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1. Experimental details
a. Reagent and solvents

All the reactions were carried out in a M-Braun glove box or using standard Schlenk techniques
under Nz or Ar. Commercial compounds stored under Nz or Ar were used directly without any
further purification, otherwise products were degassed before use. All solvents were taken
from MBSPS-800 solvent purification system, degassed by three freeze-thaw-pump cycles and



stored over freshly activated molecular sieves under N2 or Ar. Compound 1, 2 and 3 were
synthesised following previously reported procedure.!

b. Apparatus

IH, 31p, 13C, and °F NMR spectra were recorded on Bruker Avance 300, 400, 500 and 600 MHz
spectrometers. *H and '3C chemical shifts reported are referenced internally to residual
proton (*H) and deuterated (*3C) solvent, while 3P chemical shifts are referenced to an
external standard of phosphoric acid.

High resolution mass spectra (Electrospray) were obtained with Xevo G2 Q TOF (Waters) mass
spectrometers and GCT Premier (Waters) (DCI-CH4).

Gas chromatography (CO. detection) was performed using a GC Perkin Elmer Clarus 590,
equipped with a Elite PLOT Q column (30m 0,53mm, 25mm) and a TCD detector. N, was used
as a carrier gas, with a flow rate of 9.5 mL/min. Analysis was performed at 50°C in isotherm
mode. 150 uL of headspace gas were injected. CO; retention time was 1.85 min.

All the electrochemical measurements have been carried out in a nitrogen filled glove-box
using p-Autolab potentiostat (Metrohm, type PGSTAT204) using the NOVA software. Glassy
carbon electrode was the working electrode, platinum wire was the counter-electrode,
Ag/AgCl was the reference electrode and (BuaN)PFs was used as the supporting electrolyte.
Ferrocene was added after each experiment for calibration.

IR spectra were collected on Thermoscientific Nicolet IS50 - ATR diamond spectrometer
equipped with DLaTGS detector (4 cm-1 resolution, 32 background scans).

Single-Crystal X-Ray Diffraction:

The crystal data of compounds 3 and 4 were collected using MoKa radiation
(wavelength=0.71073 A) on a Bruker-AXS Quazar APEX Il diffractometer using a 30W air-
cooled microfocus source (ImS) with focusing multilayer optics. Phi and omega- scans were
used. Crystals were mounted in inert oil and crystal structure determinations were affected at
193K. The data were integrated with SAINT? and an empirical absorption correction with
SADABS was applied.? The structures were solved using intrinsic phasing method (ShelXT)* and
refined using the least-squares method on F2 (ShelXL).> All non-H atoms were refined with
anisotropic displacement parameters. The H atoms were refined isotropically at calculated
positions using a riding model.

X-ray crystallographic data have been deposited in the Cambridge Crystallographic Data
Centre (http://www.ccdc.cam.ac.uk/) with reference numbers: CCDC-2424974 (3) and CCDC-
2424975 (4). These data can be obtained free of ~charge from
https://www.ccdc.cam.ac.uk/structures/ or from the Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; tel: + 44 (0)1223 336408; fax: + 44
(0)1223336033; or e-mail: deposit@ccdc.cam.ac.uk

Samples were ground into fine powders and placed in Delrin containers. Mdssbauer spectra
were measured on an Oxford Instruments Spectromag 4000 cryostat containing an 8 T split-
pair superconducting magnet. The spectrometer was operated in constant acceleration mode


https://www.ccdc.cam.ac.uk/structures/
mailto:deposit@ccdc.cam.ac.uk

in transmission geometry. The isomer shifts are referenced against a room temperature
metallic iron foil. Analysis of the data was performed using the in-house developed Python
package easyMoss.®



2. Synthesis
a. Synthesis of 3 (u2-SCS)Fez(CO)s

A dichloromethane solution (20mL) of complex 1 (400 mg, 4.0x10* mol) was degassed in a
fisher porter and placed under 6 bar of CO. After 6 hours of reaction the solvent was dried
under vacuum and the red solid was solubilized in diethyl ether (15 mL). The red solution was
separated from white solid 4 by filtration. Black/red crystals were obtained by diffusing n-
pentane into this concentrate diethyl ether solution. Isolated yield: 46%. 4 can also be
extracted on silica column in a glove box under inert atmosphere with a mixture of DCM/n-
pentane (20:80 ratio) as elution solvent.

1H NMR (CD:Cl,, 600.13 MHz): 7.80 ppm (m, 4H, 0-Ph); 7.69 (m, 2H, p-Ph); 7.53 (m, 4H, m-
Ph); 7.45 (m, 2H, p-Ph); 7.32 (m, 4H, m-Ph); 7.21 (m, 4Ho-Ph) ppm.

31p{1H} NMR (CD,Clz, 242.9 MHz): 72.1 ppm.

13C{1H} NMR (CD2Cly, 150.92 MHz): 212.2 (br s, CO); 210.1 (br s, CO); 137.2 (d, 2cp= 69 Hz, i-
CPh); 133.6 (s, p-CPh); 133.3 (d, cp= 11 Hz, 0-CPh); 132.8 (d, 2Jcp= 65 Hz, i-CPh); 132.1 (p-CPh);
130.3 (d, 2Jep= 11 Hz, 0-CPh); 129.4 (d, 3Jcp=11 Hz, m-CPh); 128.6 (d, 3Jcp=12 Hz, m-CPh); 39.2
(d, 3Jcp= 22 Hz) ppm.

IR: 3053, 2040, 1991, 1954, 1938, 1584, 1479, 1434, 1307, 1182, 1159, 1096, 1047, 1026, 998,
746,721, 687, 594, 555, 530, 490 cm™™.

UV-Vis: 513 nm.
EA: C:51.38 %, H: 3.33 %, N: 0.08 % (Expected: C: 51.27 %, H: 2.78 %, N: 0.00 %).
b. Synthesis of 4.

After following the synthesis of 3, the residual solid of filtration is washed with diethyl ether,
then solubilized in 5 mL of dichloromethane. Crystals were obtained by slow diffusion of n-
pentane in this solution.

'H NMR (CD2Cl, 600.1 MHz): 7.81 (m, 8H, 0-Ph); 7.46 (m, 4H, p-Ph); 7.37 (m, 8H, m-Ph).
31P{*H} NMR (CDCl,, 242.9 MHz): 38.0 ppm.

13C{H} NMR (CD1Cla, 150.92 MHz): 170.5 (t, 2Jpc= 9 Hz, CCO); 132.6 (br s, p-CPh); 132.5 (m, o-
CPh); 131.9 (m, A= 50 Hz, ipso-CPh); 128.8 (m, A=28 Hz, CPh); 38.1.

IR: 3363, 3053, 2112, 1585, 1479, 1434, 1309, 1262, 1180, 1159, 1097, 997, 742, 716, 686,
660, 638, 568, 547, 525, 503, 489, 473, 440 cm™.

HRMS (DCI-CHs, M+H*): exp m/z 475.0509 (100.0%); 476.0541 (29.7%); 477.0504 (9.4%);
478.0516 (2.6%). Found: 475.0509; 476.0536; 477.0663; 478.0750.



c. Reaction between 2 and CO

A dichloromethane solution (20mL) of complex 2 (200 mg,1.2 x10* mol) was degassed in a
fisher porter and placed under 6 bar of CO. After 12 hours of reaction the solvent was dried
under vacuum and the red/brown solid was solubilized in toluene (20 mL). The red solution
was then filtered off while a sticky yellow oil remained in the flask, which was further analysed
by multinuclear NMR, IR spectroscopy, M&ssbauer spectroscopy and Mass spectrometry.

1H NMR (CD2Cl,, 300.14 MHz): silent.

'H NMR (d8-THF, 300.14 MHz): 7.84 (m, 8H, o-Ph); 7.32 (m, 8H, m-Ph); 7.11 (m, 4H, p-Ph).
31P{'H} NMR (CD:Cl, 121.5 MHz): silent.

31P{*H} NMR (d®-THF, 121.5 MHz): 37.4 ppm.

13C NMR (CD2Cl,, 150.92 MHz): silent.

19F NMR (CD:Cla, 282.3 MHz): -131.16 (br s), -161.55 (t, 3Jer= 20.4 Hz), -165.38 (m) ppm
(B(CsFs)a’).

IR: 3057, 2133, 2076, 2040, 1984, 1645, 1511, 1461, 1440, 1271, 1191, 1086, 978, 777, 746,
686 cm™.

HRMS (ESI): observed fragmentations 1035.0384, 586.9745, 502.9898, 449.0711 (see below).

Evan’s method was performed on the yellow product in CD,Cl; on a 300.13 MHz spectrometer
at 298K. A A of 92.86 Hz was found, which confirm the presence of paramagnetic compounds.
The value of per could not be determined, the molar mass of the compound remaining
unknown.



3. NMR characterisation
a. NMR spectra for compound 3 (u2-SCS)Fe(CO)s
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Figure 1:31P{1H} NMR of 3 in CD,Cl5.
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Figure 2:*'H-NMR spectrum of 3 in CD,Cl,.
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Figure 3: 13C{1H} NMR spectrum of 3 in CD,Cl,. Insets: overlap of 33C{tH} and 13C{31P}{1H} NMR.



1 .
—
P (7:47,7.34; | (7.31,7.48}
{7.53,7.72.{‘. N
{.. > {7.21,7.35}
{7.81,7.563¢" %,
= . {7.56,7.85}
9‘ 0 8‘ 5 8‘ 0 7‘.5 7‘ 0 6‘ 5 é 0 5‘.5 5‘.0 4‘.5 4‘.0 3‘.5 3‘.0 2‘.5 2‘.0 1‘.5 1‘.0 d.S d.O 7[‘).5
f2 (ppm)
Figure 4: COSY H -H of 3 in CD,Cl,.
A A
=
_— .
E {7.69,133.38}, 4= ?7{7-21’130.21}
[E——— . o‘o( >
] {7.54,133.38}
9‘ 0 8‘ 5 8‘ 0 7‘.5 7‘ (1] é 5 é 0 S‘AS 5‘.0 4‘.5 4‘.0 3‘.5 3‘.0 2‘.5 2‘.0 1‘.5 1‘.0 d.S d.O -6.5

Figure 5: 13C-'H HSQC spectrum of 3 in CD,Cl..
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Figure 6: 13C-'H HMBC spectrum of 3 in CD,Cl>.
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Figure 7: HMBC 31P-13C{'H} (80 Hz) of compound 3.
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b. NMR spectra for compound 4.
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Figure 9: 'H NMR spectrum of 4 in CD,Cl,.
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Figure 10: 3'P{*H} NMR spectrum of 4 in CD,Cl,. Circle: hydrolysis to {Ph,P(S)}>.CH,.
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Figure 11: 13C{*H} NMR spectrum of 4 in CD,Cl,. Insets: overlap of 13C{1H} and B3C{31P}{1H} NMR.
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Figure 12: 1H-'H COSY spectrum of 4 in CD,Cl,.
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Figure 13: 13C H HSQC spectrum of 4 in CD,Cl,.
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Figure 14: 13C 'H HMBC spectrum of 4 in CDCl,.

c. NMR data for intermediate A at -40°C.
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Figure 15: 'H NMR of intermediate A in CD,Cl, at -40°C.
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Figure 18: 31P-13C HMQC (J=125 Hz) of intermediate A at -40°C.
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4. IR spectroscopy

50

r100

150

200

f1 (ppm)



IR spectra of 3 and 4.

a.

Circles represents absorption from impurities.
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5. Mass spectroscopy
a. Compound 4
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6. X-ray diffraction

Table 1: Crystallographic details for compounds 3 and 4

Compound 3 Compound 4
Empirical formula C31H20Fe206P2S: C26H200P252
Formula weight 726.23 474.48
Temperature 193(2) K 193(2) K
Wavelength 0.71073 A 0.71073 A
Crystal system Triclinic Monoclinic
Space group P1 C2/c
a(A) 12.259(3) 24.929(3)
b (A) 15.825(3) 9.3898(12)
c(A) 16.510(4) 21.714(3)
a(°?) 86.072(5) 90
B(°) 71.586(5) 112.245(3)
v (°) 89.707(5) 90
Volume (A3) 3031.1(11) 4704.4(10)
z 4 8
Density (calculated) 1.591 mg/m3 1.340 mg/m3
Absorption coefficient 1.244 mm-1 0.379 mm-1
F(000) 1472 1968

Crystal size (mm3)
Theta range for data collection
Reflections collected

Independent reflections

0.060 x 0.050 x 0.040
1.290 to 24.815°
81304

10431 [R(int) = 0.1682]

0.160 x 0.050 x 0.030
2.027 to 26.369°
80799

4822 [R(int) = 0.1424]

Completeness 99.5 % 99.9 %
Data / restraints / parameters 10431/0/775 4822 /0/ 280
Goodness-of-fit on F2 1.071 1.032

Final R indices [I>2sigma(l)]
R indices (all data)
Largest diff. peak and hole

CCDC number

R1=0.0823, wR2 =0.1606

R1=0.1648, wR2 = 0. 1938

0.896 and -0.641 e.A-3

2424974

R1=0.0614, wR2 =0.1360

R1=0.1173, wR2 = 0.1646

0.699 and -0.481 e.A-3

2424975




Figure 20: Molecular structure of compound 3. Thermal ellipsoids are represented at 30% probability level. For clarity H
atoms are omitted and only one of the two independent molecules of the asymmetric unit is shown.

Table S2: Selected bond lengths (A) and angles (°) for complex 3.

Fel-C1 2.046(8) Fe2-C1 2.032(9)
Fel-C2 1.782(12) Fe2-C7 1.788(11)
Fel-C3 1.794(11) Fe2-C6 1.794(11)
Fel-C4 1.740(11) Fe2-C5 1.736(12)
Fel-S1 2.408(3) Fe2-S2 2.415(3)
Fel-Fe2 2.626(2)

P1-C1 1.763(9) P2-C1 1.736(9)
P1-S1 2.005(3) P2-S2 2.008(3)
P2-C1-P1 133.5(5) P1-C1l-Fel 96.4(4)




Fe2-C1-Fel 80.2(3) P2-C1-Fel 119.1(4)
Cl1-Fel-Fe2 49.7(2) P1-C1-Fe2 117.9(4)
C1-Fe2-Fel 50.1(2) P2-C1-Fe2 98.3(4)

C2-Fel-Fe2 159.5(3) CAFel-51 177.8(4)
C7-Fe2-Fel 160.8(3) C5-Fe2-S2 177.0(4)
C3-Fel-C1 143.6(4) C6-Fe2-C1 144.1(4)

Figure 21: Molecular structure of compound 4. Thermal ellipsoids are represented at 30% probability level. H atoms are
omitted for clarity.

Table S3: selected bond lengths (&) and angles (°) for compound 4.

01-C2 1.184(6) P2-S2 1.9509(15)

C1-C2 1.280(6) P1-C3 1.813(4)




C1-P1 1.818(4) P1-C9 1.811(4)
C1-P2 1.801(4) P2-C15 1.809(4)
P1-51 1.9480(15) P2-C21 1.808(4)
P1-C1-C2 115.9(3) 01-C2-C1 179.0(5)
P2-C1-C2 114.8(3) C1-P1-s1 112.7(1)
P2-C1-P1 128.8(2) C1-P2-S2 109.4(1)
7. Mossbauer spectroscopy
a. Compound3
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Figure 22: Mossbauer spectra recorded at 5.6 K in variable magnetic fields applied parallel to the gamma-rays. The black
circles and error bars represent the experimental data, while the red solid lines are the S = 0 spin-Hamiltonian simulations
with the following parameters: § = 0.07 mm/s, AEq = 1.23 mm/s, 1 =0.27, T =0.26 mm/s.




b. Iron-containing byproduct of the reaction between 2 and CO
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Figure 23: M6ssbauer spectra recorded at 5.7 K in a 600 G magnetic field applied parallel to the gamma-rays. The black
error bars represent the experimental data, while the colored solid lines are quadrupole doublet simulations. The green
line, accounting for 69% of total Fe, featuring large values of 6 (0.95 mm/s), AEq (3.14 mm/s) and I" (0.99 mm/s), is assigned
to adventitiously-bound Fe'. The red line, accounting for 31% of total Fe, displays a small isomer shift (6§ =0.11 mm/s, AEq =
0.58 mm/s, I' = 0.47 mm/s) and ils assigned to an Fe'-carbonyl species.



8. Computational details

Ab initio calculations were performed on complex 1 to address the question of the spin multiplicity of
the Fe'' ions and the low-energy spectrum of the complex.

The X-ray structure was used except for the position of the H atoms which were optimized by DFT
calculations (with the PBE exchange-correlation functional and the D3(BJ) dispersion correction) using
def2-SVP atomic basis sets (5s3p2d1f for Fe, 4s3pld for P and S, 3s2pl1d for C and 2s1p for H).

Wave function based calculations (CASSCF and NEVPT2) were also performed to shed some light on
the low energy spectrum and wave functions.

Local d-d excitation energies are estimated from CAS(6,5)SCF calculations (with 6 active electrons in 5
active orbitals) performed on a complex where one of the two Fe' is substituted by a diamagnetic Zn"
ion.” The ground quintet state (Q1) is well separated from the states of the other spin multiplicities of
the d® configuration, the lowest triplet and singlet states being at the CASCI level at *18000 and 24000
cm?, respectively, definitely confirming the high spin character of the Fe(ll) ions. Moreover, Q1 is
mainly single configurational (i.e. one of the 3d MO is almost doubly occupied while the 4 others are
singly occupied). The Q2-Q5 excited quintet states are at 555, 878, 4605 and 5793 cm™, respectively.,
in the one case, and 883, 1115, 4530 and 6240 cm?, respectively, in the other case. This means that at
low temperature, these local excited states cannot be populated and thus cannot be key for the
magnetism of this compound. However, it is clear that two to three quintet states are within 1000 cm-
! and that this near-orbital degeneracy (triple) may deserve a further theoretical study.

The five high-spin d® configurations and their involvement the S =2 many-electron states in the 0O, symmetry point group:

4+ L+ A+
R R R
L 5’;‘2;! J L SE‘H J

Schematic representation of the energies of the S = 2 many-electron states in the O, symmetry point group and in the substituted complexes:
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5
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Assuming that locally only a single configurational Q1 is at play, CAS(8,8)SCF+NEVPT2 calculations were
performed to evaluate the coupling between the local ground state of each Fe(ll) ions in complex 1.
The ground state is a singlet state, indicating an antiferromagnetic coupling between the two local
quintet states. At the CASSCF level, using state average MOs, the energy spectrum follow almost
perfectly the gaps predicted by an Heisenberg Hamiltonian model (H =-J S..S;) with a coupling constant
J=-87 cm™: E(5=1) =87 cm?, E(5=2) = 262 cm™ E(S=3) = 522 cm™ and E(5=4) = 867 cm?, compared to
the ground state.



Schematic representation of the successive Heisenberg energy gaps for antiferromagnetically coupled high-spin Fe'" centers:
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CAS(8,8)SCF calculations performed on state specific MOs confirm the antiferromagnetic coupling, but,
as expected, lead to a less perfect Heisenberg spectrum: E(S=1) = 105 cm™, E(5=2) =299 cm E(S=3) =
556 cm? and E(S=4) = 844 cm™. As expected, dynamic electron correlation enhances the
antiferromagnetic character of the coupling, multiplying by almost 2 most of the energy gaps at the
NEVPT2 level.

These calculations were corroborated by CAS(12,10)SCF+NEVPT2 calculations. The CAS(12,10)SCF
spectrum is in line with the CAS(8,8)SCF one (0, 111, 328, 605 and 919 cm™%, respectively) while NEVPT2
predicts J = -176 cm™ if we consider the $=0 <> S=4 energy gap.

Def2-TZVP atomic basis sets were used for Fe and Zn ions, and the atoms of their coordination sphere
(6s4padif for Fe and Zn, 5s5p2d1f for S and 5s3p2d1f for C) and def2-SVP for other atoms. All
calculations were performed using the Orca 5 suite of programs.

For complex 3, CAS(2/2)SCF calculations were performed with a similar computational setup as above.
Two calculations were performed, a state-average calculation with one singlet and one triplet state to
compute the singlet to triplet energy gap, and a state-specific calculation for the ground singlet state
to interpret its wave function with the effective bond order perspective.® The two active orbitals are
in both cases the metal-metal o and o* orbitals. The singlet to triplet energy gap being *5700 cm?, it
was clear that this complex was not to be described with a Heisenberg Hamiltonian. We indeed
suspected a single bond between the metals, hence the effective bond order determination. The
occupation of the (natural) o and o* orbitals being 1.77 and 0.23, respectively, an effective bond order
of 0.77 is found. The deviation of the effective bond order from the formal one is a simple correlation
effect, as in H,, associated with the double ¢ to o* excitation, leading to the contributions of both the
0° (88.4%) and 0*? (11.5%) determinants in the (multiconfigurational) ground-state wave function. If
one electron is removed, as it would be the case in any putative Fe'Fe' complex derived from 3, the
Brillouin theorem would block any excitation from the ground orbital configuration, meaning that the
effective bond order would simply equal the formal one of 0.5.



Partial molecular orbital diagram, occupation numbers and representation of the correlation effect on the bonding in the Fe'Fe' complex 3:

We have also performed some preliminary DFT calculations to compare the different reactivities of an
Fe'Fe' model complex vs. an even more putative Fe'Fe" one. The model complexes have been derived
from 3 by substituting a CO ligand by a simple H,C=C=0 ketene one. Without performing a full
confirmational analysis, we have determined the geometries of various conformers and compared
cases with similar conformers for both situations. For comparison purposes, we have imagined the
following reaction:

Initial complex + CO = Final complex + H,C=C=0

Note that in the Fe'Fe' case, the final complex is directly 3. We have determined only pure electronic
energies. All the model reactions were found exothermic, meaning that the ketene H,C=C=0 would be
released in all the cases. More importantly, we found two main differences between the Fe'Fe' and
Fe'Fe' cases:

e Ineach case, our model reaction is much more exothermic in the Fe'Fe' case than in the Fe'Fe'"
one. Comparable reaction energies can be for instance =97 kJ/mol in the Fe'Fe' case and —55
kJ/mol in the Fe'Fe" one. This means that potential precursors of 3 are highly keen to release
ketenes, leading in our case to the easy formation of 3.

e In the Fe'Fe" case, the initial complex displays localized valences, the ketene being bound to
the Fe' site, while the final complex is valence delocalized. This is in line with the idea that
ketenes have more affinity for Fe' ions vs. Fe'.

All-in-all, this leads us to the statement that is reported in the main text: “From this study, we confirm
that ketenes have a better affinity for Fe'Fe" complexes than for Fe'Fe' ones. Note that while the ketene
binds on localized Fe' sites in the initial Fe'Fe" complex, the final Fe'Fe' complex is valence delocalized;

vl

the ketene thus acts as a “localization enforcer”.

For these calculations, the geometries of all the species were optimized with the B3PW91 exchange-
correlation functional, with def2-TZVP atomic basis sets on all the atoms, and with the D3(BJ)
dispersion correction, still with Orca 5.
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