Supporting Information

Electro-hydrogenation of nitrobenzene to

phenylhydroxylamine with anthraquinone-2-sulfonic

sodium as electron mediator

Shengqi Chen^{ab}, Ben Chang^a, Chuchu Cheng^a, Shihua Ye^a, Xiaolei Qu^a, Qing-Nan Wang^a, Can Li^{*ab}

a State Key Laboratory of Catalysis, Dalian Institute of

Chemical Physics, Chinese Academy of Sciences, Dalian

National Laboratory for Clean Energy, Dalian 116023, China

b University of Chinese Academy of Sciences, Beijing,

100049, China

* Corresponding author

E-mail: canli@dicp.ac.cn

Contents

1.	Experimental sectionPage S4-
	S5
2.	Product analysis and characterizationPage S5-
	S6
3.	Mechanism and reaction energy diagramPage
	S6
4.	Table S1. Components of different buffer solutionsPage
	S6
5.	Table S2. Conversion and Selectivity of NB/NSB reduction
	without buffer solutionsPage S7
6.	Table S3. The reduction of substituted nitrobenzene using
	AQSH ₂ as electron mediatorPage
	S8
_	

7. Figure S1. MS spectrum of the product PHA......Page S8

reactionPage S9
9. Figure S3. CV curves of AQSNa at different pH with/without
NBPage S10
10. Figure S4. Apparent activation energy for the reduction of
NB to PHAPage S11
11. Figure S5 HPLC-MS spectrum of 1-methyl-3-nitrobenzene
after reactionPage S12
12. Figure S6 ¹ HNMR result of 1-methyl-3-nitrobenzene after
reaction (CDCl $_3$ with 1% (v:v) TMS 700MHz)Page S12
13. Figure S7 HPLC-MS spectrum of 4-nitrophthalonitrile after
reactionPage S13
14.Figure S8 ¹ HNMR result of 4-nitrophthalonitrile after
reaction (CDCl₃ with 1% (v:v) TMS 700MHz)Page S13

8. Figure S2. Blank experiments of NB/NSB reduction

Experiment section

Nitrobenzene and anthraquinone-2-sulfonic sodium are commercial products and are used without further purification. The reduction of NB to PHA is conducted in two separate areas: one for electrolysis and another for organic reaction. The solution of the electron mediator (0.1M AQSNa was dissolved by water with a water bath at 80°C) is placed in a cathode chamber and undergoes a constant current electro-reduction process (In an H-type cell: nafion117 proton exchange membrane, -0.025A/cm², 1M H₂SO₄ as anolyte; 0.1M AQSNa as catholyte, carbon plate as counter and reference electrode and carbon felt as working electrode, 3h with stirring only in cathode side) to get reduced mediator. Then, the reduced mediator reacts with NB (50 mM Nitrobenzene (MeCN: $H_2O = 1:1 v: v$) was prepared adding 510µL NB into a 100ml volumetric flask with 50ml MeCN and fill H₂O to volume) in the glass reactor under Ar atmosphere protection. The detailed procedures are: 1. Adding buffer solution/ H_2O into the reactor; 2. Replace air with Ar; 3. Adding reactant and reduced AQSH₂ into the reactor; 4. Adding 1M Na_2SO_4 and H_2O , then using 1ml CH_2Cl_2 for extraction 3 times; 5. Using nylon 66 filter membrane to collect organic phase into 2ml vial for further characterization.

1M buffer solutions consist of different salts and their acid, Table S1 shows the components of buffer solutions at different pH values.

For further investigation of the reaction mechanism, we replaced the buffer solution with 1ml H_2O and measured the conversion and selectivity of NB/NSB reduction reactions without buffer solutions under identical conditions respectively.

Table S2 shows a very low reactivity of NB without buffer solution, while NSB shows a high conversion to PHA without buffer solution. This result indicates that the reduction of NB to NSB is the rate determination step of the NB reduction reaction, and NSB will quickly react with AQSH₂ to form PHA.

Product analysis and characterization

The analysis of the products from the reduction of nitrobenzene was performed by HPLC (making standard curves with PHA, NSB, NB, AN standard sample (MeCN: H₂O = 1:1 v: v), AOB, AB (Pure MeCN are used to dissolve AOB and AB), and undergoes the same process as normal reactions for example: adding same amount of buffer solution, reactant and H₂O, but replaced reduced AQSH₂ with AQSNa for a similar extraction conditions). Conditions: mobile phase A: H₂O, mobile phase C: Methanol, flow rate 0.8 cm³/min. 0-20min Conc. C 40%; 20-40min Conc. C 65%; 40-50min Conc. C 40%. The conversion and Selectivity of reactions are calculated as follows formula: $Conversion (\%) = \frac{[NSB] + [PHA] + [AOB] * 2}{[NB] + [NSB] + [PHA] + [AOB] * 2} * 100\%$

Taking PHA selectivity as an example:

 $PHA Selectivity (\%) = \frac{[PHA]}{[NB] + [NSB] + [PHA] + [AOB] * 2} * 100\%$

The qualitative analysis of product PHA is performed by HPLC-MS and shown in Figure S1:

We did blank experiments with/without the electrochemistry: NB and NSB as reactants reacted with AQSNa (without electrochemistry)/AQSH₂ (with electrochemistry) (Figure S2) Reaction condition: Same with Fig. 2a.

We measured conversions of substituted nitrobenzene (Table S3). Due to the instability of substituted hydroxylamines, it is challenging to obtain their reference standards for quantitative analysis. Therefore, 1-methyl-3-nitrobenzene and 4-nitrophthalonitrile are selected for a scope of our off-field system. HPLC and ¹HNMR data of substituted nitrobenzene are shown in Figure S5-8.

Mechanism and reaction energy diagram

We carried out the CV analysis of AQSNa with and without NB at the selected pH. As the pH value increases, the ipa of AQSNa decreases, which indicates a stronger interaction between NB and mediator. (Figure S3)

We measured the apparent activation energy for the reduction of NB to PHA at 20, 30, 40, and 50 °C (without buffer solution to control these reactions at a lower conversion; NB/AQSH₂= 2.4; 400 rpm; 45 min). (Figure S4)

	НА	A-
pH=2	H ₃ PO ₄	KH ₂ PO ₄
pH=3-6	HAc	NaAc

Table S1. Components of different buffer solutions

pH=7–8	KH ₂ PO ₄	K ₂ HPO ₄
pH=10–12	K ₂ HPO ₄	K ₃ PO ₄

			11 h a 1 h a	
Table S2. Conversion and Selectivity	Y OT INB/INSB	reduction	without bui	tter solutions

		HPLC analysis (% selectivity)			
Reactant	Conversion (%)	РНА	NSB	AOB	NB
NB	3.0	92.0	8.0	0.0	-
NSB	97.5	97.4	-	2.5	0.1

Reaction conditions: Ar atmosphere; AQSH₂/NB molar ratio=2.4; AQSH₂/NSB molar

ratio=1.2; 1ml H₂O; 600rpm; 45min.

Table S3. The reduction of substituted nitrobenzene using \mbox{AQSH}_2 as electron mediator^a

Sample	Substrate	Product	Substrate conv. ^b /%	Product Yield ^b /%
1	NO N	HN,OH	98.1	96.1
2		N NH OH	99.8 HNMR data	99.6

Figure S1. MS spectrum of the product PHA

Figure S2. Blank experiments of NB/NSB reduction reactions (Reaction

conditions: room temperature; 1 M HAc/NaAc buffer solution (pH = 4.8). AQSH₂

is	replaced	by	AQSNa	in	the	blank	experiments.
		,					

Figure S3. CV curves of AQSNa at different pH with/without NB. a) pH=0; b)

pH=5; c) pH=7; d) pH=10. (concentration of AQSNa and NB is 10 mM, the

concentration of different pH buffer is 100 mM; scan rate= 0.01 V/s) A glassy

carbon electrode employed as the working electrode, a 2 * 2 cm² Pt plate

serving as the counter electrode, and a saturated calomel electrode as the

reference electrode

Figure S4. Apparent activation energy for the reduction of NB to PHA

Figure S5. HPLC-MS spectrum of 1-methyl-3-nitrobenzene after reaction **N-(m-tolyl)hydroxylamine** $\delta_{\rm H}$ (700 MHz, CDCl₃; Me₄Si) 7.12 (t, J = 7.7 Hz, 1H), 6.70 – 6.84 (m, 3H), 2.31 (s, 3H).

Figure S6. ¹HNMR result of 1-methyl-3-nitrobenzene after reaction (CDCl₃ with 1% (v:v) TMS 700MHz)

Figure S7. HPLC-MS spectrum of 4-nitrophthalonitrile after reaction

4-(hydroxyamino)phthalonitrile δ_H (700 MHz, CDCl₃; Me₄Si) 7.76 (s,

1H), 7.61 (d, J = 8.7 Hz, 1H), 7.29 (d, J = 2.2 Hz, 1H), 7.14 (dd, J = 8.7,

2.2 Hz, 1H).

Figure S8. ¹HNMR result of 4-nitrophthalonitrile after reaction (CDCl₃ with 1% (v:v) TMS 700MHz)