Supporting Information

Dehydrogenation of a Single Acetylene Molecule on the Cu(111) Surface

Shoma Tateda ^{a,b}, Minhui Lee ^{*a,b}, Daiki Katsube ^{b,c}, Maki Inagaki ^b, Michael Trenary ^d, Emiko Kazuma ^{*a,b}, and Yousoo Kim ^{*a,b,e,f}

Affiliations:

^a Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan

^b Surface and Interface Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

^c Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan

^d Department of Chemistry, University of Illinois Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States

^e Department of Chemistry, Gwangju of Institute of Science and Technology, Cheomdangwagiro, Buk-gu, Gwangju 61005, Republic of Korea

^fCenter for Quantum Conversion Research, Institute for Basic Science, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea

Corresponding Authors:

<u>*minhuilee@g.ecc.u-tokyo.ac.jp</u>, *<u>kazuma@g.ecc.u-tokyo.ac.jp</u>, *<u>ykim@riken.jp</u>

Contents

Computation details	S2
Table S1	S2
Figure S1	S3
Figure S2	S4
Figure S3	S5
Figure S4	S6
Figure S5	S7
References	S8

Computation details

Spin-polarized periodic density functional theory (DFT) calculations were performed using the Perdew-Burke-Ernzerhof (PBE) functional¹ as implemented in the Vienna Ab-initio Simulation Package (VASP) code.^{2,3} Grimme's D3 method⁴ was used to account for dispersion interactions between the adsorbate and the metal substrate. The core electrons were replaced by projector augmented wave (PAW) pseudopotentials,⁵ which were expanded in a plane-wave basis set with a cutoff energy of 400 eV. We utilized (4 × 4) supercells, and a Γ -centered 8 × 8 × 1 k-point grid for Brillouin zone sampling. The slab models consist of five metal layers, with all layers relaxed during ionic relaxations. The periodically replicated slabs were separated by over 15 Å of vacuum, and the dipole correction was applied to avoid interactions between periodic slab images. The convergence criteria for the electronic self-consistent iterations and ionic relaxations were 10⁻⁷ eV and 0.01 eV/Å, respectively.

The adsorption energy was calculated using the following equation:

$$E_{\rm ad} = E_{\rm surface + adsorbate} - (E_{\rm surface} + E_{\rm adsorbate})$$

The calculated values are summarized in Table S1.

Table S1. Comparison of the calculated adsorption energy E_{ad} (eV) for all molecules studied in this work.

	C_2H_2	C ₂ H	C ₂	H atom
Cu(111)	-1.64	-4.32	-6.24	-2.62
Cu(100)	-1.78	-4.71	-6.55	-2.53

Figure S1. Calculated LDOS and simulated STM images of (a) C_2H_2 , (b) C_2H , and (c) C_2 on Cu(111). Each simulated STM image was obtained at energies ($E - E_f$) of 2.0, 1.0, -1.0, and -1.5 eV.

Figure S2. STM images of the reactions of adjacent acetylene molecules one by one (V = 1.5 V, I = 0.5 nA). (a–d) The bright spot in the upper left is a C₂H₂ molecule, while the dark spot on the lower left is a C₂ molecule dehydrogenated from C₂H₂ by applying voltage. Under these scanning conditions, the center of the C₂H₂ bright spot has a height of ~15 pm, and that of the C₂ dark spot has a depth of ~35 pm, relative to the Cu surface. (a) The bright triangular feature on the right consists of three adjacent C₂H₂ molecules. (b–d) A voltage is applied directly above each adjacent C₂H₂ molecule, inducing dehydrogenation one by one to produce C₂ molecules. The green arrows indicate the tip positions where a voltage of 2.8 V was applied.

Figure S3. Reaction times (time taken for the current to drop) for 50 acetylene molecules that underwent reaction under a 2.7 V applied voltage (near the reaction threshold) for 10 seconds. Reaction times (vertical axis) were recorded for 9–11 molecules at current values of 0.5, 0.8, 1.0, 1.5, and 2.0 nA (horizontal axis), respectively. Green squares represent the mean reaction times, and grey error bars indicate the standard deviations. The data shows negligible correlation between reaction time and current values.

Figure S4. Optimized structures of C_2H_2 , C_2H , and C_2 on (a) Cu(111) and (b) Cu(100) surfaces by DFT calculations.

Figure S5. Optimized structures of a hydrogen atom on (a) Cu(111) and (b) Cu(100) by DFT calculations.

References

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 2. G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558-561.
- 3. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169–11186.
- 4. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 5. G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.