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1. Supplementary Notes

1.1 Data collection and cleaning

The molecules in the dataset were collected through three channels: (1) 816 AIEgens and 14 

ACQ molecules from the ASBase database1; (2) 134 AIEgens and 222 ACQ molecules from 

the open-source dataset by Liu et al.2; (3) 58 AIEgens and 41 ACQ molecules obtained by 

searching novel literatures. The process of collecting molecules from the literature was entirely 

manual. All collected molecules were converted to standard simplified molecular-input line-

entry system (SMILES) strings, and duplicates were removed. This resulted in the construction 

of a dataset containing 934 AIEgens and 255 ACQ molecules. The dataset was subjected to t-

SNE analysis using the Scikit-learn package (Fig.2b).
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1.2 t-SNE

In this study, we employed the t-SNE algorithm3 to reduce the high-dimensional chemical space 

into a two-dimensional representation for visualization purposes. T-SNE is a nonlinear 

dimensional reduction technique that is particularly effective in embedding high-dimensional 

data into a space of lower dimensions (typically two or three dimensions) while retaining the 

local structure of the data points. The algorithm is based on the probability distribution of the 

similarities between data points, with the goal of transforming the high-dimensional similarities 

into low-dimensional probabilities that can be visualized in a scatter plot.

The t-SNE implementation utilized in this work is derived from the sklearn.manifold 

module in the scikit-learn library, a widely recognized machine learning library in Python. Our 

implementation begins with the computation of Morgan fingerprints for each molecule in the 

dataset, which serve as the input features for the t-SNE algorithm. These fingerprints are then 

transformed into a two-dimensional space using the t-SNE model with the Jaccard similarity 

metric, which is suitable for binary fingerprint data.

The parameters for the t-SNE model were carefully chosen to optimize the visualization: 

n_components=2 for the two-dimensional output, init='pca' for the initialization method, and 

random_state=0 to ensure reproducibility of the results.
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1.3 Graph Neural Network

The GNN utilized in this work was constructed based on the Chemprop package4. For each 

molecule, RDKit package was employed to generate graph-based molecular representations 

from the SMILES strings of the compounds. Feature vectors for each atom and bond in the 

molecule were generated based on the following computable features: atomic features include 

atom type (type of atom (ex. C, N, O), by atomic number), bonds (number of bonds the atom is 

involved in), formal charge (integer electronic charge assigned to atom), chirality (unspecified, 

tetrahedral CW/CCW, or other), Hs (number of bonded hydrogen atoms), hybridization (sp, 

sp2, sp3, sp3d, or sp3d2), aromaticity (whether this atom is part of an aromatic system), and 

atomic mass (mass of the atom, divided by 100); bond features include bond type (single, 

double, triple, or aromatic), conjugated  (whether the bond is conjugated), in ring  (whether the 

bond is part of a ring), and stereo (none, any, E/Z or cis/trans)5. Based on such initial graph 

data, the GNN performs directed message-passing steps, updated by summing messages from 

adjacent bonds, concatenating the current bond's message with the sum, and then applying a 

single neural network layer with a nonlinear activation function (Fig.2c). After a fixed number 

of message-passing steps, messages across the entire molecule are summed to generate the final 

message representing the molecule. This message is then passed through a feedforward neural 

network, which outputs a prediction of the AIE/ACQ properties of the compound.
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1.4 Extreme gradient boosting

Extreme gradient boosting (XGBoost) is a powerful and widely-used ensemble learning 

algorithm that excels in classification and regression tasks. It operates on the principle of 

boosting, where weak learners, typically decision trees, are combined to form a strong 

predictive model. The core idea is to sequentially add new trees that correct the errors made by 

the previously trained trees, thereby improving accuracy.

In this study, the XGBoost model was implemented using the xgboost Python package, 

which offers a comprehensive set of tools for gradient boosting. The XGBoost algorithm can 

be summarized in several key steps: 1) Initialize the model with a constant value; 2) For each 

iteration, compute the pseudo-residuals, which are the differences between the true values and 

the predicted values; 3) Fit a new decision tree to these pseudo-residuals; 4) Update the model 

by adding the predictions from this new tree, scaled by a learning rate; 5) Repeat the process 

until a specified number of trees is reached or no further improvement is observed.

Mathematically, the update for the predicted value can be expressed as: , �̂�𝑖 = �̂�𝑖 + 𝜂𝑓(𝑥𝑖)

where  is the predicted value for the  instance, η is the learning rate, and  is the output �̂�𝑖 𝑖𝑡ℎ 𝑓(𝑥𝑖)

of the newly added tree for the  instance.𝑖𝑡ℎ
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1.5 Support vector machine

Support Vector Machine (SVM) is a powerful supervised learning algorithm used for 

classification and regression tasks. It operates on the principle of finding the optimal hyperplane 

that separates data points from different classes in a high-dimensional space. The goal of SVM 

is to maximize the margin between the closest points of each class, known as support vectors.

In this study, the SVM model was implemented using the sklearn.svm library, which 

provides a robust and efficient interface for SVM classification. The SVM process can be 

described in several key steps: 1) Transform the input data into a higher-dimensional space 

using a kernel function if necessary; 2) Identify the support vectors that are closest to the 

decision boundary; 3) Calculate the optimal hyperplane that maximizes the margin between the 

classes; 4) Classify new data points based on which side of the hyperplane they fall.

Mathematically, the decision function can be formulated as: , where 𝑓(𝑥) =  𝑠𝑖𝑔𝑛(𝜔𝑇𝑥 + 𝑏)

ω is the weight vector, x is the input feature vector, b is the bias term, and signsign determines 

the class label based on the position relative to the hyperplane.
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1.6 Random forest

Random forest is a powerful ensemble learning algorithm widely used for classification and 

regression tasks. This algorithm builds multiple decision trees and aggregates their results to 

enhance prediction accuracy and stability. The key aspect of Random Forest lies in the word 

"random": during the construction of each tree, a random subset of features and samples is 

selected, ensuring that each tree maintains a degree of independence.

In this study, the RF model was implemented using the sklearn.ensemble library, which 

provides a comprehensive and efficient interface for ensemble methods. The process can be 

described as follows: 1) From the training dataset, randomly sample N data points with 

replacement to create a new training set; 2) Build a decision tree using this training set, typically 

employing the CART (Classification and Regression Trees) algorithm; 3) Repeat steps 1 and 2 

to construct multiple decision trees, forming a forest; 4) For classification tasks, use majority 

voting to aggregate the predictions of all trees, returning the class with the highest frequency as 

the final prediction; for regression tasks, take the average of all tree predictions as the final 

output.

The prediction for a given input can be expressed with the following formula:

𝑓(𝑥) =  
1
𝑇

𝑇

∑
𝑡 = 1

𝑓𝑡(𝑥)

where T is the total number of trees, and  is the prediction of the t-th tree for the sample x.𝑓𝑡(𝑥)
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1.7 K-nearest neighbor

KNN is a relatively mature pattern recognition algorithm and one of the simplest classification 

algorithms. Considering the k closest samples of a data point, if most of the samples belong to 

a certain category, the data point also belongs to this category. Two key factors that affect KNN 

were the number of neighbors k and the calculation of distance. k was usually an integer not 

greater than 20 and the distance was generally using Euclidean distance. The Euclidean distance 

is defined as , where n is the number of samples.
𝑑 =

𝑛

∑
𝑖 = 0

(𝑥𝑖 ‒ 𝑦𝑖)
2

The KNN model was implemented using the sklearn.neighbors library, which provides a 

comprehensive and efficient interface for KNN-based methods. The neighbors selected in the 

KNN algorithm were all objects that have been correctly classified. This method determined 

the category to which the sample to be classified belongs only based on the category of the 

nearest sample or samples. Therefore, the KNN algorithm process could be described as: 1) 

calculate the distance between test data and each training data; 2) sort by increasing distance; 

3) select the K points with the smallest distance; 4) determine the occurrence frequency of the 

category of the first K points; 5) return the category with the highest frequency in the first K 

points as the predicted classification of test data.
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1.8 Multilayer perceptron

Multilayer Perceptron (MLP) is a fundamental neural network architecture widely used for 

various classification and regression tasks. It consists of multiple layers of interconnected 

neurons, including an input layer, one or more hidden layers, and an output layer. Each neuron 

applies a weighted sum of its inputs followed by a non-linear activation function, allowing the 

network to learn complex patterns in the data.

The MLP model was implemented using the sklearn.neural_network library, which 

provides a robust and efficient interface for neural network-based methods. The MLP process 

can be outlined in several key steps: 1) Initialize the weights and biases of the network; 2) 

Perform a forward pass, where input data is fed through the network, and each layer computes 

its output; 3) Calculate the loss by comparing the predicted output to the actual target values; 

4) Implement backpropagation to update the weights and biases based on the gradient of the 

loss function; 5) Repeat the process for multiple epochs until convergence is achieved.

Mathematically, the output of a neuron can be expressed as: , where y is 
𝑦 = 𝑓(

𝑛

∑
𝑖 = 1

𝜔𝑖𝑥𝑖 + 𝑏)

the output,  are the weights,  are the inputs, b is the bias, and f is the activation function 𝜔𝑖 𝑥𝑖

(such as sigmoid, ReLU, or tanh).
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1.9 Model optimization and evaluation

Three model optimization strategies were employed to enhance model performance. First, 200 

kinds of additional molecular-level features calculated by RDKit package (Table S1) were 

added to the graph-based representations of each molecule. This step was performed to provide 

additional information on the global properties of each molecule that local message-passing 

methods might not encapsulate. Second, we utilized hyperparameter optimization to select the 

best-performing hyperparameters for the model. A limited grid search combined with ten-fold 

cross-validation was used to find and evaluate hyperparameters, resulting in good performance, 

with the parameter search ranges represented in Table S2. The XGBoost, SVM, RF, KNN, and 

MLP constructed in this work also underwent hyperparameter optimization, with the parameter 

search ranges represented in Tables S4-S8. Third, an ensemble model strategy was employed, 

combining five GNN models in an attempt to enhance performance.

According to the ratio of AIE/ACQ molecules, 10% of the molecules (94 AIE molecules, 

26 ACQ molecules, a total of 120 molecules) were retained as the test set. Evaluate model 

performance using metrics such as accuracy, AUROC, AUPRC, F1 score, and MCC 

coefficient.
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1.10 Monte Carlo tree search for key substructures

Inspired by empirical rules derived from a multitude of experiments, we posit that certain key 

substructures present within molecules largely confer AIE properties to the entire molecule. 

The Monte Carlo search method is employed to identify molecular substructures with high 

predictive scores, facilitated by the built-in "interpret" function of Chemprop package. 

Specifically, the root of the search tree is a complete AIEgens, and each state within the search 

tree represents a subgraph derived from sequences of bond or ring omissions. To ensure that 

each state is chemically valid and maintains connectivity, we only permit the removal of one 

peripheral bond or ring from each state. If the molecule remains connected after deletion, it is 

referred to as a bond or ring. We set the minimum predictive value for key substructures at 0.5, 

with the number of non-hydrogen atoms ranging from 15 to 50.
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1.11 Molecular fragment generation and docking

The BRICS functionality of the RDKit package was utilized to randomly fragment AIEgens 

from the database to obtain molecular fragments, and their SMILES structures were saved. The 

docking of molecular fragments was also accomplished using the RDKit package. Specifically, 

the SMILES of the molecular fragments were first converted to mol format, then a chemical 

site was randomly selected on each of the two molecular fragments, and finally a single bond 

was added to connect these two molecular fragments, resulting in the virtually generated 

molecule. Invalid structures were discarded.
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1.12 Experiment

Four compounds: 2MeO-TPE-OH, 2MeO-TPE-NH2, TPE-COCH3, and TPE-PhCN, were 

synthesized to process experiment verification. Through the application of synthetic methods 

such as suzuki coupling and acid-catalyzed condensation, obtained products yield between 27% 

and 72%. The synthesized molecules were performed using nuclear magnetic resonance (NMR) 

and high-resolution mass spectrometry (HRMS) (Fig.S8-S19). Moreover, the optical properties 

of these compounds were measured by ultraviolet-visible (UV-vis) and photoluminescence 

(PL) spectroscopy (Fig.5c, S20). Additionally, AIE characteristics of these molecules were 

evaluated by examining their PL intensity in THF/water mixtures in different water volume 

fractions (fw). The PL intensity of four compounds were weak due to active intramolecular 

motion that result rapidly energy dissipation from the excited state to ground state. The PL 

intensity have significantly increase when fw increased from 0% to 100%, indicating that four 

compounds have strong AIE performance (Fig.5b).

1.12.1 Main Materials

The initial reagents included bis(4-methoxyphenyl)methanone, (4-

hydroxyphenyl)(phenyl)methanone, (4-aminophenyl)(phenyl)methanone, (2-bromoethene-

1,1,2-triyl)tribenzene, (4-acetylphenyl)boronic acid, (4-(1,2,2-triphenylvinyl)phenyl)boronic 

acid, 4-bromobenzonitrile, TiCl4, pyridine, Pd(PPh3)4, Aliquat 336, zinc powder, K2CO3, 

Na2SO4 and various solvents, all of which were sourced from J&K Chemicals, Macklin 

Chemicals, or Aladdin Industrial Corporation. These materials were used as received without 

further purification. Anhydrous solvents were dehydrated using standard methods before 

application. 

1.12.2 Instruments

Proton (¹H) and carbon (¹³C) nuclear magnetic resonance (NMR) spectra were recorded using 

instruments operating at frequencies of 400, 500, and 600 MHz. The chemical shifts were 

expressed in parts per million (ppm) and referenced to either tetramethylsilane or the residual 

solvent peak as an internal standard. High-resolution mass spectral analysis (HRMS) was 

performed using a Finnigan MAT TSQ 7000 mass spectrometer. Optical absorption properties 

were measured with a PerkinElmer Lambda 950 spectrophotometer. Additionally, 
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photoluminescence (PL) spectra were obtained using Edinburgh FS5 and FLS1000 

spectrofluorometers to assess the emission characteristics.

1.12.3 Synthesis and Characterization
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Fig.S1. The structures and synthetic routes of 2MeO-TPE-OH, 2MeO-TPE-NH2, TPE-COCH3 
and TPE-PhCN.
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1.12.4 General procedure for the synthesis of 2MeO-TPE-OH, 2MeO-TPE-NH2, TPE-

COCH3 and TPE-PhCN 

Synthesis of 2MeO-TPE-OH:

Under an inert atmosphere, bis(4-methoxyphenyl)methanone (484 mg, 2 mmol), (4-

hydroxyphenyl)(phenyl)methanone (396 mg, 2 mmol) and zinc powder (520 mg, 8 mmol) were 

mixed in dry THF (20 mL) at 0 °C. Then TiCl4 (440 uL, 4 mmol) were added to the reaction 

mixture slowly and stirred for 1 hours at 0 °C, then the mixture was stirred for 24 h at 80 °C. 

After the reaction was complete, the solution was adjusted to neutral by the addition to 

hydrochloric acid (16 mL, 1mol/L), subsequently, the resulting mixture was extracted with 

DCM (50 × 3 mL), and the combined organic phases were dried over Na2SO4. After the removal 

of the solvent under reduced pressure, the crude product was then purified by column 

chromatography on silica gel (PE/EA = 40:1) to give 2MeO-TPE-OH as white solid (217 mg, 

yield: 27%): 1H NMR (CDCl3, 500 MHz) δ (ppm) 7.11-6.87 (m, 11H), 6.66-6.56 (m, 6H), 3.75 

(s, 3H), 3.73 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 157.98, 153.91, 144.52, 139.38, 138.90, 

136.95, 136.79, 136.68, 132.82, 132.68, 131.51, 127.76, 126.16, 114.74, 113.19, 113.11, 55.24, 

55.22. HRMS (ESI) calculated for: C28H24O3 [M]+: 408.1725, found: 408.1731.

Synthesis of 2MeO-TPE-NH2:

Under an inert atmosphere, zinc powder (1.6 g, 24 mmol) was stirred in dry THF (40 mL) at -

5 °C, TiCl4 (1.3 mL, 12 mmol) were added to the reaction mixture slowly and stirred for 0.5 

hours at 0 °C.  Then the mixture was stirred for 2.5 h at 80 °C. Pridine (0.5 mL, 6 mmol), bis(4-

methoxyphenyl)methanone (1.74 g, 7.2 mmol) and (4-aminophenyl)(phenyl)methanone (1.18 

g, 6 mmol) were solved in dry THF (15 mL), this solution were added to the solution of TiCl4 

and zinc powder, subsequently, the reaction solution were stirred for 27 h at 80 °C. After the 

reaction was complete, the react was quenched by 10% K2CO3 solution and extracted with 

DCM (50 × 3 mL), the combined organic phases were dried over Na2SO4. After the removal of 

the solvent under reduced pressure, the crude product was then purified by column 

chromatography on silica gel (PE/DCM = 2:1~1:10) to give 2MeO-TPE-NH2 as white solid 

(870 mg, yield: 36%): 1H NMR (CDCl3, 400 MHz) δ (ppm) 7.11-7.02 (m, 5H), 6.97-6.90 (m, 

4H), 6.84-6.83 (m, 2H), 6.66 (d, J = 6.0 Hz, 2H), 6.61 (d, J = 6.0 Hz, 2H), 6.55-6.53 (m, 2H), 

3.75 (s, 3H), 3.73 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 157.83, 144.71, 144.26, 139.26, 

138.55, 136.99, 136.85, 134.82, 132.62, 132.57, 132.48, 131.51, 127.59, 125.95, 114.63, 

114.60, 113.05, 112.96, 55.11, 55.09. HRMS (ESI) calculated for: C28H25NO2 [M]+: 408.1885, 

found: 408.1989.
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Synthesis of TPE-COCH3

(2-bromoethene-1,1,2-triyl)tribenzene (1 g, 2.89 mmol), (4-acetylphenyl)boronic acid (0.54 g, 

3.28 mmol), K2CO3 (1.24 g, 9 mmol), and Pd(PPh3)4 (0.7 g, 0.6 mmol) were mixed in dry 

toluene (30 mL), and Aliquat 336 (5 drops) were added to the reaction solution. Then the 

reaction was heat up to 80°C for 28 h. After the reaction was completed, which extracted with 

DCM (50 × 3 mL), the combined organic phases were dried over Na2SO4. After the removal of 

the solvent under reduced pressure, the crude product was then purified by column 

chromatography on silica gel (PE/DCM = 2:1~1:1) to give TPE-COCH3 as white solid (270 

mg, yield: 72%): 1H NMR (CDCl3, 500 MHz) δ (ppm) 7.69 (d, J = 8.5 Hz, 2H), 7.13-7.10 (m, 

11H), 7.04-7.00 (m, 6H), 2.53 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 197.80, 149.12, 143.27, 

143.21, 143.14, 142.67, 139.94, 135.01, 131.58, 131.36, 131.33, 127.97, 127.96, 127.89, 

127.81, 127.01, 126.87, 126.85, 26.63. HRMS (ESI) calculated for: C28H23O [M]+: 375.1749, 

found: 375.1742.

Synthesis of TPE-PhCN

(4-(1,2,2-triphenylvinyl)phenyl)boronic acid (376 mg, 1 mmol), 4-bromobenzonitrile (182 

mg, 1mmol), K2CO3 (0.65 g, 5 mmol), and Pd(PPh3)4 (100 mg, 0.09 mmol) were mixed in 

solution of dry toluene (50 mL), ethanol (50 mL) and water (5 mL).  Then the reaction was heat 

up to 80°C for 16 h. After the reaction was completed, which extracted with DCM (50 × 3 mL), 

the combined organic phases were dried over Na2SO4. After the removal of the solvent under 

reduced pressure, the crude product was then purified by column chromatography on silica gel 

(PE/DCM = 3:1~1:2) to give TPE-PhCN as white solid (295 mg, yield: 68%): 1H NMR (CDCl3, 

600 MHz) δ (ppm) 7.61-7.55 (m, 4H), 7.27 (d, J = 8.4 Hz, 2H), 7.06-7.03 (m, 11H), 7.00-6.95 

(m, 6H). 13C NMR (150 MHz, CDCl3) δ 145.17, 144.46, 143.56, 143.54, 143.49, 141.83, 

140.10, 136.77, 132.56, 132.15, 131.41, 131.37, 131.34, 127.89, 127.85, 127.75, 127.45, 

126.74, 126.70, 126.66, 126.43, 119.05, 110.68. HRMS (ESI) calculated for: C33H23N [M]+: 

433.1830, found: 433.1826.
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2. Supplementary Figures

Fig.S2. Chemical Structure of 2FPh-NDB and Ph-BDB6.

Fig.S3. T-SNE of the database, using Morgan fingerprint with jaccard similarity. In this figure, 
the red dots represent AIE molecules, the blue dots represent ACQ molecules, and the orange 
dots represent 2FPh-NDB and Ph-BDB.

Fig.S4 Confusion matrices for the 10-fold cross-validation of the GNN.
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Fig.S5 Confusion matrices for the 10-fold cross-validation of the GNN (add RDkit feature).

Fig.S6 Confusion matrices for the 10-fold cross-validation of the GNN (ensemble model, add 
RDkit feature).
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Fig.S7. Chemical Structure of 49 Donors and 50 Acceptors7.
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Fig.S8. 1H NMR of 2MeO-TPE-OH.

Fig.S9. 13C NMR of 2MeO-TPE-OH.
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Fig.S10. Mass spectrum of 2MeO-TPE-OH.

Fig.S11 1H NMR of 2MeO-TPE-NH2.
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Fig.S12. 13C NMR of 2MeO-TPE-NH2.

Fig.S13. Mass spectrum of 2MeO-TPE-NH2.
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Fig.S14. 1H NMR of TPE-COCH3.

Fig.S15. 13C NMR of TPE-COCH3.
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Fig.S16. Mass spectrum of 2MeO-TPE-OH.

Fig.S17. 1H NMR of TPE-PhCN.
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Fig.S18. 13C NMR of TPE-PhCN.

Fig.S19. Mass spectrum of TPE-PhCN.



                                                                 

27

Fig.S20. UV visible absorption spectra of 2MeO-TPE-OH, 2MeO-TPE-NH2, TPE-COCH3, 
and TPE-PhCN in THF (5 x 10-5 M).
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3. Supplementary Tables

Table S1 Molecular-level features calculated by RDKit package.

Features
BalabanJ BertzCT Chi0
Chi0n Chi0v Chi1
Chi1n Chi1v Chi2n
Chi2v Chi3n Chi3v
Chi4n Chi4v EState_VSA1
EState_VSA10 EState_VSA11 EState_VSA2
EState_VSA3 EState_VSA4 EState_VSA5
EState_VSA6 EState_VSA7 EState_VSA8
EState_VSA9 ExactMolWt FpDensityMorgan1
FpDensityMorgan2 FpDensityMorgan3 FractionCSP3
HallKierAlpha HeavyAtomCount HeavyAtomMolWt
Ipc Kappa1 Kappa2
Kappa3 LabuteASA MaxAbsEStateIndex
MaxAbsPartialCharge MaxEStateIndex MaxPartialCharge
MinAbsEStateIndex MinAbsPartialCharge MinEStateIndex
MinPartialCharge MolLogP MolMR
MolWt NHOHCount NOCount
NumAliphaticCarbocycles NumAliphaticHeterocycles NumAliphaticRings
NumAromaticCarbocycles NumAromaticHeterocycles NumAromaticRings
NumHAcceptors NumHDonors NumHeteroatoms
NumRadicalElectrons NumRotatableBonds NumSaturatedCarbocycles
NumSaturatedHeterocycles NumSaturatedRings NumValenceElectrons
PEOE_VSA1 PEOE_VSA10 PEOE_VSA11
PEOE_VSA12 PEOE_VSA13 PEOE_VSA14
PEOE_VSA2 PEOE_VSA3 PEOE_VSA4
PEOE_VSA5 PEOE_VSA6 PEOE_VSA7
PEOE_VSA8 PEOE_VSA9 RingCount
SMR_VSA1 SMR_VSA10 SMR_VSA2
SMR_VSA3 SMR_VSA4 SMR_VSA5
SMR_VSA6 SMR_VSA7 SMR_VSA8
SMR_VSA9 SlogP_VSA1 SlogP_VSA10
SlogP_VSA11 SlogP_VSA12 SlogP_VSA2
SlogP_VSA3 SlogP_VSA4 SlogP_VSA5
SlogP_VSA6 SlogP_VSA7 SlogP_VSA8
SlogP_VSA9 TPSA VSA_EState1
VSA_EState10 VSA_EState2 VSA_EState3
VSA_EState4 VSA_EState5 VSA_EState6
VSA_EState7 VSA_EState8 VSA_EState9
fr_Al_COO fr_Al_OH fr_Al_OH_noTert
fr_ArN fr_Ar_COO fr_Ar_N
fr_Ar_NH fr_Ar_OH fr_COO
fr_COO2 fr_C_O fr_C_O_noCOO
fr_C_S fr_HOCCN fr_Imine
fr_NH0 fr_NH1 fr_NH2
fr_N_O fr_Ndealkylation1 fr_Ndealkylation2
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fr_Nhpyrrole fr_SH fr_aldehyde
fr_alkyl_carbamate fr_alkyl_halide fr_allylic_oxid
fr_amide fr_amidine fr_aniline
fr_aryl_methyl fr_azide fr_azo
fr_barbitur fr_benzene fr_benzodiazepine
fr_bicyclic fr_diazo fr_dihydropyridine
fr_epoxide fr_ester fr_ether
fr_furan fr_guanido fr_halogen
fr_hdrzine fr_hdrzone fr_imidazole
fr_imide fr_isocyan fr_isothiocyan
fr_ketone fr_ketone_Topliss fr_lactam
fr_lactone fr_methoxy fr_morpholine
fr_nitrile fr_nitro fr_nitro_arom
fr_nitro_arom_nonortho fr_nitroso fr_oxazole
fr_oxime fr_para_hydroxylation fr_phenol
fr_phenol_noOrthoHbond fr_phos_acid fr_phos_ester
fr_piperdine fr_piperzine fr_priamide
fr_prisulfonamd fr_pyridine fr_quatN
fr_sulfide fr_sulfonamd fr_sulfone
fr_term_acetylene fr_tetrazole fr_thiazole
fr_thiocyan fr_thiophene fr_unbrch_alkane
fr_urea qed

Table S2 Hyperparameters used for GNN model.

Hyperparameter Range Value used

Number of MPNN Layers [2, 6] 5
MPNN Hidden Layer Size [100, 2400] 1300
Number of  FFN Layers [1, 3] 2
FFN Hidden Layer Size [100, 2400] 1400
Dropout Rate [0, 0.4] 0.25
Initial Learning Rate [0.0001, 1] 0.0016475184132470895
Maximum Learning Rate [0.000001, 1] 0.00026550826157806045
Final Learning Rate [0.0001, 1] 0.00017424185057835588
Warmup Epochs [1, 30] 4
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Table S3 Hyperparameters used for XGBoost model.

Hyperparameter Range Value used

Number of Estimators [50, 200] 50
Learning Rate [0.01, 0.5] 0.5
Maximum Depth [3, 7] 7
Minimum Loss Reduction [0, 0.5] 0.1
Colsample by Tree [0.5, 1.0] 0.5

Table S4 Hyperparameters used for SVM model.

Hyperparameter Range Value used

Kernel Type Linear, Rbf Rbf
Regularization Parameter C [0.1, 100] 10
Gamma Scale, Auto Auto

Table S5 Hyperparameters used for RF model.

Hyperparameter Range Value used

Number of Estimators [50, 200] 200
Maximum Depth [0, 30] 0
Minimum Samples Split [2, 10] 2
Minimum Samples Leaf [1, 4] 1

Table S6 Hyperparameters used for KNN model.

Hyperparameter Range Value used

Number of Neighbors [3, 9] 9
Weights Uniform, Distance Distance
Power Parameter [1, 3] 1
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Table S7 Hyperparameters used for MLP model.

Hyperparameter Range Value used

Hidden Layer Sizes 100, 200, (100, 100) 100
Activation Function Tanh, ReLU ReLU
Solver Adam, Sgd Sgd
Maximum Iterations [500, 800] 500
Alpha [0.0001, 0.001] 0.0001

Table S8 Performance of XGBoost, SVM, RF, KNN, MLP, GNN, GNN* (add RDkit feature), 

and GNN** (ensemble model, add RDkit feature) on the test set.

Model Accuracy AUPRC AUROC F1 Score MCC Precision Recall

XGBoost 0.942 0.996 0.987 0.962 0.937 0.978 0.946
SVM 0.925 0.995 0.981 0.953 0.772 0.938 0.968
RF 0.933 0.992 0.975 0.957 0.804 0.957 0.957
KNN 0.875 0.990 0.962 0.922 0.610 0.899 0.947
MLP 0.917 0.996 0.984 0.947 0.748 0.978 0.947
GNN 0.944 0.994 0.980 0.966 0.831 0.936 0.998
GNN* 0.963 0.997 0.990 0.977 0.891 0.956 0.999
GNN** 0.964 0.997 0.990 0.978 0.893 0.956 1.000

Table S9 Performance of XGBoost, SVM, RF, KNN, MLP, GNN, GNN* (add RDkit feature), 

and GNN** (ensemble model, add RDkit feature) on the training set.

Model Accuracy AUPRC AUROC F1 Score MCC Precision Recall

XGBoost 0.995 1.000 1.000 0.997 0.986 0.996 0.998
SVM 0.993 0.996 0.996 0.996 0.980 0.994 0.998
RF 1.000 1.000 1.000 1.000 1.000 1.000 1.000
KNN 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MLP 0.997 1.000 1.000 0.998 0.992 0.999 0.998
GNN 0.940 0.965 0.928 0.963 0.816 0.939 0.988
GNN* 0.946 0.981 0.951 0.966 0.834 0.941 0.993
GNN** 0.946 0.981 0.951 0.966 0.834 0.942 0.992
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Table S10 AIE functional groups identified through Monte Carlo search methods.

Structural formulas Predicted score Number of 
occurrences

N
0.964 14

O

O

0.961 51

N

NN+

B-F
0.926 2

F
B-

F

N+N

HN

0.894 3

F
B-

F

N+

N
0.892 36

0.890 217
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N

SN+F
B-

F

0.882 2

N

O O

0.878 18

N+

N+

Au
O

Au

0.860 2

Si 0.856 31

O
S

N
H

HO 0.825 6

NH

S 0.788 2

OH

0.777 3

HO 0.772 2

N
N
H

HO

0.730 2
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O

N+ 0.728 4

HO

0.719 3

OH

N
N 0.713 6

N

N

0.705 3

F

Au
N+ 0.698 2

N
N+

0.686 2

N

NN

N
0.675 3

N

N

0.674 2

N

S

N 0.670 3
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H
N

0.667 2

O

S

N
H

0.663 3

NN
0.650 2

N+

N
0.637 2

0.627 29

HO OH

0.619 2

N

HO

N

0.617 4

N

N

N
N

N

N

N
N

Co 0.615 2

F

0.609 2
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N
0.600 141

HN 0.596 2

N

N+

0.594 2

P
0.585 2

N

S

N 0.569 5

N
O

0.567 3

O
O

N

N
H

0.554 2
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N
0.549 2

N

N

S

N
H

0.548 2

O N
0.541 2

NH

N+
0.538 2

H
N

N
0.532 2

Cl
0.531 2

0.518 4

N

0.518 3

N

H
N

0.508 2
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NH
NHN

0.503 2

N

N

0.501 5
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