Calcium(II)-Catalyzed [2+3] Annulation of Enynones: A Sustainable Approach to 9*H*-Pyrrolo[1,2-*a*]indole Frameworks

Supporting Information

Ashok Kale,^{†a} Shubham C Rivonker,^{†a} Jong-hyuk Kim, ^b Jong Yeon Hwang, ^c Yongseok Choi ^d and Kyeong Lee^{*a}

^a BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Goyang 10326, Republic of Korea.

E-mail: <u>kaylee@dongguk.edu</u>

^bBio & Drug Discovery Division, Korea Research Institute of Chemical Technology

141 Gajeong-ro, Yuseong, Daejeon 305-600, Korea.

^c Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 305-606, Republic of Korea.

Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.

^d College of Biosciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

Contents

General information	2
Table 1 Optimization of Reaction Conditions	3
General procedure for compound 3	4
Characterization data for compound 3	4
General procedure for compound 4a	17
Characterization data for compound 4a	17
General procedure for compound 4b	17
Characterization data for compound 4b	17
General procedure for compound 4c	18
Characterization data for compound 4c	18
X-Ray Crystallographic Data for compound 3aa	19
NMR spectra of all compounds	21

General information

All reactions were carried out under an inert atmosphere of dry N₂ in RBF/sealed tube and were purified by standard method. The proton nuclear magnetic resonance (¹H NMR) spectra were determined on a Varian 400 MHz spectrometer (Varian Medical Systems, Inc., Palo Alto, CA, USA). ¹³C NMR spectra were recorded on a Varian 100 MHz spectrometer. The chemical shifts are provided in parts per million (ppm) downfield with coupling constants in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet. The mass spectra were recorded using high-resolution mass spectrometry (HRMS) (electron ionization MS) on a JMS-700 mass spectrometer (Jeol, Japan) or by HRMS (electrospray ionization MS) on a G2 QTOF mass spectrometer. The products from all reactions were purified by flash column chromatography using silica gel 60 (230–400 mesh Kieselgel 60). Additionally, thin-layer chromatography on 0.25-mm silica plates (E. Merck; silica gel 60 F254) was used to monitor reactions. All reagents were used as received from commercial sources Melting points were determined in open capillary tubes on an electrothermal apparatus and were uncorrected. X-ray crystallographic data were collected by a Rigaku R-AXIS RAPID diffractometer using graphite monochromate Mo-Ka radiation and single crystal suitable for X-ray diffraction the title (**3z**) compound made in solvent (dichloromethane) at room temperature. Compounds 1¹ and 2² were prepared according to the literature procedure.

- a) H. Luo, K. Chen, H. Jiang and S. Zhu, Org. Lett., 2016, 18, 5208–5211; b) J.-M. Yang, Z.-Q. Li, M.-L. Li, Q. He, S.-F. Zhu and Q.-L. Zhou, J. Am. Chem. Soc., 2017, 139, 3784–3789; c) B. Song, L. Li, X. Song, Y. Qiu, M. Zhong, P. Zhou and Y. Liang, Chem. Eur. J., 2014, 20, 5910–5913.
- a) S. Kinderman, M. M. T. Wekking, J. H. Maarseveen, H. E. Schoemaker, H. Hiemstra and F. P. J. T. Rutjes, *J. Org. Chem.*, 2005, **70**, 5519–5527; b) D.-H. Zhang, X.-Y. Tang, Y. Wei and M. Shi, *Chem. Eur. J.*, 2013, **19**, 13668–13673; c) M. J. Eichberg, R. L. Dorta, K. Lamottke and K. P. C. Vollhardt, *Org. Lett.*, 2000, **2**, 2479–2481; d) J. D. White, Y. Li and D. C. Ihle, *J. Org. Chem.*, 2010, **75**, 3569–3577; e) K. C. Nicolaou, D. Y. K. Chen, X. Huang, T. Ling, M. Bella and S. A. Snyder, *J. Am. Chem. Soc.*, 2004, **126**, 12888–12896; f) D. L. Priebbenow, L. C. Henderson, F. M. Pfeffer and S. G. Stewart, *J. Org. Chem.*, 2010, **75**, 1787–1790; g) A. Kale, S. J. Kwon, J. Lee, J. K. Lee and K. Lee, *Org. Lett.*, 2024, **26**, 1196–1200.

Table 1 Optimization of Reaction Conditions^a

$ \begin{array}{c} & & \\ & & $							
Entry	Catalyst (mol%)	Solvent	Temp. (° C)	Time	Yield ^{<i>b</i>} (%) 3a		
1	X /Y (5/5)	ACN	rt	12 h	np		
2	X /Y (5/5)	ACN	50	12 h	traces		
3	X /Y (5/5)	ACN	60	12 h	43		
4	X /Y (5/5)	ACN	70	12 h	71		
5	X /Y (5/5)	ACN	80	12 h	84		
6	X /Y (5/5)	ACN	90	12 h	84		
7	X /Y (5/5)	ACN	80	1 h	46		
8	X /Y (5/5)	ACN	80	2h	84		
9	X /Y (5/5)	ACN	80	4 h	84		
10	-/-	ACN	80	2 h	np		
11	X /Y (5/5)	Toluene	80	2 h	81		
12	X /Y (5/5)	THF	80	2 h	np		
13	X /Y (5/5)	DCE	80	2 h	80		
14	X /Y (5/5)	Water	80	2 h	np		
15	X /- (5/-)	ACN	80	2 h	np		
16	Ca(NTf ₂) ₂ /Y (5/5)	ACN	80	2h	78		
17	Cu(OTf) ₂ (5)	ACN	60	2 h	np		
18	Sc(OTf) ₂ (5)	ACN	80	2 h	np		
19	Yb(OTf) ₃ (5)	ACN	80	2 h	np		
20	Zn(OTf) ₂ (5)	ACN	80	2 h	np		
21	<i>p</i> TSA (5)	ACN	80	2 h	np		
22	CaCl ₂ (5)	ACN	80	2h	np		
23	CaF ₂ (5)	ACN	80	2h	np		

^a General	conditions:	1a (0.47	mmol,	1.0 equiv.),	2a (0.47	7 mmol,	1.0 equiv	.), X =	$Ca(OTf)_2$	(0.023 n	nmol, (0.05 equi	v.), and '	$\mathbf{Y} = Bu_4 NPF_6$, (0.023 m	mol, 0.05
equiv.) in	acetonitrile	(5 mL) at	t 80 °C ⁻	for 2 h; ^{<i>b</i>} is	olated y	ields, np	= no pro	duct, -	= no ca	talyst, te	emp.= t	temperatu	ire and	equiv.= equ	ivalent.	

General procedure for compound 3

To a magnetically stirred solution of enynone 1 (1.0 equiv.) and tryptamine 2 (1.0 equiv.) in acetonitrile, $Ca(OTf)_2$ (5 mol%) and Bu_4NPF_6 (5 mol%) were added at room temperature. The reaction mixture was then heated to 80 °C and stirred for 2 hours. Upon completion, as monitored by TLC, the reaction mixture was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure, and purified by column chromatography to yield the desired compound.

Characterization data for Compound 3

N-(2-(3-(2,4-dioxopentan-3-yl)-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4 methylbenzenesulfonamide (3a):

Isolated as yellow solid (141mg, 84%, purification by 10/2, petroleum ether/ethyl acetate); mp 112-114 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 6.8 Hz, 2H), 7.44 – 7.37 (m, 4H), 7.36 (d, J = 7.4 Hz, 1H), 7.29 – 7.27 (m, 1H), 7.25 (d, J = 3.4 Hz, 1H), 7.15 (d, J = 8.0 Hz, 3H), 7.08 (d, J = 7.9 Hz, 1H), 6.43 (s, 1H), 4.57 (t, J = 5.1 Hz, 1H), 4.07 (t, J = 7.1, 5.1 Hz, 1H), 2.68 – 2.55 (m, 2H), 2.39 (s, 3H), 2.21 – 2.06 (m, 2H), 1.99 (s, 3H), 1.95 (s, 3H); ¹³C NMR (126 MHz, CDCl3) δ 193.60, 193.16, 143.22, 140.60, 137.60, 136.64, 134.91, 134.10, 129.56, 128.95, 128.54, 126.94, 126.02, 125.92, 125.29, 123.86, 121.74, 118.74, 114.56, 110.33, 105.09, 39.61, 39.03, 30.82, 24.07, 24.04, 21.50; HRMS calcd for C₃₁H₃₁N₂O₄S [M+H]+: 527.2005, found: 527.1995.

N-(2-(3-(2,4-dioxopentan-3-yl)-1-(p-tolyl)-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3b):

Isolated as yellow solid (139mg, 81%, purification by 10/2, petroleum ether/ethyl acetate); mp 91-93 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.38 (m, 4H), 7.35 (d, *J* = 7.4 Hz, 1H), 7.22 (d, *J* = 7.8 Hz, 3H), 7.16 – 7.11 (m, 3H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.39 (s, 1H), 4.55 (t, *J* = 5.0 Hz, 1H), 4.05 (t, *J* = 7.1, 5.1 Hz, 1H), 2.68 – 2.57 (m, 2H), 2.41 (s, 3H), 2.39 (s, 3H), 2.20 – 2.07 (m, 2H), 1.98 (s, 3H), 1.94 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.6, 193.2, 143.2, 140.6, 137.6, 136.7, 135.6, 133.7, 132.0, 129.6, 129.5, 128.5, 126.9, 125.8, 125.3, 123.7, 121.5, 118.7, 114.5, 110.2, 105.1, 39.6, 38.9, 30.7, 24.0, 21.5, 21.2; HRMS calcd for C₃₂H₃₃N₂O₄S [M+H]+: 541.2161, found: 541.2161.

N-(2-(3-(2,4-dioxopentan-3-yl)-1-(m-tolyl)-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3c):

Isolated as yellow solid (136mg, 80%, purification by 10/2, petroleum ether/ethyl acetate); mp 91-93 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 7.9 Hz, 2H), 7.36 – 7.32 (m, 3H), 7.29 (d, *J* = 7.0 Hz, 1H), 7.27 (s, 1H), 7.15 (d, *J* = 8.1 Hz, 3H), 7.08 (t, *J* = 6.3 Hz, 2H), 6.42 (s, 1H), 4.56 (t, *J* = 5.1 Hz, 1H), 4.05 (t, *J* = 5.9 Hz, 1H), 2.61 (dq, *J* = 21.9, 6.5 Hz, 2H), 2.41 (s, 3H), 2.39 (s, 3H), 2.21 – 2.04 (m, 2H), 1.98 (s, 3H), 1.95 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.5, 193.1, 143.1, 140.6, 138.5, 137.7, 136.7, 134.8, 134.0, 129.5, 128.8, 128.5, 126.9, 126.8, 126.7, 125.2, 123.8, 123.0, 121.6, 118.8, 114.6, 110.3, 105.1, 39.6, 39.0, 30.9, 24.0, 24.0, 21.6, 21.5; HRMS calcd for C₃₂H₃₃N₂O₄S [M+H]+: 541.2161, found: 541.2154.

N-(2-(3-(2,4-dioxopentan-3-yl)-1-(4-methoxyphenyl)-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3d):

Isolated as brown solid (152mg, 86%, purification by 10/2, petroleum ether/ethyl acetate); mp 106-108 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.7 Hz, 2H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.25 (s, 1H), 7.17 – 7.04 (m, 4H), 6.96 (d, *J* = 8.7 Hz, 2H), 6.35 (s, 1H), 4.52 (t, *J* = 5.1 Hz, 1H), 4.17 – 4.11 (m, 1H), 3.87 (s, 3H), 2.67 – 2.55 (m, 2H), 2.39 (s, 3H), 2.16 – 2.03 (m, 2H), 1.99 (s, 3H), 1.94 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.6, 193.1, 158.0, 143.2, 140.6, 137.6, 136.7, 133.2, 129.5, 128.5, 127.5, 127.1, 126.9, 125.2, 123.7, 121.5, 118.4, 114.4, 114.4, 110.2, 105.1, 55.3, 39.6, 38.9, 30.9, 24.0, 24.0, 21.5; HRMS calcd for C₃₂H₃₃N₂O₅S [M+H]+: 557.2110, found: 557.2103.

N-(2-(3-(2,4-dioxopentan-3-yl)-1-(4-fluorophenyl)-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3e):

Isolated as brown solid (137mg, 79%, purification by 10/2, petroleum ether/ethyl acetate); mp 104-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 7.5 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 10.0 Hz, 1H), 7.07 (dd, *J* = 8.4, 2.3 Hz, 3H), 6.36 (s, 1H), 4.52 (t, *J* = 5.1 Hz, 1H), 4.21 (t, *J* = 5.9 Hz, 1H), 2.62 (tt, *J* = 13.2, 6.7 Hz, 2H), 2.40 (s, 3H), 2.16 – 2.07 (m, 2H), 1.99 (s, 3H), 1.94 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.5, 193.1, 162.4 (d, ¹J_{C-F} = 246.2 Hz), 160.0, 143.3, 140.55, 137.5, 136.6, 133.8, 131.1, 131.0, 129.5 (d, ²J_{C-F} = 22.01 Hz), 128.5, 127.4, 127.3, 126.9, 125.3, 123.9, 121.7, 117.8, 115.8, 115.6, 114.4 (d, ³J_{C-F} = 8.6 Hz), 110.3, 105.0, 39.6, 38.8, 31.0, 24.0, 24.0, 21.5; HRMS calcd for C₃₁H₃₀FN₂O₄S [M+H]+: 545.1910, found: 545.1910.

N-(2-(1-(4-chlorophenyl)-3-(2,4-dioxopentan-3-yl)-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3f):

Isolated as yellow solid (145mg, 81%, purification by 10/2, petroleum ether/ethyl acetate); mp 106-108 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (dd, J = 12.4, 8.4 Hz, 4H), 7.36 (d, J = 8.6 Hz, 3H), 7.28 (d, J = 1.2 Hz, 1H), 7.17 (t, J = 7.2 Hz, 3H), 7.08 (d, J = 7.9 Hz, 1H), 6.39 (s, 1H), 4.53 (t, J = 5.1 Hz, 1H), 4.04 (t, J = 6.2 Hz, 1H), 2.63 (dt, J = 21.8, 6.6 Hz, 2H), 2.40 (s, 3H), 2.11 (dt, J = 14.1, 7.1 Hz, 2H), 1.98 (s, 3H), 1.95 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.5, 193.1, 143.3, 140.4, 137.4, 136.6, 134.2, 133.4, 131.5, 129.6, 129.0, 128.6, 127.1, 126.8, 125.3, 124.0, 121.9, 117.6, 114.3, 110.4, 39.5, 39.0, 30.8, 24.0, 24.0, 21.5; HRMS calcd for C₃₁H₃₀ClN₂O₄S [M+H]+: 561.1615, found: 561.1624.

N-(2-(1-(4-bromophenyl)-3-(2,4-dioxopentan-3-yl)-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3g):

Isolated as yellow solid (160mg, 83%, purification by 10/2, petroleum ether/ethyl acetate); mp 108-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.2 Hz, 3H), 7.37 (d, *J* = 7.0 Hz, 2H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.16 (dd, *J* = 15.5, 8.1 Hz, 3H), 7.08 (d, *J* = 7.9 Hz, 1H), 6.39 (s, 1H), 4.53 (t, *J* = 5.0 Hz, 1H), 4.04 (t, *J* = 6.1 Hz, 1H), 2.66 – 2.56 (m, 2H), 2.41 (s, 3H), 2.09 (q, *J* = 6.5 Hz, 2H), 1.98 (s, 3H), 1.95 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 193.7, 193.0, 143.3, 140.7, 137.8, 136.7, 136.5, 135.4, 133.2, 131.2, 129.5, 128.4, 128.3, 127.5, 126.9, 125.1, 123.7, 123.1, 120.6, 118.2, 117.2, 110.3, 105.0, 39.8, 39.2, 32.0, 24.1, 24.0, 21.5; HRMS calcd for C₃₁H₃₀BrN₂O₄S [M+H]+: 605.1110, found: 605.1107.

N-(2-(1-(2-bromophenyl)-3-(2,4-dioxopentan-3-yl)-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3h):

Isolated as white solid (162mg, 84%, purification by 10/2, petroleum ether/ethyl acetate); mp 165-167 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 6.8 Hz, 1H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.26 – 7.14 (m, 4H), 7.14 – 7.01 (m, 2H), 6.28 (s, 1H), 4.40 (t, *J* = 5.4 Hz, 1H), 3.98 (t, *J* = 6.2 Hz, 1H), 2.65 – 2.52 (m, 2H), 2.41 (s, 3H), 1.99 (s, 6H), 1.89 (q, *J* = 6.2 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃ δ 193.7, 193.0, 143.3, 140.7, 137.8, 136.7, 136.5, 135.4, 133.2, 131.2, 129.5, 128.4, 128.3, 127.5, 126.9, 125.1, 123.7, 123.1, 120.6, 118.2, 117.2, 110.3, 105.0, 105.0, 39.8, 39.2, 32.0, 24.1, 24.0, 21.5; HRMS calcd for C₃₁H₃₀BrN₂O₄S [M+H]+: 605.1110, found: 605.1129.

ethyl 4-(3-(2,4-dioxopentan-3-yl)-9-(2-(4-methylphenylsulfonamido)ethyl)-9H-pyrrolo[1,2-a]indol-1-yl)benzoate (3i):

Isolated as pink solid (135mg, 71%, purification by 10/2, petroleum ether/ethyl acetate); mp 112-114 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (t, *J* = 1.8 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.46 (dt, *J* = 7.7, 4.0 Hz, 2H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.17 – 7.12 (m, 1H), 7.08 (d, *J* = 7.8 Hz, 1H), 6.49 (s, 1H), 5.06 (dd, *J* = 8.2, 4.3 Hz, 1H), 4.72 (dd, *J* = 7.1, 3.8 Hz, 1H), 4.46 (q, *J* = 7.1 Hz, 2H), 3.02 – 2.93 (m, 1H), 2.77 – 2.70 (m, 1H), 2.40 (s, 3H), 2.27 – 2.21 (m, 1H), 2.06 – 2.00 (m, 1H), 1.99 (s, 3H), 1.96 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 193.2, 167.1, 143.2, 140.2, 138.2, 136.9, 135.4, 135.2, 130.8, 129.7, 129.5, 129.0, 128.4, 126.9, 126.7, 126.4, 125.6, 124.0, 121.8, 117.2, 113.9, 110.3, 105.0, 61.3, 40.1, 38.4, 30.7, 24.0, 24.0, 21.5, 14.4; HRMS calcd for C₃₄H₃₅N₂O₆S [M+H]+: 599.2216, found: 599.2216.

N-(2-(3-(2,4-dioxopentan-3-yl)-1-(naphthalen-2-yl)-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3j):

Isolated as yellow solid (147mg, 80%, purification by 10/2, petroleum ether/ethyl acetate); mp 160-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 1H), 7.93 (d, *J* = 8.6 Hz, 1H), 7.83 (d, *J* = 9.5 Hz, 1H), 7.52 (q, *J* = 8.3, 7.2 Hz, 4H), 7.30 (t, *J* = 8.2 Hz, 4H), 7.13 (d, *J* = 7.6 Hz, 4H), 6.39 (s, 1H), 4.31 (t, *J* = 5.9 Hz, 1H), 3.54 (t, *J* = 6.2 Hz, 1H), 2.56 – 2.49 (m, 1H), 2.39 (s, 3H), 2.30 – 2.23 (m, 1H), 2.08 (s, 3H), 2.04 (s, 3H), 1.77 – 1.70 (m, 1H), 1.65 – 1.60 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 193.6, 193.1, 143.1, 140.7, 138.0, 136.7, 135.9, 133.9, 133.6, 131.3, 129.4, 128.7, 128.4, 127.2, 126.7, 126.6, 126.3, 126.0, 125.7, 125.7, 125.2, 123.7, 121.1, 117.5, 117.2, 110.3, 105.2, 39.9, 38.7, 32.7, 24.2, 24.1, 21.4; HRMS calcd for C₃₅H₃₃N₂O₄S [M+H]+: 577.2161, found: 577.2155.

ethyl 2-(9-(2-(4-methylphenylsulfonamido)ethyl)-1-phenyl-9H-pyrrolo[1,2-a]indol-3-yl)-3-oxobutanoate (3k):

Isolated as light pink solid (135mg, 76%, purification by 10/2, petroleum ether/ethyl acetate); mp 105-107 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.58 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 7.9 Hz, 1H), 7.31 (q, J = 8.7, 7.8 Hz, 4H), 7.20 (d, J = 8.1 Hz, 2H), 7.18 – 7.08 (m, 3H), 7.06 (t, J = 7.3 Hz, 1H), 6.30 (s, 1H), 5.63 (s, 1H), 4.33 (t, J = 6.4 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.17 (tt, J = 12.7, 6.4 Hz, 2H), 2.94 (t, J = 6.4 Hz, 2H), 2.55 (s, 3H), 2.38 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 159.3, 152.4, 143.2, 139.1, 136.9, 135.5, 133.9, 129.6, 128.9, 128.0, 127.8, 127.5, 127.0, 122.2, 119.8, 118.4, 114.2, 111.0, 109.2, 108.6, 60.2, 43.21, 128.5, 128

41.9, 24.8, 21.5, 14.3, 13.9; HRMS calcd for C₃₂H₃₃N₂O₅S [M+H]+: 557.2110, found: 557.2121.

N-(2-(3-(3,5-dioxoheptan-4-yl)-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3l):

Isolated as white solid (145mg, 86%, purification by 10/2, petroleum ether/ethyl acetate); mp 113-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.0 Hz, 2H), 7.41 (dd, *J* = 7.9, 6.0 Hz, 4H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 1.2 Hz, 1H), 7.24 (d, *J* = 1.3 Hz, 1H), 7.17 – 7.12 (m, 3H), 7.07 (d, *J* = 7.8 Hz, 1H), 6.42 (s, 1H), 4.56 (t, *J* = 5.1 Hz, 1H), 4.09 (t, 1H), 2.66 – 2.56 (m, 2H), 2.39 (s, 3H), 2.30 (dd, *J* = 15.8, 7.6 Hz, 2H), 2.23 – 2.09 (m, 4H), 1.00 (td, *J* = 7.5, 4.5 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 196.3, 143.2, 140.6, 137.6, 136.6, 134.9, 134.1, 129.5, 128.9, 128.4, 126.9, 125.9, 125.9, 125.3, 123.8, 121.2, 118.7, 114.7, 110.5, 103.6, 39.6, 39.0, 30.9, 29.9, 29.8, 21.5, 9.3, 9.3; HRMS calcd for C₃₃H₃₅N₂O₄S [M+H]+: 555.2318, found: 555.2326.

N-(2-(3-(2,4-dioxopentan-3-yl)-1-methyl-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3m):

Isolated as white solid (120mg, 81%, purification by 10/2, petroleum ether/ethyl acetate); mp 107-109 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.3 Hz, 2H), 7.21 (dd, *J* = 17.7, 7.8 Hz, 4H), 7.07 – 7.03 (m, 1H), 6.97 (d, *J* = 7.8 Hz, 1H), 5.96 (s, 1H), 4.25 (t, *J* = 6.2 Hz, 1H), 4.12 (t, *J* = 5.2 Hz, 1H), 2.74 (d, *J* = 6.7 Hz, 2H), 2.41 (s, 3H), 2.26 – 2.17 (m, 2H), 2.12 (d, *J* = 1.3 Hz, 3H), 1.95 (s, 3H), 1.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.60, 192.91, 143.43, 141.08, 137.74, 136.81, 134.21, 129.64, 128.32, 127.00, 125.15, 123.06, 120.18, 117.37, 112.57, 109.86, 105.46, 39.81, 37.71, 32.23, 29.71, 23.97, 23.95, 21.50, 11.21; HRMS calcd for C₂₆H₂₉N₂O₄S [M+H]+: 465.1848, found: 465.1836.

N-(2-(3-(2,4-dioxopentan-3-yl)-7-methoxy-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3p):

Isolated as brown solid (130mg, 80%, purification by 10/2, petroleum ether/ethyl acetate); mp 94-96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.8 Hz, 2H), 7.41 (dd, *J* = 7.8, 4.6 Hz, 4H), 7.25 (s, 1H), 7.15 (d, *J* = 7.9 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 6.77 (s, 1H), 6.38 (s, 1H), 4.53 (d, *J* = 5.4 Hz, 1H), 4.08 – 4.04 (m, 1H), 3.83 (s, 3H), 2.67 – 2.56 (m, 2H), 2.39 (s, 3H), 2.22 – 2.12 (m, 2H), 1.98 (s, 3H), 1.95 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.2, 156.7, 139.2, 136.6, 135.0, 133.8, 129.5, 128.9, 126.9, 125.8, 121.3, 113.7, 112.6, 112.3, 110.5, 55.8, 39.5, 39.2, 30.9, 24.0, 21.5; HRMS calcd for C₃₂H₃₃N₂O₅S [M+H]+: 557.2110, found: 557.2095.

N-(2-(7-chloro-3-(2,4-dioxopentan-3-yl)-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3q):

Isolated as white solid (135mg, 83%, purification by 10/2, petroleum ether/ethyl acetate); mp 104-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.0 Hz, 2H), 7.47 – 7.35 (m, 4H), 7.28 (d, *J* = 2.7 Hz, 2H), 7.23 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.3 Hz, 1H), 6.43 (s, 1H), 4.54 (t, *J* = 5.1 Hz, 1H), 4.08 (t, 1H), 2.69 – 2.55 (m, 2H), 2.41 (s, 3H), 2.25 – 2.04 (m, 2H), 1.98 (s, 3H), 1.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 193.2, 143.4, 139.6, 139.1, 136.5, 134.6, 133.8, 129.6, 129.2, 129.0, 128.5, 127.0, 126.2, 126.0, 125.6, 121.8, 119.1, 114.9, 110.9, 104.7, 39.5, 38.9, 30.8, 24.0, 24.0, 21.5; HRMS calcd for C₃₁H₃₀ClN₂O₄S [M+H]+: 561.1615, found: 561.1622.

Isolated as yellow solid (125mg, 81%, purification by 10/2, petroleum ether/ethyl acetate); mp 109-111 °C; ¹H

NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.4 Hz, 2H), 7.47 – 7.41 (m, 4H), 7.39 (d, J = 11.4 Hz, 2H), 7.28 (d, J = 7.4 Hz, 1H), 7.19 (d, J = 7.9 Hz, 2H), 6.93 (d, J = 8.4 Hz, 1H), 6.43 (s, 1H), 4.54 (t, J = 5.1 Hz, 1H), 4.06 (t, J = 6.3 Hz, 1H), 2.66 – 2.57 (m, 2H), 2.41 (s, 3H), 2.18 – 2.05 (m, 2H), 1.97 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 193.2, 143.4, 139.9, 136.5, 134.6, 133.7, 131.4, 129.6, 129.0, 128.4, 127.0, 126.2, 126.0, 121.8, 116.6, 115.1, 111.4, 104.7, 39.5, 38.8, 30.8, 24.0, 21.5; HRMS calcd for C₃₁H₃₀BrN₂O₄S [M+H]+: 605.1110, found: 605.1121.

N-(2-(6-bromo-3-(2,4-dioxopentan-3-yl)-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4methylbenzenesulfonamide (3s):

Isolated as yellow solid (120mg, 80%, purification by 10/2, petroleum ether/ethyl acetate); mp 115-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.5 Hz, 2H), 7.42 (dd, *J* = 7.9, 5.1 Hz, 4H), 7.29 – 7.27 (m, 1H), 7.23 (d, *J* = 12.1 Hz, 2H), 7.19 – 7.14 (m, 3H), 6.43 (s, 1H), 4.53 (t, *J* = 5.2 Hz, 1H), 4.05 (t, *J* = 6.2 Hz, 1H), 2.59 (dt, *J* = 18.2, 6.6 Hz, 2H), 2.40 (s, 3H), 2.17 – 2.08 (m, 2H), 1.99 (s, 3H), 1.95 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.5, 193.1, 143.4, 141.7, 136.8, 136.4, 134.5, 134.4, 129.6, 128.9, 126.9, 126.7, 126.5, 126.2, 125.9, 121.9, 121.9, 119.1, 115.3, 113.5, 104.6, 39.6, 38.6, 31.6, 30.8, 24.0, 21.5; HRMS calcd for C₃₁H₃₀BrN₂O₄S [M+H]+: 605.1110, found: 605.1125.

N-(2-(3-(2,4-dioxopentan-3-yl)-7-hydroxy-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (3t):

Isolated as dark brown solid (125mg, 76%, purification by 10/2, petroleum ether/ethyl acetate); mp 120-122 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.6 Hz, 2H), 7.45 – 7.37 (m, 4H), 7.23 (d, *J* = 7.4 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.72 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.37 (s, 1H), 5.20 (s, 1H), 4.52 (t, *J* = 5.1 Hz, 1H), 4.13 – 4.09 (m, 1H), 2.69 – 2.58 (m, 2H), 2.39 (s, 3H), 2.14 – 2.05 (m, 2H), 1.98 (s, 3H), 1.94 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.7, 193.2, 152.7, 143.4, 139.4, 136.4, 135.0, 134.3, 133.8, 129.6, 128.9, 126.9, 125.8, 125.8, 121.2, 118.5, 114.6, 113.6, 113.3, 110.7, 105.1, 39.6, 39.1, 31.6, 30.7, 24.1, 22.6, 21.5; HRMS calcd for C₃₁H₃₁N₂O₅S [M+H]+: 543.1954, found: 543.1951.

N-(2-(3-(2,4-dioxopentan-3-yl)-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-2,2,2-trifluoroacetamide (3u):

Isolated as dark yellow solid (150mg, 81%, purification by 10/2, petroleum ether/ethyl acetate); mp 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.0 Hz, 2H), 7.47 – 7.41 (m, 3H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.17 (d, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 7.8 Hz, 1H), 6.48 (s, 1H), 5.90 (s, 1H), 4.67 (t, *J* = 4.7 Hz, 1H), 3.19 (dd, *J* = 13.7, 6.7 Hz, 1H), 2.83 (dd, *J* = 13.5, 7.0 Hz, 1H), 2.49 (t, *J* = 5.6 Hz, 1H), 2.30 (dd, *J* = 13.9, 4.2 Hz, 1H), 2.00 (s, 3H), 1.99 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.4, 193.3, 156.9 (q, ²J_{C-F} = 35.7 Hz), 156.5, 140.6, 137.3, 134.6, 133.6, 129.0, 128.8, 126.2, 125.8, 125.1, 124.1, 122.0, 118.9, 114.6 (q, ¹J_{C-F} = 286.5 Hz), 110.4, 105.0, 39.4, 36.4, 29.0, 24.0, 23.8; HRMS calcd for C₂₆H₂₄F₃N₂O₃ [M+H]+: 469.1739, found: 469.1736.

methyl 3-(3-(2,4-dioxopentan-3-yl)-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)-2-(4-methylphenylsulfonamido)propanoate (3v):

Isolated as yellow solid (128mg, 80%, purification by 10/2, petroleum ether/ethyl acetate); mp 104-106 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (q, *J* = 6.5 Hz, 5H), 7.39 (t, *J* = 6.8 Hz, 2H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.22 (d, *J* = 6.9 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 7.5 Hz, 1H), 7.09 (d, *J* = 7.9 Hz, 1H), 6.43 (s, 1H), 4.69 (d, *J* = 9.4 Hz, 1H), 4.54 (t, *J* = 5.4 Hz, 1H), 3.92 – 3.87 (m, 1H), 3.18 (s, 3H), 2.54 – 2.47 (m, 1H), 2.37 (s, 3H), 2.29 (dd, *J* = 14.0, 6.7 Hz, 1H), 2.11 (s, 3H), 1.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.6, 193.5, 171.4, 143.5, 140.8, 136.8, 136.5, 134.8, 133.5, 129.4, 128.8, 128.6, 127.1, 125.9, 125.8, 123.5, 121.7, 118.7, 114.6, 110.4, 105.2, 53.7, 52.2, 38.5, 34.0, 24.1, 24.1, 21.5; HRMS calcd for C₃₃H₃₃N₂O₆S [M+H]+: 585.2059, found: 585.2056.

2-(2-(3-(2,4-dioxopentan-3-yl)-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)isoindoline-1,3-dione (3w):

Isolated as yellow solid (135mg, 78%, purification by 10/2, petroleum ether/ethyl acetate); mp 203-205 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 4H), 7.48 (d, *J* = 7.9 Hz, 1H), 7.43 (d, *J* = 7.0 Hz, 2H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.18 (t, *J* = 7.3 Hz, 1H), 7.10 (d, *J* = 16.0 Hz, 1H), 7.04 (d, *J* = 7.7 Hz, 1H), 6.97 (t, *J* = 7.4 Hz, 1H), 6.40 (s, 1H), 4.56 (dd, *J* = 5.7, 4.1 Hz, 1H), 3.54 – 3.38 (m, 2H), 2.63 – 2.48 (m, 2H), 2.25 (s, 3H), 1.93 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 192.9, 192.4, 166.6, 139.7, 136.6, 133.9, 132.7, 132.5, 130.8, 127.6, 127.0, 124.8, 124.6, 123.9, 122.3, 121.8, 120.5, 117.7, 113.5, 109.3, 104.3, 38.5, 33.4, 26.7, 23.1; HRMS calcd for C₃₂H₂₇N₂O₄ [M+H]+: 503.1971, found: 503.1964.

3-(9-(2-hydroxyethyl)-1-phenyl-9H-pyrrolo[1,2-a]indol-3-yl)pentane-2,4-dione (3x):

Isolated as yellow solid (180mg, 79%, purification by 10/2, petroleum ether/ethyl acetate); mp 109-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.7 Hz, 2H), 7.47 (d, J = 7.5 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.27 (s, 1H), 7.22 (t, J = 5.8 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 7.09 (d, J = 7.9 Hz, 1H), 6.45 (s, 1H), 4.65 (t, J = 5.5 Hz, 1H), 3.48 – 3.38 (m, 2H), 2.27 (q, J = 6.1 Hz, 2H), 2.01 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 193.7, 193.1, 140.5, 138.7, 135.2, 135.2, 128.8, 128.2, 125.9, 125.8, 125.4, 123.6, 121.3, 118.4, 114.4, 110.2, 105.3, 59.8, 38.6, 34.2, 31.6, 24.1, 24.0, 22.6, 14.1; HRMS calcd for C₃₄H₂₄N₁O₃ [M+H]+: 374.1756, found: 374.1756.

2-(3-(2,4-dioxopentan-3-yl)-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)acetonitrile (3y):

Isolated as brown solid (190mg, 82%, purification by 10/2, petroleum ether/ethyl acetate); mp 110-112 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.5 Hz, 1H), 7.54 (d, *J* = 7.0 Hz, 2H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 7.9 Hz, 1H), 6.46 (s, 1H), 4.70 (dd, *J* = 8.0, 3.6 Hz, 1H), 3.12 (dd, *J* = 16.7, 3.7 Hz, 1H), 2.75 (dd, *J* = 16.7, 7.9 Hz, 1H), 2.02 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 193.8, 193.1, 140.6, 135.7, 134.4, 131.8, 129.5, 129.1, 128.4, 126.5, 125.6, 125.5, 124.1, 122.4, 119.8, 117.1, 114.6, 110.6, 104.9, 37.4, 24.1, 24.0, 20.7; HRMS calcd for C₂₄H₂₁N₂O₂ [M+H]+: 369.1603, found: 369.1626.

3-(9-methyl-1-phenyl-9H-pyrrolo[1,2-a]indol-3-yl)pentane-2,4-dione (3z):

Isolated as brown solid (220mg, 84%, purification by 10/1, petroleum ether/ethyl acetate); mp 78-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 2H), 7.44 – 7.39 (m, 3H), 7.25 – 7.18 (m, 2H), 7.17 – 7.12 (m, 1H), 7.09 (d, *J* = 7.8 Hz, 1H), 6.47 (s, 1H), 4.46 (q, *J* = 7.1 Hz, 1H), 2.04 (s, 3H), 2.02 (s, 3H), 1.55 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.50, 193.50, 140.9, 137.3, 135.2, 128.7, 127.9, 125.69, 125.5, 124.9, 123.5, 120.8, 114.1, 110.1, 36.4, 24.1, 17.2; HRMS calcd for C₂₃H₂₂NO₂ [M+H]+: 344.1651, found: 344.1658.

(D-3-(9-methyl-1-phenyl-9H-pyrrolo[1,2-a]indol-3-yl)pentane-2,4-dione (D-3z):

Isolated as light yellow solid (222mg, 84%, purification by 10/1, petroleum ether/ethyl acetate); mp 79-81 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.7 Hz, 2H), 7.43 – 7.38 (m, 3H), 7.24 – 7.19 (m, 2H), 7.13 (t, *J* = 7.0 Hz, 1H), 7.07 (d, *J* = 7.8 Hz, 1H), 2.02 (s, 6H), 1.55 (d, *J* = 4.7 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 193.4, 140.8, 140.1, 137.3, 135.2, 128.7, 127.9, 125.6, 125.5, 124.9, 123.5, 120.8, 117.8, 114.1, 110.1, 105.4, 36.5, 26.7, 24.6, 24.1, 24.1, 17.2, 17.1; HRMS calcd for C₂₃H₂₀D₂NO₂ [M+H]+: 346.1776, found: 346.1772.

3-(1-(4-bromophenyl)-9-methyl-9H-pyrrolo[1,2-a]indol-3-yl)pentane-2,4-dione (3aa):

Isolated as yellow solid (250mg, 79%, purification by 20/1, petroleum ether/ethyl acetate); mp 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 7.4 Hz, 1H), 7.23 (d, J = 7.7 Hz, 1H), 7.14 (t, J = 7.0 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H), 6.41 (s, 1H), 4.40 (q, J = 7.2 Hz, 1H), 2.02 (s, 3H), 2.00 (s, 3H), 1.52 (d, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.45, 193.45, 140.7, 139.9, 137.5, 134.2, 131.7, 127.9, 127.2, 124.9, 123.6, 121.1, 118.8, 116.8, 113.9, 110.1, 105.2, 105.2, 36.4, 24.1, 24.1, 17.1; HRMS calcd for C₂₃H₂₁BrNO₂ [M+H]+: 422.0756, found: 422.0745.

3-(1-(4-fluorophenyl)-9-methyl-9H-pyrrolo[1,2-a]indol-3-yl)pentane-2,4-dione (3ab):

Isolated as yellow solid (220mg, 80%, purification by 20/1, petroleum ether/ethyl acetate); mp 132-134 °C; ¹H NMR (400 MHz, CDCl₃)) δ 7.55 (dd, J = 8.4, 5.3 Hz, 2H), 7.42 (d, J = 7.5 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.15 – 7.10 (m, 2H), 7.10 – 7.07 (m, 2H), 6.39 (s, 1H), 4.41 (q, J = 7.1 Hz, 1H), 2.02 (s, 3H), 2.00 (s, 3H), 1.51 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.4, 193.4, 140.7 (d, ¹J_{C-F} = 246.2 Hz), 140.0, 139.4, 137.0, 131.4, 127.9 (d, ²J_{C-F} = 22.01 Hz), 127.1, 127.0, 124.9, 123.5, 120.9, 117.0, 115.6, 115.4, 114.0 (d, ³J_{C-F} = 8.6 Hz), 110.1, 105.3, 36.3, 24.1, 17.2; HRMS calcd for C₂₃H₂₁FNO₂ [M+H]+: 362.1556, found: 362.1542.

N-(2-(3-(2,4-dioxopentan-3-yl)-1-phenyl-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)acetamide (3ac):

Isolated as yellow solid (230mg, 78%, purification by 20/1, petroleum ether/ethyl acetate); mp 236-238 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 14.2, 7.2 Hz, 3H), 7.42 (t, J = 7.6 Hz, 2H), 7.22 (d, J = 7.6 Hz, 2H), 7.14 – 7.07 (m, 2H), 6.46 (s, 1H), 5.21 (d, J = 25.1 Hz, 2H), 4.98 (dd, J = 9.4, 3.5 Hz, 1H), 3.15 (dd, J = 15.4, 3.6 Hz,

1H), 2.37 - 2.31 (m, 1H), 2.01 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 193.4, 193.3, 172.5, 140.2, 138.2, 134.7, 134.3, 129.0, 128.5, 126.1, 125.9, 125.6, 123.8, 121.6, 118.2, 114.3, 110.2, 37.7, 37.2, 24.1; HRMS calcd for C₂₄H₂₂N₂O₃ [M+H]+: 387.1709, found: 387.1721.

3-(1,9-diphenyl-9H-pyrrolo[1,2-a]indol-3-yl)pentane-2,4-dione (3ad):

Isolated as white solid (150mg, 76%, purification by 20/1, petroleum ether/ethyl acetate); mp 202-204 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 7.1 Hz, 2H), 7.25 (d, *J* = 5.7 Hz, 4H), 7.19 (dd, *J* = 13.8, 6.7 Hz, 5H), 7.12 (d, *J* = 7.8 Hz, 1H), 7.08 – 7.01 (m, 2H), 6.60 (s, 1H), 5.35 (s, 1H), 2.10 (s, 3H), 2.08 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 193.89, 192.96, 140.22, 140.16, 139.38, 135.14, 134.36, 129.01, 128.36, 128.17, 127.57, 127.24, 126.01, 125.61, 125.39, 123.80, 121.58, 119.00, 114.20, 110.15, 105.36, 48.05, 24.21, 24.09; HRMS calcd for C₂₈H₂₄NO₂ [M+H]+: 406.1807, found: 406.1795.

General procedure for compound 4a

To a magnetically stirred solution of compound 3c (1.0 mmol) and hydrazine hydrate (1.0 mmol) in ethanol, the reaction mixture was heated to 50 °C and stirred for 12 hours. Upon completion, as confirmed by TLC, ethanol was removed by distillation. The crude product was then purified by column chromatography to obtain the desired compound.

Characterization data for compound 4a

N-(2-(3-(3,5-dimethyl-1H-pyrazol-4-yl)-1-(m-tolyl)-9H-pyrrolo[1,2-a]indol-9-yl)ethyl)-4-methylbenzenesulfonamide (4a):

Isolated as brown solid (0.045g, 91%, purification by 10/2, petroleum ether/ethyl acetate); mp 226-228 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.9 Hz, 2H), 7.30 (t, J = 7.8 Hz, 2H), 7.15 (d, J = 8.0 Hz, 3H), 7.07 (dq, J = 6.6, 4.0, 3.1 Hz, 2H), 6.72 (d, J = 7.8 Hz, 1H), 6.41 (s, 1H), 4.55 (t, J = 5.1 Hz, 1H), 4.16 (t, J = 5.5 Hz, 1H), 2.61 – 2.73 (m, 2H), 2.40 (d, J = 9.4 Hz, 6H), 2.19 (s, 3H), 2.18 (s, 3H), 2.06 (dq, J = 11.8, 6.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 140.8, 138.4, 137.7, 136.8, 135.1, 134.4, 129.5, 128.8, 128.1, 126.9, 126.8, 126.7, 124.9, 123.5, 123.1, 118.6, 114.0, 110.8, 39.8, 38.9, 31.2, 21.6, 21.5, 11.4, 11.3; HRMS calcd for C₃₂H₃₃N₄O₂S [M+H]+: 537.2324, found: 537.2322.

General procedure for compound 4b

To a magnetically stirred solution of compound 3y (1.0 mmol) and hydroxylamine hydrochloride (1.0 mmol) in ethanol, the reaction mixture was heated to 50 °C and stirred for 12 hours. Upon completion, as confirmed by TLC, ethanol was removed by distillation. The crude product was then purified by column chromatography to obtain the desired compound.

Characterization data for compound 4b

3,5-dimethyl-4-(9-methyl-1-phenyl-9H-pyrrolo[1,2-a]indol-3-yl)isoxazole (4b):

Isolated as brown solid (0.095g, 95%, purification by 10/2, petroleum ether/ethyl acetate); mp 212-214 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.40 (t, J = 7.7 Hz, 3H), 7.21 (s, 1H), 7.16 (d, J = 7.4 Hz, 1H), 7.13 – 7.09 (m, 1H), 6.77 (d, J = 6.6 Hz, 1H), 6.50 (d, J = 4.5 Hz, 1H), 4.46 (q, J = 7.3 Hz, 1H), 2.38 (d, J = 22.6 Hz, 3H), 2.21 (d, J = 20.2 Hz, 3H), 1.54 (t, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.0, 160.5, 140.8, 140.0,

 $138.3, 135.0, 128.7, 127.7, 125.8, 125.6, 124.9, 123.6, 118.2, 114.3, 110.3, 108.8, 36.4, 31.6, 22.69, 17.02, 14.17, \\11.8, 10.7.; HRMS calcd for C_{23}H_{21}N_2O \ [M+H]+: 341.1654, found: 341.1649.$

General procedure for compound 4c

To a magnetically stirred solution of compound 3y (1.0 mmol) and hydrazineylbenzenesulfonamide hydrochloride (1.0 mmol) in ethanol, the reaction mixture was heated to 50 °C and stirred for 12 hours. Upon completion, as confirmed by TLC, ethanol was removed by distillation. The crude product was then purified by column chromatography to obtain the desired compound.

Characterization data for compound 4c

4-(3,5-dimethyl-4-(9-methyl-1-phenyl-9H-pyrrolo[1,2-a]indol-3-yl)-1H-pyrazol-1-yl)benzenesulfonamide (4c):

Isolated as brown solid (0.12g, 85%, purification by 10/2, petroleum ether/ethyl acetate); mp 218-220 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 5.0 Hz, 2H), 7.74 (d, *J* = 5.7 Hz, 2H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.42 (d, *J* = 7.3 Hz, 3H), 7.21 (dd, *J* = 17.5, 9.8 Hz, 2H), 7.11 (d, *J* = 7.4 Hz, 1H), 6.82 (d, *J* = 7.8 Hz, 1H), 6.52 (s, 1H), 5.13 (s, 2H), 4.47 (q, *J* = 7.2, 6.5 Hz, 1H), 2.37 (d, *J* = 20.8 Hz, 3H), 2.27 (d, *J* = 17.7 Hz, 3H), 1.57 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 150.7, 143.3, 140.9, 140.9, 140.3, 140.2, 139.4, 139.2, 137.9, 135.3, 128.7, 128.7, 127.7, 127.7, 127.6, 125.8, 125.7, 125.4, 124.7, 124.1, 123.4, 117.9, 117.8, 117.4, 114.1, 113.8, 110.5, 36.4, 17.1, 16.9, 12.7, 12.6, 12.3, 12.2; HRMS calcd for C₂₉H₂₇N₄O₂S [M+H]+: 495.1855, found: 495.1847.

X ray crystallographic data for compound 3aa

3aa

Identification code	20241203LT_0m				
Empirical formula	C23 H20 Br N O2				
Formula weight	422.31				
Temperature	100(1) K				
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	P-1				
Unit cell dimensions	a = 9.0636(4) Å	α= 62.853(2)°			
	b = 10.5318(5) Å	β= 85.644(3)°			
	c = 11.2940(5) Å	$\gamma = 85.833(3)^{\circ}$			
Volume	955.67(8) Å ³				
Z	2				
Density (calculated)	1.468 Mg/m ³				
Absorption coefficient	2.168 mm ⁻¹				
F(000)	432				
Crystal size	0.180 x 0.160 x 0.060 mm ³				
Theta range for data collection	2.029 to 27.968°				
Index ranges	-11<=h<=11, -13<=k<=13, -14<=l<=14				
Reflections collected	17803				
Independent reflections	4562 [R(int) = 0.0312]				
Completeness to theta = 25.242°	99.9 %				
Absorption correction	Semi-empirical from equivalents				

Max. and min. transmission	0.88 and 0.77
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4562 / 2 / 247
Goodness-of-fit on F ²	1.057
Final R indices [I>2sigma(I)]	R1 = 0.0328, wR2 = 0.0863
R indices (all data)	R1 = 0.0381, wR2 = 0.0886
Extinction coefficient	n/a
Largest diff. peak and hole	0.772 and -0.427 e.Å $^{-3}$

NMR copies of compound 3

¹H NMR spectra of compound 3a (500MHz, CDCl₃)

¹³C NMR spectra of compound 3a (126MHz, CDCl₃)

¹H NMR spectra of compound 3b (400MHz, CDCl₃)

¹H NMR spectra of compound 3c (400MHz, CDCl₃)

¹H NMR spectra of compound 3d (400MHz, CDCl₃)

¹³C NMR spectra of compound 3d (101MHz, CDCl₃)

¹H NMR spectra of compound 3e (400MHz, CDCl₃)

¹³C NMR spectra of compound 3e (126MHz, CDCl₃)

¹⁹F NMR spectra of compound 3e (400Hz, CDCl₃)

¹H NMR spectra of compound 3f (400MHz, CDCl₃)

¹H NMR spectra of compound 3g (400MHz, CDCl₃)

¹³C NMR spectra of compound 3g (101MHz, CDCl₃)

¹H NMR spectra of compound 3h (400MHz, CDCl₃)

¹H NMR spectra of compound 3i (400MHz, CDCl₃)

¹³C NMR spectra of compound 3i (101MHz, CDCl₃)

¹H NMR spectra of compound 3j (400MHz, CDCl₃)

¹³C NMR spectra of compound 3j (400MHz, CDCl₃)

¹H NMR spectra of compound 3k (400MHz, CDCl₃)

¹³C NMR spectra of compound 3k (101MHz, CDCl₃)

¹H NMR spectra of compound 3l (400MHz, CDCl₃)

¹³C NMR spectra of compound 3l (101MHz, CDCl₃)

¹H NMR spectra of compound 3m (400MHz, CDCl₃)

¹³C NMR spectra of compound 3l (101MHz, CDCl₃)

¹H NMR spectra of compound 3p (400MHz, CDCl₃)

¹³C NMR spectra of compound 3p (126MHz, CDCl₃)

¹³C NMR spectra of compound 3q (101MHz, CDCl₃)

¹³C NMR spectra of compound 3r (101MHz, CDCl₃)

¹H NMR spectra of compound 3s (400MHz, CDCl₃)

¹H NMR spectra of compound 3t (400MHz, CDCl₃)

¹H NMR spectra of compound 3u (400MHz, CDCl₃)

¹³C NMR spectra of compound 3u (126MHz, CDCl₃)

¹⁹F NMR spectra of compound 3u (400MHz, CDCl₃)

¹H NMR spectra of compound 3v (400MHz, CDCl₃)

¹³C NMR spectra of compound 3v (101MHz, CDCl₃)

¹H NMR spectra of compound 3y (400MHz, CDCl₃)

¹³C NMR spectra of compound 3y (126MHz, CDCl₃)

¹H NMR spectra of compound [D]-3z (400MHz, CDCl₃)

¹³C NMR spectra of compound [D]-3z (101MHz, CDCl₃)

¹³C NMR spectra of compound 3aa (400MHz, CDCl₃)

¹H NMR spectra of compound 3ab (400MHz, CDCl₃)

¹⁹F NMR spectra of compound 3ab (400MHz, CDCl₃)

¹H NMR spectra of compound 3ac (400MHz, CDCl₃)

¹³C NMR spectra of compound 3ac (126MHz, CDCl₃)

¹H NMR spectra of compound 3ad (400MHz, CDCl₃)

¹³C NMR spectra of compound 3ad (126MHz, CDCl₃)

NMR copies of compound 4

¹H NMR spectra of compound 4a (400MHz, CDCl₃)

¹³C NMR spectra of compound 4a (101MHz, CDCl₃)

¹H NMR spectra of compound 4b (400MHz, CDCl₃)

¹³C NMR spectra of compound 4b (101MHz, CDCl₃)

¹H NMR spectra of compound 4c (400MHz, CDCl₃)

¹³C NMR spectra of compound 4c (101MHz, CDCl₃)