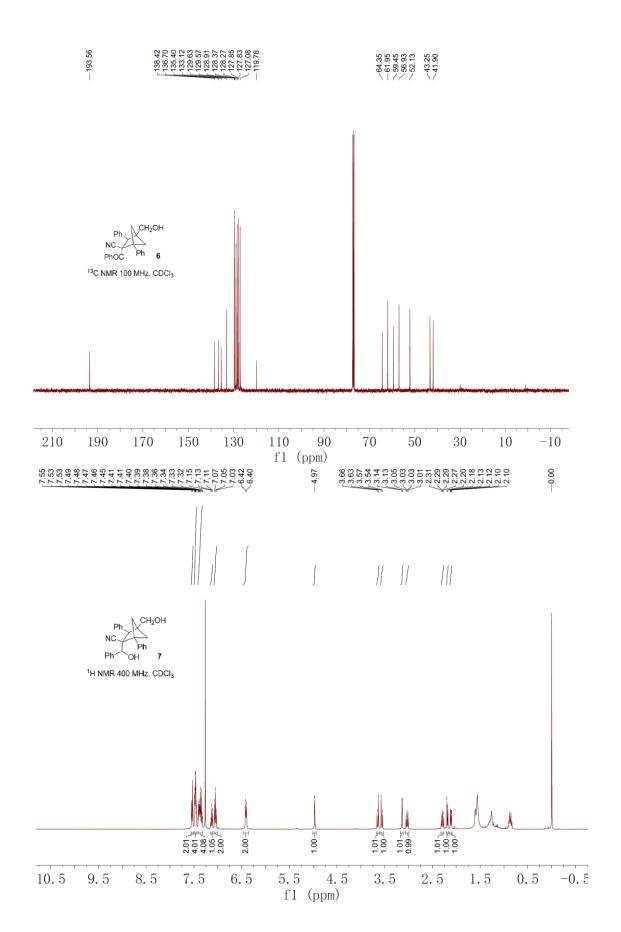
0.5

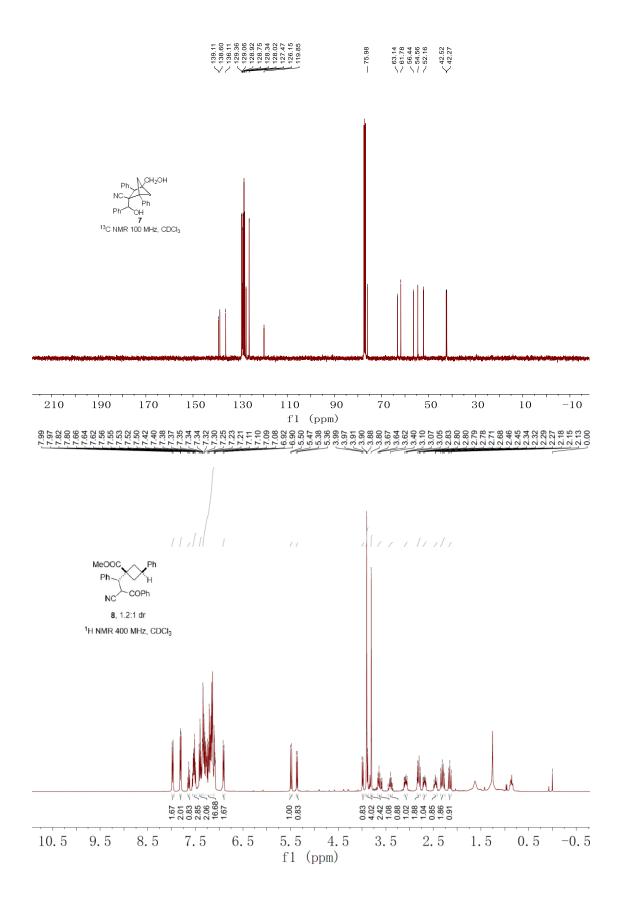
-0.5

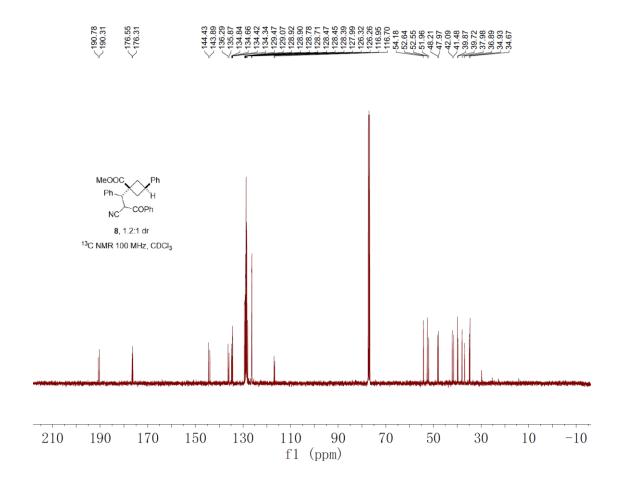
3.01天

7.5

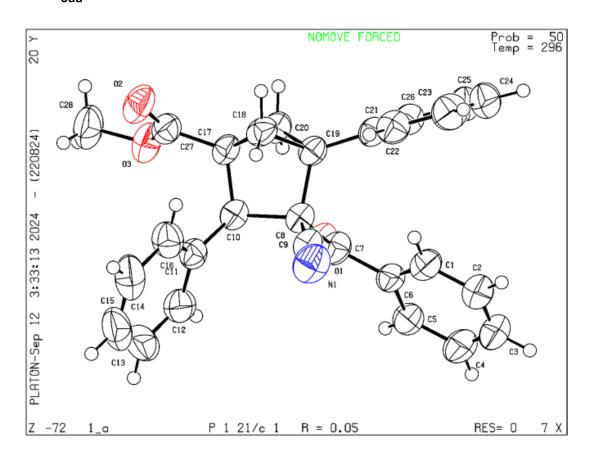

10.5


9.5


8.5


1.00⊸

6.5



X-Ray crystallographic data

X-ray structure of product **3aa** (thermal ellipsoids are shown at 50% probability level). The crystal of product **3aa** was obtained by slow evaporation in dichloromethane and petroleum ether. Crystal data have been deposited to CCDC, number 2428976.

Bond precision: C-C = 0.0039 A Wavelength=0.71073

Cell: a=13.893(14) b=20.91(2) c=7.841(8) alpha=90 beta=100.45(3) gamma=90

Temperature: 296 K

Volume Space group Hall group Moiety formula Sum formula Mr Dx,g cm-3 Z Mu (mm-1) F000 F000'	C28 H23 N O3 421.47 1.250 4 0.081 888.0 888.40	Reported 2241(4) P 1 21/c 1 -P 2ybc C28 H23 N O3 C28 H23 N O3 421.47 1.249 4 0.081 888.0
h,k,lmax	16,24,9	16,24,9
Nref	3980	3944
Tmin,Tmax	0.982,0.986	0.653,0.745
Tmin'	0.982	

Correction method= # Reported T Limits: Tmin=0.653 Tmax=0.745
AbsCorr = NONE

Data completeness= 0.991 Theta(max)= 25.055

S = 1.016 Npar= 290