Mechanism of Metal Doping in Regulating Boron Adsorption

Performance of Fe₃O₄ Nanoparticles

Yumeng Jiang, ab Anni Yang, ad Huiqun Ju, ab Tianyu Li, ab Jiafei Lyu*cd and Xianghai

Guo*abc

Tianjin Key Laboratory for Marine Environmental Research and Service, School

of Marine Science and Technology, Tianjin University, Tianjin 300072, China

Key Laboratory of Ocean Observation Technology of Ministry of Natural

Resources, School of Marine Science and Technology, Tianjin University, Tianjin

300072, P. R. China

Department of Pharmaceutical Engineering, School of Chemical Engineering and

Technology, Tianjin University, Tianjin 300350, P. R. China

Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin

University, Tianjin, 300072, P. R. China

* Corresponding author

Xianghai Guo, Email: guoxh@tju.edu.cn

Jiafei Lyu, Email: jflv@tju.edu.cn

Contents

1. Experiments

2. Figures

3. Tables

References

1. Experiments

1.1 Raw Materials

All chemicals and solvents were purchased from commercial suppliers and used without further purification including ferric chloride hexahydrate (FeCl₃·6H₂O, 99%, Aladdin, Shanghai, China), ferrous chloride tetrahydrate (FeCl₂·4H₂O, 98%, Meryer, Shanghai, China), tetramethylammonium hydroxide (N⁺(CH₃)₄OH⁻, 25%w/w in water, Meryer, Shanghai, China), calcium chloride dihydrate (CaCl₂·2H₂O, Meryer, Shanghai, China), magnesium chloride (MgCl₂, Meryer, Shanghai, China), zinc chloride (ZnCl₂, Meryer, Shanghai, China), copper chloride dihydrate (CuCl₂·2H₂O, Meryer, Shanghai, China), cobalt chloride (CoCl₂, 99.7%, Macklin, Shanghai, China), manganese chloride (MnCl₂, Meryer, Shanghai, China), hydrochloric acid (36~38%, Yuanli, Tianjin, China), Mannitol (C₆H₁₄O₆, Aladdin, Shanghai, China), sodium hydroxide standard solution (NaOH, Aladdin, Shanghai, China), Deionized water was used as water source throughout the experiments.

1.2 Preparation of Fe₃O₄ magnetic nanoparticles

For magnetite nanoparticles synthesis, 1 M ferric chloride hexahydrate and 2 M ferrous chloride tetrahydrate were prepared by dissolving iron salts in 2 M HCl solutions, respectively. In a typical experimental procedure, 10 ml of 1 M FeCl₃ solution was mixed with 2.5 mL of 2 M FeCl₂ solution in a flask. Metal doped simples were synthesized via 10 ml of 1 M FeCl₃ 2.275 mL of 2 M FeCl₂ and 0.225 mL of 2 M MCl₂ (M=Ca, Mg, Zn, Cu, Co, Cr, Mn). This solution was stirred, followed by the slow addition of 21 mL 25% (w/w) N⁺(CH₃)₄OH⁻. The mixture was stirred for 25 minutes at a speed of 600 rpm using a magnetic heating stirrer. The doped samples were obtained by cationic substitution at 3% molar proportions in relation to Fe ions.

1.3 Characterization

X-ray diffraction (XRD) patterns of experimental sample were detected by Rigaku X-ray diffractometer (Smartlab SE) equipped with a rotating anode of 1.6 KW $Cu-K\alpha_1$

X-ray radiation ($\lambda = 0.15406$ nm). Measurements were made over the range of $10^{\circ} < 20 < 70^{\circ}$ in a 0.05 step width with a 2°/min scanning speed. Scanning electron microscopy (SEM) images were obtained from ZEISS Sigma 360 operated at 3kV. Transmission electron microscope (TEM) images were obtained from JEOL JEM-2100F operated at 200kV. The magnetic characterization at room temperature was obtained using a vibrating sample magnetometer (VSM) Lakeshore 7404. X-ray photoelectron spectroscopy (XPS) was recorded by Thermo Scientific K-Alpha.

1.4 B analysis method

The boric acid concentration (Q_e) was obtained by acid-base titration. 1mL 0.5 M mannitol solution and two drops of 5% phenolphthalein indicator solution were added into a 50 mL conical bottle, and the mass M_1 was obtained (Sartorious BSA224S-CW). Then 0.2 mL of the post-adsorption solution was added and the mass M_2 was weighed. It was titrated with sodium hydroxide standard solution (0.05 mol /L) until pink, and the mass M_3 was obtained.

$$Q_e = \frac{M_3 - M_2}{M_2 - M_1} \times 0.05$$

1.5 Adsorption experiments

Before the adsorption studies, Fe₃O₄ magnetic nanoparticles was activated in a vacuum oven at 60 °C for 10 h. In a typical adsorption experiment, 0.05 g Fe₃O₄ or M@Fe₃O₄ (M= Ca²⁺, Mg²⁺, Zn²⁺, Cu²⁺, Co²⁺, Mn²⁺, Cr²⁺) was added into a 50 mL centrifuge tube, followed by 10 mL boron aqueous solution with specific pH and concentration. The tube was placed in a thermostatic shaker at 45°C for boron removal¹. When the adsorption was completed, Fe₃O₄ or M@Fe₃O₄ was separated by magnetic field and the residual solution was examined for boron concentration.

1.6 Effect of pH on boron separation

The adsorption experiment was carried out with a series of boron solutions at pH=3-11. The pH was adjusted by 2 mol/L aqueous hydrochloric acid solution or 2 mol/L aqueous sodium hydroxide solution. The activated Mg@Fe₃O₄ was added to these prepared solutions with the dose of 5 g·L⁻¹. The mixtures were placed in a

constant temperature shaker at 45~% for 24~h. The adsorbent was separated by a magnet and the residual solutions were tested for boron concentration.

2. Figures

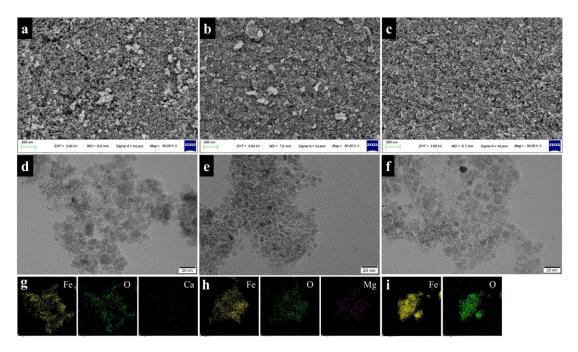


Fig. S1 SEM images of a) Ca@Fe₃O₄, b) Mg@Fe₃O₄, c) Fe₃O₄. TEM images of d) Ca@Fe₃O₄, e) Mg@Fe₃O₄, f) Fe₃O₄. TEM-EDS mapping of g) Ca@Fe₃O₄, h) Mg@Fe₃O₄, i) Fe₃O₄.

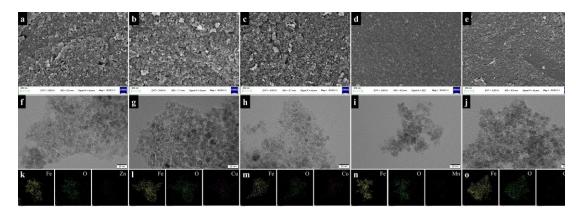


Fig. S2 SEM images of a) Zn@Fe₃O₄, b) Cu@Fe₃O₄, c) Co@Fe₃O₄, d) Mn@Fe₃O₄, e) Cr@Fe₃O₄. TEM images of f) Zn@Fe₃O₄, g) Cu@Fe₃O₄, h) Co@Fe₃O₄, i) Mn@Fe₃O₄, j) Cr@Fe₃O₄. TEM-EDS mapping of k) Zn@Fe₃O₄, l) Cu@Fe₃O₄, m) Co@Fe₃O₄, n) Mn@Fe₃O₄, o) Cr@Fe₃O₄.

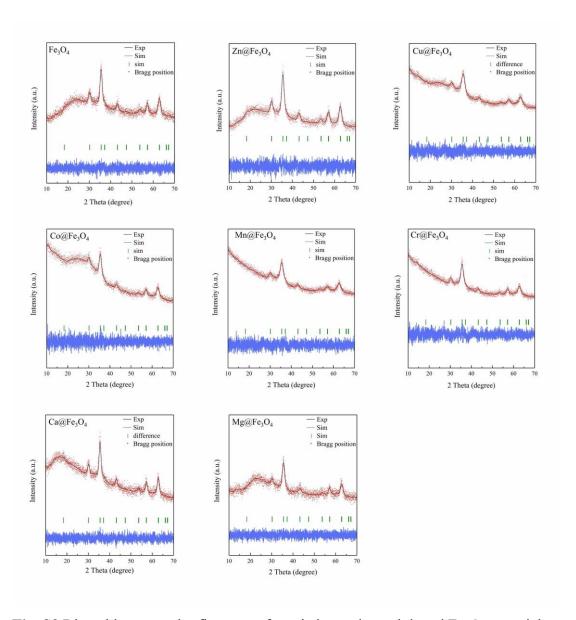


Fig. S3 Rietveld structural refinements for pristine and metal doped Fe₃O₄ materials.

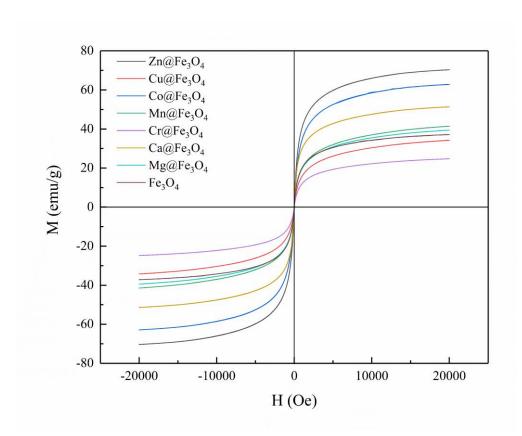


Fig. S4 The magnetic hysteresis loops of Fe₃O₄ and M@Fe₃O₄ powders.

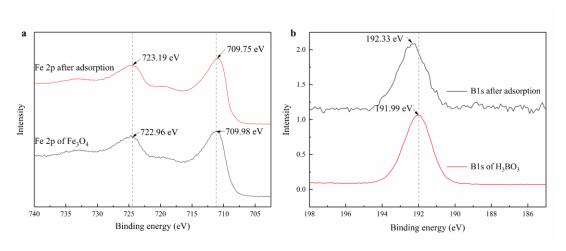
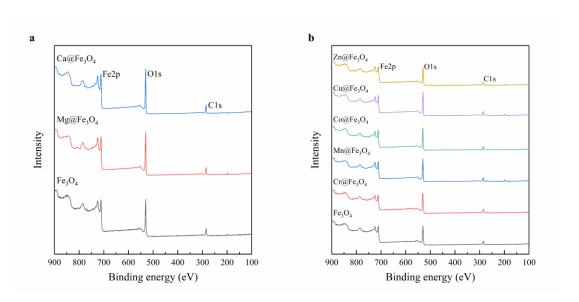



Fig. S5 XPS spectra of (a) Fe 2p before and after adsorption, (b) B1s of H_3BO_3 and after adsorption.

Fig. S6 (a) Comparison between XPS survey spectra for alkaline-earth metals doped Fe₃O₄ nanoparticles. (b) Comparison between XPS survey spectra for transition metals doped Fe₃O₄ nanoparticles.

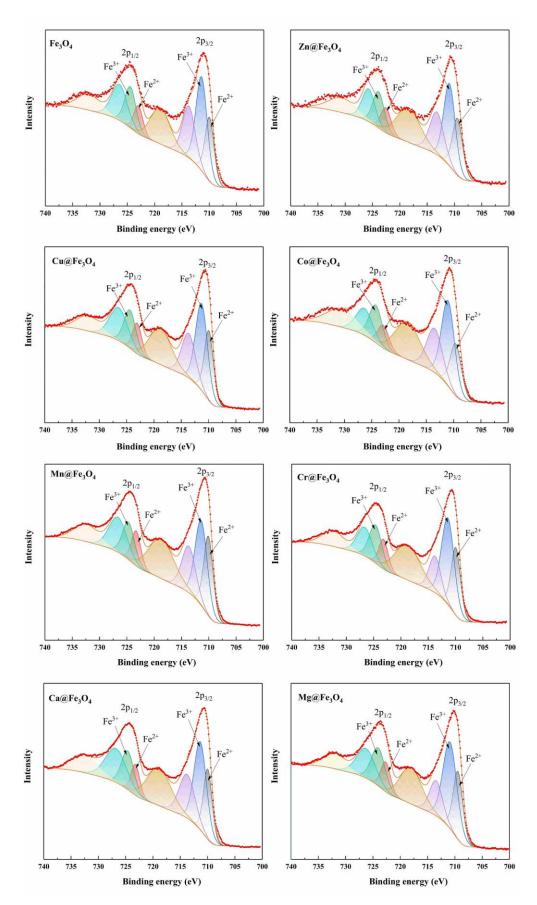
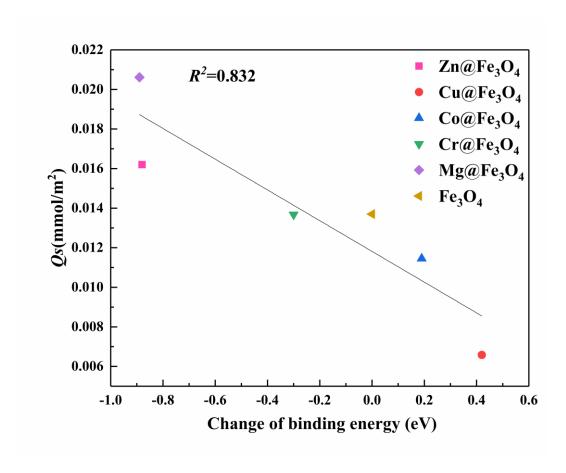



Fig. S7 XPS spectra of Fe 2p for Fe₃O₄ and M@Fe₃O₄ powders.

Fig. S8 The relationship between the shift in oxygen electron density in Fe-O-H of metals doped samples compared to pure Fe₃O₄ and boron adsorption capacity per unit area.

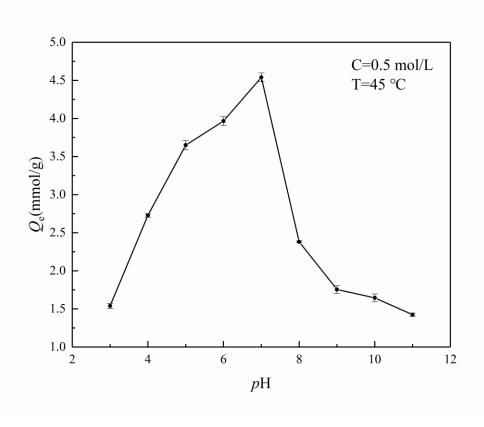


Fig. S9 Boron adsorption capacity on Mg@Fe₃O₄ at different pHs.

3. Tables

Table S1 Ionic radius, electronegativity and electrode potential (M^{2+}/M) of doped metal and Fe^2

Metal	Ionic radius (pm)	Electronegativity (Pauling scale)	electrode potential (V)
Fe	76	1.83	-0.44
Zn	74	1.65	-0.76
Cu	72	1.90	0.34
Co	74	1.88	-0.28
Mn	80	1.55	-1.17
Cr	84	1.66	0.90
Ca	99	1.00	-2.84
Mg	65	1.31	-2.36

Table S2 FWHM and crystallite sizes of metal doped Fe3O4 nanoparticles

Samples	Actual doping percentage (%)	FWHM	Observed crystallite size (nm)	Calculated crystallite size (nm)
Fe ₃ O ₄		1.234°	7.0	6.7
$Zn@Fe_3O_4$	3.8	1.211°	8.0	6.9
$Cu@Fe_3O_4$	2.9	1.337°	7.5	6.3
$Co@Fe_3O_4$	3.2	1.261°	7.5	6.6
$Mn@Fe_3O_4\\$	2.7	1.175°	8.0	7.1
$Cr@Fe_3O_4$	3.0	1.140°	8.0	7.3
$Ca@Fe_3O_4$	2.2	0.801°	11.0	10.5
$Mg@Fe_3O_4$	3.3	1.301°	6.0	6.3

Table S3 Crystal structural parameters obtained by the Rietveld refinement

Samples	a=b=c (Å)	$R_{wp}\%$	$R_p\%$	Space group
Fe ₃ O ₄	8.354	2.03	1.62	Fd-3m
$Zn@Fe_3O_4$	8.365	1.96	1.55	Fd-3m
$Cu@Fe_3O_4$	8.365	4.14	3.28	Fd-3m
$Co@Fe_3O_4$	8.357	4.16	3.26	Fd-3m
$Mn@Fe_3O_4$	8.364	4.18	3.29	Fd-3m
$Cr@Fe_3O_4$	8.363	4.74	3.75	Fd-3m
Ca@Fe ₃ O ₄	8.369	2.16	1.72	Fd-3m
$Mg@Fe_3O_4$	8.350	2.12	1.69	Fd-3m

Table S4 Magnetic and resistive parameters obtained for pure and doped Fe₃O₄ samples

Samples	Hc (G)	Mr (emu/g)	Ms (emu/g)
Fe ₃ O ₄	0.4	0.03	37.11
$Zn@Fe_3O_4$	6.0	0.44	70.33
Cu@Fe ₃ O ₄	0.65	0.03	34.18
$Co@Fe_3O_4$	22.8	1.52	62.79
$Mn@Fe_3O_4$	12.7	0.55	41.41
$Cr@Fe_3O_4$	0.6	0.02	24.76
$Ca@Fe_3O_4$	3.2	0.33	51.32
Mg@Fe ₃ O ₄	0.5	0.03	39.42

Table S5 Fe2p binding energy in metal doped Fe₃O₄ nanoparticles

Samples	$Fe^{2+} 2p_{3/2}$	$Fe^{3+} 2p_{3/2}$	$Fe^{2+} 2p_{1/2}$	$Fe^{3+} 2p_{1/2}$	Fe ³⁺ / Fe ²⁺
Fe ₃ O ₄	709.94	711.40	723.17	724.44	1.8
$Zn@Fe_3O_4$	709.89	711.61	723.15	724.60	1.8
$Cu@Fe_3O_4$	709.95	711.41	723.27	724.62	1.8
$Co@Fe_3O_4$	709.91	711.33	723.16	724.55	1.8
$Mn@Fe_3O_4$	709.90	711.36	723.25	724.68	1.8
$Cr@Fe_3O_4$	709.93	711.38	723.19	724.65	1.8
$Ca@Fe_3O_4$	709.97	711.34	723.18	724.64	1.8
$Mg@Fe_3O_4$	709.82	711.32	722.77	724.02	1.8

Table S6 Fe-O-Fe and Fe-O-H binding energy in metal doped Fe $_3$ O $_4$ nanoparticles

Samples	Oxygen in Fe-O- Fe (eV)	Shift(eV)	Oxygen in Fe-O-H (eV)	Shift(eV)
Fe ₃ O ₄	530.12	0	531.68	0
$Zn@Fe_3O_4$	529.91	-0.21	530.80	-0.88
$Cu@Fe_3O_4$	531.00	0.88	532.10	0.42
$Co@Fe_3O_4$	530.47	0.35	531.87	0.19
$Mn@Fe_3O_4$	529.82	-0.3	531.13	-0.55
$Cr@Fe_3O_4$	530.06	-0.06	531.38	-0.3
$Ca@Fe_3O_4$	529.26	-0.86	530.72	-0.96
$Mg@Fe_3O_4$	529.92	-0.2	530.79	-0.89

Table S7 Boron adsorption capacity for pure and doped Fe₃O₄ samples

	Qe .	Specific surface	Qs
Samples	(mmol/g)	area A (m ² /g)	(mmol/m^2)
Fe ₃ O ₄	2.36	173	0.0137
$Zn@Fe_3O_4$	2.72	168	0.0162
$Cu@Fe_3O_4$	1.21	184	0.0066
$Co@Fe_3O_4$	2.01	176	0.0115
$Mn@Fe_3O_4$	1.85	163	0.0113
$Cr@Fe_3O_4$	2.17	159	0.0137
$Ca@Fe_3O_4$	1.29	110	0.0117
$Mg@Fe_3O_4\\$	3.79	184	0.0206

Note: 1. Specific surface area A was evaluated by calculated crystallite sizes of nonporous spherical particle.

2.
$$Q_s = Q_e / A$$

References:

- 1. T. Chen, Q. Wang, J. Lyu, P. Bai and X. Guo, *Separation and Purification Technology*, 2020, **231**, 1-10.
- 2. J. Speight, in *Lange's Handbook of Chemistry*, McGraw Hill LLC, McGraw Hill, September 2016, pp. 618-701.