Supporting Information

Fluorinated 2D Covalent Organic Frameworks with hcb Topology for Selective C_2H_4/C_3H_6 Separation

Jialiang Liu, ^{‡a} Xinyu Luo, ^{‡a} Sen Wang,^a Pengyue Hao,^a Wenjie Wei,^a Jun Pan, ^{*a} and Yongwu Peng^{*a,b}

^a College of Materials Science and Engineering, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China
 ^b School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
 E-mail: panjun0123@zjut.edu.cn (J. P); ywpeng@zjut.edu.cn (Y. P)
 [‡] These authors contributed equally to this work.

Table of Contents

1. Materials and methods	3
2. Synthesis and characterization	6
2.1. Synthesis of monomers	6
2.2. Synthesis of TpDf-COF and TpTf-COF	8
2.3. Characterization of TpDf-COF and TpTf-COF	10
3. References	28

1. Materials and methods

1,3,5-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene,2,4,6-Trihydroxybenzene-1,3,5tricarbaldehyde, 4-bromo-2,6-difluoroaniline and 4-bromo-2,3,5,6-tetrafluoroaniline were purchased from Shanghai Tensus Biotech Co., Ltd. Pd(dppf)Cl₂, CsF, Tetrahydrofuran, 1,4-Dioxane, dichloromethane, N, N-dimethylformamide, N, N-dimethylacetamide (DMA, 99%), Dimethyl sulfoxide, 1,2-dichlorobenzene and Acetic Acid were purchased from Tokyo Chemical Industry Co., Ltd., All the materials were used as received without further purification.

Solution nuclear magnetic resonance (NMR): Liquid state ¹H nuclear magnetic resonance spectroscopy was collected on a Varian Mercury Plus 400 NMR Spectrometer.

Solid-state nuclear magnetic resonance (ssNMR): Solid-state nuclear magnetic resonance (NMR) data were performed on a Bruker AVANCE III 600 spectrometer with cross-polarization magic-angle-spinning (CP/MAS) at a resonance frequency of 150.9 MHz. ¹³C CP/MAS NMR spectra were recorded using a 4 mm MAS probe and a spinning rate of 14 kHz. A contact time of 4 ms and a recycle delay of 2 s were used for the 13C CP/MAS NMR measurement. The chemical shifts of 13C were externally referenced to tetramethylsilane (TMS).

Fourier transform infrared (FT-IR): IR spectrum was measured on an IR spectrometer (Nicolet 6700) between the ranges of 4000 to 400 cm⁻¹.

Power X-ray diffraction (PXRD): PXRD patterns were collected on an X-ray diffraction (XRD) system (DX-27mini, China) using Cu Kα radiation.

Scanning electron microscopy (SEM): SEM images were collected using a GeminiSEM 500 system. **Transmission electron microscope (TEM):** TEM images were obtained with a Tecnai G2 F30 STwin.

Thermogravimetric analysis (TGA): TGA was performed using a TA Q600. When under flowing N₂ atmosphere, the samples were heated in a Platinum pan (800 °C, 10 °C min⁻¹) under a N₂ flux (60 mL min⁻¹).

Sorption isotherm for N₂: Micrometrics ASAP2040 system were used to measure the specific surface area and pore structure using nitrogen as the adsorbate at 77 K, after outgassing the samples overnight at 120 °C.

Gas sorption: The samples were activated under vacuum for 12 hours at 120 °C. Gas adsorption experiments at 298 K were performed by using JW-BK200 surface area analyzer. A circulation constant temperature water bath was used to stabilize the temperature at 298 K during the test.

Crystal structure modeling: Crystal structure modeling: The unit cell parameters of the COFs were obtained from the indexing of the PXRD peaks using the Dicvol (Reflex module in the Materials

Studio program) ¹, the structural modeling of COFs was generated using the Building (Crystal) module, the lattice model was geometrically optimized using force-filed based method (Forcite molecular dynamics module). The Pawley fitting (Reflex module) was performed to optimize the lattice parameters iteratively until the *R*wp value converges and the overlay of the observed with refined profiles shows good agreement.

Calculation of selectivity via ideal adsorption solution theory (IAST):

The gas adsorption isotherms were first fitted to a dual-site Langmuir-Freundlich (DSLF) model (eqn (3)), where is the amount of adsorbed gas q (mmol g⁻¹), P is the bulk gas phase pressure (atm), qsat is the saturation amount (mmol g⁻¹), b is the Langmuir-Freundlich parameter (atm^{- α}), and α is the Langmuir-Freundlich exponent (dimensionless) for two adsorption sites A and B indicating the presence of weak and strong adsorption sites.

$$q = q_{A,sat} \frac{b_A p}{1 + b_A p} + q_{B,sat} \frac{b_B p}{1 + b_B p}$$
(3)

IAST starts from the Raoult's Law type of relationship between the fluid and adsorbed phase (4) and (5), where P_i is the partial pressure of component i (atm), P is the total pressure (atm), and y_i and x_i represent mole fractions of component i in gas and the adsorbed phase (dimensionless). P_i^0 is the equilibrium vapour pressure (atm).

$$P_{i} = Py_{i} = P_{i}^{0}x_{i}$$

$$\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} \frac{P_{i}}{P_{i}^{0}} = 1$$
(5)

In IAST, *P* is defined by relating to spreading pressure π (6), where π is the spreading pressure, S is the specific surface area of the adsorbent (m² g⁻¹), R is the gas constant (8.314 J K⁻¹ mol⁻¹), T is the temperature (K), and $q_i(P_i)$ is the single component equilibrium obtained from isotherms (mmol g⁻¹).

$$\frac{\pi S}{RT} = \int_{0}^{p_{0}^{0}} i \frac{q_{i}(P_{i})}{P_{i}} dp_{i} = \Pi(condtant)$$

For a DSLF model, we have an analytical expression for the integral (7). The isotherm parameters are derived from the previous fitting. For a binary component system, the unknowns will be Π , *P*, and which can be obtained by simultaneously solving eqn (5) and (7).

$$\int_{0}^{p_{0}^{0}} i \frac{q_{i}(P_{i})}{P_{i}} dP_{i} = \Pi(condtant) = \frac{q_{sat,A}}{a_{A}} \ln\left[1 + b_{A}(P_{i}^{0})^{a_{A}}\right] + \frac{q_{sat,B}}{a_{B}} \ln\left[1 + b_{B}(P_{i}^{0})^{a_{B}}\right]$$
(7)

(6)

The adsorbed amount of each compound in a mixture is (8) and (9), where q is the adsorbed amount of component (mmol g⁻¹), and is the total adsorbed amount (mmol g⁻¹).

(8)

$$q_{i}^{mix} = x_{i}q_{t}$$

$$\frac{1}{q_{T}} = \sum_{i=1}^{n} \frac{x_{i}}{q_{i}(P_{i}^{0})}$$
(9)

The adsorption selectivities S_{ads} were calculated using eqn (10). In this study, IAST calculations were carried out assuming a binary mixed gas with a molar ratio of 50:50 at 298 K and pressures up to 1 atm.

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$
(10)

2. Synthesis and characterization

2.1. Synthesis of monomers

Scheme S1. 1,3,5-tris(3,5-difluoro-4-aminophenyl)benzene (**Df-TAPB**). 1,3,5-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (**A**, 2.3 g, 5.0 mmol), 4-bromo-2,6-difluoroaniline (**B**, 3.6 g, 17.0 mmol), CsF (7.6 g,50.0 mmol), and Pd(dppf)Cl₂ (0.20 g, 0.25 mmol) were mixed in a 250 mL single neck flask, then 1,4-Dioxane (120 mL) and H₂O (30 mL) were added. The mixture was heated at 110 °C for 24 hours under nitrogen atmosphere and then cooled to room temperature, followed by extraction with dichloromethane. After the organic phase was washed with brine and dried over MgSO₄, the organic solvent was removed under reduced pressure. Df-TAPB was purified by column chromatography (EA/petroleum ether, 1/5) and obtained as a white solid (1.9 g, yield: 83 %). ¹H NMR (400 MHz, *d*-DMSO, δ) 7.75(s, 3 H), 7.63(d, 6 H), 5.38(s, 6 H).

Figure S1. ¹H NMR spectrum of Df-TAPB, Solvent peaks of *d*-DMSO (a), H₂O (b).

Scheme S2. 1,3,5-tris(2,3,5,6-tetrafluoro-4-aminophenyl)benzene (**Tf-TAPB**). 1,3,5-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (**A**, 2.3 g, 5.0 mmol), 4-bromo-2,3,5,6-tetrafluoroaniline (**B**, 4.1 g, 17.0 mmol),CsF (7.6 g,50.0 mmol), and Pd(dppf)Cl₂ (0.20 g, 0.25 mmol) were mixed in a 250 mL single neck flask, then 1,4-Dioxane (120 mL) and H₂O (30 mL) were added. The mixture was heated at 110 °C for 24 hours under nitrogen atmosphere and then cooled to room temperature, followed by extraction with dichloromethane. After the organic phase was washed with brine and dried over MgSO₄, the organic solvent was removed under reduced pressure. Tf-TAPB was purified by column chromatography (EA/petroleum ether, 1/6) and obtained as a white solid (2.1 g, yield: 75 %).¹H NMR (400 MHz, *d*-DMSO, δ) 7.54(s, 3 H), 6.23(d, 6 H).

Figure S2. ¹H NMR spectrum of Tf-TAPB, Solvent peaks of *d*-DMSO (a), H_2O (b).

2.2 Synthesis of TpDf-COF and TpTf-COF

Scheme S3. Synthesis of TpDf-COF: A 10-mL Pyrex tube was charged with Tp (8.5 mg, 0.04 mmol), Df-TAPB (18.4 mg, 0.04 mmol) with 1,4-Dioxane (0.5 mL) and mesitylene (0.5 mL). The mixture was sonicated for 5 minutes to obtain a yellow turbid solution. To this, 9 M acetic acid (0.1 mL) were added as a catalyst. The tube was subsequently cooled to 77 K using a liquid nitrogen bath and subjected to three freeze-pump-thaw cycles for degassing. After sealing under vacuum, the tube was heated at 120 °C for 3 days. Upon cooling to room temperature, a yellow precipitate isolated by centrifugation at 40 g (6000 rpm) for 2 minutes, washed with anhydrous acetone, and subjected to solvent exchange with anhydrous tetrahydrofuran three times. The sample was dried under vacuum at 80 °C 12 hours to yield a yellow powder (18.7 mg, 78.5% isolated yield).

Scheme S4. Synthesis of TpTf-COF: A 10-mL Pyrex tube was charged with Tp (8.5 mg, 0.04 mmol), Tf-TAPB (22.7 mg, 0.04 mmol) with 1,4-Dioxane (0.5 mL) and 1,2-Dichlorobenzene (0.5 mL). The mixture was sonicated for 5 minutes to obtain a yellow turbid solution. To this, 9 M acetic acid (0.1 mL) were added as a catalyst. The tube was subsequently cooled to 77 K using a liquid nitrogen bath and subjected to three freeze-pump-thaw cycles for degassing. After sealing under vacuum, the tube was heated at 120 °C for 3 days. Upon cooling to room temperature, a yellow precipitate was isolated through centrifugation at 40 g (6000 rpm) for 2 minutes, washed with anhydrous acetone, and subjected to solvent exchange with anhydrous tetrahydrofuran three times. The sample was dried under vacuum at 80 °C 12 hours to yield a yellow powder (25.1 mg, 86.2% isolated yield).

2.3. Characterization of TpDf-COF and TpTf-COF

Figure S3. FT-IR spectra of Tp, Df-TAPB, and TpDf-COF.

Figure S4. FT-IR spectra of Tp, TF-TAPB, and TpTf-COF.

Figure S5. Solid-state ¹³C CP/MAS NMR spectrum of TpDf-COF.

Figure S6. Solid-state ¹³C CP/MAS NMR spectrum of TpTf-COF.

Figure S7. TGA curves of TpDf-COF and TpTf-COF under N_2 atmosphere conditions.

Figure S8. PXRD patterns of TpDf-COF after immersion in various solvents for 72 hours, demonstrating its structural stability.

Figure S9. PXRD patterns of TpTf-COF after immersion in various solvents for 72 hours, demonstrating its structural stability.

Figure S12. (a) PXRD patterns of TpDf-COF: comparison of the experimental profile with simulated patterns based on AA, AB, and ABC stacking models. (b) Structural models of TpDf-COF illustrating the AA, AB, and ABC stacking arrangements.

Figure S13. (a) PXRD patterns of TpTf-COF: comparison of the experimental profile with simulatedpatterns based on AA, AB, and ABC stacking models. (b) Structural models of TpTf-COF illustratingtheAA,AB,andABCstackingarrangements.

Spa	ace group	ŀ	23	
Calculated unit cell		a = 18.4498 Å, b = 18.4498 Å,		
		<i>c</i> = 3.5013 Å		
		$\alpha = 90.0000^\circ, \beta = 90.0000^\circ,$		
		γ = 120.0000°		
Atoms	X	Y	Z	
C1	0.75221	0.36807	0.55117	
C2	0.71786	0.4192	0.55052	
03	0.83585	0.40274	0.55438	
C4	0.77424	0.50878	0.55162	
N5	0.74914	0.56109	0.51778	
C6	0.81516	0.78258	0.4299	
C7	0.76725	0.6972	0.43342	
C8	0.80167	0.6485	0.5207	
C9	0.88568	0.68668	0.61059	
C10	0.93386	0.77212	0.61224	
C11	0.89964	0.82192	0.52037	
C12	0.95124	0.91348	0.51979	
F13	0.92141	0.64188	0.70457	
F14	0.68641	0.66128	0.34537	
C15	0.91534	0.96305	0.51977	
H16	0.71789	0.41925	0.22493	
H17	0.84449	0.53497	0.58389	
H18	0.78499	0.82147	0.35156	
H19	1.00304	0.80325	0.68977	
H20	0.84429	0.93321	0.51974	

Table S1. Unit cell parameters and fractional atomic coordinates of TpDf-COF derived fromstructural optimization based on AA stacking with hcb topology.

Table S2. Unit cell parameters and fractional atomic coordinates of TpTf-COF derived fromstructural optimization based on AA stacking with hcb topology.

Space group		P3		
Calculated unit cell		a = 18.8987 Å, b = 18.8987 Å,		
		<i>c</i> = 3.4925 Å		
		$\alpha = 90.0000^\circ, \beta = 90.0000^\circ,$		
		γ = 120.0000°		
Atoms	X	Y	Z	
C1	0.72035	0.42371	0.50583	
C2	0.62996	0.38651	0.50761	
O3	0.59911	0.42993	0.51081	
C4	0.7714	0.50481	0.50207	
C5	0.0355	0.9512	0.50549	
C6	0.95012	0.91383	0.50554	
C7	0.89733	0.82263	0.50467	
C8	0.81288	0.78475	0.41977	
C9	0.76395	0.69971	0.42066	
C10	0.79739	0.65004	0.49921	
C11	0.88112	0.68656	0.58428	
C12	0.93037	0.77163	0.58896	
N13	0.74441	0.56314	0.49156	
F14	0.91559	0.64053	0.67158	
F15	0.68323	0.66516	0.33743	
F16	0.77693	0.82923	0.32803	
F17	0.01019	0.80333	0.68464	
H18	0.84028	0.53036	0.50736	
H19	0.05336	0.92665	0.76378	
H20	0.04821	0.92453	0.23893	
H21	0.95007	0.91374	0.83195	
H22	0.67813	0.54214	0.47634	

Figure S14. SEM image and TEM elemental mapping of TpDf-COF.

Figure S15. SEM image and TEM elemental mapping of TpTf-COF.

Figure S16. TEM image of TpDf-COF.

Figure S17. TEM image of TpTf-COF.

Table S3. Summary of C_2H_4 and C_3H_6 adsorption capacities and C_2H_4/C_3H_6 (50/50, v/v) IAST selectivities for various porous materials at 298 K and 100 kPa.

Porous materials	q, C₂H₄ (mmol·g⁻¹)	q <i>,</i> C₃H ₆ (mmol·g⁻¹)	C ₃ H ₆ /C ₂ H ₄ selectivity	Refs.
TpDf-COF	1.39	3.32	6.1	This work
TpTf-COF	0.81	4.25	9.2	This work
Mn-dtzip	3.4	9.6	8.6	2
Zn-BPZ-SA	2.8	3.0	4.8	3
Zn-BPZ-TATB	4.1	5.1	7.4	4
spe-MOF	2.2	10.5	7.7	5
UPC-33	1.4	4.2	5.7	6
NEM-7-Cu	1.3	3.4	8.6	7
iso-MOF-4	3.3	11.4	7.7	8
MFM-202a	2.9	7.2	8.4	9

References

- 1. Materials Studio; Accelrys: San Diego.
- 2. L. Zhang, L. Ma, G. Wang, L. Hou, Z. Zhu and Y. Wang, J. Mater. Chem. A, 2023, **11**, 2343-2348.
- 3. G. Wang, R. Krishna, Y. Li, Y. Ma, L. Hou, Y. Wang and Z. Zhu, *ACS Mater. Lett.*, 2023, **5**, 1091-1099.
- 4. G. Wang, Y. Li, W. Shi, L. Hou, Y. Wang and Z. Zhu, *Angew. Chem. Int. Ed.*, 2023, **62**, e202311654.
- 5. H. Fang, B. Zheng, Z. Zhang, H. Li, D. Xue and J. Bai, *Angew. Chem. Int. Ed.*, 2021, **60**, 16521-16528.
- 6. W. Fan, Y. Wang, Q. Zhang, A. Kirchon, Z. Xiao, L. Zhang, F. Dai, R. Wang and D. Sun, *Chemistry*, 2018, **24**, 2137-2143.
- 7. X. Liu, C. Hao, J. Li, Y. Wang, Y. Hou, X. Li, L. Zhao, H. Zhu and W. Guo, *Inorg. Chem. Front.*, 2018, **5**, 2898-2905.
- 8. W. Fan, X. Wang, X. Zhang, X. Liu, Y. Wang, Z. Kang, F. Dai, B. Xu, R. Wang and D. Sun, *ACS Cent. Sci.*, 2019, **5**, 1261-1268.
- 9. S. Gao, C. G. Morris, Z. Lu, Y. Yan, H. G. W. Godfrey, C. Murray, C. Tang, K. M. Thomas, S. Yang and M. Schröder, *Chem. Mater.*, 2016, **28**, 2331-2340.