Supporting Information

Stereoselective construction of 5-6-5 aza-tricyclic scaffolds *via* catalytic asymmetric aza-Piancatelli/Diels-Alder reactions

Lishu Wang,^{a,c} Han Wang,^{a,c} Xukun Nie,^a Jun Li,^{*b} Yurong Tang,^a and Yunfei Cai^{*a}

- ^a School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China. E-mail: yf.cai@cqu.edu.cn.
- ^b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 YingbinRoad, 321004 Jinhua, China. E-mail: jun li@zjnu.edu.cn

^cL. Wang and H. Wang contributed equally to this work.

Contents

1.	General information	S2
2.	Optimization of the reaction conditions	S3
3.	General procedure	S6
4.	Scale-up of the reaction	S6
5.	Determination of the absolute configuration and X-ray structure	S7
6.	Preparation of the starting materials	S8
7.	Characterization date for the products	S14
8.	Synthetic transformations	S31
9.	References	S34
10.	NMR spectra of the starting materials and products	S35
11.	NOESY spectras	S115
12.	Crude ¹ H NMR spectra for the determination of dr and yield	S118
13.	HPLC chromatograms of all products	S121

1. General information

All reactions were carried out using oven-dried glassware and magnetic stirring under an inert atmosphere (argon). All chemical were obtained from commercial supplier and were used without further purification unless otherwise stated. All solvents were dried and distilled under argon prior to use. Solvents for chromatography were of technical grade and distilled prior to use. Analytical thin layer chromatography was carried out using silica gel GF254, visualized under UV light (at 254 nm). Analytical thin layer chromatography was carried out using silica gel GF254. ¹H NMR (TMS as internal reference), ¹³C{¹H} NMR and ¹⁹F NMR spectra were recorded on Bruker 400 (400, 101, 377 MHz). ¹⁹F NMR data of compounds 3-10, 15, 16, 18, 22-31, 33-38, 41-44 and 2a-2i, 2m, 2n, 2g, 2r were collected at 377 MHz with complete proton decoupling. Chemical shifts were referenced relative to internal reference or residual solvent. Data for ¹H NMR and ¹⁹F NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet,br = broad), integration, coupling constant (Hz). ¹³C spectra were reported as chemical shifts in ppm and multiplicity where appropriate. Optical rotations were measured with a Rudolph Auto II polarimeter and reported as follows: $[\alpha]_D^T$ (c: g/100 mL, in CHCl₃, $\lambda = 589$ nm). Melting points were measured using a melting point apparatus in open glass capillaries. High resolution mass spectra (HRMS) of 3-10, 12-19, 21-31, 33-38, 41-44, and 2a-2s were acquired on an LTQ Orbitrap Elite mass spectrometer with ESI mode. The X-ray was measured on Agilent Supernova. In reactions where low temperatures were necessary a cryostatic temperature regulator was used. Enantiomeric excesses (ee) were determined by high performance liquid chromatography (HPLC). Structural assignments for compounds 4, 33, 42, 43 and 44 were made with additional information from NOESY experiments.

2. Optimization of the reaction conditions

Table S1. Extra optimization of the reaction conditions^{*a*}

ArNH + O Ph Ph B*H (5 mol%) (Ar = 4-CF ₃ C ₆ H ₄) + O OH Solvent, t, temp. Ar - N H H H H H H H H H H H H H H H H H H						
$\begin{array}{c} \textbf{A3: } 4^{-t}BuC_{6}H_{4} \\ \textbf{A4: } 2,6-Me_{2}-4-(1-admantyl)-C_{6}H_{2} \\ \textbf{A5: } R = 2,4,6-Me_{3}C_{6}H_{2} \\ \textbf{A6: } R = 2,4,6^{-t}Pr_{3}C_{6}H_{2} \\ \textbf{A6: } R = 3iPh_{3} \\ \textbf{A9: } R = 4iPhC_{6}H_{4} \\ \textbf{A10: } R = 2,-naphthyl \\ \textbf{A1: } R = 2,6-Me_{2}-4^{-t}Bu-C_{6}H_{2} \\ \textbf{A11: } R = 9-phenanthrenyl \\ \textbf{A2: } 2,6-Et_{2}-4^{-t}Bu-C_{6}H_{2} \\ \textbf{A12: } R = 9-anthryl \\ \end{array}$						
entrv ^a	B*H	solvent	temp.	time	yield ^b	ee ^c
entry	<i>D</i> 11	sorvent	(°C)	(h)	(%)	(%)
1	A1	PhF	70	24	93	93
2	A2	PhF	70	24	85	89
3	A3	PhF	70	24	79 - 0	65
4	A4	PhF	70	24	70	85
5	A5	PhF	70	24	78	72
6	A6	PhF	70	24	80	80
7	A7	PhF	70	24	85	88
8	A8	PhF	70	24	trace	-
9	A9	PhF	70	24	80	40
10	A10	PhF	70	24	75	30
11	A11	PhF	70	24	83	57
12	A12	PhF	70	24	81	59
13	A1	PhCl	70	24	75	84
14	A1	PhMe	70	24	60^d	92
15^e	A1	PhMe	70	24	86	92
16	A1	CHCl ₃	70	24	90	86
17	A1	EtOAc	70	24	43	85
18	A1	1,4-dioxane	70	24	trace	-
19	A1	PhF	80	24	90	90
20 ^f	A1	PhF	40	24	37	93
21 ^g	A1	PhF	70	48	48	81
22^{h}	A1	PhF	70	48	trace	-

^{*a*}Reaction conditions: (1) **1a** (0.05 mmol), **2a** (0.05 mmol), **B*H** (5 mol%), in solvent (0.5 mL) at the indicated temperature under argon. ^{*b*}Yields were determined by ¹H NMR analysis of the crude product using trimethyl benzene-1,3,5-tricarboxylate as an internal standard. ^{*c*}The ee values were determined by chiral HPLC. ^{*d*}25% of arylamine **1a** was recovered, with full decomposition of 2-furylcarbinol **2a** observed. ^{*e*}1.5 equivalent of **2a** was used. ^{*f*}The cyclopentenone intermediate **3'** was also obtained in 30% yield with 93% ee. ^{*g*}The catalyst loading was 3 mol%. ^{*h*}The catalyst loading was 1 mol%.

Table S2. Extra optimization of the reaction conditions^{*a*}

	O O O H	+ ArNH (Ar = 4-CF ₃ C ₁	B*H Solver	(5 mol%) nt, t, temp.	Ph H,,,H Ar-N,H H	
	1m	2a			33	
$ \begin{array}{c} \textbf{A1: } X = 0, R = 2,6-Me_2-4^{-t}BuC_6H_2 \\ \textbf{A13: } X = NTf, R = 2,4,6^{-t}Pr_3C_6H_2 \\ \textbf{A13: } X = NTf, R = 2,6^{-t}Pr_2-4-AdC_6H_2 \\ \textbf{A14: } X = NTf, R = 2,6^{-t}Pr_2-4-AdC_6H_2 \\ \textbf{A15: } X = NTf, R = 2,6^{-t}Pr_2C_6H_3 \\ \textbf{A16: } X = NTf, R = 4-biphenl \\ \textbf{A17: } X = NTf, R = 9-anthracenyl \\ \textbf{A18: } R = 2,6^{-t}Pr_2C_6H_3 \\ A$						
	, DAII	1	temp.	time	yield ^b	ee ^c
entry	B*H	solvent	(°C)	(h)	(%)	(%)
1	A1	PhF	70	48	trace	-
2	A13	CHCl ₃	20	48	43	77
3	A14	CHCl ₃	20	48	42	83
4	A15	CHCl ₃	20	48	45	86
5	A16	CHCl ₃	20	48	41	21
6	A17	CHCl ₃	20	48	40	17
7	A18	CHCl ₃	20	48	36	70
8	A15	1,4-dioxane	20	48	30	86
9	A15	PhF	20	48	34	72
10	A15	THF	20	48	34	79
11	A15	EtOAc	20	48	35	82
12	A15	CHCl ₃	20	96	46	86
13	A15	CHCl ₃	10	96	44	86
14	A15	CHCl ₃	30	24	66	78
15	A15	CHCl ₃	50	24	70	77

^{*a*}Reaction conditions: (1) **1a** (0.05 mmol), **2a** (0.075 mmol), **B*****H** (5 mol%), in solvent (0.5 mL) at the indicated temperature under argon. ^{*b*}Yields were determined by ¹H NMR analysis of the crude product using trimethyl benzene-1,3,5-tricarboxylate as an internal standard. ^{*c*}The ee values were determined by chiral HPLC.

Table S3. Extra optimization of the reaction conditions^a

^{*a*}Reaction conditions: (1) **1a** (0.05 mmol), **2a** (0.05 mmol), **B*H** (5 mol%), in solvent (0.5 mL) at the indicated temperature under argon. ^{*b*}Yields were determined by ¹H NMR analysis of the crude product using trimethyl benzene-1,3,5-tricarboxylate as an internal standard. ^{*c*}The ee values were determined by chiral HPLC. ^{*d*}The major/minor values were determined by ¹H NMR analysis of the crude product.

3. General procedure

A dry reaction tube equipped with a stir bar was charged with A1 (5 mol%, 3.4 mg) or A15 (5 mol%, 4.0 mg). It was capped with a rubber septum, evacuated and backfilled with N₂ three times. Then, PhF (1.0 mL) or CHCl₃ (1.0 mL) and aniline derivative 2 (0.1 mmol, 1 equiv.) were added and stirred at rt, and 2-furylcarbinol 1 (0.1 mmol, 1.0 equiv.) was added. The reaction mixture was stirred at 70 °C or 20 °C for 12–48 h. Upon completion (monitored by TLC), the solvent was removed in vacuo and the crude product was purified by by column chromatography on silica gel using gradients of petroleum ether/ethyl acetate to give the desired products. The enantiomeric excess (ee) was determined by high-perfomance liquid chromatography (HPLC) with Chiralcel AD-H, Chiralcel IA or FLM Chiral INB. The major/minor values were determined by ¹H NMR analysis of the crude product.

4. Scale-up of the reaction

A dry flask equipped with a stir bar was charged with A1 (101.6 mg, 0.15 mmol, 5 mol%). It was capped with a rubber septum, evacuated and backfilled with N₂ three times. Then, PhF (60 mL) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline **2a** (681.7 mg, 3 mmol, 1.0 equiv.) were added and stirred at rt, and furan-2-yldiphenylmethanol **1a** (750.9 mg, 3 mmol, 1.0 equiv.) was added. The reaction mixture was stirred at 70 °C for 48 h. The solvent was removed in vacuo, and the residue was purified by column chromatography on silica gel from petroleum ether/ethyl acetate to afford product **3** (1.28 g, 85% yield, 93% ee). After recrystallization from petroleum ether/DCM, product **3** (0.97 g, 76% yield, 99% ee) was afforded.

5. Determination of the absolute configuration and X-ray structure

5.1. Structure report for substrate 19

A Single crystal of **19** suitable for X-ray crystallography was obtained by crystallization via evaporation from its dichloromethane/petroleum ether solution. The absolute configurations of C8, C13, C14 are S and C12 is R.

Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre database (CCDC) and the deposition number CCDC is 2364690. Copies of the data can be obtained free of charge from the CCDC at www.ccdc.cam.ac.uk.

Table S2 Crystal data and structure refinement for 19

Bond precision:	C - C = 0.0044 A		Wavelength $= 1.54178$		
Cell:	a = 10.2452(4)	b = 14.439	99(7)	c = 14.5364(4)	
	alpha = 90	beta = 90		gamma = 90	
Temperature:	293 K				
	Calculated		Reported		
Volume	2150.51 (15)		2150.51 (1	5)	
Space group	P 21 21 21		P 21 21 21		
Hall group	P 2ac 2ab		P 2ac 2ab		
Moiety formula	C28 H24 Cl N O		C28 H24 Cl N O		
Sum formula	C28 H24 Cl N O		C28 H24 Cl N O		
Mr	425.93		425.93		
Dx, g cm ⁻³	1.316		1.316		
Ζ	4		4		
Mu (mm ⁻¹)	1.721		1.721		
F000	896.0		896.0		
F000'	899.70				
h,k,lmax	12, 17, 17		12, 15, 17		
Nref	3814 [2179]		3120		
Tmin, Tmax			0.690, 1.00	00	
Tmin'					
Correction method	= # Reported T Limit	s: Tmin=0.6	590 Tmax=	1.000	
AbsCorr = MULT	I-SCAN				
Data completeness = $1.43/0.82$ Theta (max) = 66.720					
R (reflections) = 0.6	wR2(refl	wR2(reflections) = 0.1306 (3120)			
S = 0.980	Npar = 280				

6. Preparation and characteriof the starting materials

6.1 Sythesis of *N*-Pentadienylanilines (2a–2s)¹

To a 500 mL round bottom flask containing NaH (7.2 g, 30 mmol, 60% mineral dispersion, 1.5 equiv.) and anhydrous THF (40 mL) at 0 °C, was added trimethyl phosphonoacetate (4.9 mL, 30 mmol, 1.5 equiv.) dropwise via an addition funnel. The reaction mixture was naturally warmed to rt, followed by a dropwise addition of acetophenone (20 mmol, 1.0 equiv.). The reaction mixture was stirred for 6 h, quench the reaction mixture with water. The organic layer was collected, and the aqueous layer was extracted with ethyl acetate (3×30 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 10/1) to afford the corresponding α , β -unsaturated ester as a yellow oil.

To a stirred solution of the α , β -unsaturated ester (1.0 equiv.) in anhydrous DCM (0.2 M) at -78 °C under N₂ was added DIBAL-H (1.0 M in hexanes, 2.2 equiv.) dropwise. The reaction was stirred at -78 °C for 1.5 h, and quenched with 10% aq NaOH (equal volume). The resultant mixture was allowed to warm to rt and stirred for 1 h. The layers were separated and the aqueous layer extracted with DCM (2 × equal volume). The combined organics were washed with brine (equal volume), dried over MgSO₄, filtered, and concentrated in vacuo to leave the pure allylic alcohols.

To a stirred solution of the allylic alcohol (1.0 equiv.) in anhydrous Et_2O (0.33 M) at 0 °C under N₂ in the dark was added PBr₃ (0.4 equiv.). The reaction was stirred until completion, as monitored by TLC analysis (typically 0.25–1 h), and poured into sat aq NaHCO₃ (equal volume). The layers were separated and the aqueous layer extracted with Et_2O (2 × equal volume). The combined organics were washed with sat aq Na₂S₂O₃ and brine (1/1, equal volume), dried over MgSO₄, filtered and concentrated in vacuo to leave the pure allylic bromides.

In a 100 mL round-bottomed flask were placed the allylic bromides (10.0 mmol), "BuLi (11.0 mL, 11.0 mmol), and THF (10 mL). Aniline (3.44 g, 10.0 mmol) was added to the solution and the mixture was stirred under rt for 12 h. The solution was filtered and concentrated under reduced pressure by an aspirator and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 50/1) as eluent to give **2**.

(E)-N-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (2a)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 50/1) giving the product **2a** as a yellow oil in 43% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.5 Hz, 2H), 6.57 (d, *J* = 8.5 Hz, 2H), 6.40 – 6.17

(m, 2H), 5.74 (dt, *J* = 14.9, 5.7 Hz, 1H), 5.23 – 5.14 (m, 1H), 5.12 – 5.03 (m, 1H), 4.09

(s, 1H), 3.86 - 3.73 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.4, 135.1, 131.8, 128.9, 125.5 (q, J = 3.7 Hz), 122.7 (q, J = 270.2 Hz), 117.7 (q, J = 32.6 Hz), 116.4, 111.0, 44.0. ¹⁹F NMR (377 MHz, CDCl₃) δ –62.8 (s). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₃F₃N 228.0995; Found 228.0996.

N-((2*E*,4*E*)-hexa-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (2b)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30/1) giving the product **2b** as a yellow oil in 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 2H), 6.59 (d, J = 8.3 Hz, 2H), 6.28 – 6.16 (m, 1H),

6.05 (ddq, J = 14.0, 10.5, 1.8 Hz, 1H), 5.65 (ddt, J = 26.9, 15.2, 6.3 Hz, 2H), 4.05 (s, 1H), 3.80 (d, J = 5.9 Hz, 2H), 1.76 (d, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.5, 132.6, 130.6, 130.0, 126.6 (q, J = 3.7 Hz), 126.4, 123.7 (q, J = 270.3 Hz), 118.7 (q, J = 32.6 Hz), 112.0, 45.3, 18.1. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0. HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₁₃H₁₈F₃N₂ 259.1416; Found 259.1444.

N-((2*E*,4*E*)-hepta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (2c)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30/1) giving the product **2c** as a yellow oil in 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.4 Hz, 2H), 6.60 (d, *J* = 8.4 Hz, 2H),

6.29 – 6.17 (m, 1H), 6.10 – 5.98 (m, 1H), 5.69 (ddt, J = 35.7, 15.2, 6.2 Hz, 2H), 4.08 (s, 1H), 3.81 (dd, J = 6.0, 1.4 Hz, 2H), 2.15 – 2.05 (m, 2H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.5, 137.0, 132.8, 128.3, 126.7, 126.6 (q, J = 3.8 Hz), 123.7 (q, J = 270.3 Hz), 118.7 (q, J = 32.6 Hz), 112.0, 45.3, 25.6, 13.4. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₇F₃N 256.1308; Found 256.1292.

N-((2E,4E)-5-phenylpenta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (2d)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 50/1) giving the product **2d** as a yellow solid in 65% yield. mp = 100 - 102 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.36 (m, 4H),

7.30 (dd, J = 8.5, 6.7 Hz, 2H), 7.21 (d, J = 6.9 Hz, 1H), 6.77 (dd, J = 15.6, 10.5 Hz, 1H), 6.62 (d, J = 8.4 Hz, 2H), 6.52 (d, J = 15.7 Hz, 1H), 6.46 – 6.35 (m, 1H), 5.87 (dt, J = 15.2, 5.8 Hz, 1H), 4.14 (s, 1H), 3.92 – 3.85 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.4, 137.1, 132.7, 132.4, 129.9, 128.7, 128.0, 127.7, 126.6 (q, J = 3.9 Hz), 126.4, 119.2 (q, J = 32.5 Hz), 112.1, 111.8, 45.4. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0 (s). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₆F₃N 304.1308; Found 304.1310.

N-((2E,4E)-5-(4-bromophenyl)penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (2e)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 50/1) giving the product **2e** as a yellow solid in 55% yield. mp = 124 - 125 °C. ¹H NMR (400 MHz, CDCl₃) δ

7.42 (dd, J = 8.4, 6.3 Hz, 4H), 7.25 (d, J = 12.3 Hz, 2H), 6.76 (dd, J = 15.6, 10.5 Hz,

1H), 6.63 (d, J = 8.4 Hz, 2H), 6.50 – 6.35 (m, 2H), 5.90 (dt, J = 15.2, 5.7 Hz, 1H), 4.19 (s, 1H), 3.91 (d, J = 5.7 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.3, 136.0, 132.0, 131.8, 131.3, 130.7, 128.7, 127.8, 126.6 (q, J = 3.8 Hz), 123.6 (q, J = 322.5 Hz), 121.4, 118.9 (q, J = 33.0 Hz), 112.1, 45.3. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0 (s). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₆BrF₃N 382.0413; Found 382.0416.

N-((2*E*,4*E*)-5-(p-tolyl)penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (2f)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 50/1) giving the product **2f** as a yellow solid in 58% yield. mp = 121 - 123 °C. ¹**H NMR** (400 MHz, CDCl₃) δ

7.40 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 6.73 (dd, J = 15.6, 10.5 Hz, 1H), 6.62 (d, J = 8.5 Hz, 2H), 6.50 (d, J = 15.6 Hz, 1H), 6.44 – 6.36 (m, 1H), 5.84 (dt, J = 15.2, 5.8 Hz, 1H), 4.15 (s, 1H), 3.89 (d, J = 5.8 Hz, 2H), 2.33 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.4, 137.6, 134.3, 132.7, 132.6, 129.4, 129.2, 127.0, 126.6 (q, J = 3.8 Hz), 126.3, 123.8, 118.8 (q, J = 32.8 Hz), 112.1, 45.4, 21.2. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0 (s). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₉F₃N 318.1464; Found 318.1470.

N-((2E,4E)-4-methyl-5-phenylpenta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (2g)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30/1) giving the product **2g** as a yellow solid in 68% yield. mp = 110 – 112 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.6 Hz,

2H), 7.36 – 7.31 (m, 2H), 7.30 – 7.26 (m, 2H), 7.24 – 7.20 (m, 1H), 6.64 (d, J = 8.6 Hz, 2H), 6.47 (d, J = 26.7 Hz, 2H), 5.84 (dt, J = 15.6, 5.9 Hz, 1H), 4.53 – 4.00 (m, 1H), 3.92 (d, J = 7.5 Hz, 2H), 2.00 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.5, 137.6, 137.4, 134.9, 131.6, 129.2, 128.2, 126.7 (q, J = 7.8, 4.1 Hz), 125.0, 119.1, 113.3, 112.0, 111.7, 45.7, 14.0. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0 (s). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₉F₃N 318.1464; Found 318.1469.

N-((2*E*,4*E*)-2-methyl-5-phenylpenta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (2h)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 10/1) giving the product **2h** was a yellow solid in 77% yield. mp = $108 - 110 \degree C$. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.37 (m, 4H),

7.31 (t, J = 7.6 Hz, 2H), 7.24 – 7.18 (m, 1H), 7.01 (dd, J = 15.5, 11.0 Hz, 1H), 6.61 (d, J = 8.5 Hz, 2H), 6.51 (d, J = 15.5 Hz, 1H), 6.26 – 6.18 (m, 1H), 4.26 (s, 1H), 3.81 (s, 2H), 1.90 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.6, 136.5, 134.2, 131.1, 127.6, 126.4, 125.6 (q, J = 3.8 Hz), 125.3, 124.8, 123.5, 122.7, 118.0, 110.9, 50.1, 14.3. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0 (s). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₉F₃N 318.1464; Found 318.1471.

N-((2E,4E)-3-methyl-5-phenylpenta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (2i)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 10/1) giving the product **2i** was a brown solid in 77% yield. mp = 90 – 92 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (dd, *J* = 8.3, 1.6 Hz,

4H), 7.32 (dd, J = 8.5, 6.8 Hz, 2H), 7.25 – 7.20 (m, 1H), 6.81 (d, J = 16.1 Hz, 1H), 6.65 – 6.54 (m, 3H), 5.71 (t, J = 6.6 Hz, 1H), 4.07 (s, 1H), 3.95 (d, J = 6.7 Hz, 2H), 1.97 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.5, 137.3, 136.9, 132.6, 128.7, 128.7, 127.9, 127.5, 126.6 (q, J = 3.9 Hz), 126.4, 123.6, 118.8 (q, J = 32.7 Hz), 112.0, 41.7, 12.8. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0 (s). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₉F₃N 318.1464; Found 318.1466.

methyl (E)-4-(penta-2,4-dien-1-ylamino)benzoate (2j)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 10/1) giving the product **2j** as a yellow oil in 65% yield. mp = 85 - 87 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 7.90 - 7.82 (m, 2H), 6.59 - 6.53

(m, 2H), 6.40 - 6.21(m, 2H), 5.78 (dt, J = 14.8, 5.7 Hz, 1H), 5.16 (dd, J = 43.9, 1.9 Hz, 1H), 5.13(dt, J = 41.7, 0.9 Hz, 1H), 3.86 (dd, J = 5.7, 1.5 Hz, 2H), 3.85 (s, 3H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃) δ 167.3, 151.7, 136.1, 132.9, 131.6, 129.8, 118.6, 117.6, 111.7, 51.5, 45.0. **HRMS (ESI)** m/z: [M + H]⁺ Calcd for C₁₃H₁₆NO₂ 218.1176; Found 218.1183.

(E)-4-bromo-N-(penta-2,4-dien-1-yl)aniline (2k)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30/1) giving the product **2k** as a yellow oil in 60% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.18 (m, 2H), 6.50 – 6.44 (m, 2H), 6.40 – 6.18 (m, 2H), 5.76 (dt,

J = 14.8, 5.8 Hz, 1H), 5.18 (d, J = 15.9 Hz, 1H), 5.07 (d, J = 9.2 Hz, 1H), 3.75 (dd, J = 5.8, 1.6 Hz, 2H), 3.45 (s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.0, 136.2, 132.6, 131.9, 130.5, 117.3, 114.6, 109.1, 45.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₃BrN 238.0226; Found 238.0229.

(E)-4-chloro-N-(penta-2,4-dien-1-yl)aniline (2l)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30/1) giving the product **2l** as a yellow oil in 68% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.13 – 7.08 (m, 2H), 6.53 – 6.49 (m, 2H), 6.40 – 6.19 (m, 2H), 5.76 (dt,

J = 14.9, 5.7 Hz, 1H), 5.14 (dd, J = 17.4, 1.4 Hz, 1H), 5.11 (dt, J = 38.9, 1.1 Hz, 1H), 3.75 (dd, J = 5.8, 1.6 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.6, 136.3, 132.6, 130.6, 129.1, 122.1, 117.3, 114.1, 45.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₂ClN 194.0731; Found 194.0737.

(E)-4-(penta-2,4-dien-1-ylamino)phenyl trifluoromethanesulfonate (2m)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 20/1) giving the product **2m** as a yellow oil in 57% yield. ¹**H** NMR (400 MHz, CDCl₃) δ 7.09 – 6.99 (m, 2H), 6.59 – 6.52 (m, 2H), 6.40 – 6.21 (m, 2H),

5.76 (dt, J = 14.8, 5.7 Hz, 1H), 5.16 (dd, J = 45.3, 1.9 Hz, 1H), 5.13 (d, J = 38.5 Hz, 1H). 3.99 (s, 1H), 3.79 (d, J = 5.9 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.8, 140.9, 136.1, 132.8, 130.0, 122.1, 118.8 (q, J = 321.0 Hz), 117.5, 113.1, 45.6. ¹⁹F NMR (377 MHz, CDCl₃) δ –72.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₃F₃NO₃S 308.0563; Found 308.0566.

(E)-N-(penta-2,4-dien-1-yl)-3-(trifluoromethyl)aniline (2n)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30/1) giving the product **2n** as a yellow oil in 59% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.23 (t, *J* = 7.9 Hz, 1H), 6.96 – 6.90 (m, 1H), 6.79 (d, *J* = 2.2

Hz, 1H), 6.72 (dd, J = 8.2, 2.4 Hz, 1H), 6.43 – 6.19 (m, 2H), 5.77 (dt, J = 14.7, 5.8 Hz, 1H), 5.22 – 5.05 (m, 2H), 3.98 (s, 1H), 3.91 (s, 1H), 3.81 (dd, J = 5.8, 1.6 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.1, 135.1, 131.8, 130.4 (q, J = 31.7 Hz), 129.0, 128.6, 124.7 (q, J = 272.4 Hz), 116.4, 114.8 (d, J = 1.4 Hz), 112.9 (q, J = 4.0 Hz), 108.1 (q, J = 4.0 Hz), 44.4. ¹⁹F NMR (377 MHz, CDCl₃) δ –62.8 (s). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₃F₃N 228.0995; Found 228.0995.

(E)-3-chloro-N-(penta-2,4-dien-1-yl)aniline (20)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30/1) giving the product **20** as a yellow oil in 55% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (t, *J* = 8.1 Hz, 1H), 6.58 – 6.53 (m, 1H), 6.56 (t, *J* = 2.2 Hz, 1H),

6.44 (dd, J = 8.2, 2.3 Hz, 1H), 6.39 – 6.17 (m, 2H), 5.75 (dt, J = 14.9, 5.8 Hz, 1H), 5.18 (dd, J = 16.6, 1.5 Hz, 1H), 5.07 (dd, J = 10.1, 1.7 Hz, 1H), 3.74 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.2, 136.3, 135.0, 132.7, 130.4, 130.2, 117.4, 117.4, 112.6, 111.3, 45.4. HRMS (ESI) m/z: [M + NH₄]⁺ Calcd for C₁₁H₁₆ClN₂ 211.0996; Found 211.0984.

(E)-N-(penta-2,4-dien-1-yl)aniline (2p)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 50/1) giving the product **2p** as a yellow oil in 44% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.20 – 7.13 (m, 2H), 6.70 (dd, *J* = 7.9, 6.7 Hz, 1H), 6.63 – 6.58 (m, 2H), 6.40 –

6.21 (m, 2H), 5.80 (dt, J = 14.7, 5.8 Hz, 1H), 5.17 (dd, J = 16.5, 1.9 Hz, 1H), 5.10 – 5.01 (m, 1H), 3.79 (dd, J = 5.8, 1.6 Hz, 2H), 3.74 (s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.0, 135.4, 131.3, 130.1, 128.2, 116.6, 116.0, 112.0, 44.6.

(E)-2-fluoro-N-(penta-2,4-dien-1-yl)aniline (2q)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 50/1) giving the product **2q** as a yellow oil in 64% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 6.97 (m, 2.5 Hz, 2H), 6.72 – 6.59 (m, 2H), 6.41 – 6.24 (m, 2H), 5.81 (dt, *J* = 14.5,

5.7 Hz, 1H), 5.23 – 5.06 (m, 2H), 4.04 (s, 1H), 3.84 (d, J = 5.8 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) 150.4 (d, J = 238.3 Hz), 136.5, 136.3, 132.5, 130.6, 124.6 (d, J = 3.5 Hz), 117.3, 116.8 (d, J = 6.9 Hz), 114.3 (d, J = 18.5 Hz), 112.3 (d, J = 3.3 Hz), 45.2. ¹⁹F NMR (377 MHz, CDCl₃) δ –136.6 (s). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₁₃FN 178.1027; Found 178.1035.

(E)-4-methyl-N-(penta-2,4-dien-1-yl)-3-(trifluoromethyl)aniline (2r)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30/1) giving the product $2\mathbf{r}$ as a yellow oil in 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 8.3 Hz, 1H), 6.84 (d, J = 2.6 Hz, 1H), 6.63 (dd, J =

8.4, 2.6 Hz, 1H), 6.42 – 6.17 (m, 2H), 5.77 (dt, J = 14.8, 5.8 Hz, 1H), 5.18 (d, J = 15.7 Hz, 1H), 5.07 (d, J = 9.0 Hz, 1H), 3.78 (d, J = 5.9 Hz, 2H), 3.56 (s, 1H), 2.33 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 144.8, 135.2, 131.6 (d, J = 6.2 Hz), 129.4, 128.2 (q, J = 29.4 Hz), 123.6, 122.3, 119.6, 116.2, 114.6, 109.4 (q, J = 5.8 Hz), 44.6, 17.2 (q, J = 2.1 Hz) ¹⁹F NMR (377 MHz, CDCl₃) δ –61.8. HRMS (ESI) m/z: [M + NH4]⁺ Calcd for C₁₃H₁₈F₃N₂ 259.1416; Found 259.1444.

(E)-N-(penta-2,4-dien-1-yl)naphthalen-2-amine (2s)

The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 30/1) giving the product **2s** as a brown oil in 40% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.1 Hz, 1H), 7.58 (dd, *J* = 8.6, 2.2 Hz, 2H), 7.36 – 7.29

(m, 1H), 7.17 (t, J = 7.7 Hz, 1H), 6.81 – 6.74 (m, 2H), 6.39 – 6.18 (m, 2H), 5.78 (dt, J = 14.6, 5.8 Hz, 1H), 5.23 – 5.11 (m, 1H), 5.08 – 5.01 (m, 1H), 3.80 (m, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.7, 136.5, 135.3, 132.6, 130.9, 129.1, 127.8, 127.7, 126.5, 126.1, 122.2, 118.1, 117.3, 104.9, 45.7. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₅H₁₆N 210.1278; Found 210.1273.

6.2 Sythesis of 2-Furylcarbinols.

$$\begin{array}{c} O \\ & \uparrow \\ & R^1 \\ & R^2 \end{array} \xrightarrow{n'BuLi, THF} \\ \hline \\ -20 \ ^{\circ}C \ to \ rt, 12 \ h \\ & O \\ OH \end{array}$$

The 2-furylcarbinols were prepared according to literature procedure,² and the spectral data (¹H NMR, ¹³C{¹H} NMR, ¹⁹F NMR) matched those previously reported in the literature.

7. Characterization data for the products

(2a*S*,2a¹*S*,4a*R*,7a*S*)-3,3-diphenyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (3)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and (E)-*N*-(penta-2,4-dien-1-yl)-4- (trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product **3** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 50/1–30/1), 21.1

mg (92% yield, 93% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (FLM Chiral INB, hexane/⁴PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 8.1 min, t_r (minor) = 7.2 min; $[\alpha]_D^{20}$ = -355.13 (c = 0.11, in CHCl₃); mp = 224 – 226 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.39 (td, *J* = 6.9, 5.8, 1.4 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.29 (d, *J* = 8.5 Hz, 2H), 7.10 – 7.02 (m, 3H), 7.01 – 6.92 (m, 2H), 6.39 (d, *J* = 8.5 Hz, 2H), 6.07 (dt, *J* = 9.8, 2.9 Hz, 1H), 5.85 – 5.73 (m, 1H), 5.25 (d, *J* = 7.2 Hz, 1H), 3.47 – 3.35 (m, 1H), 3.09 – 2.97 (m, 2H), 2.73 – 2.61 (m, 2H), 2.58 – 2.40 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.0, 150.2, 141.7, 139.8, 130.6, 129.0, 128.2, 128.1, 127.6, 127.3, 126.7, 126.1, 126.0 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 270.3 Hz), 118.0 (q, *J* = 32.7 Hz), 112.3, 68.4, 67.6, 51.9, 46.7, 42.8, 39.6, 22.6. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₉H₂₅F₃NO 460.1882; Found 460.1888.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-4a-methyl-3,3-diphenyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (4)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and N-((2E,4E)-hexa-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product **4** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate

50/1–30/1), 22.5 mg (95% yield, 92% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/[/]PrOH = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 7.5 min, t_r (minor) = 6.8 min; $[\alpha]_D{}^{20} = -259.03$ (c = 0.20, in CHCl₃); mp = 245 – 247 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.32 (m, 5H), 7.31 – 7.28 (m, 2H), 7.08 (m, 3H), 7.01 – 6.95 (m, 2H), 6.36 (d, *J* = 8.6 Hz, 2H), 6.04 (dt, *J* = 9.4, 3.1 Hz, 1H), 5.63 (dt, *J* = 9.4, 2.6 Hz, 1H), 5.17 (d, *J* = 6.9 Hz, 1H), 3.36 (dd, *J* = 8.1, 6.9 Hz, 1H), 3.03 (dd, *J* = 11.8, 8.1 Hz, 1H), 2.78 (m, 1H), 2.67 – 2.56 (m, 2H), 2.46 (m, 1H), 1.28 (d, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.8, 150.3, 142.4, 139.5, 135.4, 130.7, 128.9, 128.1, 127.5, 127.4, 126.7, 126.1 (q, *J* = 3.8 Hz), 125.8, 123.7 (q, *J* = 270.4 Hz), 118.4 (q, *J* = 32.7 Hz), 112.3, 69.3, 68.0, 51.8, 51.6, 47.1, 39.7, 29.8, 22.6. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9 (s). HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₃₀H₂₇F₃NO 474.2040; Found 474.2041.

(2a*S*,2a1*S*,5*S*,7a*S*)-5-ethyl-3,3-diphenyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a1,3,4a,5,7a-octahydro-4H-cyclopenta[cd]isoindol-4-one (5)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and N-((2E,4E)-hepta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product **5** was isolated as yellow solid after after silica gel column chromatography (petroleum ether/ethyl acetate 10/1–

5/1), 20.7 mg (85% yield, 87% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel IA, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 6,1 min, t_r (minor) = 4.5 min; $[\alpha]_D^{20} = +26.44$ (c = 0.02, in CHCl₃); mp = 261 – 263 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 4.3 Hz, 4H), 7.32 (m, 3H), 7.08 (m, 3H), 6.98 (m, 2H), 6.37 (d, J = 8.5 Hz, 2H), 6.08 (dt, J = 9.5, 3.0 Hz, 1H), 5.69 (dt, J = 9.6, 2.5 Hz, 1H), 5.20 (d, J = 7.0 Hz, 1H), 3.40 – 3.32 (m, 1H), 3.03 (dd, J = 11.6, 8.1 Hz, 1H), 2.75 – 2.63 (m, 2H), 2.58 (m, 1H), 2.50 (m, 1H), 1.63 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.8, 150.3, 142.3, 139.8, 133.6, 130.6, 128.9, 128.1, 127.5, 127.4, 126.7, 126.2, 126.1 (q, J = 3.7 Hz), 123.7 (q, J = 536.7 Hz), 118.0, 112.2, 69.1, 67.9, 51.8, 49.3, 47.3, 39.9, 35.8, 28.9, 11.0. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9 (s). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₁H₂₉F₃NO 488.2196; Found 488.2197.

(2a*S*,2a¹*S*,5*S*,7a*S*)-3,3,5-triphenyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (6)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and N-((2*E*,4*E*)-5-phenylpenta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product **6** was isolated as yellow solid after after silica gel column chromatography (petroleum ether/ethyl acetate 10/1–

5/1), 23.6 mg (88% yield, 96% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/¹PrOH = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 7.5 min, t_r (minor) = 6.8 min; $[\alpha]_D{}^{20} = -78.75$ (c = 0.12, in CHCl₃); mp = 255 – 57 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.26 (m, 11H), 7.22 (dd, J = 6.5, 2.4 Hz, 1H), 7.07 (q, J = 3.3 Hz, 3H), 7.01 (dd, J = 6.6, 3.2 Hz, 2H), 6.40 (d, J = 8.5 Hz, 2H), 6.21 (dt, J = 9.7, 3.0 Hz, 1H), 5.84 (dt, J = 9.6, 2.6 Hz, 1H), 5.25 (d, J = 7.2 Hz, 1H), 4.01 (m, 1H), 3.42 (t, J = 7.5 Hz, 1H), 3.10 (dd, J = 11.8, 8.1 Hz, 1H), 2.96 (dd, J = 6.9, 2.7 Hz, 1H), 2.80 (m, 1H), 2.65 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.1, 150.2, 146.0, 141.6, 140.0, 133.0, 130.5, 129.0, 129.0, 128.1, 127.8, 127.6, 127.4, 126.7, 126.6, 126.1 (q, J = 270.1 Hz), 126.1, 123.7 (q, J = 3.2 Hz), 118.2, 112.3 (q, J = 32.7 Hz), 68.3, 67.5, 52.9, 51.8, 46.0, 40.4, 39.4. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.9. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₃₅H₂₉F₃NO 536.2196; Found 536.2190.

(2a*S*,2a¹*S*,5*S*,7a*S*)-5-(4-bromophenyl)-3,3-diphenyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*cyclopenta[*cd*]isoindol-4-one (7)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and N-((2*E*,4*E*)-5-(4-bromophenyl)penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product 7 was isolated as yellow solid after silica

gel column chromatography (petroleum ether/ethyl acetate 10/1-5/1), 26.1 mg (85% yield, 95% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (FLM Chiral INB, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 8.8 min, t_r (minor) =

11.1 min; $[\alpha]_D^{20} = +45.00$ (c = 0.07, in CHCl₃); mp = 164 – 172 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.37 – 7.29 (m, 7H), 7.18 – 7.14 (m, 2H), 7.10 – 7.07 (m, 3H), 7.01 – 6.98 (m, 2H), 6.43 – 6.37 (m, 2H), 6.24 (dt, *J* = 9.6, 3.1 Hz, 1H), 5.80 (dt, *J* = 9.6, 2.6 Hz, 1H), 5.24 (d, *J* = 7.2 Hz, 1H), 3.96 (q, *J* = 2.7 Hz, 1H), 3.43 (dd, *J* = 8.1, 6.8 Hz, 1H), 3.10 (dd, *J* = 11.8, 8.1 Hz, 1H), 2.88 (m, 1H), 2.77 (m, *J* = 11.8, 7.0 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.0, 150.1, 144.9, 141.5, 139.8, 132.2, 132.0, 130.5, 129.6, 129.0, 128.0, 127.6, 127.4, 126.8, 126.8, 126.1 (q, *J* = 4.0 Hz), 123.6 (q, *J* = 270.2 Hz), 120.5, 118.2 (q, *J* = 32.5 Hz), 112.3, 68.3, 67.5, 52.8, 51.8, 45.8, 39.8, 39.3. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0 (s). HRMS (ESI) *m/z*: [M + NH₄]⁺ Calcd for C₃₅H₃₁BrF₃NO 638.1566; Found 638.1546.

(2a*S*,2a¹*S*,5*S*,7a*S*)-3,3-diphenyl-5-(*p*-tolyl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (8)

According to **GP** starting from furan-2yldiphenylmethanol and (0.05 mmol) *N*-((2*E*,4*E*)-5-(*p*tolyl)penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product **8** was isolated as yellow solid after silica gel column

chromatography (petroleum ether/ethyl acetate 10/1-5/1), 24.7mg (90% yield, 96% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel IA, hexane/^{*i*}PrOH = 98/2, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 8.9 min, t_r (minor) = 6.7 min; $[\alpha]_D^{20} = -7.13$ (c = 0.08, in CHCl₃); mp = 200 - 203 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.27 (m, 7H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 7.08 (m, 3H), 7.01 (m, 2H), 6.40 (d, *J* = 8.6 Hz, 2H), 6.20 (dt, *J* = 9.6, 3.0 Hz, 1H), 5.83 (dt, *J* = 9.6, 2.6 Hz, 1H), 5.24 (d, *J* = 7.1 Hz, 1H), 3.98 (m, 1H), 3.42 (dd, *J* = 8.1, 6.8 Hz, 1H), 3.09 (dd, *J* = 11.8, 8.1 Hz, 1H), 2.93 (dd, *J* = 6.9, 2.7 Hz, 1H), 2.79 (m, 1H), 2.64 (m, 1H), 2.31 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.1, 150.2, 143.1, 141.6, 140.0, 136.2, 133.2, 130.5, 129.6, 129.0, 128.1, 127.7, 127.5, 127.4, 126.7, 126.1 (q, *J* = 3.8 Hz), 125.9, 118.5 (q, *J* = 32.7 Hz), 112.3, 68.3, 67.5, 53.0, 51.8, 46.0, 40.0, 39.4, 21.0. ¹⁹F NMR (377 MHz, CDCl₃) δ - 60.9 (s). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₃₆H₃₁F₃NO 550.2352; Found 550.2351.

(2a*S*,2a¹*S*,5*R*,7a*S*)-6-methyl-3,3,5-triphenyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (9)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and N-((2*E*,4*E*)-4-methyl-5-phenylpenta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product **9** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl

acetate 10/1-5/1), 23.4mg (85% yield, 94% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel IA, hexane/ⁱPrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 6.7 min, t_r (minor) = 4.9 min; $[\alpha]_D^{20}$ = +189.79 (c = 0.04, in CHCl₃); mp = 269 – 271 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.25 (m, 7H), 7.20 – 7.10 (m, 4H), 7.10 – 7.04 (m, 3H), 7.01 (dd, *J* = 6.7, 3.1 Hz, 2H), 6.40 (d, *J* = 8.4 Hz, 2H), 6.20 (dt, *J* = 9.7, 3.1 Hz, 1H), 5.83 (dt, *J* = 9.6, 2.7 Hz, 1H), 5.24 (d, *J* = 7.2 Hz, 1H), 3.97 (m, 1H), 3.42 (t, *J* = 7.5 Hz, 1H), 3.09 (dd, *J* = 11.8, 8.1 Hz, 1H), 2.93 (dd, *J* = 6.9, 2.7 Hz, 1H), 2.79 (m, 1H), 2.69 – 2.58 (m, 1H), 2.31 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 213.4, 150.2, 145.2, 141.5, 140.6, 138.2, 130.4, 129.8, 128.9, 128.9, 128.1, 127.9, 127.5, 127.3, 126.6, 126.5, 126.0 (q, *J* = 3.9 Hz), 120.9, 118.3 (q, *J* = 32.3 Hz), 112.2, 67.7, 67.1, 53.0, 52.2, 45.2, 44.3, 40.1, 22.3. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9 (s). HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₆H₃₀F₃NONa 572.2172; Found 572.2171.

(S)-4-(argio((2E,4E)-2-methyl-5-phenylpenta-2,4-dien-1-yl)amino)-5,5diphenylcyclopent-2-en-1-one (10)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and methyl *N*-((2*E*,4*E*)-2-methyl-5-phenylpenta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 48 h, the product **10** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 20/1-10/1), 22.0 mg (80% yield, 94% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis

(Chiralcel IA, hexane/PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 6.7 min, t_r (minor) = 5.3 min; $[\alpha]_D^{20}$ = +5.95 (c = 0.06 in CHCl₃); mp = 132 – 134 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 5.9, 2.4 Hz, 1H), 7.40 – 7.32 (m, 5H), 7.29 (td, *J* = 7.9, 4.7 Hz, 5H), 7.23 – 7.16 (m, 5H), 7.06 – 7.01 (m, 2H), 6.95 (dd, *J* = 15.5, 11.0 Hz, 1H), 6.52 (dd, *J* = 5.9, 2.2 Hz, 1H), 6.44 – 6.35 (m, 3H), 6.05 (d, *J* = 2.7 Hz, 1H), 5.96 – 5.89 (m, 1H), 2.96 (d, *J* = 19.7 Hz, 1H), 2.52 (d, *J* = 19.7 Hz, 1H), 1.62 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 207.4, 161.0, 150.4, 142.1, 137.4, 137.1, 134.4, 133.8, 132.1, 130.9, 129.0, 128.6, 128.0, 127.5, 127.5, 127.4, 127.3, 126.5 (q, *J* = 3.8 Hz), 126.2, 124.4, 124.2, 123.5, 118.5 (q, *J* = 32.5 Hz), 112.4, 71.4, 66.3, 53.3, 15.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -61.0 (s). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₃₆H₃₁F₃NO 550.2353; Found 550.2350.

methyl 4- $((2aS, 2a^1S, 4aR, 7aS)$ -4-oxo-3,3-diphenyl-1,2a,2a¹,3,4,4a,5,7a-octahydro-2*H*-cyclopenta[*cd*]isoindol-2-yl)benzoate (12)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and methyl (E)-4-(penta-2,4-dien-1-ylamino)benzoate (0.05 mmol) over the course of 48 h, the product **12** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 20/1-10/1),

21.4 mg (95% yield, >20/1 dr, 83% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (FLM Chiral INB, hexane/^{*i*}PrOH = 70/30, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 11.0 min, t_r

(minor) = 8.7 min; $[\alpha]_D{}^{20} = -540.00$ (c = 0.03 in CHCl₃); mp = 231 – 233 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.70 (m, 2H), 7.48 – 7.42 (m, 2H), 7.39 (m, 2H), 7.35 – 7.31 (m, 1H), 7.07 – 7.02 (m, 3H), 6.99 – 6.94 (m, 2H), 6.38 – 6.32 (m, 2H), 6.07 (dt, J = 9.6, 2.9 Hz, 1H), 5.78 (m, 1H), 5.30 (d, J = 7.3 Hz, 1H), 3.81 (s, 3H), 3.42 (dd, J =8.3, 6.8 Hz, 1H), 3.10 – 3.00 (m, 2H), 2.73 – 2.63 (m, 2H), 2.58 – 2.42 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.0, 167.3, 151.3, 141.6, 139.8, 130.9, 130.6, 129.0, 128.2, 128.1, 127.6, 127.3, 126.6, 126.1, 117.9, 112.1, 68.2, 67.6, 51.8, 51.5, 46.7, 42.8, 39.6, 22.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₂₈NO₃ 450.2064; Found 450.2068.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-2-(4-bromophenyl)-3,3-diphenyl-1,2,2a,2a¹,3,4a,5,7aoctahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (13)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and (*E*)-4-bromo-*N*-(penta-2,4-dien-1-yl)aniline (0.05 mmol) over the course of 48 h, the product **13** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 10/1-5/1), 19.8 mg (84% yield, 84% ee). The

dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (FLM Chiral INB, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 8.4 min, t_r (minor) = 7.7 min; $[\alpha]_D{}^{20}$ = -123.39 (c = 0.07, in CHCl₃); mp = 231–233 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.41 (m, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.35 – 7.20 (m, 1H), 7.12 (d, *J* = 8.7 Hz, 2H), 7.09 – 7.03 (m, 3H), 6.96 (dd, *J* = 6.7, 3.1 Hz, 2H), 6.24 (d, *J* = 8.7 Hz, 2H), 6.06 (dt, *J* = 9.5, 2.9 Hz, 1H), 5.77 (td, *J* = 6.0, 2.8 Hz, 1H), 5.14 (d, *J* = 7.3 Hz, 1H), 3.36 (t, *J* = 7.2 Hz, 1H), 3.05 – 2.93 (m, 2H), 2.71 – 2.59 (m, 2H), 2.54 – 2.40 (m, 2H), ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.2, 147.1, 141.8, 139.9, 131.3, 130.7, 128.9, 128.3, 128.0, 127.5, 127.2, 126.5, 126.3, 114.3, 108.6, 68.5, 67.7, 52.0, 46.8, 42.8, 39.7, 22.5. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₂₅BrNO 470.1114; Found 470.1111.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-2-(4-chlorophenyl)-3,3-diphenyl-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (14)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and (*E*)-4-chloro-*N*-(penta-2,4-dien-1-yl)aniline (0.05 mmol) over the course of 48 h, the product **14** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 50/1-30/1), 17.3 mg (81% yield, 78% ee). The

dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (FLM Chiral INB, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 8.3 min, t_r (minor) = 7.4 min; $[\alpha]_D^{20} = -222.86$ (c = 0.02, in CHCl₃); mp = 222 - 228 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 - 7.42 (m, 2H), 7.41 - 7.35 (m, 2H), 7.35 - 7.30 (m, 1H), 7.10 - 7.03 (m, 3H), 7.02 - 6.92 (m, 4H), 6.34 - 6.25 (m, 2H), 6.06 (dt, *J* = 9.6, 3.0 Hz, 1H), 5.77 (ddd, *J* = 9.2, 5.7, 2.7 Hz, 1H), 5.15 (d, *J* = 7.4 Hz, 1H), 3.37 (t, *J* = 6.6 Hz, 1H), 3.05 - 2.93 (m, 2H), 2.72 - 2.60 (m, 2H), 2.54 - 2.39 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.2, 146.7, 141.7, 140.0, 130.7, 128.9, 128.5, 128.3, 128.0, 127.5, 127.2, 126.5, 126.3, 121.4, 113.7, 68.5, 67.7, 52.0, 46.7,

42.8, 39.8, 22.5. **HRMS (ESI)** *m/z*: [M + H]⁺ Calcd for C₂₈H₂₅ClNO 426.1619; Found 426.1616.

4-((2a*S*,2a¹*S*,4a*R*,7a*S*)-4-oxo-3,3-diphenyl-1,2a,2a¹,3,4,4a,5,7a-octahydro-2*H*-cyclopenta[*cd*]isoindol-2-yl)phenyl trifluoromethanesulfonate (15)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and (*E*)-4-(penta-2,4-dien-1-ylamino)phenyl trifluoromethanesulfonate (0.05 mmol) over the course of 24 h, the product **15** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 30/1-20/1), 24.0

mg (89% yield, 89% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 8.4 min, t_r (minor) = 6.1 min; $[\alpha]_D^{20}$ = -326.72 (c = 0.22, in CHCl₃); mp = 142 – 144 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.41 – 7.36 (m, 2H), 7.35 – 7.31 (m, 1H), 7.09 – 7.02 (m, 3H), 6.99 – 6.89 (m, 4H), 6.36 – 6.30 (m, 2H), 6.07 (dt, *J* = 9.6, 3.0 Hz, 1H), 5.81 – 5.74 (m, 1H), 5.21 (d, *J* = 7.3 Hz, 1H), 3.39 (dd, *J* = 7.9, 6.7 Hz, 1H), 3.06 – 2.95 (m, 2H), 2.73 – 2.62 (m, 2H), 2.57 – 2.39 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.8, 147.6, 141.4, 140.4, 139.9, 130.6, 129.0, 128.2, 128.1, 127.6, 127.2, 126.6, 126.0, 121.5, 118.8 (d, *J* = 321.0 Hz), 113.1, 68.2, 67.6, 52.0, 46.7, 42.8, 39.8, 22.5. ¹⁹F NMR (377 MHz, CDCl₃) δ –72.8. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₉H₂₅F₃NO₄S 540.1451; Found 540.1458.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-2-(4-methyl-3-(trifluoromethyl)phenyl)-3,3-diphenyl-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (16)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and and (*E*)-4-methyl-*N*-(penta-2,4-dien-1-yl)-3- (trifluoromethyl)aniline (0.05 mmol) over the course of 48 h, the product **16** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 30/1-20/1), 19.9 mg (84% yield, 88% ee). The dr value was determined by crude

¹H NMR analysis. The ee value was determined by HPLC analysis (FLM Chiral INB, hexane/^{*i*}PrOH = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 7.9 min, t_r (minor) = 7.4 min; $[\alpha]_D{}^{20}$ = -300.06 (c = 0.05, in CHCl₃); mp = 212 - 218 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 - 7.46 (m, 2H), 7.44 - 7.37 (m, 2H), 7.36 - 7.29 (m, 1H), 7.11 - 7.00 (m, 3H), 6.97 - 6.88 (m, 3H), 6.64 (d, *J* = 2.7 Hz, 1H), 6.41 (dd, *J* = 8.4, 2.7 Hz, 1H), 6.08 (dt, *J* = 9.7, 2.9 Hz, 1H), 5.83 - 5.73 (m, 1H), 5.18 (d, *J* = 7.4 Hz, 1H), 3.45 (dd, *J* = 7.9, 6.5 Hz, 1H), 3.06 - 2.95 (m, 2H), 2.73 - 2.59 (m, 2H), 2.56 - 2.39 (m, 2H), 2.27 (q, *J* = 2.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.2, 145.9, 141.3, 140.0, 132.2, 130.8, 128.9, 128.6 (d, *J* = 29.5 Hz), 128.3, 128.1, 127.5, 127.1, 126.5, 126.2, 124.7 (d, *J* = 276.3 Hz), 123.6, 115.2, 110.1 (d, *J* = 6.0 Hz), 68.3, 67.5, 51.9, 46.6, 42.8, 39.8, 22.5, 18.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -61.8. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₃₀H₂₇F₃NO 474.2039; Found 474.2039.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-2,3,3-triphenyl-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (17)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)aniline (0.05 mmol) over the course of 72 h, the product **17** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 50/1-30/1), 8.8 mg (45% yield, 89% ee). The dr value was determined by crude ¹H NMR analysis.

The ee value was determined by HPLC analysis (Chiralcel IA, hexane/^{*i*}PrOH = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 8.2 min, t_r (minor) = 6.1 min; $[\alpha]_D^{20}$ = -319.21 (c = 0.05, in CHCl₃); mp = 250 – 252 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.34 – 7.29 (m, 1H), 7.09 – 7.03 (m, 5H), 7.00 (dd, *J* = 7.0, 3.0 Hz, 2H), 6.61 (t, *J* = 7.3 Hz, 1H), 6.38 (d, *J* = 8.1 Hz, 2H), 6.07 (dt, *J* = 9.6, 2.9 Hz, 1H), 5.76 (ddt, *J* = 8.5, 5.4, 2.6 Hz, 1H), 5.21 (d, *J* = 7.3 Hz, 1H), 3.39 (dd, *J* = 7.9, 6.6 Hz, 1H), 3.05 – 2.97 (m, 2H), 2.71 – 2.58 (m, 2H), 2.54 – 2.39 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.6, 148.1, 142.1, 140.2, 130.8, 128.8, 128.7, 128.3, 127.9, 127.3, 127.1, 126.5, 126.4, 116.6, 112.8, 68.6, 67.8, 51.9, 46.8, 42.9, 39.7, 29.7, 22.6. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₂₆NO 392.2009; Found 392.2017.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-3,3-diphenyl-2-(3-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (18)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-3-(trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product **18** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 50/1-30/1), 20.4 mg (89% yield, 90% ee). The dr

value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (FLM Chiral INB, hexane/ⁱPrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 7.4 min, t_r (minor) = 6.8 min; $[\alpha]_D^{20}$ = -68.85 (c = 0.02, in CHCl₃); mp = 178 – 186 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.43 – 7.38 (m, 2H), 7.37 – 7.32 (m, 1H), 7.12 (t, *J* = 8.0 Hz, 1H), 7.07 – 7.01 (m, 3H), 6.96 – 6.90 (m, 2H), 6.83 (d, *J* = 7.6 Hz, 1H), 6.60 (t, *J* = 2.2 Hz, 1H), 6.52 (dd, *J* = 8.3, 2.6 Hz, 1H), 6.09 (dt, *J* = 9.6, 3.1 Hz, 1H), 5.79 (ddt, *J* = 8.3, 5.4, 2.5 Hz, 1H), 5.23 (d, *J* = 7.4 Hz, 1H), 3.46 (dd, *J* = 7.9, 6.6 Hz, 1H), 3.08 – 2.97 (m, 2H), 2.73 – 2.61 (m, 2H), 2.58 – 2.38 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.0, 150.2, 141.7, 139.8, 130.6, 129.0, 128.2, 128.1, 128.0, 127.6, 127.3, 126.7, 126.4, 126.1, 126.0 (q, *J* = 4.0 Hz), 123.7 (q, *J* = 270.6 Hz), 118.1 (q, *J* = 32.5 Hz), 112.3, 68.4, 67.6, 51.9, 46.7, 42.8, 39.6, 22.6. ¹⁹F NMR (377 MHz, CDCl₃) δ –62.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₉H₂₅F₃NO 460.1883; Found 460.1883.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-2-(3-chlorophenyl)-3,3-diphenyl-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (19)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and (*E*)-3-chloro-*N*-(penta-2,4-dien-1-yl)aniline (0.05 mmol) over the course of 48 h, the product **19** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 50/1-30/1), 17.5 mg (82% yield, 85% ee). The dr value was

determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 7.0 min, t_r (minor) = 5.2 min; $[\alpha]_D^{20} = -453.4$ (c = 0.05, in CHCl₃); mp = 201 – 208 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.42 – 7.36 (m, 2H), 7.35 – 7.30 (m, 1H), 7.07 (dt, *J* = 6.2, 2.7 Hz, 3H), 7.01 – 6.89 (m, 3H), 6.57 (dd, *J* = 7.8, 1.9 Hz, 1H), 6.35 (t, *J* = 2.2 Hz, 1H), 6.24 (dd, *J* = 8.3, 2.4 Hz, 1H), 6.07 (dt, *J* = 9.6, 3.0 Hz, 1H), 5.77 (ddt, *J* = 8.5, 5.4, 2.6 Hz, 1H), 5.18 (d, *J* = 7.3 Hz, 1H), 3.37 (dd, *J* = 8.0, 6.7 Hz, 1H), 3.08 – 2.95 (m, 2H), 2.72 – 2.59 (m, 2H), 2.55 – 2.39 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.1, 149.1, 141.6, 139.9, 134.5, 130.7, 129.5, 128.9, 128.3, 128.0, 127.5, 127.2, 126.6, 126.2, 116.5, 112.6, 111.2, 68.3, 67.6, 51.9, 46.7, 42.8, 39.7, 22.5. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₈H₂₅ClNO 426.1619; Found 426.1615.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-2-(naphthalen-2-yl)-3,3-diphenyl-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (21)

According to **GP** starting from furan-2-yldiphenylmethanol (0.05 mmol) and and (*E*)-*N*-(penta-2,4-dien-1-yl)naphthalen-2-amine (0.05 mmol) over the course of 48 h, the product **21** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 30/1-20/1), 16.6 mg (75% yield, 80% ee). The

dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 9.3 min, t_r (minor) = 7.0 min; $[\alpha]_D^{20}$ = +52.39 (c = 0.03, in CHCl₃); mp = 212 – 218 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.1 Hz, 1H), 7.54 (d, *J* = 9.0 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.45 – 7.39 (m, 3H), 7.38 – 7.34 (m, 1H), 7.29 (ddd, *J* = 8.2, 6.7, 1.3 Hz, 1H), 7.14 (ddd, *J* = 8.1, 6.7, 1.2 Hz, 1H), 7.02 (qq, *J* = 5.1, 2.9, 2.2 Hz, 5H), 6.77 (dd, *J* = 9.0, 2.5 Hz, 1H), 6.59 (d, *J* = 2.5 Hz, 1H), 6.11 (dt, *J* = 9.6, 3.0 Hz, 1H), 5.79 (ddt, *J* = 8.4, 5.4, 2.6 Hz, 1H), 5.32 (d, *J* = 7.3 Hz, 1H), 3.52 (dd, *J* = 7.9, 6.6 Hz, 1H), 3.14 (dd, *J* = 11.8, 7.9 Hz, 1H), 3.04 (ddd, *J* = 10.2, 7.0, 2.9 Hz, 1H), 2.72 – 2.63 (m, 2H), 2.59 – 2.43 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.9, 146.0, 142.3, 140.0, 134.6, 130.8, 128.9, 128.4, 128.4, 127.9, 127.4, 127.4, 127.2, 126.7, 126.7, 126.5, 126.1, 126.0, 121.8, 116.1, 106.6, 69.1, 67.9, 52.1, 47.0, 43.0, 39.7, 22.7. HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₃₂H₂₈NO 442.2166; Found 442.2165.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-3,3-bis(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (22)

According to **GP** starting from furan-2-ylbis(4methoxyphenyl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 48 h, the product **22** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 40/1-30/1), 23.1 mg (89% yield, 86% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was

determined by HPLC analysis (FLM Chiral INB, hexane/ⁱPrOH = 70/30, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 10.3 min, t_r (minor) = 7.7 min; $[\alpha]_D^{20} = -83.91$ (c = 0.25, in CHCl₃); mp = 231 - 234 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.27 (m,

3H), 7.05 – 6.97 (m, 2H), 6.91 (t, J = 2.2 Hz, 1H), 6.85 (dd, J = 8.1, 2.4 Hz, 1H), 6.63 (dd, J = 8.0, 2.2 Hz, 2H), 6.49 (t, J = 2.1 Hz, 1H), 6.42 (d, J = 8.6 Hz, 2H), 6.06 (dt, J = 9.7, 2.9 Hz, 1H), 5.78 (ddt, J = 8.4, 5.4, 2.6 Hz, 1H), 5.21 (d, J = 7.1 Hz, 1H), 3.75 (s, 3H), 3.42 – 3.37 (m, 1H), 3.35 (s, 3H), 3.10 – 2.98 (m, 2H), 2.70 – 2.59 (m, 2H), 2.50 (ddd, J = 18.9, 10.3, 5.8 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.6, 158.8, 157.9, 150.3, 133.8, 132.0, 131.7, 129.3, 128.1, 126.1, 126.0 (q, J = 3.8 Hz), 123.7 (q, J = 270.3 Hz), 118.0 (q, J = 32.7 Hz), 114.3, 112.7, 112.2, 68.6, 66.2, 55.3, 55.1, 51.8, 46.6, 42.6, 39.6, 22.6. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₁H₂₉F₃NO₃ 520.2094; Found 520.2093.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-3,3-di-*p*-tolyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (23)

According to **GP** starting from furan-2-yldi-*p*-tolylmethanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product **23** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 40/1-30/1), 19.0 mg (78% yield, 95% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC

analysis (FLM Chiral INB, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 7.2 min, t_r (minor) = 5.8 min; $[\alpha]_D{}^{20} = -187.79$ (c = 0.45, in CHCl₃); mp = 207 – 209 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 8.5 Hz, 4H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.89 – 6.80 (m, 4H), 6.40 (d, *J* = 8.5 Hz, 2H), 6.06 (dt, *J* = 9.7, 2.9 Hz, 1H), 5.77 (ddt, *J* = 8.7, 5.4, 2.6 Hz, 1H), 5.19 (d, *J* = 7.2 Hz, 1H), 3.41 (dd, *J* = 8.1, 6.7 Hz, 1H), 3.06 – 2.96 (m, 2H), 2.70 – 2.58 (m, 2H), 2.55 – 2.41 (m, 2H), 2.36 (s, 3H), 2.18 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.4, 150.4, 138.9, 137.3, 136.9, 136.1, 130.4, 129.6, 128.1, 128.0, 128.0, 126.1, 125.9 (q, *J* = 3.9 Hz), 123.7, 117.9 (q, *J* = 32.4 Hz), 112.2, 68.7, 67.0, 51.9, 46.7, 42.7, 39.6, 22.6, 20.9, 20.9. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₃₁H₂₉F₃NO 488.2196; Found 488.2191.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-3,3-bis(4-fluorophenyl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (24)

According to **GP** starting from bis(4-fluorophenyl)(furan-2yl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product **24** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 10/1-5/1), 19.8 mg (80% yield, 90% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC

analysis (FLM Chiral INB, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 9.2 min, t_r (minor) = 8.2 min; $[\alpha]_D{}^{20} = -295.25$ (c = 0.28, in CHCl₃); mp = 269 - 271 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.45 - 7.35 (m, 2H), 7.31 (d, *J* = 8.6 Hz, 2H), 7.13 - 7.04 (m, 2H), 6.97 - 6.88 (m, 2H), 6.81 - 6.71 (m, 2H), 6.38 (d, *J* = 8.6 Hz, 2H), 6.07 (dt, *J* = 9.7, 3.0 Hz, 1H), 5.83 - 5.73 (m, 1H), 5.15 (d, *J* = 7.3 Hz, 1H), 3.43 (dd, J = 8.1, 6.8 Hz, 1H), 3.09 – 2.96 (m, 2H), 2.73 – 2.60 (m, 2H), 2.54 – 2.38 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.8, 162.6 (d, J = 72.5 Hz), 160.2 (d, J = 70.7Hz), 150.1, 137.3 (d, J = 3.4 Hz), 135.5 (d, J = 3.6 Hz), 132.2 (d, J = 8.0 Hz), 129.7 (d, J = 8.0 Hz), 128.1, 126.1 (q, J = 3.9 Hz), 125.9, 123.6 (q, J = 270.4 Hz), 118.5 (q, J = 32.6 Hz), 115.9 (d, J = 21.3 Hz), 114.2 (d, J = 21.2 Hz), 112.2, 68.5, 66.4, 51.9, 46.6, 42.7, 39.7, 22.5. ¹⁹F NMR (377 MHz, CDCl₃) δ -61.0, -114.4, -115.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₃F₅NO 496.1694; Found 496.1700.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-3,3-bis(4-bromophenyl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (25)

According to **GP** starting from bis(4-bromophenyl)(furan-2yl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 48 h, the product **25** was isolated 3ab yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 40/1-30/1), 25.9 mg (84% yield, 90% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (FLM Chiral INB, hexane/ⁱPrOH = 90/10, flow rate =

1.0 mL/min, l = 254 nm), t_r (major) = 10.8 min, t_r (minor) = 9.2 min; $[\alpha]_D^{20} = -41.49$ (c = 0.17, in CHCl₃); mp = 189 – 203 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.47 (m, 2H), 7.33 (d, J = 8.6 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.23 – 7.18 (m, 2H), 6.88 – 6.80 (m, 2H), 6.38 (d, J = 8.6 Hz, 2H), 6.06 (dt, J = 9.7, 3.0 Hz, 1H), 5.83 – 5.74 (m, 1H), 5.14 (d, J = 7.3 Hz, 1H), 3.42 (dd, J = 8.1, 6.8 Hz, 1H), 3.09 – 2.96 (m, 2H), 2.71 – 2.60 (m, 2H), 2.56 – 2.36 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.4, 150.1, 140.5, 138.6, 132.2, 130.6, 129.7, 128.1, 126.2 (q, J = 3.8 Hz), 125.9, 122.1, 121.2, 118.7 (q, J = 32.4 Hz), 112.3, 68.6, 66.9, 52.0, 46.7, 42.9, 39.7, 22.6. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₃Br₂F₃NO 618.0073; Found 618.0068.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-3,3-bis(4-chlorophenyl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (26)

According to **GP** starting from bis(4-chlorophenyl)(furan-2yl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 48 h, the product **26** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 40/1-30/1), 20.1 mg (76% yield, 91% ee). The dr value was determined by crude

²⁶ ¹H NMR analysis. The ee value was determined by HPLC analysis (FLM Chiral INB, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 9.9 min, t_r (minor) = 8.6 min; $[\alpha]_D^{20} = -172.77$ (c = 0.25, in CHCl₃); mp = 200 - 202 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.30 (m, 6H), 7.10 - 7.02 (m, 2H), 6.94 - 6.86 (m, 2H), 6.38 (d, *J* = 8.6 Hz, 2H), 6.06 (dt, *J* = 9.5, 2.9 Hz, 1H), 5.79 (ddt, *J* = 9.5, 5.4, 2.6 Hz, 1H), 5.14 (d, *J* = 7.3 Hz, 1H), 3.42 (dd, *J* = 8.1, 6.8 Hz, 1H), 3.09 - 2.96 (m, 2H), 2.71 - 2.61 (m, 2H), 2.56 - 2.36 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.5, 150.1, 140.0, 138.2, 133.9, 132.9, 131.8, 129.4, 129.2, 128.1, 127.7,

126.2 (q, J = 3.8 Hz), 125.9, 123.5, 118.6 (q, J = 32.7 Hz), 112.3, 68.6, 66.7, 52.0, 46.7, 42.8, 39.7, 22.6. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₉H₂₃Cl₂F₃NO 530.1074; Found 530.1069.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-3,3-bis(3-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (27)

According to **GP** starting from furan-2-ylbis(3methoxyphenyl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 48 h, the product **27** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 50/1–40/1), 21.6 mg (83% yield, 84% ee). The dr value was determined by crude ¹H NMR analysis. The ee

value was determined by HPLC analysis (Chiralcel ADH, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 9.4 min, t_r (minor) = 15.6 min; $[\alpha]_D{}^{20} = -136.36$ (c = 0.07, in CHCl₃); mp = 157 – 159 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 6.95 – 6.83 (m, 4H), 6.64 – 6.55 (m, 2H), 6.39 (d, *J* = 8.6 Hz, 2H), 6.06 (dt, *J* = 9.5, 2.9 Hz, 1H), 5.77 (ddt, *J* = 8.5, 5.5, 2.6 Hz, 1H), 5.14 (d, *J* = 7.3 Hz, 1H), 3.82 (s, 3H), 3.67 (s, 3H), 3.43 (dd, *J* = 8.1, 6.7 Hz, 1H), 3.10 – 2.95 (m, 2H), 2.72 – 2.56 (m, 2H), 2.47 (m, *J* = 15.7, 10.3, 4.3 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CHCl₃) δ 216.0, 159.9, 158.6, 150.3, 143.6, 141.0, 129.8, 128.2, 128.0, 126.3, 126.2, 126.1 (q, *J* = 3.8 Hz), 122.8, 120.2, 118.0 (q, *J* = 32.6 Hz), 116.7, 114.9, 112.8, 112.3, 112.2, 68.9, 67.6, 55.3, 54.9, 51.8, 46.9, 42.9, 39.5, 22.7. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₃₁H₂₉F₃NO₃ 520.2094; Found 520.2100.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-3,3-di(thiophen-2-yl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (28)

According to **GP** starting from furan-2-yldi(thiophen-2-yl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4- (trifluoromethyl)aniline (0.05 mmol) over the course of 48 h, the product **28** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 20/1-10/1), 17.5 mg (74% yield, 88% ee). The dr value was determined by crude

¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel IA, hexane/^{*i*}PrOH = 98/2, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 16.7 min, t_r (minor) = 10.7 min; $[\alpha]_D{}^{20} = -114.37$ (c = 0.12, in CHCl₃); mp = 128 - 130 °C. ¹H **NMR** (400 MHz, CDCl₃) *d*) δ 7.39 - 7.33 (m, 3H), 7.16 (dd, *J* = 5.0, 1.4 Hz, 1H), 7.06 (dd, *J* = 5.2, 3.7 Hz, 1H), 7.00 (dd, *J* = 3.7, 1.3 Hz, 1H), 6.83 - 6.74 (m, 2H), 6.61 (d, *J* = 8.5 Hz, 2H), 6.08 (dt, *J* = 9.5, 3.0 Hz, 1H), 5.77 (dtd, *J* = 11.4, 5.7, 3.0 Hz, 1H), 4.97 (d, *J* = 7.1 Hz, 1H), 3.65 (dd, *J* = 8.0, 6.6 Hz, 1H), 3.21 - 3.13 (m, 2H), 2.69 - 2.60 (m, 2H), 2.56 - 2.40 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 212.9, 150.1, 146.2, 140.9, 129.0, 128.3, 127.5, 127.1, 126.7, 126.2 (q, *J* = 3.8 Hz), 125.8, 125.6, 125.6, 123.6, 118.8 (q, *J* = 32.7 Hz), 112.6, 72.2, 61.2, 51.7, 46.4, 42.5, 39.4, 22.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -61.0. HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₅H₂₁F₃NOS₂

(2a*S*,2a¹*S*,4a*R*,7a*R*)-3,3-di(naphthalen-2-yl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (29)

According to **GP** starting from furan-2-yldi(naphthalen-2-yl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 48 h, the product **29** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 30/1-20/1), 21.8 mg (78% yield, 89% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC

analysis (FLM Chiral INB, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 14.0 min, t_r (minor) = 9.6 min; $[\alpha]_D^{20}$ = +31.94 (c = 0.07, in CHCl₃); mp = 246 – 249 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 2.1 Hz, 1H), 7.82 (dd, *J* = 12.3, 6.9 Hz, 3H), 7.71 – 7.62 (m, 2H), 7.60 (d, *J* = 1.8 Hz, 1H), 7.55 – 7.47 (m, 3H), 7.43 – 7.34 (m, 3H), 7.26 (s, 1H), 7.07 (dd, *J* = 8.7, 2.0 Hz, 1H), 6.44 (d, *J* = 8.4 Hz, 2H), 6.08 (dt, *J* = 9.5, 3.0 Hz, 1H), 5.81 (m, 1H), 5.50 (d, *J* = 7.0 Hz, 1H), 3.34 (t, *J* = 7.4 Hz, 1H), 3.17 (dd, *J* = 9.8, 6.7 Hz, 1H), 3.03 (dd, *J* = 11.6, 8.1 Hz, 1H), 2.82 – 2.63 (m, 3H), 2.52 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.9, 150.4, 139.2, 137.6, 133.2, 132.6, 132.5, 132.0, 129.4, 128.9, 128.8, 128.3, 128.2, 128.1, 127.6, 127.3, 127.0, 126.8, 126.7, 126.6, 126.2, 126.1, 126.1, 126.0, 125.7, 118.2 (q, *J* = 32.4 Hz), 112.4, 68.8, 67.8, 52.1, 47.0, 42.9, 39.8, 22.7. ¹⁹F NMR (377 MHz, CDCl₃) δ –61.0. HRMS (ESI) *m/z*: [M + NH₄]⁺ Calcd for C₃₇H₃₂F₃N₂O 577.2461; Found 577.2483.

(2a*S*,2a¹*S*,3*S*,4a*R*,7a*S*)-3-(4-methoxyphenyl)-3-phenyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*cyclopenta[*cd*]isoindol-4-one (30)

According to **GP** starting from furan-2-yl(4methoxyphenyl)(phenyl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 24 h, the product **30** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 10/1-5/1), 20.8 mg (85% yield, major/minor

= 1.6/1 dr, 90% ee, 94% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/^{*i*}PrOH = 90/5, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 26.8 min, 29.2 min, t_r (minor) = 13.8 min, 16.5 min; $[\alpha]_D^{20} = -291.10$ (c = 0.37, in CHCl₃); mp = 212 - 215 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.39 (m, 1H), 7.39 - 7.33 (m, 2H), 7.28 (dd, *J* = 8.7, 4.2 Hz, 2H), 7.04 (q, *J* = 3.8 Hz, 2H), 6.96 (dd, *J* = 6.8, 3.0 Hz, 1H), 6.94 - 6.85 (m, 2H), 6.64 - 6.56 (m, 1H), 6.39 (dd, *J* = 8.8, 3.7 Hz, 2H), 6.07 (dt, *J* = 9.6, 2.9 Hz, 1H), 5.78 (ddt, *J* = 8.6, 5.4, 2.6 Hz, 1H), 5.19 (d, *J* = 7.2 Hz, 1H), 3.83 (s, 2H), 3.68 (s, 1H), 3.42 (ddd, *J* = 8.1, 6.7, 1.6 Hz, 1H), 3.03 (m, *J* = 11.5, 7.8 Hz, 2H), 2.75 - 2.59 (m, 2H), 2.57 - 2.38 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.0, 158.9, 150.2, 140.1, 133.4, 131.7, 129.4, 128.1, 127.5, 127.2, 126.2, 125.9 (q, *J* = 3.8 Hz), 118.1 (q, *J* = 32.8 Hz), 114.3, 112.2, 68.3, 66.8, 55.3, 51.9, 46.6, 42.6, 39.6, 22.5. ¹⁹F NMR (377)

MHz, CDCl₃) δ –60.9, -60.9. **HRMS (ESI)** *m/z*: [M + H]⁺ Calcd for C₃₀H₂₇F₃NO₂ 490.1988; Found 490.1993.

(2a*S*,2a¹*S*,4a*R*,7a*R*)-3,3,4a-triphenyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (31)

According to **GP** starting from diphenyl(3-phenylfuran-2yl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 48 h, the product **31** was isolated as yellow solid after silica gel column chromatography (petroleum ether/ethyl acetate 10/1-

5/1), 21.4 mg (80% yield, 88% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/ⁱPrOH = 90/5, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 4.5 min, t_r (minor) = 5.3 min; $[\alpha]_D^{20} = -177.21$ (c = 0.10, in CHCl₃); mp = 252 - 255 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (s, 2H), 7.23 - 7.14 (m, 5H), 7.10 - 6.98 (m, 8H), 6.95 (d, *J* = 7.1 Hz, 2H), 6.41 (d, *J* = 8.5 Hz, 2H), 6.13 (dt, *J* = 9.4, 3.1 Hz, 1H), 5.85 (ddt, *J* = 9.1, 5.8, 2.7 Hz, 1H), 5.31 (d, *J* = 6.9 Hz, 1H), 3.30 - 3.20 (m, 2H), 3.15 (dt, *J* = 13.1, 6.9 Hz, 2H), 2.85 (ddt, *J* = 15.8, 11.7, 5.6 Hz, 1H), 2.46 (dd, *J* = 18.4, 6.1 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 217.5, 150.1, 142.6, 142.5, 141.5, 130.5, 128.8, 128.6, 128.3, 128.2, 128.0, 127.4, 127.2, 126.6, 126.5, 126.3 (q, *J* = 4.0 Hz), 126.1, 123.7, 117.9 (q, *J* = 32.7 Hz), 112.0, 68.0, 67.2, 56.3, 52.3, 51.6, 39.4, 36.2. ¹⁹F NMR (377 MHz, CDCl₃) δ -60.9. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₃₅H₂₉F₃NO 536.2196; Found 536.2196.

(2a*R*,2a¹*R*,3*R*,4a*S*,7a*S*)-3-methyl-3-phenyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (33)

According to **GP** starting from 1-(furan-2-yl)-1-phenylethan-1ol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 12 h, the product **33** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 10/1-5/1), 8.9

mg (45% yield, 86% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/^{*i*}PrOH = 70/30, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 6.5 min, t_r (minor) = 5.3 min; $[\alpha]_D^{20}$ = +179.08 (c = 0.14, in CHCl₃); mp = 186 – 188 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 2H), 7.15 – 7.04 (m, 5H), 6.40 (d, *J* = 8.5 Hz, 2H), 6.09 (dt, *J* = 9.4, 3.1 Hz, 1H), 5.80 (ddt, *J* = 8.8, 5.4, 2.5 Hz, 1H), 4.12 (d, *J* = 7.0 Hz, 1H), 3.51 (dd, *J* = 8.2, 6.5 Hz, 1H), 3.17 (ddd, *J* = 10.0, 6.8, 2.9 Hz, 1H), 3.04 (dd, *J* = 11.6, 8.2 Hz, 1H), 2.67 (dp, *J* = 18.9, 2.9 Hz, 1H), 2.61 – 2.44 (m, 3H), 1.79 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 220.4, 149.9, 138.7, 128.5, 128.2, 127.6, 126.8, 126.1, 126.0 (q, *J* = 3.7 Hz), 123.7 (q, *J* = 270.1 Hz), 118.0 (q, *J* = 32.7 Hz), 111.7, 70.8, 58.1, 51.6, 46.8, 42.2, 39.4, 26.4, 22.6. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₃F₃NO 398.1727; Found 398.1728.

(2a*R*,2a¹*R*,3*S*,4a*S*,7a*S*)-3-phenyl-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (34)

According to **GP** starting from furan-2-yl(phenyl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4- (trifluoromethyl)aniline (0.05 mmol) over the course of 12 h, the product **34** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 10/1-5/1), 10.0

mg (52% yield, major/minor = 4/1, 89% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/¹PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 12.1 min, t_r (minor) = 14.7 min; $[\alpha]_D{}^{20}$ = +172.10 (c = 0.05, in CHCl₃); mp = 186 – 188 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 7.40 (dd, *J* = 8.1, 6.4 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.27 (d, *J* = 8.6 Hz, 2H), 7.24 – 7.19 (m, 2H), 6.27 (d, *J* = 8.5 Hz, 2H), 6.14 (dt, *J* = 9.8, 3.1 Hz, 1H), 5.82 (m, 1H), 4.33 (dd, *J* = 7.3, 4.9 Hz, 1H), 3.82 (dd, *J* = 8.3, 6.5 Hz, 1H), 3.30 (d, *J* = 4.8 Hz, 1H), 3.24 (dd, *J* = 11.9, 8.3 Hz, 1H), 3.02 (m, 1H), 2.69 – 2.50 (m, 3H), 2.44 – 2.32 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.0, 149.5, 138.8, 129.3, 128.6, 127.9, 127.6, 126.5 (q, *J* = 3.8 Hz), 126.0, 118.7, 118.1, 111.6, 66.9, 62.5, 51.5, 47.3, 45.5, 40.0, 22.9. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₃H₂₁F₃NO 384.1170; Found 384.1571.

(2a*R*,2a¹*R*,3*R*,4a*S*,7a*S*)-3-phenyl-2-(4-(trifluoromethyl)phenyl)-

1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (stereoisomer of 34)

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 7.18 – 7.12 (m, 2H), 6.36 (d, *J* = 8.6 Hz, 2H), 5.98 – 5.83 (m, 2H), 4.72 (dd, *J* = 8.6, 4.7 Hz, 1H), 3.83 (dd, *J* = 9.7, 8.3 Hz, 1H), 3.67 – 3.54 (m, 1H), 3.23 – 3.14 (m, 2H), 3.13 – 2.96 (m, 2H), 2.63 (ddd, *J*

stereoisomer of **34** = 17.0, 5.8, 2.6 Hz, 1H), 2.25 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.1, 149.0, 138.8, 129.3, 129.2, 127.8, 127.6, 127.5, 126.3 (q, *J* = 3.8 Hz), 118.9, 113.4, 67.0, 61.5, 54.4, 44.3, 40.4, 34.5, 22.7. ¹⁹F NMR (377 MHz, CDCl₃) δ – 61.1.

(2a*R*,2a¹*R*,3*S*,4a*S*,7a*S*)-3-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (35)

According to **GP** starting from furan-2-yl(4methoxyphenyl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 12 h, the product **35** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 10/1-5/1), 11.4 mg (55% yield, major/minor = 4/1, 82% ee). The dr value was determined by crude ¹H NMR analysis. The ee

value was determined by HPLC analysis (Chiralcel IA, hexane/^{*i*}PrOH = 70/30, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 8.5 min, t_r (minor) = 9.5 min; $[\alpha]_D^{20}$ = +137.63 (c = 0.03, in CHCl₃); mp = 175 – 177 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.5 Hz, 2H), 7.15 – 7.10 (m, 2H), 6.96 – 6.90 (m, 2H), 6.29 (d, *J* = 8.5 Hz, 2H), 6.14 (d, *J* = 9.6 Hz, 1H), 5.81 (ddt, *J* = 9.6, 5.5, 2.8 Hz, 1H), 4.28 (dd, *J* = 7.4, 4.9 Hz, 1H), 3.84 (s, 3H), 3.83 – 3.77 (m, 1H), 3.28 – 3.19 (m, 2H), 2.99 (ddd, *J* = 10.2, 7.2,

3.3 Hz, 1H), 2.67 – 2.50 (m, 3H). 2.37 (s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 216.5, 159.0, 149.6, 130.9, 129.0, 128.6, 126.5 (q, *J* = 4.0 Hz), 126.0, 123.7 (q, *J* = 270.6 Hz), 117.8 (q, *J* = 32.6 Hz), 114.7, 112.0, 111.7, 67.0, 61.6, 55.3, 51.5, 47.2, 45.3, 39.9, 22.9. δ 126.51, 125.07, 117.96. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9. HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₄H₂₂F₃NO₂Na 436.1495; Found 436.1499.

(2a*R*,2a¹*R*,3*S*,4a*S*,7a*S*)-3-(4-chlorophenyl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (36)

According to **GP** starting from (4-chlorophenyl)(furan-2yl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4-(trifluoromethyl)aniline (0.05 mmol) over the course of 12 h, the product **36** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 10/1-5/1), 11.1 mg (53% yield, major/minor = 4/1, 83% ee). The dr value was determined by crude ¹H NMR analysis. The ee value was

determined by HPLC analysis (Chiralcel ADH, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 14.4 min, t_r (minor) = 12.7 min; $[\alpha]_D^{20}$ = +126.00 (c = 0.02, in CHCl₃); mp = 201 – 202 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 7.19 – 7.12 (m, 2H), 6.26 (d, *J* = 8.5 Hz, 2H), 6.19 – 6.10 (m, 1H), 5.82 (ddt, *J* = 9.5, 5.5, 2.8 Hz, 1H), 4.29 (dd, *J* = 7.3, 4.9 Hz, 1H), 3.83 (dd, *J* = 8.3, 6.5 Hz, 1H), 3.28 (d, *J* = 5.0 Hz, 1H), 3.24 (dd, *J* = 11.9, 8.2 Hz, 1H), 2.99 (ddd, *J* = 10.6, 7.4, 3.7 Hz, 1H), 2.69 – 2.62 (m, 1H), 2.62 – 2.51 (m, 2H), 2.43 – 2.30 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.6, 149.4, 137.2, 133.6, 129.5, 129.2, 128.5, 126.6 (q, *J* = 3.9 Hz), 126.0, 118.5, 118.1, 111.6, 66.7, 61.8, 51.5, 47.3, 45.4, 39.9, 22.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -61.0. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₃H₂₀ClF₃NO 418.1180; Found 418.1178.

(2a*R*,2a¹*R*,3*S*,4a*S*,7a*S*)-3-(naphthalen-2-yl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (37)

According to **GP** starting from furan-2-yl(naphthalen-2-yl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4- (trifluoromethyl)aniline (0.05 mmol) over the course of 12 h, the product **37** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 10/1-5/1), 8.9 mg (41% yield, major/minor = 3/1, 87% ee). The dr value was

determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel IA, hexane/^{*i*}PrOH = 70/30, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 10.7 min, t_r (minor) = 9.4 min; $[\alpha]_D{}^{20} = -118.66$ (c = 0.07, in CHCl₃); mp = 211 – 213 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.85 (m, 2H), 7.83 – 7.79 (m, 1H), 7.69 (d, *J* = 1.9 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.32 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.23 (s, 2H), 6.28 (d, *J* = 8.5 Hz, 2H), 6.16 (dt, *J* = 9.7, 3.1 Hz, 1H), 5.83 (ddt, *J* = 8.5, 5.5, 2.8 Hz, 1H), 4.46 (dd, *J* = 7.4, 4.8 Hz, 1H), 3.85 (dd, *J* = 8.3, 6.5 Hz, 1H), 3.47 (d, *J* = 4.8 Hz, 1H), 3.26 (dd, *J* = 11.9, 8.3 Hz, 1H), 3.11 (ddd, *J* = 10.2, 7.2, 3.1 Hz, 1H), 2.74 – 2.53 (m, 3H), 2.42 (d, *J* = 7.7 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.9, 149.5, 136.1, 133.6, 132.6, 129.3, 128.6, 127.8, 126.8, 126.6, 126.5 (q, *J* = 3.8 Hz), 126.3,

126.2, 126.0, 125.8, 123.4, 117.9 (q, J = 32.8 Hz), 111.7, 66.8, 62.5, 51.5, 47.4, 45.6, 40.0, 22.9. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₇H₂₂F₃NONa 456.1546; Found 456.1599.

(2a*R*,2a¹*R*,3*S*,4a*S*,7a*S*)-3-(thiophen-3-yl)-2-(4-(trifluoromethyl)phenyl)-1,2,2a,2a¹,3,4a,5,7a-octahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (38)

According to **GP** starting from furan-2-yl(thiophen-3-yl)methanol (0.05 mmol) and (*E*)-*N*-(penta-2,4-dien-1-yl)-4- (trifluoromethyl)aniline (0.05 mmol) over the course of 12 h, the product **38** was isolated as white solid after silica gel column chromatography (petroleum ether/ethyl acetate 5/1-3/1), 8.0 mg (54% yield, major/minor = 3/1, 76% ee). The dr value was

determined by crude ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel IA, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 7.0 min, t_r (minor) = 9.4 min; $[\alpha]_D^{20} = -207.75$ (c = 0.01, in CHCl₃); mp = 165 – 167 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 5.0, 2.9 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 3.0 Hz, 1H), 7.00 (d, J = 5.0 Hz, 1H), 6.35 (d, J = 8.4 Hz, 2H), 6.12 (dd, J = 9.6, 3.1 Hz, 1H), 5.83 – 5.78 (m, 1H), 4.29 (dd, J = 7.4, 4.6 Hz, 1H), 3.80 (dd, J = 8.3, 6.4 Hz, 1H), 3.46 (d, J = 4.7 Hz, 1H), 3.22 (dd, J = 11.9, 8.3 Hz, 1H), 3.01 (ddd, J = 10.1, 7.1, 3.0 Hz, 1H), 2.66 – 2.48 (m, 3H), 2.37 – 2.30 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 215.2, 149.6, 138.0, 128.6, 127.2, 126.6, 126.5 (q, J = 3.8 Hz), 125.9, 123.8, 122.0, 118.0 (q, J = 32.1 Hz), 111.6, 66.3, 57.3, 51.5, 47.2, 44.6, 39.9, 22.7. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₁H₁₉F₃NOS 390.1134; Found 390.1171.

8. Synthetic transformations

8.1. Synthesis of $(2aS,2a^{1}S,4aR,7aS)$ -2-argio-3,3-diphenyldecahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (41)³

At rt, a flask was charged with a solution of the compound **3** (46.0g, 0.1 mmol, 1.0 equiv., 99% ee) in MeOH (4 mL), Pd/C (10.0 mg) was added in one portion to the above solution. The flask was evacuated and refilled with H₂ with a ballon. The reaction mixture was stirred under H₂ atmosphere for 24 h. Then the reaction mixture was filtered through a pad of celite. The filtrate was concentrated in vacuo and the residue was subjected to column chromatography on silica gel (petroleum ether/ethyl acetate 10/1-5/1) to give the product **41** as a white solid (42.5 mg, 92% yield, 99% ee). The dr value was determined by ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/^{*i*}PrOH = 95/5, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 7.4 min, t_r (minor) = 6.8 min; $[\alpha]_D^{20} = -156.47$ (c = 0.58, in CHCl₃); mp = 203 - 205 °C.

(2a*S*,2a¹*S*,4a*R*,7a*S*)-2-argio-3,3-diphenyldecahydro-4*H*-cyclopenta[*cd*]isoindol-4one (41): ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.27 (m, 7H), 7.11 – 6.99 (m, 5H), 6.37 (d, *J* = 8.6 Hz, 2H), 5.18 (d, *J* = 7.2 Hz, 1H), 3.16 (dd, *J* = 8.2, 6.5 Hz, 1H), 2.97 (td, *J* = 6.5, 2.4 Hz, 1H), 2.88 (dd, *J* = 11.5, 8.2 Hz, 1H), 2.47 (dt, *J* = 13.0, 6.7 Hz, 1H), 2.22 (m, 1H), 1.94 (dt, *J* = 11.8, 3.8 Hz, 1H), 1.84 (m, 2H), 1.67 (m, 1H), 1.58 – 1.40 (m, 2H), 1.27 (dd, *J* = 11.7, 4.0 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 214.1, 150.3, 142.6, 140.7, 130.4, 128.8, 128.1, 127.4, 127.3, 126.5, 126.0 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 270.1 Hz), 117.8 (q, *J* = 32.6 Hz), 112.1, 68.5, 67.5, 53.5, 46.8, 45.1, 42.1, 25.4, 23.2, 20.9. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₉H₂₇F₃NO 462.2039; Found 462.2089.

8.2. Synthesis of $(2aS, 2a^{1}S, 4S, 4aR, 7aS)$ -2-argio-3,3-diphenyl-2,2a,2a¹,3,4,4a,5,7a-octahydro-1*H*-cyclopenta[*cd*]isoindol-4-ol $(42)^{4}$

At rt, to a flask charged with a solution of the compound **3** (46.0g, 0.1 mmol, 1.0 equiv., 99% ee) in MeOH (4 mL) was added NaBH₄ (12.4 mg) in one portion. The resultant reaction mixture was stirred at rt for 48 h. After completion of the reaction, methanol was removed under reduced pressure and the residue was purified by silica gel flash chromatography (petroleum ether/ethyl acetate 5/1-3/1) to give the product **42** as a

white solid (40.0 mg, 80% yield, 99% ee). The dr value was determined by ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/^{*i*}PrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 9.5 min, t_r (minor) = 6.2 min; $[\alpha]_D^{20} = -210.32$ (c = 0.68, in CHCl₃); mp = 235 - 237 °C.

(2a*S*,2a¹*S*,4*S*,4a*R*,7a*S*)-2-argio-3,3-diphenyl-2,2a,2a¹,3,4,4a,5,7a-octahydro-1*H*-cyclopenta[*cd*]isoindol-4-ol (42): ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.25 (m, 10H), 7.20 – 7.10 (m, 3H), 6.50 (d, *J* = 8.6 Hz, 2H), 6.10 (dt, *J* = 9.9, 3.0 Hz, 1H), 5.83 (m, 1H), 4.79 (dd, *J* = 6.7, 2.0 Hz, 1H), 4.40 (d, *J* = 6.9 Hz, 1H), 3.76 (t, *J* = 7.2 Hz, 1H), 3.39 – 3.27 (m, 1H), 3.03 (dd, *J* = 12.4, 7.7 Hz, 1H), 2.93 (m, 1H), 2.66 (m, 1H), 2.51 – 2.40 (m, 1H), 2.36 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.5, 149.8, 143.0, 130.9, 129.3, 128.5, 128.4, 128.1, 126.5, 126.4, 126.4, 126.1 (q, *J* = 3.7 Hz), 112.6, 86.1, 75.8, 64.6, 53.3, 52.7, 37.9, 36.9, 23.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -60.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₉H₂₇F₃NO 462.2039; found 462.2089.

8.3. synthesis of $(2aS,2a^1S,4S,4aR,7aS)$ -4-allyl-2-argio-3,3-diphenyl-2,2a,2a¹,3,4,4a,5,7a-octahydro-1*H*-cyclopenta[*cd*]isoindol-4-ol (43)⁴

At –20 °C, a solution of allylmagnesium bromide (0.30 mL, 0.30 mmol, 1.0 M in ether) was slowly added to a solution of compound **3** (46.0g, 0.1 mmol, 1.0 equiv., 99% ee) in THF (1 mL). The reaction was allowed to warm up to rt and was stirred at the same temperature for 24 h. Upon completion, a saturated aqueous solution of NH₄Cl (1 mL) was added. The layers were separated, and the aqueous layer was extracted with ethyl acetate (5 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The residue was subjected to column chromatography on silica gel (petroleum ether/ethyl acetate 5/1–3/1) to give the product **43** as a white solid (45.6 mg, 91% yield, 99% ee). The dr value was determined by ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel IA, hexane/^{*i*}PrOH = 98/2, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 7.2 min, t_r (minor) = 5.9 min; [α]_D²⁰ = –111.5 (c = 0.47, in CHCl₃), mp = 179 – 181 °C.

(2aS,2a¹S,4S,4aR,7aS)-4-allyl-2-argio-3,3-diphenyl-2,2a,2a¹,3,4,4a,5,7a-

octahydro-1*H*-cyclopenta[*cd*]isoindol-4-ol (43): ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.42 (d, *J* = 7.8 Hz, 2H), 7.35 (m, 2H), 7.24 (d, *J* = 16.3 Hz, 5H), 6.33 (d, *J* = 8.5 Hz, 2H), 6.08 (dt, *J* = 9.7, 2.8 Hz, 1H), 5.96 – 5.85 (m, 1H), 5.79 (m, 1H), 5.09 – 4.97 (m, 2H), 4.33 (d, *J* = 7.5 Hz, 1H), 3.80 (t, *J* = 7.3 Hz, 1H), 3.62 – 3.52 (m, 1H), 3.01 (dd, *J* = 12.1, 7.9 Hz, 2H), 2.87 (dd, *J* = 14.3, 8.3 Hz, 1H), 2.61 (m, 1H), 2.40 (m, 2H), 2.19 (dd, *J* = 14.3, 6.4 Hz, 1H), 1.17 (s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.5, 148.9, 141.3, 134.9, 130.8, 130.4, 129.6, 128.3 (q, *J* = 180.0 Hz), 128.0, 127.8, 126.8, 126.4, 126.3, 126.0 (q, *J* = 3.7 Hz), 118.0 (q, *J* = 32.6 Hz), 117.8, 112.9, 89.5, 81.4, 69.4, 53.2, 52.7, 46.0, 42.5, 37.7, 25.7. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₃₂H₃₁F₃NO 502.2352; Found 570.2309.

8.4. Synthesis of $(2aS,2a^{1}S,4aR,7aS)$ -2-argio-6,7-dihydroxy-3,3diphenyldecahydro-4*H*-cyclopenta[*cd*]isoindol-4-one (44)⁵

A dry reaction tube equipped with a stir bar was charged with 3 (46.0g, 0.1 mmol, 1.0 equiv.) was dissolved in 0.5 mL of glacial acetic acid. After addition of silver acetate (33.4 mg, 0.2 mmol, 2.0 equiv.), finely powdered iodine (27.9 mg, 0.11 mmol, 1.0 equiv.) was added in small portions to the vigorously stirred reaction mixture for 0.5 h at rt. When all of the iodine had been consumed, 46 µL of aqueous glacial acetic acid (0.0438 mole of water, prepared by dilution of 2.0 mL of water up to 50 mL with glacial acetic acid was added. The reaction mixture was then heated at 95 °C for 3 h with vigorous stirring. At the end of this time it was cooled, treated with excess sodium chloride, and filtered free from insoluble salts. The filtrate was treated with potassium hydroxide in methanol (1 M, 5 mL) and stirred at rt for 24 h. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The residue was subjected to column chromatography on silica gel (petroleum ether/ethyl acetate 1/3-1/5) to give the product 44 as a white solid (34.5 mg, 91% yield, 99% ee). The dr value was determined by ¹H NMR analysis. The ee value was determined by HPLC analysis (Chiralcel ADH, hexane/ⁱPrOH = 90/10, flow rate = 1.0 mL/min, 1 = 254 nm), t_r (major) = 29.890 min, t_r (minor) = 25.455 min; $[\alpha]_D^{20} = -144.24$ (c = 0.61, in CHCl₃); mp = 225 −227 °C.

(2aS,2a¹S,4aR,7aS)-2-argio-6,7-dihydroxy-3,3-diphenyldecahydro-4H-

cyclopenta[*cd*]**isoindol-4-one (44**): ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 4H), 7.32 (m, 3H), 7.07 (m, 5H), 6.40 (d, J = 8.5 Hz, 2H), 5.26 (d, J = 7.1 Hz, 1H), 4.18 (m, 1H), 3.73 (d, J = 10.7 Hz, 1H), 3.36 (dd, J = 8.3, 6.4 Hz, 1H), 3.10 (dd, J = 11.3, 8.3 Hz, 1H), 2.93 – 2.86 (m, 1H), 2.69 – 2.45 (m, 4H), 2.28 (s, 1H), 2.00 (ddd, J = 15.7, 7.1, 3.9 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 213.9, 150.0, 141.8, 140.2, 130.4, 129.0, 128.0, 127.6, 127.4, 126.7, 126.0 (q, J = 3.8 Hz), 123.7 (q, J = 270.4 Hz) 118.1 (q, J = 34.5 Hz), 112.1, 72.1, 69.1, 68.2, 67.6, 51.5, 45.7, 42.9, 41.7, 29.0. ¹⁹F NMR (377 MHz, CDCl₃) δ –60.9 (s). HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₃₅H₃₁F₃NO₃ 570.2251; Found 570.2264.

9. References

- 1. West H., Daniels S., Slawin M. An Isothiourea-Catalyzed Asymmetric [2,3]-Rearrangement of Allylic Ammonium Ylides. J. Am. Chem. Soc. 2014, 136, 4476–4479.
- 2. Zhao, C., Li, F., Wang, J. N-Heterocyclic Carbene Catalyzed Dynamic Kinetic Resolution of Pyranones. *Angew. Chem., Int. Ed.* **2016**, *55*, 1820–1824
- 3. Wang, X. Z., Zhu, Y. F., Li, X. N. Kinetics of *o*-Chloronitrobenzene Hydrogenation on Palladium/Carbon *Catalyst. Adv. Mater.* **2011**, *239*, 161–167.
- Wang, S., Guillot, R., Carpentier, J. F., Sarazin, Y., Bour, C., Gandon, V., Lebœuf, D. Synthesis of Bridged Tetrahydrobenzo-[b]azepines and Derivatives through an Aza-Piancatelli Cyclization/Michael Addition Sequence. *Angew. Chem., Int. Ed.* 2020, *59*, 1134–1138.
- Woodward, R. B., Brutcher, F. V. Cis-Hydroxylation of a Synthetic Steroid Intermediate with Iodine, Silver Acetate and Wet Acetic Acid. J. Am. Chem. Soc. 1958, 80, 209–211.

10. NMR spectra of the starting materials and products

---0.00

F₃C 2a

¹H (400 MHz, CDCl₃)

---60.9

¹H (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F (377 MHz, CDCl₃)

7

0.00

2d ¹H (400 MHz, CDCl₃)

F₃C²

¹H (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

2h ¹H (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

S47

S50

H F_3C

2n ¹H (400 MHz, CDCl₃)

00.0

¹⁹F (377 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

2q

¹H (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: 11 (ppm)

¹H (400 MHz, CDCl₃)

2r ¹³C (101 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F (377 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

, N

2s

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

77.00 77

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: 11 (ppm)

¹H (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹H (400 Hz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F (377 Hz, CDCl₃)

77.7.3.3 77.7.3.3 77.7.3.4 77.7.3.4 77.7.3.4 77.7.4 77.

¹H (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

7,88 7,738 7,738 7,738 7,738 7,738 7,738 7,733 7,733 7,732 7

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

¹⁹F (377 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

S83

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

S91

¹H (400 MHz, CDCl₃)

31 ¹H (400 MHz, CDCl₃)

¹H (400 MHz, CDCl₃)

---60.9

¹H (400 MHz, CDCl₃)

diastereoisomer of **34** ¹H (400 MHz, CDCl₃)

S104

¹H (400 MHz, CDCl₃)

 H_2O 1.96<u>–</u> 6.99 1-86.0 1-89.0 1-89.0 4.92-0.96-1 0.99 0.10 1.05 1.05 0.19 7.05 0.9 .0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1

7,7,40 7,7,35 7,7,45

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹H (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

11. NOESY spectras

Figure S2. NOESY spectra of 33

Figure S4. NOESY spectra of 43

Figure S5. NOESY spectra of 44

12. Crude ¹H NMR spectra for the determination of dr ratio and yield

4.78 4.77 4.76 4.37 4.36 4.36 4.36 4.36

13. HPLC chromatograms of all products

HPLC Chromatogram of Racemic 3

	Retention Time	Area	% Area
1	3.853	4273464	50.290
2	4.460	4225808	50.720

	Retention Time	Area	% Area
1	3.847	628877	3.842
2	4.460	15739889	96.158

	Retention Time	Area	% Area
1	4.447	4529360	50.126
2	6.020	4506519	49.874

	Retention Time	Area	% Area
1	6.760	272637	49.442
2	7.547	278786	50.558

	Retention Time	Area	% Area
1	9.133	867069	50.471
2	11.440	850872	49.529

	Retention Time	Area	% Area
1	8.767	6695280	97.325
2	11.107	184012	2.675

	Retention Time	Area	% Area
1	7.300	150917	2.800
2	8.953	5239559	97.200

	Retention Time	Area	% Area
1	6.680	17026	1.806
2	8.940	925546	98. 194

	Retention Time	Area	% Area
1	4.880	1989493	50.371
2	6.687	1960171	49.629

8483876

96.837

	Retention Time	Area	% Area
1	5.227	5279843	49.443
2	6.327	5398767	50.557

	Retention Time	Area	% Area
1	8.547	177237	50.136
2	11.113	176277	49.864

50.109

8.313

	Retention Time	Area	% Area
1	7.427	2370274	49.761
2	8.340	2393068	50.239

1797767

88.828

	Retention Time	Area	% Area
1	6.053	3330913	50.141
2	8.493	3312212	49.859

1	6.080	686904	5.456
2	8.427	11903298	94.544

	Retention Time	Area	% Area
1	7.440	271652	50.401
2	8.027	267329	49.599

4197344

94.181

	Retention Time	Area	% Area
1	5.947	267223	49.769
2	8.067	269699	50.231

	Retention Time	Area	% Area
1	6.060	21040	5.273
2	8.167	378012	94.727

	Retention Time	Area	% Area
1	6.673	17003119	50.025
2	7.280	16986279	49.975

	Retention Time	Area	% Area
1	6.780	1036574	5. 024
2	7.373	19595211	94. 976

	Retention Time	Area	% Area
1	5.233	2343866	50.002
2	6.993	2343685	49.998

	Retention Time	Area	% Area
1	5.240	606800	7.697
2	6.993	7276446	92.303
2	0.775	7270440	72.303

50.083

9.167

	Retention Time	Area	% Area
1	7.833	1288066	50.411
2	10.520	1267039	49.589

15292696

92.983

	Retention Time	Area	% Area
1	5.793	5884696	50.021
2	7.173	5879720	49.979

	Retention Time	Area	% Area
1	8.113	10954414	49.906
2	9.200	10995898	50.094

49.890

10.893

	Retention Time	Area	% Area
1	8.513	8107823	50.258
2	9.920	8024488	49.742

	Retention Time	Area	% Area	
1	8.613	1876400	4.587	
2	9.873	39031185	95.413	

	Retention Time	Area	% Area
1	9.440	10513198	49.964
2	15.473	10528376	50.036

	Retention Time	Area	% Area
1	11.100	3295615	50.301
2	17.647	3256134	49.699

49.980

14.260

	Retention Time	Area	% Area
1	13.527	455309	14.168
2	16.160	1187314	36.947
3	26.140	426455	13.270
4	27.993	1144498	35.614

	Retention Time	Area	% Area
1	13.813	439039	1.133
2	16.513	1187609	3.066
3	26.753	14856526	38.351
4	29.213	22255119	57.450

	Retention Time	Area	% Area
1	4.533	9428300	50.357
2	5.347	9294677	49.643

	Retention Time	Area	% Area
1	4.520	3702821	93.901
2	5.340	240509	6.099

	Retention Time	Area	% Area
1	5.667	2153049	49.845
2	6.860	2166474	50.155

	Retention Time	Area	% Area
1	11.147	880306	50.935
2	13.720	847978	49.065

	Retention Time	Area	% Area
1	12.127	5222572	94.294
2	14.713	316058	5.706

	Retention Time	Area	% Area
1	8.193	1992057	50.456
2	9.153	1956072	49.544

	Retention Time	Area	% Area
1	8.453	4521035	90.775
2	9.473	459424	9.225

	Retention Time	Area	% Area
1	12.833	505864	49.701
2	14.613	511945	50.299

	Retention Time	Area	% Area
1	12.693	311752	8.466
2	14.440	3370521	91.534

3116507

6251109

49.543

93.301

HPLC Chromatogram	of	Chiral	37
-------------------	----	--------	----

10.480

10.700

2

2

	Retention Time	Area	% Area
1	6.860	2426862	50.684
2	9.167	2361339	49.316

1	6.973	3748036	87.975
2	9.433	512304	12.025

	Retention Time	Area	% Area
1	6.747	1471435	50.162
2	7.573	1461911	49.838

1 6.753 3941	0.047
2 7.407 8427523 9	99.953

	Retention Time	Area	% Area
1	5.907	280366	50.698
2	9.493	272651	49.302

1541955

49.449

6.813

2

	Retention Time	Area	% Area
1	25.473	2602182	50.043
2	29.887	2597736	49.957

2

18052

99.311

29.890