Electronic Supporting Information

[(TMEDA)Li(µ-PPh₂)₂K(TMEDA)(THF)]: a heterobimetallic molecular lithium-potassium phosphide complex

Michelle H. Crabbe, Danielle O'Meara, Alan R. Kennedy, Catherine E. Weetman and Robert E. Mulvey

Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK E-mail: catherine.weetman@strath.ac.uk and r.e.mulvey@strath.ac.uk

Table of Contents

1. I	Experimental	2
1.1	General Methods and Instruments	2
1.2	Synthesis and Characterisation	3
ŀ	KPPh ₂	3
[$(TMEDA)Li(\mu-PPh_2)_2K(TMEDA)(THF)](1) - toluene-d_8$	5
[$(TMEDA)Li(\mu-PPh_2)_2K(TMEDA)(THF)](1) - benzene-d_6$	9
1	H DOSY NMR for [(TMEDA)Li(μ -PPh ₂) ₂ K(TMEDA)(THF)] (1) – toluene-d ₈	12
[$LiPPh_2(TMEDA)]_2 - toluene-d_8 and THF$	14
[$[KPPh_2(TMEDA)]_n - toluene-d_8 and THF$	16
2. 8	Single Crystal X-Ray Crystallography (SC-XRD)	20
2.1	General Crystallographic Information	20
2.2	Selected Bond Lengths and Angles	21
2.3	Low Hapticity Analysis	22
3. (Catalytic Hydrophosphination	23
3.1	Hydrophosphination of 1,1-DPE Using 1	23
3.2	Hydrophosphination of 1,1-DPE Using 5 mol% 1	25
3.3	Hydrophosphination of 1,1-DPE Using [LiPPh ₂ (TMEDA)] ₂	27
3.4	Hydrophosphination of 1,1-DPE Using [LiPPh2(TMEDA)]2 and THF	29
3.5	Hydrophosphination of 1,1-DPE Using [KPPh ₂ (TMEDA)] _n	31
3.6	Hydrophosphination of 1,1-DPE Using $[KPPh_2(TMEDA)]_n$ with THF	33
3.7	Hydrophosphination Dehydrocoupling Control with 1	35
4. (Computational Details	36
4.1	QTAIM Analysis	37
4.2	NMR Calculations	38
4.3	Reaction Energy Profiles	39
5. I	References	40

Experimental General Methods and Instruments

All synthetic procedures were performed under inert gas (N2 or argon) using standard Schlenk techniques1 or an Innovative Technology PureLab HE glovebox. Prior to use, all glassware was heated thrice under vacuum. Ground glass joints were coated with IKV Tribology high temperature fluorinated grease. Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich, Fluorochem, Thermo Fisher or Alfa Aesar and used as received. THF, n-hexane and toluene were dried and dispensed by an Innovative Technology Solvent Purification System. TMEDA was dried over CaH₂, distilled under N₂ and stored over activated 4 Å molecular sieves. All solvents including benzene-d₆ and toluene-d₈ were stored over activated 4 Å molecular sieves for a minimum of 24 h prior to use. $LiPPh_2^2$ and $KN(SiMe_3)_2^3$ were synthesised according to literature procedures. NMR samples were prepared in an argon filled glovebox, and all NMR spectra were recorded on a Bruker AV400 spectrometer operating at 400.1 MHz (1H), 100.6 MHz (13C), 162.0 MHz (31P) or 155.5 MHz (7Li) and measured at 300 K. ¹³C spectra were ran ¹H decoupled. Chemical shifts are reported in parts per million (δ, ppm). ¹H NMR chemical shifts are referenced to residual proton resonances of the corresponding deuterated solvent. ¹³C NMR chemical shifts are reported relative to TMS (tetramethylsilane) using the carbon resonances of the deuterated solvent. ³¹P NMR spectra are referenced relative to 85% H₃PO₄ in D₂O. ⁷Li NMR spectra are referenced relative to LiCl in D_2O . Signal multiplicities have been described using common abbreviations as follows: s (singlet), d (doublet), t (triplet), m (multiplet) and tt (triplet of triplets).

1.2 Synthesis and Characterisation

KPPh₂

Synthesis was based on an amended literature procedure.⁴ HPPh₂ (0.48 mL, 2.76 mmol) was dissolved in hexane (15 mL) which gave a colourless solution, then $KN(SiMe_3)_2$ (0.56 g, 2.80 mmol) was added. An orange precipitate formed immediately, and the mixture was stirred at room temperature for 15 minutes. The solid was isolated *via* filtration, triturated with toluene (5 mL) and hexane (2 x 5 mL) and dried under reduced pressure to give the product as an orange powder, 0.56 g, yield = 83%. An NMR sample was prepared by suspending the product in 0.5 mL toluene-d₈ and adding THF (0.06 mL).

¹**H** NMR (toluene-d₈, 300 K) $\delta_{\rm H}$ (ppm): 7.70 (t, 2H, $H_{\rm Ar}$, ³ $J_{\rm HH}$ = 6.66 Hz); 6.95 (t, 2H, $H_{\rm Ar}$, ³ $J_{\rm HH}$ = 7.54 Hz); 6.68 (t, 1H, $H_{\rm Ar}$, ³ $J_{\rm HH}$ = 7.22 Hz).

¹³C{¹H} NMR (toluene-d₈) δ_{C} (ppm): 154.8 (d, C_{Ar} , ¹ J_{C-P} = 45.0 Hz, 129.6 (d, C_{Ar} , ² J_{C-P} = 17.7 Hz), 128.5 (d, C_{Ar} , ³ J_{C-P} = 5.28 Hz), 120.3 (C_{Ar}).

Figure S1 ¹H NMR spectrum of KPPh₂ in toluene-d₈. THF (*) and small amounts of toluene and HMDS(H) are also present.

Figure S2 ${}^{13}C{}^{1}H$ NMR spectrum of KPPh₂ in toluene-d₈. THF (*) and a small amount of HMDS(H) are also present.

Figure S3 ³¹P NMR spectrum of KPPh₂ in toluene-d₈. A small amount of Ph₂P(OK) (-85 ppm) is also present.

$[(TMEDA)Li(\mu-PPh_2)_2K(TMEDA)(THF)](1) - toluene-d_8$

LiPPh₂ (0.192 g, 1 mmol) and KPPh₂ (0.224 g, 1 mmol) were suspended in toluene (10 mL) and stirred for 1 hour. To this suspension, TMEDA (0.28 mL, 2 mmol, 2 eq.) and THF (1 mL, 12 eq.) were added. The solvent was removed from the resulting orange solution under reduced pressure to give an orange oil. Hexane (40 mL) was added and the mixture for sonicated for 1h, resulting in an orange solid and yellow supernatant. The mixture was filtered and the solid dried under reduced pressure to give the product as an orange powder, crude yield = 0.52 g, 72 %. In an attempt to grow crystals, a suspension of the orange powder in toluene and THF was heated at 110 °C for 5 minutes, and then the resulting solution was cooled at -30 °C for 48 h. From this, orange crystals suitable for X-ray crystallographic study were obtained. An NMR sample was prepared by suspending the product in 0.5 mL toluene-d₈ and adding THF (0.05 mL).

¹**H** NMR (toluene-d₈, 300 K) $\delta_{\rm H}$ (ppm): 7.77 (t, 4H, $H_{\rm Ar}$, ³ $J_{\rm HH}$ = 6.65 Hz); 7.02 (t, 4H, $H_{\rm Ar}$, ³ $J_{\rm HH}$ = 7.50 Hz); 6.73 (tt, 2H, $H_{\rm Ar}$, ³ $J_{\rm HH}$ = 1.17 Hz, ³ $J_{\rm HH}$ = 7.22 Hz); 2.11 (s, 4H, CH_2); 2.03 (s, 12H, CH_3).

¹³C{¹H} NMR (toluene-d₈) δ_{C} (ppm): 155.0 (d, C_{Ar} , ¹ J_{C-P} = 42.9 Hz), 130.1 (d, C_{Ar} , ² J_{C-P} = 17.3 Hz), 128.0 (C_{Ar}), 120.2 (C_{Ar}), 57.9 (CH_2), 45.9 (CH_3).

³¹**P** NMR (toluene-d₈) δ_P (ppm): -20.7.

⁷Li NMR (toluene-d₈) δ_{Li} (ppm): 1.37.

Figure S4 ¹H NMR spectrum of 1 in toluene-d₈. Note THF (*) and TMS (0 ppm).

Figure S6 ³¹P NMR spectrum of 1 in toluene-d₈. Trace amounts of Ph₂P(OLi) and Ph₂P(OK)(*) are also present.^{5,6}

Figure S7 ⁷Li NMR spectrum of 1 in toluene-d₈. Trace amounts of LiPPh₂(THF)₂ and Ph₂P(OLi) (*) are also present.

Figure S9 Variable temperature ¹H NMR spectra of 1 in toluene-d₈, only showing 0-4ppm for the TMEDA coordination.

Figure S10 Variable temperature ³¹P NMR spectra of 1 in toluene-d₈. Trace amounts of LiPPh₂ (*) are also present.

$[(TMEDA)Li(\mu-PPh_2)_2K(TMEDA)(THF)](1)$ - benzene-d₆

¹**H** NMR (benzene-d₆, 300 K) $\delta_{\rm H}$ (ppm): 7.82 (m, 4H, $H_{\rm Ar}$); 7.05 (m, 4H, $H_{\rm Ar}$); 6.77 (tt, 2H, $H_{\rm Ar}$, ⁴ $J_{\rm HH}$ = 1.17 Hz, ³ $J_{\rm HH}$ = 7.22 Hz); 2.01 (s, 4H, CH_2); 1.97 (s, 12H, CH_3).

¹³C{¹H} NMR (benzene-d₆) δ_{C} (ppm): 154.9 (d, C_{Ar} , ${}^{1}J_{C-P} = 42.1$ Hz), 130.2 (d, C_{Ar} , ${}^{2}J_{C-P} = 17.16$ Hz), 128.0 (C_{Ar}), 120.3 (C_{Ar}), 57.6 (CH₂), 45.9 (CH₃).

³¹**P** NMR (benzene-d₆) δ_P (ppm): -21.2.

⁷Li NMR (benzene-d₆) δ_{Li} (ppm): 1.48.

Figure S11 ¹H NMR spectrum of 1 in benzene-d₆. Note THF (*) and small amount of hexane.

¹H DOSY NMR for [(TMEDA)Li(µ-PPh₂)₂K(TMEDA)(THF)] (1) – toluene-d₈

2D ¹H Diffusion-Ordered Spectroscopy (DOSY) spectra were recorded on a Bruker AV400 spectrometer operating at 400.1 MHz for ¹H and measured at 300 K. A 0.1M solution of **1** in 0.5 mL toluene-d₈ and 0.05 mL THF was prepared with the addition of TMS (13.6 μ L, 0.1 mmol) as an internal standard. An estimate of the molecular weight (MW) of the species in solution was obtained *via* comparison of the diffusion coefficients of **1** and internal standard TMS to external calibration curves (ECCs) with normalised diffusion coefficients.^{7,8} The ECCs for molecules which diffuse like compact spheres (CS), dissipated spheres and ellipsoids (DSE), extended discs (ED) and a merge of all three were utilised. For species with multiple ¹H signals, the average diffusion coefficient was taken. The accuracy of this estimation is in the range of MW_{dif} ± 9 %.^{7,8}

Fable S1 Diffusion coefficients and corr	esponding data parameters from 2	D ¹ H DOSY NMR of 1 in tol	luene-d8
---	----------------------------------	--	----------

Peak Name	F2 (ppm)	lo	error	$D (m^2 s^{-1})$	error	log D
1 LiK	7.781	4.92E+09	7.136E+06	4.98E-10	1.630E-12	-9.30277

2 LiK	7.029	4.68E+09	9.046E+06	4.96E-10	2.164E-12	-9.30452
3 LiK	6.746	2.07E+09	8.638E+06	4.88E-10	4.602E-12	-9.31158
4 THF	3.535	1.41E+09	5.967E+06	1.96E-09	1.798E-12	-8.70774
5 TMEDA	2.115	5.23E+09	6.349E+06	1.13E-09	3.022E-12	-8.94692
6 TMEDA	2.009	2.08E+10	4.091E+07	1.13E-09	4.918E-12	-8.94692
7 THF	1.494	1.40E+10	3.942E+07	1.90E-09	1.163E-11	-8.72125
8 TMS	0.007	8.81E+08	1.024E+07	1.83E-09	4.711E-11	-8.73755
LiK (avg)	—	_	_	4.94E-10	_	-9.30629
TMEDA (avg)	_	_	_	1.13E-09	_	-8.94692
THF (avg)	—	_	_	1.93E-09	_	-8.71450

 $Table \ S2 \ \text{MW} \ \text{and} \ \text{MW}_{\text{DOSY}} \ \text{for potential species in 1 and the calculated deviation from their theoretical MW (MW_{dif}).}$

Species	MW (g mol ⁻¹)	ECC	MW _{DOSY} (g mol-	$\mathbf{MW}_{dif}(\%)$
LiK(PPh ₂) ₂	416	DSE	874	-52
LiK(PPh ₂) ₂ (TMEDA) ₂ (THF	721	DSE	874	-18
LiK(PPh ₂) ₂ (TMEDA) ₂ (THF	865	DSE	874	-1
[LiPPh ₂ (TMEDA)] ₂	616	DSE	874	-30
[KPPh ₂ (TMEDA)] ₂	682	DSE	874	-22
TMEDA (avg)	116	DSE	227	-49
THF (avg)	72	CS	82	-12
	1		I	1

The data in tables S1 and S2 show the LiK species in solution has a higher experimental MW_{DOSY} (874 g mol⁻¹) than the theoretical value of the LiK(PPh₂)₂(TMEDA)₂(THF) crystal structure (721 g mol⁻¹). This suggests the dynamic exchange of THF and TMEDA. This equilibrium shows it is difficult to accurately state which species are present but the plausible addition of 2 THF ligands in solution gives a MW_{DOSY} very close to the theoretical (865 g mol⁻¹, MW_{dif} = -1%). It can be deduced from figure **S10** that the LiK(PPh₂)₂ core is retained in solution. The calculated MW_{DOSY} for the TMEDA and THF species in solution are higher (227 and 82 g mol⁻¹) than their theoretical values (116 and 72 g mol⁻¹) which further backs up and suggests an equilibrium in solution where THF and TMEDA ligands are fluxional.

[LiPPh₂(TMEDA)]₂ - toluene-d₈ and THF

Synthesised *in situ* on an NMR scale. LiPPh₂ (19.2 mg, 0.1 mmol) was suspended in benzene-d₆ (0.5 mL), then TMEDA (28 μ L, 0.2 mmol, 2 eq) was added, forming a yellow solution. THF (0.1 mmol) was added to replicate the solvent mixture used to solubilise **1**.

¹**H NMR** (benzene-d₆, 300 K) $\delta_{\rm H}$ (ppm): 7.82 (m, 4H, $H_{\rm Ar}$); 7.09 (m, 4H, $H_{\rm Ar}$); 6.83 (tt, 2H, $H_{\rm Ar}$, ⁴ $J_{\rm HH}$ = 1.23 Hz, ³ $J_{\rm HH}$ = 7.20 Hz); 2.02 (s, 5H, CH_2); 2.00 (s, 15H, CH_3). ³¹**P NMR** (benzene-d₆) $\delta_{\rm P}$ (ppm): -26.0.

⁷Li NMR (benzene-d₆) δ_{Li} (ppm): 1.16.

Figure S16 ¹H NMR spectrum of [LiPPh₂(TMEDA)]₂ in benzene-d₆. Note a small amount of hexane and 1,1-diphenylethylene (5.25 ppm).

Figure S18 ⁷Li NMR spectrum of [LiPPh₂(TMEDA)]₂ in benzene-d₆.

¹H DOSY NMR for $[LiPPh_2(TMEDA)]_2$ – toluene-d₈

Figure S19 ¹H DOSY NMR spectrum of [LiPPh₂(TMEDA)]₂ in toluene-d₈.

Table S3 Diffusion coefficients and corresponding data parameters from 2D 1 H DOSY NMR of[LiPPh2(TMEDA)]2 in toluene-d8

Peak Name	F2 (ppm)	$D (m^2 s^{-1})$	error	log D
1 LiPPh ₂	7.816	6.47E-10	5.751E-12	-9.18910
2 LiPPh ₂	7.116	6.38E-10	6.369E-12	-9.19518
3 LiPPh ₂	6.859	6.47E-10	2.084E-11	-9.18910
4 THF	3.563	2.14E-09	4.285E-11	-8.66959
5 TMEDA	2.116	1.35E-09	1.800E-10	-8.86967
6 TMEDA	2.043	1.22E-09	1.302E-11	-8.91364
7 THF	1.492	1.94E-09	5.259E-11	-8.71220
8 TMS	0.019	1.78E-09	5.720E-11	-8.74957
LiK (avg)	-	4.94E-10	_	-9.19111
TMEDA (avg)	-	1.13E-09	_	-8.89110
THF (avg)	_	1.93E-09	_	-8.69036

Species	MW (g mol ⁻¹)	ECC	MW _{DOSY} (g mol ⁻	MW _{dif}
[LiPPh ₂ (TMEDA)] ₂	616	CS	693	-11
[LiPPh ₂ (TMEDA)] ₂	616	Merge	571	8
[LiPPh ₂ (TMEDA)] ₂	616	DSE	542	14
TMEDA (avg)	116	DSE	176	-34
THF (avg)	72	CS	70	3

[KPPh₂(TMEDA)]_n - toluene-d₈ and THF

Synthesised *in situ* on an NMR scale. $KPPh_2$ (22.4 mg, 0.1 mmol) was suspended in benzene-d₆ (0.5 mL), then TMEDA (28 µL, 0.2 mmol, 2 eq) was added, forming a amber solution. THF (0.1 mmol) was added to replicate the solvent mixture used to solubilise **1**.

¹**H NMR** (benzene-d₆, 300 K) $\delta_{\rm H}$ (ppm): 7.79 (m, 4H, $H_{\rm Ar}$); 7.00 (t, 4H, $H_{\rm Ar}$, ³ $J_{\rm HH}$ = 7.46 Hz); 6.71 (m, 2H, $H_{\rm Ar}$); 2.20 (s, 5H, C H_2); 2.03 (s, 15H, C H_3).

Figure S20 ¹H NMR spectrum of [KPPh₂(TMEDA)]_n in benzene-d₆. Note small amounts of hexane and HMDS(H) (0.1 ppm).

Figure S21 ¹H NMR spectrum of $[KPPh_2(TMEDA)]_n$ in benzene-d₆. Note small amounts byproducts including Ph₂P(OK) (85.5 ppm), HPPh₂ (-40.8 ppm) and an unidentified product (-4.6 ppm).

¹H DOSY NMR for [KPPh₂(TMEDA)]_n – toluene-d₈

Table S4 Diffusion	coefficients and	corresponding	data parameters	from 2D	$^{1}\mathrm{H}\mathrm{DOSY}$	NMR of
[KPPh ₂ (TMEDA)] _n	in toluene-d ₈		_			

Peak Name	F2 (ppm)	lo	error	$D (m^2 s^{-1})$	error	log D
1 KPPh ₂	7.776	2.08E+08	4.176E+05	4.32E-10	1.949E-12	-9.36452
2 KPPh ₂	6.994	2.08E+08	2.993E+05	4.38E-10	1.411E-12	-9.35852
3 KPPh ₂	6.708	9.46E+07	7.137E+05	4.27E-10	7.234E-12	-9.36957
4 THF	3.554	5.13E+08	6.770E+05	2.12E-09	5.993E-12	-8.67366
5 TMEDA	2.261	4.59E+08	7.252E+06	1.44E-09	4.926E-11	-8.84164
6 TMEDA	2.087	1.43E+09	1.849E+07	1.45E-09	4.056E-11	-8.83863
7 THF	1.504	5.23E+08	1.687E+06	2.15E-09	1.478E-11	-8.66756
8 TMS	0.020	1.48E+08	4.619E+05	1.94E-09	1.299E-11	-8.71220
KPPh ₂ (avg)	-	-	-	4.32E-10	-	-9.36421
TMEDA	-	-	-	1.45E-09	-	-8.84013
THF (avg)	-	-	-	2.14E-09	-	-8.67060

Species	MW (g mol ⁻¹)	ECC	MW _{DOSY} (g mol-	\mathbf{MW}_{dif}
[KPPh ₂ (TMEDA)] ₂	682	DSE	1195	-43
[KPPh ₂ (TMEDA)] ₃	1023	DSE	1195	-14
[KPPh ₂ (TMEDA)] ₄	1364	DSE	1195	14
TMEDA (avg)	116	DSE	167	-31
THF (avg)	72	CS	76	-5

2. Single Crystal X-Ray Crystallography (SC-XRD)

2.1 General Crystallographic Information

Crystallographic data were measured with a Rigaku Synergy-I diffractometer using monochromated (λ = 1.54184 Å) Cu-K α radiation. Crystals were layered with perfluoropolyalkylether oil prior to mounting on the X-ray diffractometer. All data was collected at 100K and processed with CrysAlisPro⁹ software. Structures were solved using the ShelXT¹⁰ program and refined to convergence against F^2 and all reflections with ShelXL-2018¹¹; both with the software Olex2.¹²

Parts of the structure of compound 1 was treated as disordered over two sites one THF ligand and one TMEDA $[(CH_3)_2NCH_2CH_2N(CH_3)_2]$ ligand were disordered. Appropriate restraints and constraints were applied to these disordered groups to ensure that they approximated to normal geometric and displacement behaviours. Selected crystallographic data and refinement parameters are presented in table S3 and full details are available in cif format from the CCDC as deposition number 2434958.

Table S5. Selected Crystallographic and Refinement Parameters.

Compound	1
CCDC Identifier	2434958
Empirical formula	KLiP ₂ ON ₄ C ₄₀ H ₆₀
Formula weight	720.90
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	12.0377(1)
b/Å	12.2718(1)
c/Å	14.9623(1)
α/\circ	90.125(1)
β/°	107.078(1)
γ/°	100.987(1)
Volume/Å ³	2070.12(3)
Z	2
$\rho_{calc}g/cm^3$	1.157
μ/mm^{-1}	2.106
F(000)	776
2Θ range for data collection/°	6.192 to 145.88
Reflections collected	41792
Independent reflections	8218
Rint	0.0394
Data/restraints/parameters	8218/218/534
Goodness-of-fit on F ²	1.051
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0391, wR_2 = 0.1085$
Final R indexes [all data]	$R_1 = 0.0400, wR_2 = 0.1093$
Largest diff. peak/hole / e Å ⁻³	0.621/-0.424

2.2 Selected Bond Lengths and Angles

 $1-[LiK(PPh_2)_2(TMEDA)_2(THF)]$

Table S6 Selected Bond Parameters of 1.

N2 Li1 N1 P2 C13 O1 P2 C13 O1 P2 C13 O1 P2 C13 O1 P2 C13 O1 P2 C13 O1 P2 C13 O1 P1							
Selected Bor	nd Lengths (A)		Selected Bon	d Angles (°)			
L11–P1	2.602(2)	P2–L11–P1	116.36(9)	N3–K1–N4	64.26(10)		
Li1–P2	2.599(3)	N1–Li1–P1	115.80(11)	N3-K1-C7	144.08(6)		
Li1–N1	2.130(3)	N1–Li1–P2	108.68(10)	N3-K1-C8	138.40(6)		
Li1–N2	2.126(3)	N2–Li1–P1	106.57(10)	N4-K1-P1	117.00(11)		
K1–P1	3.4466(5)	N2–Li1–P2	117.94(11)	N4-K1-P2	151.04(10)		
K1–P2	3.2419(4)	N2-Li1-N1	88.58(10)	N4-K1-C7	108.35(10)		
K1-N3	2.839(2)	P2-K1-P1	82.649(11)	N4-K1-C8	84.98(10)		
K1-N4	2.906(10)	P2-K1-C7	99.18(3)	C7-K1-P1	31.15(3)		
K1–O1	2.6892(14)	O1–K1–P1	138.36(4)	C8-K1-P1	51.49(3)		
K1–C7	3.2983(14)	O1–K1–P2	93.48(3)	C8-K1-P2	123.51(3)		
K1–C8	3.1566(14)	O1-K1-N3	103.60(7)	C8-K1-C7	25.06(4)		
P1C1	1.8286(15)	O1-K1-N4	85.13(10)	K1–P1–Li1	77.99(6)		
P1-C7	1.8168(14)	O1–K1–C7	110.90(4)	C7–P1–C1	103.20(6)		
P2-C13	1.8244(15)	O1–K1–C8	100.73(4)	K1–P2–Li1	81.99(6)		
P2-C19	1.8127(14)	N3-K1-P1	117.62(6)	C19–P2–C13	105.05(7)		
C7–C8	1.407(2)	N3-K1-P2	88.18(4)	C8–C7–P1	126.11(11)		

Li–P and K–P distances exceed the sum of their covalent radii $[Li–P = 2.44 \text{ Å}; \text{K}–P = 3.07 \text{ Å}]^{13}$ but are within vdW radii $[Li–P = 3.61 \text{ Å}; \text{K}–P = 4.55 \text{ Å}]^{.14}$

2.3 Low Hapticity Analysis

For a six-carbon aryl ring there is an idealised position for where a metal coordinating to it sits, depending on hapticity η^1 through to η^6 .

Figure S23 Plan projection of the idealised positions according to η^n hapticites for n = 1 - 6; and the definitions of d_1 , d_2 and d_3 according to the position of the metal. It can be difficult to quantify and classify lower hapticity $(\eta^1 - \eta^3)$ aryl interactions, however a systematic method has been developed by Alvarez and co-workers.¹⁵ This is done by taking the three shortest M– C distances $(d_1, d_2 \text{ and } d_3, \text{ where } d_1 < d_2 < d_3)$ and deriving two ratios from these values: ρ_1 and ρ_2 . The relation of ρ_1 and ρ_2 dictates the hapticity of the π coordination such that η^1 hapticity is consistent with $\rho_1 \approx \rho_2 \gg 1$, η^2 when $d_1 \approx d_2 < d_3$ and $\rho_1 > \rho_2 \approx 1$, and η^3 when $d_1 \approx d_2 \approx d_3$ and $\rho_1 \approx \rho_2 \approx 1$. Applying their criteria for a geometric analysis of **1** and to reinforce the crystallographic evidence of a η^2 interaction, the calculated ρ_1 (1.04) and ρ_2 (1.25) values predicts that K1 exhibits η^2 coordination to the π system.

Table S7 K1–C bond lengths and the calculated ρ_1 and ρ_2 for **1**.

3. Catalytic Hydrophosphination

3.1 Hydrophosphination of 1,1-DPE Using 1

Figure S24 Stacked ¹H NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by 1 over time. Adamantane (0.035 mmol) was added as internal standard to calculate conversion. For solubility, 0.06 mL THF was added. Purple star = catalyst, green star = 1,1-diphenylethylene, black star = product.

before HPPh₂ addition

-90 -100 ppm 80 70 -10 -30 -40 -50 -60 100 30 10 Ó 90 50 40 20 -20 -70 60 -80 **Figure S25** Stacked ³¹P NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by 1 over time. Purple star = catalyst, orange star = HPPh₂, black star = product.

3.2 Hydrophosphination of 1,1-DPE Using 5 mol% 1

Figure S26 Stacked ¹H NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by 1 over time. Adamantane (0.039 mmol) was added as internal standard to calculate conversion. For solubility, 0.06 mL THF was added. Purple star = catalyst.

Figure S27 Stacked ³¹P NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by 1 over time. Note a small amount of Ph_2P-PPh_2 (-14.6 ppm). Purple star = catalyst, orange star = HPPh₂, black star = product.

3.3 Hydrophosphination of 1,1-DPE Using [LiPPh₂(TMEDA)]₂

Figure S28 Stacked ¹H NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by $[LiPPh_2(TMEDA)]_2$ over time. Adamantane (0.044 mmol) was added as internal standard to calculate conversion. Purple star = catalyst, green star = 1,1-diphenylethylene, orange star = HPPh₂, black star = product.

before HPPh₂ addition

Figure S29 Stacked ³¹P NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by $[LiPPh_2(TMEDA)]_2$ over time. Note a small amount of Ph_2P-PPh_2 present at -14.6 ppm. Purple star = catalyst, orange star = HPPh₂, black star = product.

3.4 Hydrophosphination of 1,1-DPE Using [LiPPh₂(TMEDA)]₂ and THF

Figure S30 Stacked ¹H NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by $[LiPPh_2(TMEDA)]_2$ over time. Adamantane (0.049 mmol) was added as internal standard to calculate conversion. Purple star = catalyst, green star = 1,1-diphenylethylene, orange star = HPPh₂, black star = product.

Figure S31 Stacked ³¹P NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by $[LiPPh_2(TMEDA)]_2$ over time. Note a small amount of Ph₂P-PPh₂ present at -14.6 ppm. Purple star = catalyst, orange star = HPPh₂, black star = product.

3.5 Hydrophosphination of 1,1-DPE Using [KPPh₂(TMEDA)]_n

Figure S32 Stacked ¹H NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by $KPPh_2(TMEDA)$ over time. Adamantane (0.047 mmol) was added as internal standard to calculate conversion. Note small amount of HMDS(H) at 0.1 ppm. Purple star = catalyst, green star = 1,1-diphenylethylene, orange star = HPPh_2, black star = product.

Figure S33 Stacked ³¹P NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by $[KPPh_2(TMEDA)]_n$ over time. Orange star = HPPh₂, black star = product.

3.6 Hydrophosphination of 1,1-DPE Using $[KPPh_2(TMEDA)]_n$ with THF

Figure S34 Stacked ¹H NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by $KPPh_2(TMEDA)$ over time. Adamantane (0.041 mmol) was added as internal standard to calculate conversion. Note small amount of HMDS(H) at 0.1 ppm. Purple star = catalyst, green star = 1,1-diphenylethylene, black star = product.

before HPPh₂ addition

Figure S35 Stacked ³¹P NMR spectra of the catalytic hydrophosphination reaction of 1,1-diphenylethylene by $[KPPh_2(TMEDA)]_n$ over time. Note a small amount of Ph_2P-PPh_2 present at -14.6 ppm. Purple star = catalyst, black star = product.

3.7 Hydrophosphination Dehydrocoupling Control with 1

Figure S36 ³¹P NMR stacked plot of the catalytic dehydrocoupling of HPPh₂ over time. Orange star = HPPh₂, purple star = catalyst, red star = Ph_2P-PPh_2 . A small amount of PPh₃ is also present.

Figure S37 ${}^{31}P$ NMR spectrum of reaction of 1,1-diphenylethylene with 1. A small quantity of Ph₂POH (30 ppm) is also present.

4. Computational Details

All quantum chemical calculations were carried out using the Gaussian16 package.¹⁶ The molecular structure optimisations were performed using the M06-2X¹⁷, B3LYP¹⁸ and BP86¹⁹ functionals along with the 6-311+G(d,p) basis set. Each stationary point was identified by a subsequent frequency calculation as minimum (Number of imaginary frequencies NIMAG: 0).

	XRD	MO62x	B3LYP	BP86
Li-P1	2.6017	2.5586	2.6213	2.6106
Li-P2	2.5993	2.5549	2.6290	2.6251
LiK	3.8623	3.7570	4.0531	4.0320
K-P1	3.4467	3.2775	3.4057	3.3741
K-P2	3.2418	3.2392	3.3900	3.3773
Average Devie	ation from XRD	0.073	-0.069	-0.053

	Table S8.	Comp	arison	ofo	ptimised	geometries	using	different	function	als for	LiK.THI
--	-----------	------	--------	-----	----------	------------	-------	-----------	----------	---------	---------

BP86 provided the overall best estimate in comparison to the experimental data and therefore was used as the functional throughout the rest of the study. Homometallic compounds [LiPPh₂(TMEDA)]₂ and [KPPh₂(TMEDA)]₂ were also modelled with and without one molecule of coordinated THF in line with the experimental data.

Figure S38. Computed models at the BP86/6-311+G(d,p) level of theory for homo and heterometallic compounds, with and without THF coordination.

4.1 QTAIM Analysis

Quantum Theory of Atoms in Molecules (QTAIM) topological analysis of the electron densities of structures **LiK.THF** were computed with AIMAll professional (version 19.10.12)²⁰ using wavefunction files obtained with Gaussian 16 (C.01) at the BP86/6-311+G(d,p) level. Contour plots were generated in the AIMStudio package.

Figure S39. Laplacian $(\nabla^2 \rho(r))$ plot of **LiK.THF Table S9.** BCP and atomic AIM data for **LiK.THF**

	ρ(r)	∇ ² ρ(r)	3	H (r)
Li2-P4	0.016249	+0.057698	0.096353	0.001036
Li2-P3	0.014847	+0.058696	0.161462	0.001570
K1-P3	0.010882	+0.029865	0.042726	0.000860
K1-P4	0.009869	+0.029266	0.183605	0.001092

4.2 NMR Calculations

Chemical shifts and coupling constants were derived by the GIAO method.^{21–25} 31P NMR calculations were performed according to the method outlined by Schulz.²⁶ The calculated absolute shifts of 31P nuclei ($\sigma_{calc,X}$) were referenced to the experimental absolute shift of 85 % H₃PO₄ in the gas phase ($\sigma_{ref,1}$ = 328.35 ppm),²⁷ using PH₃ ($\sigma_{ref,2}$ = 594.45 ppm) as a secondary standard.²⁸ $\delta_{calc,X}$ was determined according to the following formula:

$$\delta_{\text{calc},X} = (\sigma_{\text{ref},1} - \sigma_{\text{ref},2}) - (\sigma_{\text{calc},X} - \sigma_{\text{calc},PH3})$$
$$\delta_{\text{calc},X} = \sigma_{\text{calc},PH3} - \sigma_{\text{calc},X} - 266.1 \text{ ppm}$$

Following determination of $\delta_{calc,X}$ a correction was applied ($\delta_{calc,X}$). This was determined by creating a calibration curve of experimental vs. calculated ³¹P chemical shifts and applying the correction.

Calculations were performed at the M06L²⁹/6-311g(2d,p) level of theory, on the optimised structures calculated at the BP86/6-311g(2d,p) level. Calculations were performed in the absence of a solvent model, and with THF and toluene solvent models (SMD).

	31P calculated values $\delta_{calc,corr}$					
	Experimental*	Gas phase	THF	Toluene		
LiLi	-25.5	-23.6	-24.1	-23.6		
LiK	-20.6	-22.7	-23.5	-22.8		
KK	-15.7	-15.5	-16.6	-15.7		

Table S10. Calculated ³¹P NMR shifts for models with non-coordinated THF

* Data collected in Tol-d₈ with 0.1mL of THF-H₈

4.3 Reaction Energy Profiles

Energy profiles for the exchange reaction of computed models for LiLi and KK resulting in formation of LiK. The reaction energies were calculated in the gas phase and in both toluene and THF solvent at two different levels of theory. Both indicate equilibrium processes with M062x, which considers dispersion interactions, indicating favourable formation of LiK.

Table S11. Calculated reaction enthalpies and entropies for the formation of LiK

	BP86/6-3	11g(2d,p)	M062x/6-311g(2d,p)		
	$\Delta H_{rel}(kcal mol^{-1}) \Delta G_{rel}(kcal mol^{-1})$		ΔH_{rel} (kcal mol ⁻¹)	ΔG_{rel} (kcal mol ⁻¹)	
Gas Phase	-1.07	+1.57	-8.65	-6.54	
Toluene	+0.26	+2.90	-6.92	-4.80	
THF	+0.05	+2.70	-7.26	-5.15	

Table S12. Electronic Energies in Hartrees for BP86/6-311+g(d,p) level of theory

		BP86/6-311+g(d,p)				
	Compound	Е	H_{corr}	G _{corr}		
	LiLi	-2320.4369930	-2319.5950530	-2319.7395270		
Gas phase	LiK	-2912.8878621	-2912.0474051	-2912.1971981		
	KK	-3505.3369603	-3504.4980463	-3504.6573713		
	LiLi	-2320.4759375	-2319.6339975	-2319.7784715		
Toluene	KK	-2912.9260373	-2912.0855803	-2912.2353733		
	LiK	-3505.3764968	-3504.5375828	-3504.6969078		
	LiLi	-2320.4785974	-2319.6366574	-2319.7811314		
THF	KK	-2912.9289642	-2912.0885072	-2912.2383002		
	LiK	-3505.3793565	-3504.5404425	-3504.6997675		

 Table S10.
 Electronic Energies in Hartrees for M062x/6-311+g(d,p) level of theory

		M062x/6-311+g(d,p)				
	Compound	Е	H_{corr}	G _{corr}		
	LiLi	-2319.7002414	-2318.8257634	-2318.8257634		
Gas phase	LiK	-2912.0872779	-2911.2145229	-2911.2145229		
	KK	-3504.4608143	-3503.5894923	-3503.5894923		
	LiLi	-2319.7372559	-2318.8627779	-2318.8627779		
Toluene	KK	-2912.1227423	-2911.2499873	-2911.2499873		
	LiK	-3504.4974918	-3503.6261698	-3503.6261698		
	LiLi	-2319.7404749	-2318.8659969	-2318.9990479		
THF	KK	-2912.1264436	-2911.2536886	-2911.3912346		
	LiK	-3504.5011283	-3503.6298063	-3503.7752213		

5. References

- [1] D. F. Shriver, 'The manipulation of air-sensitive compounds' McGraw-Hill, New York, 1969.
- [2] G. Paolucci, G. Rossetto, P. Zanella and R. D. Fischer, 'Cyclopentadienyluranium(IV) complexes containing phosphido and/or amido ligands: Access to the new complex (C₅H₅)₃UP(C₆H₅)₂' *J. Organomet. Chem.*, 1985, **284**, 213–22.

- P. G. Williard, 'Structure of potassium hexamethyldisilazide toluene solvate' *Acta Crystallogr. C*, 1988, 44, 270–272.
- [4] M. E. Garner and J. Arnold, 'Reductive Elimination of Diphosphine from a Thorium–NHC– Bis(phosphido) Complex' Organometallics, 2017, 36, 4511–4514.
- [5] J.-Q. Zhang, E. Ikawa, H. Fujino, Y. Naganawa, Y. Nakajima and L.-B. Han, 'Selective C–P(O) Bond Cleavage of Organophosphine Oxides by Sodium' *J. Org. Chem.*, 2020, 85, 14166–14173.
- [6] M. S. Hill, M. F. Mahon and T. P. Robinson, 'Calcium-centred phosphine oxide reactivity: P–C metathesis, reduction and P–P coupling' *Chem. Commun.*, 2010, 46, 2498–2500.
- [7] R. Neufeld and D. Stalke, 'Accurate molecular weight determination of small molecules *via* DOSY-NMR by using external calibration curves with normalized diffusion coefficients' *Chem. Sci.*, 2015, 6, 3354–3364.
- [8] S. Bachmann, B. Gernert and D. Stalke, 'Solution structures of alkali metal cyclopentadienides in THF estimated by ECC-DOSY NMR-spectroscopy (incl. software)' *Chem. Commun.*, 2016, 52, 12861–12864.
- [9] Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England. 2014.
- [10] G. M. Sheldrick, 'SHELXT Integrated space-group and crystal-structure determination' Acta Cryst. A., 2015, 71, 3–8.
- [11] G. M. Sheldrick, 'Crystal structure refinement with SHELXL' Acta Cryst. C, 2015, 71, 3–8.
- [12] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard and H. Puschmann, 'OLEX2: a complete structure solution, refinement and analysis program' *J. Appl. Cryst.*, 2009, 42, 339–341.
- [13] P. Pyykkö and M. Atsumi, Molecular Single-Bond Covalent Radii for Elements 1–118, *Chem. Eur. J.*, 2009, **15**, 186–197
- [14] A. Bondi, van der Waals Volumes and Radii, J. Phys. Chem., 1964, 68, 441–451.
- [15] A. Falceto, E. Carmona and S. Alvarez, Electronic and Structural Effects of Low-Hapticity Coordination of Arene Rings to Transition Metals, *Organometallics*, 2014, **33**, 6660–6668.
- [16] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov,

T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- [17] Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- [18] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-52.
- [19] J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822–8824.
- [20] AIMAll (Version 19.10.12), T. A. Keith, TK Gristmill Software, Overland Park KS, USA, 2019
- [21] F. London. J. Phys. le Radium, 1937, 8, 397–409.
- [22] R. McWeeny, *Phys. Rev.*, 1962, **126**, 1028–1034.
- [23] R. Ditchfield, Mol. Phys., 1974, 27, 789–807.
- [24] K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251-8260.
- [25] J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys., 1996, 104, 5497– 5509.
- [26] P. Felgenhauer, R. Labbow, A. Schulz, A. Villinger., *Inorg. Chem.* 2018, 57, 15, 9348–9353.
- [27] C. J. Jameson, A. De Dios, A. Keith Jameson, Chem. Phys. Lett. 1990, 167, 575–582.
- [28] C. A. van Wüllen, Phys. Chem. Chem. Phys. 2000, 2, 21372144.
- [29] Y. Zhao, D.G. Truhlar. J. Chem. Phys., 2006, 125, 194101.