Supporting Information

For

An AlEgen-based Fluorescence Probe for Ratiometric Detection of Phosgene in Solution and Gas

Kuiliang Li,*^a Changlu He,^a Tian Zhang,^a Wenqiang Xie,^a Dexin Fu,^b Ping Yang,^a Duo-Duo Hu*^a

^a School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.

^b School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

Tabel of Contents

General Information	S2
Synthesis of RTPE-H molecule	S2
Photoluminescence spectra	S5
Mechanism study	S7
NMR Spectra and HRMS	S15

General Information

NMR was recorded on Bruker-400 MHz Spectrometer (¹H NMR: 400MHz; ¹³C NMR: 100 MHz) and Bruker-500 MHz Spectrometer (¹H NMR: 500MHz; ¹³C NMR: 125 MHz) using TMS as internal reference. The chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz respectively. The Photoluminescence (PL) spectra were obtained on Hitachi F-4600 Fluorescence Spectrometer. High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight). Commercially available compounds were used without further purification. All solvents were purified according to the standard procedures unless otherwise noted.

Synthesis of RTPE-H molecule

Hydrazine hydrate (1.0 mL, 20.6 mmol) was added to the solution of Rhodamine B hydrochloride (1.0 g, 2.09 mmol) in 50 mL of EtOH. The solution mixture was stirred at 90°C for 4 h. After the completion, the organic solvent of the reaction was removed under reduced pressure. The crude was purified by silica gel column chromatography using MeOH:CH₂Cl₂ (5 : 95) as an eluent to provide Rhodamine B hydrazide (680 mg, 72%) as a white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 7.84 – 7.70 (m, 1H), 7.56 – 7.41 (m, 2H), 7.11 – 6.92 (m, 1H), 6.43 – 6.37 (m, 2H), 6.35 – 6.28 (m, 4H), 3.31 (q, *J* = 7.9 Hz, 8H), 1.08 (t, *J* = 7.0 Hz, 12H). ¹³C NMR (100 MHz, DMSO- d_6) δ 165.8, 153.5, 152.4, 148.6, 132.9, 130.1, 128.6, 128.2, 124.0, 122.6, 108.3, 105.9, 97.9, 65.2, 44.2, 12.9.

Rhodamine B hydrazide RBH (0.46 g, 1.0 mmol) and triphenylvinyl-benzaldehyde (0.40 g, 1.1 mmol) were dissolved in EtOH (20 mL). Add a drop of acetic acid to the reaction system. After being stirred and refluxed for 12 h, it was purified with silica gel column chromatography (PE: EA =6:1) to obtain a yellow solid (0.61 g, 76.3 %). ¹H NMR (500 MHz, DMSO- d_6) δ 8.75 (s, 1H), 7.93 – 7.85 (m, 1H), 7.60

-7.51 (m, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.14 -7.04 (m, 10H), 6.99 -6.88 (m, 8H), 6.44 -6.35 (m, 4H), 6.33 -6.28 (m, 2H), 3.28 (q, J = 7.3 Hz, 8H), 1.05 (t, J = 7.0 Hz, 12H). ¹³C NMR (125 MHz, DMSO- d_6) δ 164.1, 153.2, 151.5, 148.9, 147.8, 145.8, 143.5, 143.4, 143.2, 141.7, 140.3, 134.3, 133.1, 131.7, 131.2, 131.1, 129.3, 129.3, 128.5, 128.3, 128.3, 128.0, 127.2, 127.1, 126.7, 124.3, 123.5, 108.4, 105.9, 97.7, 65.9, 44.1, 12.9. HRMS (ESI) m/z calcd. [M+Na]⁺ for C₅₅H₅₀N₄O₂Na⁺ 821.3826, found 821.3826.

RTPE-HO. ¹H NMR (500 MHz, DMSO- d_6) δ 9.22 (s, 1H), 8.03 – 7.93 (m, 2H), 7.77 – 7.61 (m, 2H), 7.30 (d, J = 6.6 Hz, 1H), 7.20 – 7.05 (m, 13H), 6.92 (dd, J = 15.7, 7.8 Hz, 11H), 3.57 – 3.47 (m, 8H), 1.02 (t, J = 7.1 Hz, 12H). HRMS (ESI) m/z calcd. [M]⁺ for C₅₆H₅₀ClN₄O₃⁺ 861.3566, found 861.3569.

 Table S1 The enhanced Stokes shift of fluorescence probe reported for ratiometric detection of phosgene.

	Enhanced stokes		
Starsstrand	shift	LOD in	Def
Structure	(Red shift in	solution	Kel.
	emissions)		
			Spectrochimica
			Acta Part A:
			Molecular and
N O NH	76 nm	0.27 μM	Biomolecular
			Spectroscopy,
			2021, 253,
			119589
			Dyes and
	75 nm	0.36 µM	Pigments, 2020,
O NH			176, 108229
Ť			

n-Bu-N NH HN N	52 nm	6.7 nM	Talanta, 2022, 236, 122826
H_2N	50 nm	0.14 ppm	Anal. Chem. 2017, 89, 22, 12596–12601
	68 nm	27 nM	Anal. Chim. Acta, 2018, 1029, 97-103.
OH N H H	76 nm	0.14 ppm	Talanta, 2019, 200, 78-83.
$ \begin{array}{ c c } & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	124 nm	0.54 ppm	New J. Chem., 2022, 46, 12062-12068
NH NH NH H	57 nm	23.8 nM	Talanta, 2025, 283, 127172
	103 nm	0.1 μM	This work

Photoluminescence spectra

Fig. S1 (a) Photoluminescence (PL) spectra of 10^{-5} M RTPE-H and 2×10^{-5} M triphosgene in CH₃CN/H₂O mixture with different water fraction excited with 365 nm light. (b) Changes of the PL intensity at 482 nm before and after adding triphosgene under different water content.

Fig. S2 The detection of response time.

Fig S3. The excitation and emission spectrum (excited with 310 nm) of RTPE-H in CH_3CN/H_2O (20/80) mixture.

Left

Fig S4. Stability testing of fluorescent test strips

Mechanism study

Fig. S5 The stacked ¹H NMR titration spectra of RTPE-H with different equivalents of triphosgene

TD-DFT calculation

All the calculations were performed using Gaussian 16^[1] software packages. The geometries of all reactants were optimized using the B3LYP^[2]-D3(Becke-Johnson damping function). In these geometry optimizations, basis set of 6-31G(d) was used.

Fig.S6 TD-DFT calculated frontier molecular orbitals, selected electronic transitions and oscillator strengths of RTPE-H.

Fig.S7 TD-DFT calculated frontier molecular orbitals, selected electronic transitions and oscillator strengths of RTPE-HO.

RTPE-H

Ν	-1.88152000	0.22243000	1.54084300
Ν	-3.14391600	0.52398300	1.91695500
С	-3.60619100	0.96041000	3.15403300
С	-4.93511300	1.56222300	2.88405300
С	-5.19760200	1.54540700	1.51512000
С	-4.05487800	0.89896000	0.76126700
0	-3.01707600	0.87009900	4.22312700
С	-5.83519600	2.10873800	3.79531900
С	-7.02342200	2.64378900	3.29815500
С	-7.29173000	2.62561800	1.92147200
С	-6.38154600	2.07327800	1.01567000
С	-3.27848500	1.83845400	-0.13224500
С	-2.59925600	1.33810300	-1.24128500
0	-2.83536800	0.08847000	-1.75476400

С	-3.80617600	-0.69382200	-1.18344600
С	-4.45955300	-0.33923700	-0.00169500
С	-2.93861000	3.13371100	0.27776100
С	-1.93802200	3.86304300	-0.33898300
С	-1.18860300	3.31136700	-1.41031400
С	-1.58187300	2.04691600	-1.87837700
С	-4.10187400	-1.86450600	-1.87532100
С	-5.06995700	-2.76512800	-1.39314300
С	-5.74802500	-2.40142800	-0.20224300
С	-5.43238100	-1.22777000	0.46493000
Ν	-0.10073500	3.99525700	-1.96239600
N	-5.33824300	-3.96613800	-2.05079600
С	0.70356800	3.25455500	-2.94121000
С	0.63534900	4.89612600	-1.06694600
С	-6.47453700	-4.75841800	-1.57353600
С	-4.96092100	-4.09158100	-3.45713500
С	-5.84224300	-3.28064500	-4.41359900
С	-6.61065900	-6.13433300	-2.22041200
С	1.36699300	4.17163400	0.06807300
С	1.81238900	4.06839700	-3.60216600
С	-0.91442000	0.07726000	2.37855500
С	0.43968900	-0.05921300	1.83395700
С	1.52442700	-0.31434900	2.68593500
С	2.82022300	-0.39473000	2.18571900
С	3.07470700	-0.21310400	0.81783600
С	1.98568100	0.06988200	-0.02868100
С	0.69259700	0.13414200	0.46258600
С	4.45029600	-0.27051000	0.26048900
С	5.33149600	-1.26612700	0.56303400
С	4.78968500	0.83791200	-0.67491100
С	6.76847800	-1.19896300	0.18333200
С	4.92214300	-2.49922500	1.28838500
С	5.33346500	0.58136400	-1.94266100
С	5.61674300	1.62488500	-2.82097000
С	5.36558500	2.94666300	-2.44737200
С	4.81792500	3.21473400	-1.19109000
С	4.52160900	2.16873100	-0.31895900
С	3.77291100	-3.21482800	0.91680100
С	3.40502000	-4.37327600	1.59568200

С	4.18005300	-4.84133200	2.65882600
С	5.33356600	-4.14774800	3.02864000
С	5.70641400	-2.99367200	2.34268200
С	7.40317500	-2.31669400	-0.38233100
С	8.74781400	-2.26728100	-0.74328900
С	9.49029600	-1.10528400	-0.52558000
С	8.87709700	0.00477100	0.05857000
С	7.53056000	-0.04201100	0.41011700
Н	-5.60143600	2.11167800	4.85538800
Н	-7.74872800	3.07913500	3.97938800
Н	-8.22191400	3.04923600	1.55343400
Н	-6.58842000	2.05705500	-0.05002700
Н	-3.44601300	3.55961200	1.13885300
Н	-1.71174500	4.85129900	0.03868200
Н	-1.07995100	1.54705100	-2.69421800
Н	-3.54796300	-2.04240100	-2.78645300
Н	-6.52824200	-3.02782500	0.20671300
Н	-5.96488900	-0.98619400	1.38001700
Н	1.13981500	2.34709600	-2.48849800
Н	0.02113100	2.91671400	-3.72724500
Н	1.34300900	5.46290100	-1.67362600
Н	-0.05855400	5.63865100	-0.66573300
Н	-6.33682200	-4.91204300	-0.49869400
Н	-7.42183900	-4.20457300	-1.69201800
Н	-3.91271200	-3.80146500	-3.56403300
Н	-4.99341900	-5.14901000	-3.72333600
Н	-5.50398200	-3.40103600	-5.44912500
Н	-6.88569000	-3.61119200	-4.35703900
Н	-5.81130700	-2.21587800	-4.16266400
Н	-7.39686300	-6.68951800	-1.69834500
Н	-6.89426600	-6.08155000	-3.27603100
Н	-5.68089700	-6.70688600	-2.13681600
Н	1.91926800	4.88648600	0.68965600
Н	0.66266300	3.63065700	0.70698500
Н	2.07946700	3.44403500	-0.33075600
Н	2.23118200	3.48332100	-4.42753600
Н	1.42542700	5.00806100	-4.01093800
Н	2.63638200	4.28868400	-2.91844600
Н	-1.04980100	0.10664000	3.45756100

Н	1.34804600	-0.44372300	3.75096000
Н	3.64800100	-0.60021600	2.85614300
Н	2.16876500	0.23672700	-1.08649600
Н	-0.13904400	0.35226100	-0.19671900
Н	5.53522900	-0.44476800	-2.23186100
Н	6.03363600	1.40544900	-3.79999700
Н	5.59087100	3.76062000	-3.13066400
Н	4.61833400	4.23938000	-0.88933900
Н	4.08367300	2.37687300	0.65253700
Н	3.16604100	-2.85087400	0.09460100
Н	2.51192800	-4.91272100	1.29286200
Н	3.89061400	-5.74349100	3.19040300
Н	5.94579600	-4.50697900	3.85130500
Н	6.60905500	-2.46023300	2.62524600
Н	6.82964000	-3.22470100	-0.54236600
Н	9.21745600	-3.13838100	-1.19196000
Н	10.54046400	-1.06775800	-0.80132100
Н	9.45013900	0.90885700	0.24509000
Н	7.05681500	0.82250500	0.86272500

RTPE-HO

Ν	-0.45149600	-1.28662200	1.83169900
Ν	-1.39259900	-1.38288100	2.84567600
С	-2.36070800	-0.62034000	2.45953800
С	-3.63889600	-0.43017200	3.14732400
С	-4.85028100	-0.27678300	2.43034600
С	-4.85311800	-0.29722500	0.94527700
0	-2.13348100	-0.02593700	1.24851600
С	-3.65816300	-0.45412300	4.54735200
С	-4.85929700	-0.32313000	5.23893300
С	-6.05413000	-0.16094600	4.53680600
С	-6.04596000	-0.13561600	3.14245300
С	-4.41660400	-1.44502300	0.25907000
С	-4.14756700	-1.35511300	-1.13619400
0	-4.49691200	-0.24103800	-1.83507300
С	-5.02808800	0.84284300	-1.20841000
С	-5.18960700	0.85548600	0.20730600
С	-4.08184500	-2.68090100	0.88174600
С	-3.47100900	-3.69211400	0.19462200

С	-3.10634400	-3.54263200	-1.18924600
С	-3.49594900	-2.34287400	-1.83760600
С	-5.35402200	1.91286000	-2.01299300
С	-5.84889100	3.11281600	-1.44269800
С	-5.98615400	3.15152600	-0.01164200
С	-5.65669800	2.07655100	0.76789400
N	-2.41296000	-4.51136800	-1.83978000
Ν	-6.16345500	4.19346500	-2.20388100
С	-1.71731800	-4.18587200	-3.09415300
С	-2.07018700	-5.75929100	-1.12277800
С	-6.11145200	4.10526600	-3.66856300
С	-6.76595800	5.37978000	-1.55651000
С	-7.03224100	6.56592400	-2.47593900
С	-7.34141600	3.42380200	-4.27330700
С	-1.46466800	-6.85839100	-1.98746500
С	-0.44677700	-3.36395600	-2.85690200
С	0.66481200	-2.18954100	1.83792700
С	1.93428800	-1.61385600	1.27378800
С	2.83858000	-1.04765900	2.18003000
С	4.00669900	-0.44672000	1.72661500
С	4.30543400	-0.40259400	0.35619500
С	3.41108200	-1.01378400	-0.53831800
С	2.23388900	-1.60018700	-0.09115900
С	5.55360500	0.23214100	-0.14300700
С	5.95953400	1.46193400	0.28665000
С	6.31010000	-0.56392600	-1.14674700
С	7.31322500	2.00375700	-0.00373400
С	5.07121100	2.35752300	1.07609400
С	6.77892100	0.02214000	-2.33309300
С	7.47322500	-0.73386800	-3.27365800
С	7.71101700	-2.09136800	-3.04805700
С	7.23831100	-2.68945100	-1.87882300
С	6.53568500	-1.93446600	-0.94185100
С	3.74661100	2.60045900	0.67955300
С	2.92483700	3.44453900	1.42206000
С	3.41197900	4.06388700	2.57474500
С	4.73265100	3.84354500	2.97076400
С	5.55774200	3.00756800	2.22161000
С	8.46332700	1.21868300	0.17524000

С	9.72748000	1.74100800	-0.08325700
С	9.86650700	3.05786000	-0.52684900
С	8.73178500	3.85283300	-0.69668800
С	7.46744400	3.33380700	-0.42643200
С	-0.92500900	-0.54081000	0.76736900
0	-0.49502200	-0.33467100	-0.33400000
Cl	0.17359800	-3.76980500	0.99314600
Н	-2.72097400	-0.57098300	5.08068200
Н	-4.86080200	-0.34200800	6.32390800
Н	-6.99314200	-0.05918700	5.07145100
Н	-6.97680900	-0.03313900	2.59344800
Н	-4.30133000	-2.81135700	1.93495500
Н	-3.21192200	-4.59432900	0.72828700
Н	-3.28395900	-2.15597300	-2.87979000
Н	-5.20060700	1.79855900	-3.07592700
Н	-6.34919200	4.04566700	0.47379100
Н	-5.76088200	2.14962700	1.84386100
Н	-1.48053800	-5.11998600	-3.59915300
Н	-2.40999000	-3.66263300	-3.75704700
Н	-1.38515100	-5.52769500	-0.29851000
Н	-2.99475700	-6.14206800	-0.67983200
Н	-6.00810600	5.11456500	-4.06260900
Н	-5.19303900	3.58430600	-3.95042600
Н	-7.70661400	5.07867200	-1.07650600
Н	-6.08911400	5.70969700	-0.76097700
Н	-7.47130900	7.36526000	-1.87129800
Н	-6.11341900	6.95847000	-2.92150600
Н	-7.74215900	6.33060900	-3.27390500
Н	-7.24549900	3.37121500	-5.36269400
Н	-7.46323100	2.40638700	-3.88919800
Н	-8.25196700	3.98431700	-4.03831800
Н	-1.34219000	-7.74796300	-1.36215200
Н	-2.11549200	-7.12771100	-2.82511900
Н	-0.47627000	-6.59420800	-2.37399800
Н	0.03093200	-3.12687000	-3.81328200
Н	-0.66708900	-2.42655400	-2.33638100
Н	0.26666100	-3.92582300	-2.24565500
Н	0.79336100	-2.47960000	2.87827500
Н	2.62836800	-1.07558800	3.24632700

Н	4.69736000	-0.00512800	2.43596000
Н	3.64287200	-1.01386800	-1.59837300
Н	1.54580400	-2.04347100	-0.80007200
Н	6.60054000	1.07785500	-2.50781500
Н	7.82847200	-0.26271500	-4.18570600
Н	8.25667100	-2.67935200	-3.78038600
Н	7.41723800	-3.74524900	-1.69558000
Н	6.16502200	-2.40352700	-0.03502700
Н	3.36611300	2.12108800	-0.21639200
Н	1.90425600	3.62477600	1.09524400
Н	2.77157500	4.72304000	3.15408600
Н	5.12276800	4.32799400	3.86138900
Н	6.58820000	2.84656700	2.52333600
Н	8.35783500	0.19451600	0.51684500
Н	10.60642800	1.12024300	0.06501600
Н	10.85306900	3.46377200	-0.73089700
Н	8.83153400	4.87996400	-1.03599100
Н	6.58646100	3.95666100	-0.54871300

NMR Spectra and HRMS

¹³C NMR (125 MHz, DMSO- d_6) Spectrum of RBH

¹³C NMR (125 MHz, DMSO-*d*₆) Spectrum of RTPE-H

HRMS Spectrum of RTPE-H

¹H NMR (500 MHz, DMSO-*d*₆) Spectrum of RTPE-HO

References:

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian 16, Revision C.01*, Gaussian, Inc., Wallingford CT 2016.

2. S. Budi, E. Fitri, M. Paristiowati, U. Cahyana, E. Pusparini, H. Nasbey, A. Imaddudin, *Mater. Sci. Eng.* 2017, *172*, 012049.