Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2025

Supporting Information

for

Nickel-Catalyzed Reductive Coupling of α-Haloboronates to Access Internal Vicinal Bis(boronate) Esters

Huiyuan Wang[‡], Shanya Lu[‡], Dong Wang and Tao XU*

Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and

Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. of China;

E-mail: taoxu@tongji.edu.cn.

1. Supplementary Notes	2
2. Procedures for Reaction Optimization	2
3. Procedures for Scope Studies	5
4. Procedures for applications of the products	7
5. Mechanistic Studies	10
6. Synthesis and characterization of Substrates	12
7. Characterization of products	20
8. Supplementary References	27
9. NMR Spectra Data of New Compounds	

1. Supplementary Notes

¹H and ¹³C spectra were recorded on a Bruker Avance 400, 600 spectrometers, and CDCl₃ was purchased from J&K. Chemical shifts are given in ppm with the internal standards as TMS (0 ppm for ¹H) and CDCl₃ (77.0 ppm for ¹³C). Flash column chromatography was performed on silica gel 60 (particle size 200-300 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate. GC spectra were recorded on Agilent Technologies 7890A spectrometer; GC-MS spectra were conducted on Shimadzu GC-MS-QP2010 SE W spectrometer; High-resolution mass spectra HRMS-ESI were obtained from a Bruker micrOTOF-II instrument.

Unless otherwise noted, all reagents and starting materials were purchased from commercial sources and used without further purification. All reactions were performed under the N₂ atmosphere using dried solvents which were dried and purified according to procedures from 'Purification of Laboratory Chemicals book'.

2. Procedures for Reaction Optimization

General procedure A for Reaction Optimization: In the nitrogen-filled glovebox, an oven-dried 10-mL Schlenk tube containing a Teflon stir bar was charged with Nicatalyst (0.01 mmol, 10 mol%), ligand (0.012 mmol, 12 mol%), reductant (0.20 mmol, 2.0 equiv.), base (0.25 mmol, 2.5 equiv.), additive (0.1 mmol, 1.0 equiv.). Then the tube was sealed with a septum and taken out of the glovebox. Under N₂ atmosphere, the solvent (2.0 mL) was added via syringe, and then compound **1** (0.20 mmol, 2.0 equiv.) was added, and the reaction mixture was stirred for 8 hours at room temperature. Upon completion, the mixture was diluted with EtOAc (2.0 mL) and quenched with H₂O (2.0 mL). The yields were determined by GC with pentadecane as an internal standard. The resultant solution was treated following General procedure B, then the crude product was concentrated in vacuo and analyzed by ¹H NMR to obtain the *dr* ratio according to the reference. The *cis* structure of the product was determined according to the reference^{S1}.

General procedure B for the oxidation of boronic ester to alcohol: The residue of general procedure A was concentrated in vacuo and dissolved in THF/H₂O (4.0 mL, v/v=1:1), and then NaBO₃•4H₂O (1.0 mmol) was added at room temperature. The suspension was stirred for 4 hours and the reaction mixture was extracted with EtOAc (3*2.0 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure to obtain the crude alcohol.

Table S1. Screening results on Ni-catalysts.

Table S2. Screening results on reductants.

	B_2Pin_2	B ₂ cat ₂ B	2oct2
Entry	Reductant	Yield of 2 (%)	dr
1	Zn	38	2:1
2	Mn	0	n.d.
3	Mg	0	n.d.
4	B_2Pin_2	0	n.d.
5	B_2cat_2	54	19:1
6	$B_2(neo)_2$	77	13:1
7	B_2oct_2	0	n.d.

Table S3. Screening results on bases.

0.20 m	NiBr2(diglyme) 1 BPin B2(neo)2 (2.0 e) BPin Base (2.5 equ BPin TBAI (1.0 equ Acetone (2.0 e) (2.0 e)	D mol%) %) BPin uiv.) uiv.) mL) 2	
Entry	Base	Yield of 2 (%)	dr
1	K ₃ PO ₄	77	13:1
2	KHCO ₃	54	11:1
3	Na ₂ CO ₃	44	13:1
4	K ₂ HPO ₄	7	n.d.
5	KH ₂ PO ₄	0	n.d.
6	CH ₃ COOK	0	n.d.
7	K_2CO_3	47	11:1
8	Na ₃ PO ₄	33	13:1

Table S4 Screening results on additives.

Entry	Additive	Yield of 2 (%)	dr
1	TBAI	77	13:1
2	TBAC	44	6:1
3	AlCl ₃	0	n.d.
4	Al(OTf) ₃	11	n.d.
5	4ÅMS	57	>20:1

Table S5. Screening results on solvents.

Entry	Solvent	Yield of 2 (%)	dr	
1	Acetone	77	13:1	
2	DME	16	13:1	
3	DMA	37	9:1	
4	NMP	0	n.d.	
5	THF	5	n.d.	

6	PhCF ₃	0	n.d.
7	EA	9	n.d.
8	CH ₃ CN	56	9:1

Table S6 Screening results on ligands.

Table S7. Control reactions.

Entry	Variation from standard conditions	Yield of 2 (%)	dr
1	Without Ni-catalysts	0	n.d.
2	Without ligand	trace	n.d.
3	Without reductant	0	n.d.
4	Without base	0	n.d.
5	Without additive	51	13:1
6	In air	0	n.d.

3. Procedures for Scope Studies

3.1 General procedure C for the homo-coupling reaction of α -iodoboronates

In the nitrogen-filled glovebox, an oven-dried 10-mL Schlenk tube containing a Teflon stir bar was charged with NiBr₂(diglyme) (0.020 mmol, 10 mol%), L1 (0.024 mmol, 12 mol%), B₂(neo)₂ (0.40 mmol, 2.0 equiv.), K₃PO₄ (0.50 mmol, 2.5 equiv.), TBAI (0.2 mmol, 1.0 equiv.). Then the tube was sealed with a septum and taken out of

the glovebox. Under N₂ atmosphere, acetone (4.0 mL) was added via syringe, and then α -iodoboronate (0.40 mmol, 2.0 equiv.) was added, and the reaction mixture was stirred for 8 hours at room temperature. Upon completion, the mixture was diluted with EtOAc (4.0 mL) and quenched with H₂O (4.0 mL). The aqueous solution was extracted with EtOAc (4.0 mL*3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered through Celite, and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford the product. The boronic ester product was oxidized to the corresponding alcohol following General procedure B, then the mixture was analyzed by ¹H NMR to obtain the *dr* ratio. Note: generally, the flash column chromatography should be done fast and is better to finish within 30 min; otherwise the product could be decomposed to give a lower yield.

3.2 General procedure D for the cross-coupling of two distinct α -iodoboronates

In the nitrogen-filled glovebox, an oven-dried 10-mL Schlenk tube containing a Teflon stir bar was charged with NiBr₂(diglyme) (0.010 mmol, 10 mol%), bpp (0.012 mmol, 12 mol%), B₂(neo)₂ (0.20 mmol, 2.0 equiv.), K₃PO₄ (0.25 mmol, 2.5 equiv.), TBAI (0.1 mmol, 1.0 equiv.). Then the tube was sealed with a septum and taken out of the glovebox. Under N₂ atmosphere, acetone (2.0 mL) was added via syringe, and then the two substrates α -iodoboronate (0.15 mmol, 1.5 equiv.) and α -iodoboronate (0.10 mmol, 1.0 equiv) were added in sequence, and the reaction mixture was stirred for 8 hours at room temperature. Upon completion, the mixture was diluted with EtOAc (2.0 mL) and quenched with H₂O (2.0 mL). The aqueous solution was extracted with EtOAc (2.0 mL*3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered through Celite, and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford the product. The boronic ester product was oxidized to the corresponding alcohol following General procedure B, then the mixture was analyzed by ¹H NMR to obtain the dr ratio. Note: generally, the flash column chromatography should be done fast and is better to finish within 30 min; otherwise the product could be decomposed to give a lower yield.

4. Procedures for applications of the products

4.1 Procedure E for scale-up reaction of homo-coupling reaction

In the nitrogen-filled glovebox, an oven-dried 10-mL Schlenk tube containing a Teflon stir bar was charged with NiBr₂(diglyme) (0.10 mmol, 10 mol%), L1 (0.12 mmol, 12 mol%), B₂(neo)₂ (2.0 mmol, 2.0 equiv.), K₃PO₄ (2.5 mmol, 2.5 equiv.), TBAI (1.0 mmol, 1.0 equiv.). Then the tube was sealed with a septum and taken out of the glovebox. Under N₂ atmosphere, acetone (20.0 mL) was added via syringe, and then 1c (2.0 mmol, 2.0 equiv.) was added, and the reaction mixture was stirred for 8 hours at room temperature. Upon completion, the mixture was diluted with EtOAc (20 mL) and quenched with H₂O (20 mL). The aqueous solution was extracted with EtOAc (20 mL*3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered through Celite, and concentrated in vacuo. The residues were purified by silica gel column chromatography with an eluent of petroleum ether/ethyl acetate (20/1)affording product 2c (0.38g, 60% yield, dr > 20:1, white solid). The boronic ester product 2c was oxidized to the corresponding alcohol following General procedure B, then the mixture was analyzed by ¹H NMR to obtain the dr ratio. Note: generally, the flash column chromatography should be done fast and is better to finish within 30 min; otherwise the product could be decomposed to give a lower yield.

4.2 Procedure F for scale-up reaction of cross-coupling reaction

In the nitrogen-filled glovebox, an oven-dried 10-mL Schlenk tube containing a Teflon stir bar was charged with NiBr₂(diglyme) (0.10 mmol, 10 mol%), bpp (0.12 mmol, 12 mol%), B₂(neo)₂ (2.0 mmol, 2.0 equiv.), K₃PO₄ (2.5 mmol, 2.5 equiv.), TBAI (1.0 mmol, 1.0 equiv.). Then the tube was sealed with a septum and taken out of the glovebox. Under N₂ atmosphere, acetone (20.0 mL) was added via syringe, and then **1a** (1.5 mmol, 1.5 equiv.) and **1c** (1.0 mmol, 1.0 equiv.) were added in sequence, and the reaction mixture was stirred for 8 hours at room temperature. Upon completion, the mixture was diluted with EtOAc (20 mL) and quenched with H₂O (20 mL). The aqueous solution was extracted with EtOAc (20 mL*3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered through Celite, and concentrated in vacuo. The residues were purified by silica gel column chromatography with an eluent of petroleum ether/ethyl acetate (15/1) affording product **2o** (0.30g, 54% yield, *dr* 11:1, colorless oil). The boronic ester product **2o** was oxidized to the corresponding alcohol

following General procedure B, then the alcohol was analyzed by 1 H NMR to obtain the *dr* ratio. Note: generally, the flash column chromatography should be done fast and is better to finish within 30 min; otherwise the product could be decomposed to give a lower yield.

4.3 Procedure G for synthesis of 3a

The preparation of **3a** was conducted according to literature procedures ^{S2}. The boronic ester **2c** (0.2 mmol, 1.0 equiv.) was dissolved in THF/H₂O (4.0 mL, v/v=1:1), and then NaBO₃•4H₂O (2.0 mmol, 10 equiv.) was added at room temperature. The suspension was stirred for 4 hours and the reaction mixture was extracted with EtOAc (3*4.0 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure, and the crude product was purified carefully by column chromatography on silica gel with an eluent of petroleum ether/ethyl acetate (1/1) affording product **3a** (91% yield, *dr* >20:1, white solid). The *dr* ratio was determined by ¹H NMR.

¹**H NMR** (400 MHz, MeOD) δ 7.54 (d, *J* = 8.0 Hz, 4H), 7.38 (d, *J* = 8.0 Hz, 4H), 3.44-3.40 (m, 2H), 2.91-2.84 (m, 2H), 2.76-2.68 (m, 2H), 1.88-1.71 (m, 4H).

¹³**C NMR** (101 MHz, MeOD) δ 148.4, 130.1, 129.2 (q, *J* = 32.3 Hz), 126.2 (q, *J* = 4.0 Hz), 125.9 (q, *J* = 271.7 Hz), 74.3, 35.5, 33.0.

¹⁹**F NMR** (376 MHz, MeOD) δ -63.80.

HRMS: m/z (ESI) calculated for C₂₀H₂₀F₆NaO₂ [M+Na]⁺: 429.1265, found: 429.1260.

4.4 Procedure H for synthesis of 3b

The preparation of **3b** was conducted according to literature procedures ^{S3}. The boronic ester **2c** (0.2 mmol, 1.0 equiv.) was dissolved in MeOH/THF (4.0 mL, v/v=3/1). Then a solution of KHF₂ (2.0 M, 9.0 mL, 9.0 equiv.) was added dropwise at 0°C. Once added, the ice bath was removed and the reaction mixture was stirred overnight. Upon finished, the resultant solution was concentrated under reduced pressure. Pinacol and H₂O were removed by suspension in toluene (3*10 mL) followed by rotary evaporation. The remaining solid was dried under high vacuum and then suspended in hot acetone (3*10 mL) and filtered. The filtrate was concentrated to a minimal volume and hexane (50 mL) was added to yield a white precipitate. The precipitate was isolated by filtration, washing with hexanes (10 mL) and CH₂Cl₂ (10 mL) to afford the desired potassium trifluoroborate **3b** (yield 51%, *dr* >20:1, white solid).

¹**H** NMR (400 MHz, Acetone) δ 7.41 (d, J = 8.0 Hz, 4H), 7.30 (d, J = 8.0 Hz, 4H), 2.74-2.56 (m, 4H), 1.90-1.77 (m, 2H), 1.75-1.66 (m, 2H), 1.24-1.21 (m, 2H).

¹³C NMR (151 MHz, Acetone) δ 151.8, 130.1, 127.4 (q, J = 31.7 Hz), 125.9 (q, J = 270.3 Hz), 125.5 (q, J = 3.0 Hz), 36.2, 34.5. ¹⁹F NMR (376 MHz, Acetone) δ -62.53.

4.5 Procedure I for synthesis of 3c

The preparation of **3c** was conducted according to literature procedures ^{S4}. The boronic ester **2c** (0.2 mmol, 1.0 equiv.) was dissolved in THF (2.0 mL) under N₂ atmosphere. Then a solution of vinylmagnesium bromide (0.80 mmol, 0.80 mL, 1.0 M in THF) was added dropwise, and the mixture was stirred for 30 min at room temperature. Then the tube was cooled to -78°C and a solution of I₂ (0.80 mmol in 2.0 mL MeOH) was added dropwise. The solution was stirred for another 30 min at this temperature, followed by addition of a solution of NaOMe (1.6 mmol in 2.0 mL MeOH). The reaction mixture was allowed to warm to room temperature and stirred for another 2 hours. Once finished, the reaction was quenched with 4 mL saturated sodium thiosulfate aqueous. The aqueous solution was extracted with EtOAc (3*4.0 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The crude material was purified by silica gel column chromatography with an eluent of petroleum ether affording **3c** (yield 86%, *dr* >20:1, colorless oil). The *dr* ratio was determined by ¹H NMR.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.0 Hz, 4H), 7.23 (d, *J* = 8.0 Hz, 4H), 5.65-5.56 (m, 2H), 5.13 (dd, *J* = 10.0, 2.0 Hz, 2H), 5.03 (dd, *J* = 16.8, 2.0 Hz, 2H), 2.70-2.63 (m, 2H), 2.57-2.49 (m, 2H), 2.09-2.02 (m, 2H), 1.70-1.56 (m, 4H).

¹³**C NMR** (151 MHz, CDCl₃) δ 146.7, 138.8, 128.7, 128.1 (q, *J* = 31.7 Hz), 125.20 (q, *J* = 3.0 Hz), 124.4 (q, *J* = 271.8 Hz), 117.02, 47.84, 34.50, 33.49.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.26.

MS: (EI) $[M]^+ C_{24}H_{24}F_6$: 426.20.

4.6 Procedure J for synthesis of 3d

The preparation of **3d** was conducted according to literature procedures ^{S5}. In the nitrogen-filled glove box, an oven-dried 25-mL Schlenk flask containing a Teflon stir bar was charged with **2c** (0.20 mmol, 1.0 equiv.), NH₂-DABCO (0.40 mmol, 2.0 equiv.), tBuOK (0.96 mmol, 4.8 equiv.) and THF (3.0 mL). Then, the flask was heated to 100°C and stirred for 1 hour. Upon completion, TFAA (0.80 mmol, 4.0 equiv.) was added, and the reaction mixture was heated to 100°C again for 1 hour. After that, the reaction was

quenched by EtOAc (2.0 mL) and H₂O (2.0 mL). The aqueous solution was extracted with EtOAc (3*2.0 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (10/1) to afford **3d** (yield 57%, *dr* >20:1, white solid). The *dr* ratio was determined by ¹H NMR. ¹H NMR (400 MHz, DMSO) δ 8.25 (s, 2H), 6.63 (d, *J* = 8.0 Hz, 4H), 6.40 (d, *J* = 8.0 Hz, 4H), 3.13-2.85 (m, 2H), 1.73-1.53 (m, 4H), 0.94-0.82 (m, 4H).

¹³**C NMR** (101 MHz, DMSO) δ 156.7 (q, *J* = 36.4 Hz), 146.0, 129.2, 126.9 (q, *J* = 31.3 Hz), 125.11 (q, *J* = 4.0 Hz), 124.4 (q, *J* = 272.7 Hz), 116.0 (q, *J* = 289.9 Hz), 52.6, 31.6, 31.4.

¹⁹**F NMR** (376 MHz, DMSO) δ -60.89, -74.22.

HRMS: m/z (ESI) calculated for $C_{24}H_{20}F_{12}N_2NaO_2$ [M+Na]⁺: 619.1231, found: 619.1225.

5. Mechanistic Studies

5.1 Comparison Reactions

In the nitrogen-filled glovebox, an oven-dried 10-mL Schlenk tube containing a Teflon stir bar was charged with NiBr₂(diglyme) (0.020 mmol, 10 mol%), L1 (0.024 mmol, 12 mol%), B₂(neo)₂ (0.40 mmol, 2.0 equiv.), K₃PO₄ (0.50 mmol, 2.5 equiv.), TBAI (0.20 mmol, 1.0 equiv.). Then the tube was sealed with a septum and taken out of the glovebox. Under N₂ atmosphere, acetone (4.0 mL) was added via syringe, and then α -haloboronates (0.40 mmol, 2.0 equiv.) was added, and the reaction mixture was stirred for 8 hours at room temperature. Upon completion, the mixture was diluted with EtOAc (4.0 mL) and quenched with H₂O (4.0 mL). The aqueous solution was extracted with EtOAc (4.0 mL*3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered through Celite, and concentrated in vacuo. The residue was purified by silica gel column chromatography with an eluent of petroleum ether/ethyl acetate (20/1) affording product 2a. The boronic ester product 2a was oxidized to the corresponding alcohol following General procedure B, then the alcohol was analyzed by ¹H NMR to obtain the dr ratio. Note: generally, the flash column chromatography should be done fast and is better to finish within 30 min; otherwise the product could be decomposed to give a lower yield.

5.2 Reaction with the radical scavenger

In the nitrogen-filled glovebox, an oven-dried 10-mL Schlenk tube containing a Teflon stir bar was charged with NiBr₂(diglyme) (0.010 mmol, 10 mol%), L1 (0.012 mmol, 12 mol%), B₂(neo)₂ (0.20 mmol, 2.0 equiv.), K₃PO₄ (0.25 mmol, 2.5 equiv.), TBAI (0.10 mmol, 1.0 equiv.), TEMPO (0.20 mmol, 2.0 equiv.). Then the tube was sealed with a septum and taken out of the glovebox. Under N₂ atmosphere, acetone (2.0 mL) was added via syringe, and then α -iodoboronates (0.20 mmol, 2.0 equiv.) was added, and the reaction mixture was stirred for 8 hours at room temperature. Upon completion, the mixture was diluted with EtOAc (2.0 mL) and quenched with H₂O (2.0 mL). The aqueous solution was extracted with EtOAc (2.0 mL*3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered through Celite, and concentrated in vacuo. The yield was determined by GC and pentadecane was the internal standard.

In the nitrogen-filled glovebox, an oven-dried 10 mL Schlenk tube containing a Teflon stir bar was charged with NiBr₂(diglyme) (0.010 mmol, 10 mol%), L1 (0.012 mmol, 12 mol%), B₂(neo)₂ (0.20 mmol, 2.0 equiv.), K₃PO₄ (0.25 mmol, 2.5 equiv.). Then the tube was sealed with a septum and taken out of the glovebox. Under N₂ atmosphere, acetone (2.0 mL) was added via syringe, and then α -iodoboronates (0.20 mmol, 2.0 equiv.) and 1,1-diphenylethylene (0.20 mmol, 2.0 equiv.) was added, and the reaction mixture was stirred for 8 hours at room temperature. Upon completion, the mixture was diluted with EtOAc (2.0 mL) and quenched with H₂O (2.0 mL). The aqueous solution was extracted with EtOAc (2.0 mL*3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered through Celite, and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel and eluted with petroleum ether to afford **5** (yield 47%, colorless oil).

6. Synthesis and characterization of Substrates

The α -iodoboronates **1a**, **S2**, **S9** were synthesized according to the reference^{*S6*}, and all analytical data matched the reports.

General procedure K for synthesis of S5, S6, S10, S15

According to the reference^{*S6*}, in the nitrogen-filled glovebox, an oven-dried 25 mL Schlenk flask equipped with a Teflon stir bar was charged with B₂Pin₂ (5.5 mmol, 1.1 equiv.), NaO'Bu (0.50 mmol, 10 mol%), ICyCuCl (0.15 mmol, 3 mol%) and aldehyde (5.0 mmol, 1.0 equiv.), DME (10 mL). The tube was sealed and heated at 80 °C with stirring for 12 h. The reaction solution was cooled to room temperature, and the solvent was concentrated in vacuo. The crude mixture was dissolved by acetone (10 mL). TMSI (10 mmol, 2.0 equiv.) was added to the solution. After stirring for 12 h at room temperature, the solvent was concentrated in vacuo. The crude material was purified by

flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate to give the product. Note: generally, the flash column chromatography should be done fast and is better to finish within 30 min; otherwise the product could be decomposed to give a lower yield.

General procedure L for synthesis of S18

In the nitrogen-filled glovebox, an oven-dried 25 mL Schlenk flask equipped with a Teflon stir bar was charged with B₂(neo)₂ (5.5 mmol, 1.1 equiv.), tBuONa (0.50 mmol, 10 mol%), ICyCuCl (0.15 mmol, 3 mol%) and aldehyde (5.0 mmol, 1.0 equiv.), DME (10 mL). The tube was sealed and heated at 80 °C with stirring for 12 h. The reaction solution was cooled to room temperature, and the solvent was concentrated in vacuo. The crude mixture was dissolved by acetone (10 mL). TMSI (10 mmol, 2.0 equiv.) was added to the solution. After stirring for 12 h at room temperature, the solvent was concentrated in vacuo. The crude material was purified by flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate to give the product. Note: generally, the flash column chromatography should be done fast and is better to finish within 30 min; otherwise the product could be decomposed to give a lower yield.

General procedure M for synthesis of S7, S14, S17

The first step of preparation procedures was conducted according to literature procedures^{S7}. An oven-dried 100 mL Schlenk flask equipped with a Teflon stir bar was charged with pyridinium chlorochromate (PCC) (15 mmol, 1.5 equiv.), Celite (4.0 g) and anhydrous CH₂Cl₂ (20 mL). Then a solution of alcohol (10 mmol, 1.0 equiv.) in CH₂Cl₂ (10 mL) was added in one portion to the suspension. The resulting dark-brown reaction mixture was kept at room temperature for 1.5 h. Then the mixture was diluted with CH₂Cl₂ (20 mL) and filtered through Celite and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate to afford the pure aldehyde. Then the aldehyde was treated following General procedure K to give the desired α -iodoboronate.

General procedure N for synthesis of S1, 1b, S8, S13, S16

The first step of preparation procedures was conducted according to literature procedures^{S8}. To a 25 mL Schlenk tube equipped with a magnetic stirring bar,

carboxylic acid (10 mmol, 1.0 equiv.), 1-Pyridin-4-ylpiperidine (PPDP, 18 mmol, 1.8 equiv.) and CH₂Cl₂ (50 mL) were added under a dry nitrogen atmosphere. Then the Tf-PPDP (17 mmol, 1.7 equiv.) and HBPin (18 mmol, 1.8 equiv.) were added to the reaction mixture. After the reaction was stirred for 10 min, the crude mixture was quenched by H₂O (20 mL) and extracted by CH₂Cl₂ (3*20 mL). The combined organic layers were dried over anhydrous Na₂SO₄. After the solvent was removed under reduced pressure, the resulting residue was purified by flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate to afford the desired aldehyde. Then the aldehyde was treated following General procedure K to give the desired α -iodoboronate.

General procedure O for synthesis of S3, S4, S11, S12, 1c

The first step of preparation procedures was conducted according to literature procedures^{S9}. To a 100 mL Schlenk tube equipped with a magnetic stirring bar, 1,4butanediol (45 mmol, 3.0 equiv.) and Et₃N (15 mmol, 1.0 equiv.) and CH₂Cl₂ (50 mL) was added. Then the acyl chloride was added dropwise at 0 °C. The solution was warmed to room temperature and stirred for 9 hours. The mixture was diluted with H₂O (20 mL) and extracted with CH₂Cl₂ (3*20 mL). The organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate to afford the desired aldehyde. Then the alcohol was treated following General procedure M to give the desired α -iodoboronate.

Compound S1 was synthesized according to General procedure N, and it was purified with silica gel chromatography (PE/EA = 30:1) (60% yield, colorless oil).

¹**H NMR** (600 MHz, CDCl₃) δ 7.44 (dd, J = 7.8, 1.8 Hz, 1H), 7.19-7.13 (m, 2H), 6.98 (m, 1H), 3.16 (dd, J = 3.0, 1.8 Hz, 1H), 2.87-2.82 (m, 1H), 2.70-2.65 (m, 1H), 2.10-1.97 (m, 2H), 1.20 (d, J = 3.0, 12H).

¹³C NMR (151 MHz, CDCl₃) δ 140.1, 132.8, 130.6, 127.8, 127.4, 124.4, 84.0, 37.4, 34.4, 24.4, 24.2.

MS: (EI) [**M**]⁺ C₁₅H₂₁BBrIO₂: 449.90.

Compound **1b** was synthesized according to General procedure **N**, and it was purified with silica gel chromatography (PE/EA = 30:1) (68% yield, colorless oil).

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.16 (dd, J = 8.8, 6.8 Hz, 1H), 2.89-2.82 (m, 1H), 2.73-2.66 (m, 1H), 2.22-2.13 (m, 1H), 2.10-2.01 (m, 1H), 1.27 (s, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 144.9, 128.9, 128.5 (q, *J* = 32.3 Hz), 125.4 (q, *J* = 4.0 Hz), 124.3 (q, *J* = 272.7 Hz), 84.1, 37.0, 35.9, 24.4, 24.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.3.

HRMS: m/z (ESI) calculated for $C_{16}H_{22}BF_3IO_2$ [M+H]⁺: 441.0710, found: 441.0707.

Compound S3 was synthesized according to General procedure O, and it was purified with silica gel chromatography (PE/EA = 10:1) (55% yield, colorless oil).

¹**H** NMR (600 MHz, CDCl₃) δ 7.66 (dd, J = 8.4, 1.8 Hz, 1H), 7.48 (d, J = 1.8 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.04 (s, 2H), 4.28 (t, J = 6.0 Hz, 2H), 3.28 (t, J = 7.8 Hz, 1H), 2.05-1.90 (m, 3H), 1.81-1.73 (m, 1H), 1.28 (d, J = 3.6 Hz, 12H).

¹³C NMR (151 MHz, CDCl₃) δ 165.9, 151.5, 147.7, 125.3, 124.3, 109.5, 107.9, 101.7, 84.1, 64.1, 31.5, 30.4, 24.4, 24.2.

HRMS: m/z (ESI) calculated for C₁₈H₂₄BINaO₆ [M+Na]⁺: 497.0608, found: 497.0606.

Compound **S4** was synthesized according to General procedure **O**, and it was purified with silica gel chromatography (PE/EA = 15:1) (59% yield, colorless oil). ¹**H NMR** (400 MHz, CDCl₃) δ 3.99 (t, *J* = 6.4 Hz, 2H), 3.16 (t, *J* = 8.0 Hz, 1H), 1.87-1.80 (m, 2H), 1.77-1.69 (m, 1H), 1.63-1.54 (m, 1H), 1.20 (d, *J* = 2.4 Hz, 12H), 1.13 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 178.4, 84.0, 63.4, 38.7, 31.4, 30.3, 27.2, 24.4, 24.2. MS: (EI) [M]⁺ C₁₅H₂₈BIO₄: 410.10

Compound **S5** was synthesized according to General procedure **K**, and it was purified with silica gel chromatography (PE/EA = 15:1) (47% yield, colorless oil). ¹**H NMR** (400 MHz, CDCl₃) δ 3.59 (s, 3H), 3.13 (t, *J* = 8.0 Hz, 1H), 2.25 (t, *J* = 8.0 Hz, 2H), 1.86-1.69 (m, 2H), 1.64-1.51 (m, 2H), 1.46-1.34 (m, 1H), 1.31-1.23 (m, 1H), 1.20 (d, *J* = 2.8 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 83.9, 51.4, 34.3, 33.7, 30.6, 24.3, 24.14, 24.06. MS: (EI) [M]⁺ C₁₃H₂₄BIO₄: 382.00.

Compound **S6** was synthesized according to General procedure **K**, and it was purified with silica gel chromatography (PE/EA = 30:1) (60% yield, colorless oil). ¹**H NMR** (600 MHz, CDCl₃) δ 3.47 (t, *J* = 6.6 Hz, 2H), 3.13 (t, *J* = 8.4 Hz, 1H), 1.86-1.67 (m, 4H), 1.57-1.49 (m, 1H), 1.42-1.34 (m, 1H), 1.21 (d, *J* = 4.2 Hz, 12H). ¹³**C NMR** (151 MHz, CDCl₃) δ 83.9, 44.6, 33.9, 31.7, 28.5, 24.3, 24.1. **MS: (EI)** [**M**]⁺ C₁₁H₂₁BClIO₂: 358.00.

Compound **S7** was synthesized according to General procedure **M**, and it was purified with silica gel chromatography (PE/EA = 15:1) (68% yield, colorless oil). ¹**H NMR** (400 MHz, CDCl₃) δ 7.02 (d, J = 8.4 Hz, 2H), 6.73 (d, J = 8.4 Hz, 2H), 3.69 (s, 3H), 3.10 (dd, J = 8.8, 7.2 Hz, 1H), 2.66-2.58 (m, 1H), 2.53-2.45 (m, 1H), 2.10-2.01 (m, 1H), 1.98-1.89 (m, 1H), 1.18 (d, J = 2.0 Hz, 12H). ¹³**C NMR** (101 MHz CDCl₂) δ 157.9, 132.7, 129.4, 113.8, 83.9, 55.2, 36.5, 36.1, 24.4

¹³C NMR (101 MHz, CDCl₃) δ 157.9, 132.7, 129.4, 113.8, 83.9, 55.2, 36.5, 36.1, 24.4, 24.2.

MS: (EI) [**M**]⁺ C₁₆H₂₄BIO₃: 402.05.

(m, 1H).

S8

Compound **S8** was synthesized according to General procedure **N**, and it was purified with silica gel chromatography (PE/EA = 15:1) (64% yield, colorless oil). ¹**H NMR** (400 MHz, CDCl₃) δ 3.98-3.92 (m, 2H), 3.41-3.34 (m, 2H), 3.32-3.28 (m, 1H), 1.95-1.87 (m, 1H), 1.70-1.54 (m, 4H), 1.44-1.33 (m, 1H), 1.28 (s, 12H), 1.24-1.12

¹³C NMR (151 MHz, CDCl₃) δ 84.0, 67.9, 67.8, 41.0, 36.3, 32.7, 31.6, 24.3, 24.2. HRMS: m/z (ESI) calculated for C₁₃H₂₄BINaO₃ [M+Na]⁺: 389.0761, found: 389.0758.

Compound S10 was synthesized according to General procedure K, and it was

purified with silica gel chromatography (PE/EA = 7:1) (71% yield, white solid).

¹**H NMR** (600 MHz, CDCl₃) δ 7.77 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.64 (dd, *J* = 5.4, 3.0 Hz, 2H), 3.78-3.74 (m, 1H), 3.67-3.63 (m, 1H), 3.12 (t, *J* = 8.4 Hz, 1H), 2.17 (q, *J* = 7.2 Hz, 2H), 1.20 (d, *J* = 9.6 Hz, 12H).

¹³C NMR (151 MHz, CDCl₃) δ 168.2, 133.9, 132.0, 123.2, 84.1, 39.1, 33.7, 24.3, 24.2. MS: (EI) [M]⁺ C₁₇H₂₁BINO₄: 441.10.

Compound **S11** was synthesized according to General procedure **O**, and it was purified with silica gel chromatography (PE/EA = 10:1) (67% yield, colorless oil).

¹**H** NMR (600 MHz, CDCl₃) δ 7.51 (s, 1H), 7.12 (d, J = 3.6 Hz, 1H), 6.44 (dd, J = 3.6, 1.8 Hz, 1H), 4.23 (t, J = 6.0 Hz, 2H), 3.19 (t, J = 7.8 Hz, 1H), 1.95-1.82 (m, 3H), 1.75-1.66 (m, 1H), 1.19 (d, J = 3.0 Hz, 12H).

¹³C NMR (151 MHz, CDCl₃) δ 158.5, 146.2, 144.5, 117.8, 111.7, 83.9, 64.0, 31.2, 30.3, 24.3, 24.1.

HRMS: m/z (ESI) calculated for C₁₅H₂₂BINaO₅ [M+Na]⁺: 443.0503, found: 443.0500.

Compound **S12** was synthesized according to General procedure **O**, and it was purified with silica gel chromatography (PE/EA = 10:1) (74% yield, colorless oil). ¹**H NMR** (600 MHz, CDCl₃) δ 7.81 (dd, *J* = 4.2, 1.8 Hz, 1H), 7.56 (dd, *J* = 5.4, 1.8 Hz,

1H), 7.10 (dd, J = 5.4, 1.8 Hz, 1H), 4.30 (t, J = 6.0 Hz, 2H), 3.28 (t, J = 7.8 Hz, 1H), 2.03-1.90 (m, 3H), 1.81-1.74 (m, 1H), 1.27 (d, J = 3.0 Hz, 12H).

¹³C NMR (151 MHz, CDCl₃) δ 162.1, 133.8, 133.3, 132.3, 127.6, 84.0, 64.2, 31.3, 30.3, 24.3, 24.1.

HRMS: m/z (ESI) calculated for $C_{15}H_{22}BINaO_4S$ [M+Na]⁺: 459.0274, found: 459.0271.

Compound 1c was synthesized according to General procedure **O**, and it was purified with silica gel chromatography (PE/EA = 15:1) (72% yield, colorless oil). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.50-7.45 (m, 1H), 7.36 (t, *J* = 8.0 Hz, 2H), 4.25 (t, *J* = 6.4 Hz, 2H), 3.21 (t, *J* = 6.8 Hz, 1H), 2.00-1.83 (m, 3H), 1.78-1.66 (m, 1H), 1.19 (d, *J* = 2.0 Hz, 12H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.4, 132.8, 130.2, 129.5, 128.3, 84.0, 64.1, 31.4, 30.4, 24.3, 24.2.

MS: (EI) [M]⁺ C₁₇H₂₄BIO₄: 430.05.

Compound **S13** was synthesized according to General procedure **N**, and it was purified with silica gel chromatography (PE/EA = 30:1) (70% yield, colorless oil). ¹**H NMR** (600 MHz, CDCl₃) δ 7.24 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 3.16 (dd, *J* = 9.0, 7.2 Hz, 1H), 2.77-2.72 (m, 1H), 2.62-2.57 (m, 1H), 2.17-2.09 (m, 1H), 2.04-1.98 (m, 1H), 1.27 (d, *J* = 3.0 Hz, 12H).

¹³C NMR (151 MHz, CDCl₃) δ 139.2, 131.8, 129.9, 128.5, 84.0, 36.4, 36.1, 24.4, 24.2. MS: (EI) [M]⁺ C₁₅H₂₁BClIO₂: 406.00.

S14

Compound **S14** was synthesized according to General procedure **M**, and it was purified with silica gel chromatography (PE/EA = 50:1) (39% yield, colorless oil). ¹**H NMR** (400 MHz, CDCl₃) δ 5.45-5.37 (m, 1H), 5.32-5.24 (m, 1H), 3.16 (t, *J* = 8.0 Hz, 1H), 2.07-1.71 (m, 4H), 1.57 (dd, *J* = 6.4, 1.6 Hz, 3H), 1.20 (d, *J* = 2.4 Hz, 12H). ¹³**C NMR** (101 MHz, CDCl₃) δ 129.3, 126.3, 83.9, 34.4, 33.9, 24.4, 24.2, 17.9. **MS: (EI)** [**M**]⁺ C₁₂H₂₂BIO₂: 336.0758.

S15

Compound **S15** was synthesized according to General procedure **K**, and it was purified with silica gel chromatography (PE/EA = 30:1) (58% yield, colorless oil). ¹**H NMR** (400 MHz, CDCl₃) δ 3.14 (t, *J* = 8.4 Hz, 1H), 1.83-1.69 (m, 2H), 1.38-1.32

(m, 1H), 1.27-1.22 (m, 4H), 1.20 (d, J = 3.2 Hz, 12H), 1.18-1.17 (m, 1H), 0.81 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 83.8, 34.8, 31.0, 30.9, 24.4, 24.2, 22.4, 13.9. MS: (EI) [M]⁺ C₁₂H₂₄BIO₂: 338.05.

Compound **S16** was synthesized according to General procedure **N**, and it was purified with silica gel chromatography (PE/EA = 30:1) (60% yield, colorless oil).

¹**H NMR** (600 MHz, CDCl₃) δ 7.25-7.21 (m, 1H), 6.97 (d, J = 7.2 Hz, 1H), 6.91-6.87 (m, 2H), 3.18 (dd, J = 9.6, 7.2 Hz, 1H), 2.80-2.76 (m, 1H), 2.66-2.61 (m, 1H), 2.19-2.13 (m, 1H), 2.07-2.01 (m, 1H), 1.28 (d, J = 3.0 Hz, 12H).

¹³C NMR (151 MHz, CDCl₃) δ 162.9 (d, *J* = 244.6 Hz), 143.3 (d, *J* = 7.6 Hz), 129.8 (d, *J* = 9.1 Hz), 124.2 (d, *J* = 3.0 Hz), 115.4 (d, *J* = 21.1 Hz), 112.9 (d, *J* = 19.6 Hz), 84.0, 36.8, 35.9, 24.4, 24.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.64.

HRMS: m/z (ESI) calculated for C₁₅H₂₂BFIO₂ [M+H]⁺: 391.0742, found: 391.0739.

S17

Compound **S17** was synthesized according to General procedure **M**, and it was purified with silica gel chromatography (PE/EA = 30:1) (55% yield, colorless oil). ¹**H NMR** (600 MHz, CDCl₃) δ 3.43 (dd, J = 12.6, 3.6 Hz, 1H), 2.04 (t, J = 13.2 Hz, 1H), 1.95-1.93 (m, 3H), 1.84 (dd, J = 13.2, 3.6 Hz, 1H), 1.69-1.66 (m, 3H), 1.63-1.59 (m, 3H), 1.57-1.54 (m, 3H), 1.43-1.40 (m, 3H), 1.27 (d, J = 1.8 Hz, 12H). ¹³**C NMR** (151 MHz, CDCl₃) δ 83.8, 50.7, 42.0, 36.9, 35.7, 28.5, 24.22, 24.19. **HRMS**: m/z (ESI) calculated for C₁₈H₃₀BINaO₂ [M+Na]⁺: 439.1281, found: 439.1279.

Compound **S18** was synthesized according to General procedure L, and it was purified with silica gel chromatography (PE/EA = 25:1) (44% yield, colorless oil). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.18 (m, 2H), 7.14-7.09 (m, 3H), 3.54 (s, 4H), 3.06 (dd, *J* = 8.8, 7.2 Hz, 1H), 2.75-2.68 (m, 1H), 2.58-2.50 (m, 1H), 2.13-2.03 (m, 1H), 2.01-1.91 (m, 1H), 0.93 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 141.0, 128.6, 128.3, 125.9, 72.3, 37.2, 36.3, 32.0, 22.0. MS: (EI) [M]⁺ C₁₄H₂₀BIO₂: 358.05.

7. Characterization of products

7.1 Products of homo-coupling reactions

Compound 2a was synthesized according to General procedure C, and all analytical data matched the report.^{S10}

2b

Compound **2b** was synthesized according to General procedure **C**, and it was purified with silica gel chromatography (PE/EA = 20:1). (52% yield, dr > 20:1, white solid).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.24-7.17 (m, 4H), 7.00 (m, 2H), 2.82-2.72 (m, 2H), 2.70-2.60 (m, 2H), 1.87-1.77 (m, 2H), 1.75-1.65 (m, 2H), 1.33-1.26 (m, 26H).

¹³C NMR (101 MHz, CDCl₃) δ 142.5, 132.6, 130.4, 127.2, 127.1, 124.4, 83.0, 36.2, 30.3, 25.2, 24.7.

HRMS: m/z (ESI) calculated for $C_{30}H_{42}B_2Br_2NaO_4$ [M+Na]⁺: 669.1534, found: 669.1530.

Compound **2c** was synthesized according to General procedure **C**, and it was purified with silica gel chromatography (PE/EA = 20:1). (59% yield, dr > 20:1, white solid).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 4H), 7.18 (d, *J* = 8.0 Hz, 4H), 2.64-2.49 (m, 4H), 1.81-1.71 (m, 2H), 1.62-1.52 (m, 2H), 1.22-1.10 (m, 26H).

¹³**C NMR** (101 MHz, CDCl₃) δ 147.4, 128.8, 127.9 (q, *J* = 32.3 Hz), 125.1 (q, *J* = 4.0 Hz), 124.5 (q, *J* = 272.7 Hz), 83.1, 35.6, 32.0, 25.1, 24.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.2.

HRMS: m/z (ESI) calculated for $C_{32}H_{43}B_2F_6O_4$ [M+H]⁺: 627.3252, found: 627.3257.

Compound **2d** was synthesized according to General procedure C, and it was purified with silica gel chromatography (PE/EA = 10:1). (62% yield, dr > 20:1, colorless

oil).

¹**H NMR** (400 MHz, CDCl₃) δ 2.52-2.34 (m, 4H), 1.97-1.85 (m, 2H), 1.73-1.63 (m, 2H), 1.26-1.16 (m, 26H).

¹³C NMR (101 MHz, CDCl₃) δ 120.0, 83.5, 26.5, 24.9, 24.7, 16.8.

HRMS: m/z (ESI) calculated for C₂₀H₃₅B₂N₂O₄ [M+H]⁺: 389.2783, found: 389.2784.

Compound **2e** was synthesized according to General procedure **C**, and it was purified with silica gel chromatography (PE/EA = 5:1). (62% yield, *dr* 10:1, white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.47 (d, *J* = 1.6 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 2H), 6.02 (s, 4H), 4.25 (t, *J* = 6.4 Hz, 4H), 1.84-1.62 (m, 6H), 1.56-1.46 (m, 2H), 1.31-1.16 (m, 26H).

¹³C NMR (101 MHz, CDCl₃) δ 165.9, 151.3, 147.6, 125.2, 124.7, 109.5, 107.8, 101.6, 82.9, 65.3, 28.5, 26.5, 25.1, 24.5.

HRMS: m/z (ESI) calculated for C₃₆H₄₉B₂O₁₂ [M+H]⁺: 695.3410, found: 695.3416.

Compound **2f** was synthesized according to General procedure **C**, and it was purified with silica gel chromatography (PE/EA = 8:1). (57% yield, *dr* 7:1, white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 4.00-3.90 (m, 4H), 1.63-1.45 (m, 7H), 1.36-1.27 (m, 3H), 1.16 (d, J = 2.8 Hz, 24H), 1.12 (s, 18H).

> ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 82.9, 64.8, 38.7, 28.5, 27.2, 26.5, 25.1, 24.6. MS: (EI) [M]⁺ C₃₀H₅₆B₂O₈: 556.40.

2g

Compound **2g** was synthesized according to General procedure C, and it was purified with silica gel chromatography (PE/EA = 8:1). (47% yield, dr 6:1, colorless oil).

¹**H NMR** (400 MHz, CDCl₃) δ 3.58 (s, 6H), 2.22 (t, *J* = 8.0 Hz, 4H), 1.58-1.50 (m, 5H), 1.47-1.36 (m, 2H), 1.29-1.15 (m, 29H), 1.04-0.99 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 174.3, 82.8, 51.3, 34.1, 29.6, 29.0, 25.3, 25.1, 24.6. HRMS: m/z (ESI) calculated for C₂₆H₄₉B₂O₈ [M+H]⁺: 511.3614, found: 511.3617.

2h

Compound **2h** was synthesized according to General procedure **C**, and it was purified with silica gel chromatography (PE/EA = 20:1). (50% yield, dr 17:1, colorless oil).

¹**H** NMR (400 MHz, CDCl₃) δ 3.45 (t, *J* = 6.8 Hz, 4H), 1.75-1.63 (m, 4H), 1.47-1.25 (m, 6H), 1.20-1.13 (m, 26H), 1.07-1.00 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 82.9, 45.2, 32.9, 29.2, 26.7, 25.1, 24.6.

HRMS: m/z (ESI) calculated for C₂₂H₄₃B₂Cl₂O₄ [M+H]⁺: 463.2725, found: 463.2728.

Compound **2i** was synthesized according to General procedure **C**, and it was purified with silica gel chromatography (PE/EA = 12:1). (49% yield, *dr* 9:1, white solid). ¹**H NMR** (400 MHz, CDCl₃) δ 7.07 (d, *J* = 8.0 Hz, 4H), 6.80 (d, *J* = 8.0 Hz, 4H), 3.77 (s, 6H), 2.61-2.53 (m, 2H), 2.50-2.40 (m, 2H), 1.84-1.71 (m, 2H), 1.68-1.55 (m, 2H), 1.29-1.18 (m, 26H).

¹³C NMR (101 MHz, CDCl₃) δ 157.5, 135.5 (major), 135.4 (minor), 129.3 (major), 129.2 (minor), 113.6, 82.9 (minor), 82.8 (major), 55.2, 35.0 (minor), 34.8 (major), 32.7 (minor), 32.4 (major), 25.1 (major), 25.0 (minor), 24.9 (minor), 24.7 (major). HRMS: m/z (ESI) calculated for C₃₂H₄₉B₂O₆ [M+H]⁺: 551.3715, found: 551.3720.

2j

Compound **2j** was synthesized according to General procedure C, and it was purified with silica gel chromatography (PE/EA = 10:1). (55% yield, dr 12:1, white solid).

¹**H NMR** (400 MHz, CDCl₃) δ 3.88-3.83 (m, 4H), 3.30-3.21 (m, 4H), 1.59-1.54 (m, 2H), 1.50-1.35 (m, 6H), 1.24-1.06 (m, 32H).

¹³C NMR (151 MHz, CDCl₃) δ 82.8, 68.21, 68.20, 37.0, 34.6, 33.8, 32.9, 25.0, 24.6. HRMS: m/z (ESI) calculated for C₂₆H₄₉B₂O₆ [M+H]⁺: 479.3715, found: 479.3718.

Compound **2k** was synthesized according to General procedure C, and it was purified with silica gel chromatography (PE/EA = 12:1). (55% yield, dr 7:1, colorless

oil).

¹**H NMR** (400 MHz, CDCl₃) δ 2.63-2.40 (m, 4H), 2.09 (s, 6H), 1.88-1.75 (m, 2H), 1.69-1.58 (m, 2H), 1.29-1.19 (m, 26H).

¹³C NMR (101 MHz, CDCl₃) δ 83.02 (minor), 82.98 (major), 34.0 (minor), 33.9 (major), 29.7, 25.1 (major), 25.0 (minor), 24.8 (minor), 24.6 (major), 15.4 (minor), 15.3 (major).

HRMS: m/z (ESI) calculated for $C_{20}H_{41}B_2O_4S_2$ [M+H]⁺: 431.2632, found: 431.2634.

Compound **21** was synthesized according to General procedure **C**, and it was purified with silica gel chromatography (PE/EA = 5:1). (64% yield, *dr* 10:1, white solid). ¹**H NMR** (600 MHz, CDCl₃) δ 7.72 (dd, *J* = 5.4, 3.0 Hz, 4H), 7.60 (dd, *J* = 5.4, 3.0 Hz, 4H), 3.70-3.59 (m, 4H), 1.81-1.75 (m, 2H), 1.64-1.56 (m, 2H), 1.20-1.10 (m, 26H). ¹³**C NMR** (151 MHz, CDCl₃) δ 168.4, 133.5, 132.4, 122.9, 83.2, 38.0, 29.0, 24.9, 24.6. **HRMS**: m/z (ESI) calculated for C₃₄H₄₃B₂N₂O₈ [M+H]⁺: 629.3206, found: 629.3211.

Compound **2m** was synthesized according to General procedure **C**, and it was purified with silica gel chromatography (PE/EA = 10:1). (53% yield, dr 17:1, white solid).

2m

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (s, 2H), 7.16 (d, *J* = 3.6 Hz, 2H), 6.49 (dd, *J* = 3.6, 2.0 Hz, 2H), 4.28 (t, *J* = 6.8 Hz, 4H), 1.84-1.58 (m, 6H), 1.51-1.42 (m, 2H), 1.29-1.16 (m, 26H).

¹³C NMR (101 MHz, CDCl₃) δ 158.8, 146.0, 145.0, 117.5, 111.6, 82.9, 65.3, 28.4, 26.2, 25.0, 24.5.

MS: (EI) [**M**]⁺ C₃₀H₄₄B₂O₁₀: 586.40.

Compound **2n** was synthesized according to General procedure **C**, and it was purified with silica gel chromatography (PE/EA = 10:1). (59% yield, *dr* 8:1, white solid). ¹**H NMR** (600 MHz, CDCl₃) δ 7.79 (dd, *J* = 3.6, 1.2Hz, 2H), 7.52 (dd, *J* = 4.8, 1.2 Hz, 2H), 7.08 (dd, *J* = 4.8, 3.6 Hz, 2H), 4.27 (t, *J* = 6.0 Hz, 4H), 1.83-1.75 (m, 2H), 1.74-1.61 (m, 4H), 1.52-1.46 (m, 2H), 1.29-1.17 (m, 26H).

¹³C NMR (151 MHz, CDCl₃) δ 162.3, 134.2, 133.1, 132.0, 127.5, 82.9, 65.6, 28.7

(minor), 28.4 (major), 26.5 (minor), 26.3 (major), 25.0 (major), 24.9 (minor), 24.7 (minor), 24.5 (major).

HRMS: m/z (ESI) calculated for C₃₀H₄₅B₂O₈S₂ [M+H]⁺: 619.2742, found: 619.2746.

7.2 Products of cross-coupling reactions

Compound **20** was synthesized according to General procedure **D**, and it was purified with silica gel chromatography (PE/EA = 10:1). (58% yield, dr 10:1, colorless oil).

¹**H NMR** (400 MHz, CDCl₃) δ 7.98-7.96 (m, 2H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.20-7.15 (m, 2H), 7.11-7.05 (m, 3H), 4.21 (t, *J* = 6.0 Hz, 2H), 2.61-2.54 (m, 1H), 2.51-2.44 (m, 1H), 1.81-1.69 (m, 2H), 1.68-1.58 (m, 3H), 1.51-1.40 (m, 1H), 1.20-1.15 (m, 26H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 143.3, 132.6, 130.7, 129.6, 128.4, 128.2, 128.1, 125.4, 82.9, 65.5, 35.7, 32.2, 28.6, 26.5, 25.1, 24.64, 24.60.

HRMS: m/z (ESI) calculated for C₃₂H₄₇B₂O₆ [M+H]⁺: 549.3559, found: 549,3564.

Compound **2p** was synthesized according to General procedure **D**, and it was purified with silica gel chromatography (PE/EA = 10:1). (43% yield, *dr* 9:1, colorless oil).

2p

¹**H NMR** (600 MHz, CDCl₃) δ 7.70 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.45 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.13 (d, *J* = 7.8 Hz, 2H), 7.03-7.00 (m, 3H), 4.19 (t, *J* = 6.6 Hz, 2H), 2.56-2.51 (m, 1H), 2.47-2.42 (m, 1H), 1.75-1.66 (m, 2H), 1.65-1.53 (m, 3H), 1.45-1.35 (m, 1H), 1.21-1.10 (m, 26H).

¹³C NMR (151 MHz, CDCl₃) δ 162.3, 141.7, 134.2, 133.1, 132.0, 131.1, 129.8, 128.2, 127.6, 83.0, 82.9, 65.6, 35.0, 32.0, 28.5, 26.3, 25.11, 25.08, 24.63, 24.59.

HRMS: m/z (ESI) calculated for $C_{30}H_{43}B_2ClNaO_6S$ [M+Na]⁺: 611.2553, found: 611.2558.

2q

Compound **2q** was synthesized according to General procedure **D**, and it was purified with silica gel chromatography (PE/EA = 8:1). (73% yield, *dr* 10:1, colorless oil).

¹**H NMR** (600 MHz, CDCl₃) δ 7.58 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.41 (d, *J* = 1.8 Hz, 1H), 6.75 (dd, *J* = 8.4, 3.0 Hz, 1H), 5.96 (s, 2H), 5.39-5.28 (m, 2H), 4.17 (t, *J* = 6.6 Hz, 2H), 1.98-1.91 (m, 1H), 1.87-1.78 (m, 2H), 1.74-1.66 (m, 2H), 1.48-1.38 (m, 2H), 1.35-1.29 (m, 2H), 1.33-1.21 (m, 26H), 1.10-1.07 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 166.0, 151.3, 147.6, 131.8, 125.2, 124.7, 124.4, 109.5, 107.8, 101.7, 82.9, 82.8, 65.4, 32.4, 30.0, 28.6, 26.4, 25.10, 25.07, 24.6, 17.9.

Compound 2r was synthesized according to General procedure **D**, and it was purified with silica gel chromatography (PE/EA = 7:1). (60% yield, *dr* 7:1, colorless oil).

¹**H NMR** (600 MHz, CDCl₃) δ 2.53-2.36 (m, 3H), 2.32-2.25 (m, 1H), 2.02 (s, 3H), 1.84-1.72 (m, 2H), 1.67-1.61 (m, 1H), 1.58-1.52 (m, 1H), 1.20-1.12 (m, 26H).

¹³C NMR (151 MHz, CDCl₃) δ 120.32 (minor), 120.26 (major), 83.4 (minor), 83.3 (major), 83.21 (minor), 83.19 (major), 33.91 (minor), 33.86 (major), 29.6 (major), 29.3 (minor), 26.3 (major), 25.5 (minor), 25.02 (minor), 24.98 (major), 24.8 (minor), 24.73 (minor), 24.70 (major), 24.6 (major), 16.9 (minor), 16.8 (major), 15.4 (minor), 15.3 (major).

MS: (EI) [**M**]⁺ C₂₀H₃₇B₂NO₄S: 409.20.

Compound **2s** was synthesized according to General procedure **D**, and it was purified with silica gel chromatography (PE/EA = 7:1). (46% yield, *dr* 13:1, colorless oil).

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (dd, *J* = 5.6, 3.2 Hz, 2H), 7.60 (dd, *J* = 5.6, 3.2 Hz, 2H), 3.71-3.59 (m, 2H), 1.80-1.71 (m, 1H), 1.70-1.63 (m, 1H), 1.47-1.38 (m, 1H), 1.26-1.05 (m, 33H), 0.78 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.4, 133.6, 132.4, 123.0, 83.1, 82.8, 38.0, 32.1, 29.7, 29.2, 28.8, 25.1, 25.0, 24.6, 22.6, 14.0.

HRMS: m/z (ESI) calculated for C₂₉H₄₆B₂NO₆ [M+H]⁺: 526.3511, found: 526.3515.

2t

Compound **2t** was synthesized according to General procedure **D**, and it was purified with silica gel chromatography (PE/EA = 10:1). (56% yield, dr 6:1, colorless oil).

¹**H NMR** (400 MHz, CDCl₃) δ 7.12 (m, 1H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.83-6.74 (m, 2H), 3.57 (s, 3H), 2.59-2.43 (m, 2H), 2.21 (t, *J* = 7.6 Hz, 2H), 1.76-1.67 (m, 1H), 1.64-1.42 (m, 5H), 1.28-1.06 (m, 28H).

¹³**C NMR** (101 MHz, CDCl₃) δ 174.3, 162.9 (d, *J* = 246.4 Hz), 146.0 (d, *J* = 8.1 Hz), 129.4 (d, *J* = 8.1 Hz), 124.1 (d, *J* = 3.0 Hz), 115.2 (d, *J* = 20.2 Hz), 112.2 (d, *J* = 21.2 Hz), 82.9, 82.8, 51.3, 35.5 (d, *J* = 2.0 Hz), 34.1, 31.9, 29.6, 29.0, 25.2, 25.1, 25.0, 24.63, 24.60.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.4.

HRMS: m/z (ESI) calculated for C₂₈H₄₆B₂FO₆ [M+H]⁺: 519.3465, found: 519.3468.

Compound **2u** was synthesized according to General procedure **D**, and it was purified with silica gel chromatography (PE/EA = 10:1). (62% yield, dr 10:1, colorless oil).

¹**H NMR** (600 MHz, CDCl₃) δ 7.49 (d, *J* = 1.8 Hz, 1H), 7.09 (d, *J* = 3.6 Hz, 1H), 6.42 (dd, *J* = 3.0, 1.8 Hz, 1H), 4.21-4.19 (m, 2H), 1.83-1.82 (m, 3H), 1.74-1.67 (m, 1H), 1.65-1.49 (m, 9H), 1.46-1.39 (m, 5H), 1.31-1.28 (m, 3H), 1.23-1.12 (m, 26H).

¹³C NMR (151 MHz, CDCl₃) δ 158.8, 146.0, 145.0, 117.5, 111.6, 82.9, 82.8, 65.5, 44.7, 42.5, 37.2, 32.8, 29.0, 28.7, 26.0, 25.2, 24.9, 24.7, 24.6.

MS: (EI) [**M**]⁺ C₃₃H₅₂B₂O₇: 582.35.

Compound 2v was synthesized according to General procedure **D**, and it was purified with silica gel chromatography (PE/EA = 5:1). (47% yield, *dr* 2:1, colorless oil).

¹**H NMR** (400 MHz, CDCl₃) δ 7.77-7.73 (m, 2H), 7.64-7.60 (m, 2H), 7.28-7.04 (m, 5H), 3.80-3.58 (m, 2H), 3.54-3.43 (m, 4H), 2.74-2.43 (m, 2H), 1.79-1.56 (m, 4H), 1.21-1.14 (m, 14H), 0.92-0.86 (m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 168.41, 168.35, 143.4, 140.9, 133.9, 133.7, 132.2, 132.0, 128.6, 128.5, 128.3, 128.0, 125.9, 125.3, 123.2, 123.0, 84.1, 82.9, 72.2, 71.6, 39.8, 39.1, 37.9, 37.1, 36.3, 35.8, 33.9, 33.7, 31.9, 31.4, 25.0, 24.7, 24.3, 24.2, 24.0, 23.1, 22.0, 21.9.

MS: (EI) [**M**]⁺ C₃₁H₄₁B₂NO₇: 545.30.

8. Supplementary References

S1. T. Mukaiyama, N. Yoshimura, K. Igarashi and A. Kagayama, Tetrahedron, 2001, 57, 2499-2506.

S2. J. Schmidt, J. Choi, A. T. Liu, M. Slusarczyk and G. C. Fu, Science, 2016, 354, 1265-1269.

S3. J. C. Tellis, D. N. Primer and G. A. Molander, Science, 2014, 345, 433-436.

S4. D. Wang and T. XU, ACS Catal. 2020, 11, 12469-12475.

S5. X. Liu, Q. Zhu, D. Chen, L. Wang, L. Jin and C. Liu, Angew. Chem., Int. Ed., 2020, 59, 2745-2749.

S6. D. Wang, J. Zhou, Z. Hu and T. XU, J. Am. Chem. Soc., 2022, 144, 22870-22876.

S7. B. J. Eckstein, F. S. Melkonyan, E. F. Manley, S. Fabiano, A. R. Mouat, L. X. Chen, A. Facchetti and T. J. Marks, *J. Am. Chem. Soc.*, 2017, **139**, 14356-14359.

S8. D. Chen, X. Liu, Y. Yu, Q. Mo, X. Qi, C. Liu, C. Angew. Chem., Int. Ed. 2023, 62, e202215168.

S9. S. Nagasawa, Y. Sasano and Y. Iwabuchi, Angew. Chem., Int. Ed., 2016, 55, 13189-13194.

S10. Z. Bao, M. Huang, Y. Xu, X. Zhang, Y.-D. Wu, J. Wang, *Angew. Chem. Int. Ed.* 2023, **62**, e202216356.

9. NMR Spectra Data of New Compounds

Compound S1 ¹H NMR (600 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

Compound **1b** ¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) Compound 1b¹⁹F NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Compound S3 ¹H NMR (600 MHz, CDCl₃)

Compound S3 ¹³C NMR (151 MHz, CDCl₃)

Compound S4 ¹H NMR (400 MHz, CDCl₃)

4 4.01 3 3.16 3 3.16 3 3.16 3 3.16 3 3.16 1 1 28 5 3 3.16 1 1 28 1 1 28 1 1 28 1 1 77 1 77 1

Compound S4¹³C NMR (101 MHz, CDCl₃)

1.00 ⊣

¥

3.00 -

Ь

2.00

2.00 1.00 1.00 네너너너

32

Compound S5¹³C NMR (101 MHz, CDCl₃)

Compound S6¹³C NMR (151 MHz, CDCl₃)

Compound S7 ¹³C NMR (101 MHz, CDCl₃)

35

Compound S8 ¹³C NMR (151 MHz, CDCl₃)

36
Compound S10¹³C NMR (151 MHz, CDCl₃)

Compound S11¹³C NMR (151 MHz, CDCl₃)

Compound S12¹³C NMR (151 MHz, CDCl₃)

Compound 1c¹³C NMR (101 MHz, CDCl₃)

0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -C f1 (ppm)

Compound S13 ¹³C NMR (151 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

Compound S14 ¹H NMR (400 MHz, CDCl₃)

Compound S14 ¹³C NMR (101 MHz, CDCl₃)

0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -C f1 (ppm)

Compound S15¹³C NMR (101 MHz, CDCl₃)

Compound S16¹³C NMR (151 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) · 3.44 · 3.42 · 3.44 · 3.44 · 3.44 · 3.44 · 3.44 · 3.44 · 3.44 · 3.44 · 3.44 · 3.44 · 3.44 · 3.44 · 3.64 · 1.185 · 3.44 · 1.185 · 3.44 · 1.185 · 3.44 · 1.185 · 3.47 · 1.185 · 1.145 · 1.145 · 1.145 · 1.145 · 1.146 · 1.146 · 1.146 · 1.146 · 1.146 · 1.147 · 1.146 · 1.146 · 1.147 · 1.147 · 1

Compound S17¹³C NMR (151 MHz, CDCl₃)

83.8 77.2 77.0 76.8	50.7	42.0 36.9 35.7 28.5 24.2 24.2
\searrow	1	5154

S17

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

Compound **S18** ¹H NMR (400 MHz, CDCl₃)

Compound S18¹³C NMR (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Compound **2b** ¹H NMR (400 MHz, CDCl₃)

7, 49 7, 77 7, 77 7, 72

Compound **2b** ¹³C NMR (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Compound 2c¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) Compound 2c¹⁹F NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Compound 2d ¹H NMR (400 MHz, CDCl₃)

Compound 2d ¹³C NMR (101 MHz, CDCl₃)

Compound 2e¹H NMR (400 MHz, CDCl₃)

).0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -C f1 (ppm)

Compound **2f**¹³C NMR (101 MHz, CDCl₃)

Compound 2g ¹³C NMR (101 MHz, CDCl₃)

Compound **2h** ¹³C NMR (151 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

Compound 2i ¹H NMR (400 MHz, CDCl₃)

.OMe ₿Pin BPin MeO 2i 6.00 H 4.00 H 4.00 H 2.00 2.00 4 2.00 √ 2.00 √ 26.00_f).0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -C f1 (ppm)

Compound 2i ¹³C NMR (101 MHz, CDCl₃)

Compound 2j ¹³C NMR (151 MHz, CDCl₃)

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -C f1 (ppm)

Compound 2k ¹³C NMR (101 MHz, CDCl₃)

f1 (ppm)

Compound **21**¹³C NMR (151 MHz, CDCl₃)

f1 (ppm)

Compound **2m**¹³C NMR (101 MHz, CDCl₃)

Compound **2n**¹³C NMR (151 MHz, CDCl₃)

Compound **20**¹³C NMR (101 MHz, CDCl₃)

Compound **2p** ¹³C NMR (151 MHz, CDCl₃)

0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

f1 (ppm)

Compound 2s¹³C NMR (101 MHz, CDCl₃)

Compound 2t ¹³C NMR (101 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Compound **2u** ¹H NMR (600 MHz, CDCl₃)

Compound **2u** ¹³C NMR (151 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

Compound 2v¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

Compound **3a** ¹H NMR (400 MHz, CD₃OD)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Compound **3b** ¹H NMR (400 MHz, Acetone)

f1 (ppm)

Compound **3b** ¹³C NMR (151 MHz, Acetone)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Compound **3b**¹⁹F NMR (376 MHz, Acetone)

.CF₃ ₿F₃K BF₃K 3b F₃C

110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 f1 (ppm) Compound **3c** ¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

Compound **3c**¹⁹F NMR (376 MHz, CDCl₃)

Compound 3d ¹H NMR (400 MHz, DMSO)

Compound **3d** ¹³C NMR (101 MHz, DMSO)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Compound **3d**¹⁹F NMR (376 MHz, DMSO)

74