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1. Experimental section

1.1 Chemicals

Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, AR), ruthenium (III) chloride hydrate 

(RuCl3·xH2O, 37%), urea (CH₄N₂O, AR), ammonium fluoride (NH₄F, AR), and ruthenium (IV) 

oxide (RuO₂) were purchased from Shanghai Aladdin Biochemical Technology Co. Ltd. All 

reagents were used directly without further purification.

1.2 Preparation of electrocatalysts

1.2.1 Preparation of RuO₂/Co3O4 on NF.

Before synthesis, nickel foam (NF) was treated ultrasonically in acetone, 1 M hydrochloric 

acid, deionized water, and ethanol for 10 minutes to enhance its hydrophilicity. Next, 0.58 g of 

Co(NO₃)₂·6H₂O, 0.3 g of NH₄F, and 0.6 g of CH₄N₂O were stirred in 40 mL of deionized water 

for 4 hours to form a uniform pink solution. This solution was then transferred to a 50 mL 

autoclave, and a piece of NF (2*3 cm2) was fully immersed in the solution. The autoclave was 

sealed and heated at 120 °C for 9 hours. After cooling to room temperature, the NF containing 

the precursor was washed repeatedly with deionized water and dried in a vacuum oven at 60 

°C for 12 hours to obtain CoCH. The resulting sample was heated to 350 °C at a rate of 5 °C 

per minute in an air atmosphere and held for 3 hours to obtain Co3O4. Co3O4 was then soaked 

for 9 hours in a 5 mg mL⁻¹ RuCl3 aqueous solution, followed by vacuum drying overnight at 

60 °C and annealing for 2 hours in an air atmosphere at 320 °C. The final product was named 

RuO₂/Co3O4. The loading of Ru was adjusted by soaking in 5 mg mL⁻¹ RuCl3 aqueous solution 

for different times.

1.2.2 Preparation of RuO2 on NF.

The commercial RuO2 (5 mg) was dispersed into a mixture of 700 μL ethanol, 250 μL 

Isopropanol and 50 μL Nafion (5%), and the mixture was ultrasonicated for 30 min to form 

homogeneous ink. Then, a certain amount ink was loaded onto nickel foam and dried at room 
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temperature. The loading amount of RuO2 on the 1*1 cm-2 NF was about 2.5 mg cm-2, which 

was the same amount with the as-prepared electrocatalysts.

1.3 Characterization

Morphology and microstructure were observed using scanning electron microscopy 

(SEM, Hitachi S-4800) and transmission electron microscopy (TEM, Thermo Fisher Scientific 

Talos F200i). The dynamic contact angle was measured using an OCA20 instrument. The 

elements were analyzed by ICP-OES (inductively coupled plasma light emission spectrometry). 

X-ray powder diffraction (XRD, Bruker D8 Advance) was used to analyze the phase structure 

of the catalyst. The Bruker EMX-6/1 instrument was used to measure electron paramagnetic 

resonance (EPR) data and determine oxygen vacancies. The valence and surface atomic ratios 

of the catalysts were obtained using X-ray photoelectron spectroscopy (XPS, Shimadzu AXIS 

Supra+).

1.4 Electrochemical measurements

All electrochemical experiments were carried out using a three-electrode system in 1 M 

KOH, with RuO₂Co3O4/NF, carbon rod and Hg/HgO2 electrodes as the working electrode, the 

opposition electrode and the reference electrode, respectively. The potential was modified to a 

reversible hydrogen electrode (RHE) by Nestor's equation (ERHE = EHg/HgO2 + 0.616V + 

0.0591×pH). Linear scanning voltammetry (LSV) curves are obtained at a scanning rate of 1 

mV S-1. Electrochemical surface area (ECSA) is determined by measuring capacitance at scan 

rates of 2, 4, 6, 8, and 10 mV s-1. Electrochemical impedance spectroscopy (EIS) measurements 

were performed in the frequency range 0.01 to 100 kHz with an AC amplitude of 5 mV.

1.5 Assembly of water-splitting electrolyzer

For testing in a AEMWE (Model: BKT2-SN-22-8X, manufactured by Jiangsu BOKE Co., 

Ltd., China), we prepared a AEMWE by sandwiching the Pt/C cathode and RuO₂/Co3O4 anode 

between a commercial membrane (Fumasep FAB-PK-130). In the AEMWE system, the 1.0 M 

KOH electrolyte is supplied to the cathode and anode at a flow rate of 40 mL min-1. The 
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performance of the device is determined by measuring the LSV curve in the range 1.0 to 2.0 V, 

with a scan rate of 5 mV S-1. To ensure the accuracy of the data, the performance test was 

performed three times to calculate the margin of error. For durability testing, AEMWE runs 

continuously with a peristaltic pump flow of 40 mL min-1 to circulate the electrolyte.
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Supplementary figures

Fig. S1 Dynamic contact angle test of RuO2/Co3O4 and NF.
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Fig. S2 (a-b) SEM images of CoCH. (C) XRD patterns of CoCH.
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Fig. S3 (a-b) SEM images of RuO₂/Co3O4. (c) XRD patterns of Co3O4.
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Fig. S4 (a) LSV curves, (b) corresponding Tafel slopes, (c) EIS Nyquist plots, (d) capacitive 

current density against the scan rate of RuO₂/Co3O4-6, RuO₂/Co3O4-9 and RuO₂/Co3O4-12.



9

Fig. S5 CV curves of (a) RuO₂/Co3O4-6, (b) RuO₂/Co3O4-9 and (c) RuO₂/Co3O4-12.
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Fig. S6 CV curves of (a) Co3O4, (b) RuO₂/Co3O4-9 and (c) com. RuO₂.
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Fig. S7 Polarization curves of (e) RuO₂/Co3O4, (b) Co3O4 and (f) com. RuO₂ in 0.5 M KOH 

solution with (dashed lines) and without (solid lines) 1 M methanol.
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Fig. S8 The CP curves of RuO₂/Co3O4 operated at 100 mA cm−2.
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Fig. S9 (a) The whole XPS spectra, (b) Co 2p3/2, (c) Ru 3p3/2 XPS spectra of RuO₂/Co3O4 before 
and after stability test.
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Fig. S10 (a-b) SEM, and (c) EDX mapping images of RuO₂/Co3O4 after stability test. 
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Fig. S10 Comparison of the OER overpotentials (at 10 mA cm-2) of the RuO₂/Co3O4 with 
recently reported Ru-based electrocatalysts.
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Table S1 The ruthenium loads in samples with different ion exchange times were determined 

by ICP-OES analysis.

Catalyst Ru (wt%) Co (wt%) 
RuO2/Co3O4-6 13.8 86.2 

RuO2/Co3O4-9 17.5 82.5 

RuO2/Co3O4-12 20.4 79.4 
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Table S2 Comparison of OER activities of recently reported electrocatalysts containing Ru.

Catalyst η at 10 mA·cm-2 Reference 
CexRu1-xO2 208 Ref. S1 

Ru/NF 202 Ref. S2 

Mo0.125Ru0.875O2 224 Ref. S3 

Ru–Ni(OH)2/NF 210 Ref. S4 

Ni5Ru-TDA/NF 

Ru-NiFe-MOF/NF 

Ru@α-MnO2 NWs 

CoFe-ZLDH/Ru@NF 

Ru0.3@NiFc-MOF 

Ru-NiCo2O4 

CoCu+Ru10-LDH/NF 

Ru0.3/NiFe 

Ru/Co3O4−x 

(Ru-Ni)Ox 

215 

219 

221 

235 

235 

237 

243 

249 

270 

280 

Ref. S5 

Ref. S6 

Ref. S7 

Ref. S8 

Ref. S9 

Ref. S10 

Ref. S11 

Ref. S12 

Ref. S13 

Ref. S14 
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