Supporting Information for:

Müller versus Gutmann-Beckett for Assessing the

Lewis Acidity of Boranes

Sameera Ranasinghe, Yijie Li, Madison E. Andrews, Manjur O. Akram, Ragene A. Thornton, and Caleb D. Martin*

^{*a*} Baylor University, Department of Chemistry and Biochemistry, One Bear Place #97348, Waco, TX 76798, USA

Author to address correspondence: Caleb D. Martin (caleb_d_martin@baylor.edu)

Table of Contents

1.	Gene	General Details	
2.	Experimental Section		4
	2.1.	FBN Probe method	4
	2.2.	FBN Probe method with excess of Lewis acid	6
	2.3.	Gutmann-Beckett studies	7
	2.4.	Gutmann-Beckett studies with excess of Lewis acid	8
3.	NMR Spectra:		
4.	. Theoretical Calculations		
5.	References:		49

1. General Details:

All manipulations were performed under an inert atmosphere in a nitrogen filled MBraun Unilab glove box or using standard Schlenk techniques unless specified. Chloroform-d and benzene-d₆ for NMR spectroscopy were purchased from Cambridge Isotope Laboratories, Inc., dried by stirring for 5 days over CaH₂, distilled, and stored over 4 Å molecular sieves. All other solvents were purchased from commercial sources as anhydrous grade, dried further using a JC Meyer Solvent System with dual columns packed with solvent-appropriate drying agents, and stored over 3 or 4 Å molecular sieves. Boron tribromide, BCl₃ (1.0 M solution in hexanes), Et₂O•BF₃, BPh₃, B(OMe)₃, and FBN were purchased from commercial sources and used without further purification. Tris(pentafluorophenyl)borane was purified by drying with dimethylsilylchloride and PhCF₃ was used after distillation. Piers' borane, B*o*Cb₃, BrB^{Me}*o*Cb₂, BrB^{Ph}*o*Cb₂ and HB^{Me}*o*Cb₂ were prepared according to the literature procedure.¹⁻⁴ Multinuclear NMR spectra (¹¹B{¹H}, ¹⁹F{¹H}, and ³¹P{¹H}) were recorded on a Bruker Avance III HD 400 MHz instrument.

2. Experimental Section:

2.1. FBN Probe method:

A borane solution (0.06 mmol) in deuterated CDCl₃ or C₆D₆ (0.6 mL) was transferred to a vial with FBN (0.06 mmol). The mixture was stirred at 23 °C for 10 min. PhCF₃ was added as an internal standard (0.02 mmol) and the ${}^{19}F{}^{1}H{}$ NMR spectrum was recorded.

Entry	BR3	δ FBN•BR3 (ppm) CDCl3	Δδ ¹⁹ F (ppm) CDCl ₃	δ FBN•BR ₃ (ppm) C ₆ D ₆	Δδ ¹⁹ F (ppm) C ₆ D ₆
1	BBr ₃	-89.34	13.1	-92.64	11.3
2	BCl ₃	-91.17	11.3	-93.63	10.3
3	Et ₂ O•BF ₃	NR		NR	
4	PhBBr ₂	-92.79	9.6	-95.24	8.7
5	Ph ₂ BBr	-99.09	3.3	-100.23	3.7
6	BPh ₃	NR		NR	
7	PhBCl ₂	-100.44	2.0	-103.92	3.0
8	B(OMe) ₃	NR		NR	
9	$HB(C_6F_5)_2$	-93.05	9.4	-94.66	9.3
10	B(C ₆ F ₅) ₃	-91.61	10.8	-93.15	10.8
11	BrB ^{Ph} oCb ₂	-88.74	13.7	-90.87	13.1
12	BrB ^{Me} oCb ₂	-87.74	14.7	-89.88	14.0
13	HB ^{Me} oCb ₂	-90.59	11.8	-91.65	12.3
14	BoCb ₃	-87.35	15.1	-89.29	14.6

Table S1. Shows the experimentally observed values of the ¹⁹F FBN probe studies done using CDCl₃ and C_6D_6 as the solvents.

 $\Delta \delta^{19} F = \delta FBN \bullet BR_3 - \delta FBN$

 δ FBN•BR₃ - ¹⁹F{¹H} of the borane adduct with FBN in the corresponding deuterated solvent.

 δ FBN - ¹⁹F{¹H} shift of free FBN in the corresponding deuterated solvent.

 δ FBN in CDCl3 is -102.42 ppm and in C6D6 is -103.92 ppm.

 $\Delta\delta$ ^{19}F - Change in $^{19}F\{^1H\}$ of the borane adduct with FBN and free FBN.

 δ PhCF₃ in CDCl₃ is -62.74 ppm and in C₆D₆ is -62.46 ppm.

Figure S1: Plot showing the comparison of the $\Delta \delta$ ¹⁹F values of the selected boranes in CDCl₃ and C₆D₆.

2.2. FBN Probe method with excess of Lewis acid:

A borane solution (0.18 mmol) in CDCl₃ (0.6 mL) was transferred to a vial with FBN (0.06 mmol). The mixture was stirred at 23 °C for 10 min. PhCF₃ was added as an internal standard (0.02 mmol) and the ${}^{19}F{}^{1}H{}$ and ${}^{11}B{}^{1}H{}$ NMR spectra were recorded.

Entry	DD.	δ FBN•BR ₃ (ppm)	Δδ ¹⁹ F (ppm)
Enuy	DK3	CDCl ₃	CDCl ₃
1	BBr ₃	-89.21	13.2
2	BCl ₃	-90.23	12.1
3	Et ₂ O•BF ₃	NR	
4	PhBBr ₂	-91.04	11.4
5	Ph ₂ BBr	-97.52	4.9
6	BPh ₃	NR	
7	PhBCl ₂	-98.25	4.2
8	B(OMe)3	NR	
9	$HB(C_6F_5)_2$	-93.04	9.4
10	B(C ₆ F ₅) ₃	-91.59	10.8
11	BrB ^{Ph} oCb ₂	-88.74	13.7
12	BrB ^{Me} oCb ₂	-87.74	14.7
13	HB ^{Me} oCb ₂	-90.59	11.8
14	BoCb ₃	-87.35	15.1

Table S2. ¹⁹F{¹H} NMR FBN probe studies with excess of Lewis acid (3 equivalents) in CDCl₃ solvent.

 δ FBN in CDCl₃ is -102.42 ppm.

 δ PhCF₃ in CDCl₃ is -62.74 ppm.

Note: Multinuclear NMR studies show no indication of reactions with CDCl₃ and the Lewis acids.

2.3. Gutmann-Beckett studies:

A solution of OPEt₃ (0.06 mmol) in CDCl₃ (0.6 mL) was transferred to a vial containing the borane (0.06 mmol). The mixture was stirred at 23 °C for 5 min and the ${}^{31}P{}^{1}H$ NMR spectrum recorded.

Entry	BR3	δ Et ₃ PO•BR ₃ (ppm)	$\Delta\delta^{31}P$ (ppm)
1	BBr ₃	88.0	35.7
2	BC13	85.2	32.9
3	Et ₂ O•BF ₃	78.5	26.2
4	PhBBr ₂	86.6	34.3
5	Ph ₂ BBr	81.8	29.5
6	BPh ₃	54.0	1.7
7	PhBCl ₂	83.7	31.4
8	B(OMe) ₃	52.3	NR
9	$HB(C_6F_5)_2$	80.9	28.6
10	$B(C_{6}F_{5})_{3}{}^{5}$	75.9	23.6
11	BrB ^{Ph} oCb ₂	83.8	31.5
12	BrB ^{Me} oCb ₂	86.2	33.9
13	$HB^{Me}oCb_2^2$	82.3	30.0
14	BoCb ₃ ¹	79.8	27.5

Table S3. Gutmann Beckett studies done using CDCl₃ solvent.

³¹P δ OPEt₃ in CDCl₃ appears at 52.3 ppm.

 $\Delta \delta^{31}P = \delta Et_3PO \bullet BR_3 - \delta Et_3PO$

 δ Et₃PO•BR₃ - ³¹P{¹H} of the borane adduct with OPEt₃ in CDCl₃.

 δ Et₃PO - ³¹P{¹H} shift of free OPEt₃ in CDCl₃.

 $\Delta \delta^{31}P$ - Change in ${}^{31}P{}^{1}H$ shift of the borane adducts with OPEt₃ and free OPEt₃.

2.4. Gutmann-Beckett studies with excess Lewis acid:

A solution of OPEt₃ (0.06 mmol) in CDCl₃ (0.6 mL) was transferred to a vial containing the borane (0.18 mmol). The mixture was stirred at 23 °C for 5 min and the ${}^{31}P{}^{1}H$ and ${}^{11}B{}^{1}H$ NMR spectra were recorded.

Entry	BR ₃	δ Et ₃ PO•BR ₃ (ppm)	$\Delta\delta^{31}P$ (ppm)
1	BBr ₃	88.2	35.9
2	BCl ₃	85.2	32.9
3	Et ₂ O•BF ₃	78.4	26.1
4	PhBBr ₂	86.8	34.5
5	Ph ₂ BBr	81.8	29.5
6	BPh ₃	57.1	4.8
7	PhBCl ₂	83.7	31.4
8	B(OMe) ₃	NR	NR
9	HB(C ₆ F ₅) ₂	80.9	28.6
10	B(C6F5)3	75.9	23.6
11	BrB ^{Ph} oCb ₂	83.5	31.2
12	BrB ^{Me} oCb ₂	86.2	33.9
13	HB ^{Me} oCb ₂	82.5	30.2
14	BoCb ₃	79.9	27.6

 Table S4. ³¹P{¹H} NMR Gutmann Beckett studies with excess Lewis acid in CDCl₃ solvent.

 ^{31}P δ OPEt_3 in CDCl₃ appears at 52.3 ppm.

Note: The strong Lewis acids BoCb₃, HB^{Me}oCb₂ and B(C₆F₅)₃, the triethylphosphine oxide adducts have all been structurally characterized by X-ray crystallography and reveal no deoxygenation reactivity.^{1, 2, 6}

3. NMR Spectra:

Figure S2: ¹⁹F{¹H} NMR spectrum of PhCF₃ in CDCl₃ (376 MHz)

Figure S3: ¹⁹F{¹H} NMR spectrum of PhCF₃ in C₆D₆ (376 MHz)

Figure S4: ¹⁹F{¹H} NMR spectrum of FBN in CDCl₃ (376 MHz)

Figure S5: ${}^{19}F{}^{1}H$ NMR spectrum of FBN in C₆D₆ (376 MHz)

Figure S6: ${}^{19}F{}^{1}H{}$ NMR spectra of the FBN•BBr₃ adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of BBr₃.

Figure S7: ${}^{19}F{}^{1}H{}$ NMR spectra of the FBN•BCl₃ adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of BCl₃.

Figure S8: ${}^{19}F{}^{1}H$ NMR spectra of FBN with Et₂O•BF₃ in CDCl₃ (376 MHz) with 1 and 3 equivalents of Et₂O•BF₃.

Figure S9: ${}^{19}F{}^{1}H$ NMR spectra of the FBN•BPhBr₂ adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of BPhBr₂.

Figure S10: ${}^{19}F{}^{1}H$ NMR spectra of the FBN•BPh₂Br adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of BPh₂Br.

Figure S11: ${}^{19}F{}^{1}H$ NMR spectra of FBN with BPh₃ in CDCl₃ (376 MHz) with 1 and 3 equivalents of BPh₃.

Figure S12: ${}^{19}F{}^{1}H$ NMR spectra of the FBN•BPhCl₂ adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of BPhCl₂.

Figure S13: ${}^{19}F{}^{1}H$ NMR spectra of FBN with B(OMe)₃ in CDCl₃ (376 MHz) with 1 and 3 equivalents of B(OMe)₃.

Figure S14: ¹⁹F $\{^{1}H\}$ NMR spectra of the FBN•BH(C₆F₅)₂ adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of BH(C₆F₅)₂.

Figure S15: ${}^{19}F{}^{1}H$ NMR spectra of the FBN•B(C₆F₅)₃ adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of B(C₆F₅)₃.

Figure S16: ¹⁹F{¹H} NMR spectra of the FBN•BBr^{Ph}oCb₂ adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of BBr^{Ph}oCb₂.

Figure S17: ¹⁹F{¹H} NMR spectra of the FBN•BBr^{Me}oCb₂ adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of BBr^{Me}oCb₂.

Figure S18: ${}^{19}F{}^{1}H$ NMR spectra of the FBN•BH^{Me}oCb₂ adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of BH^{Me}oCb₂.

Figure S19: ${}^{19}F{}^{1}H$ NMR spectra of the FBN•BoCb₃ adduct in CDCl₃ (376 MHz) with 1 and 3 equivalents of BoCb₃.

Figure S20: ³¹P{¹H} NMR spectra of the Et₃PO•BBr₃ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BBr₃.

3.0 equiv BBr₃ δ Et₃PO•BBr₃ = 88.2 ppm

1.0 equiv BBr₃ δ Et₃PO•BBr₃ = 88.0 ppm

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 (nom)

Figure S21: ³¹P{¹H} NMR spectra of the Et₃PO•BCl₃ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BCl₃.

3.0 equiv BCl₃ δ Et₃PO•BCl₃ = 85.2 ppm

1.0 equiv BCl₃ δ Et₃PO•BCl₃ = 85.2 ppm

-180 -200 -220 -240 140 120 100 80 60 40 -20 -40 -60 -80 -100 -120 -140 -160 20 Ó (ppm)

Figure S22: ${}^{31}P{}^{1}H$ NMR spectra of Et₃PO with Et₂O•BF₃ in CDCl₃ (162 MHz) with 1 and 3 equivalents of Et₂O•BF₃.

3.0 equiv $Et_2O \cdot BF_3$ $\delta Et_3PO \cdot BF_3 = 78.4 \text{ ppm}$

1.0 equiv $Et_2O \cdot BF_3$ $\delta Et_3PO \cdot BF_3 = 78.5 \text{ ppm}$

140 120 -140 -160 -180 -200 -220 -240 100 80 60 40 20 Ó -20 -40 -60 -80 -100 -120 (ppm)

Figure S23: ${}^{31}P{}^{1}H$ NMR spectra of the Et₃PO•BPhBr₂ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BPhBr₂.

3.0 equiv BPhBr₂ δ Et₃PO•BPhBr₂ = 86.8 ppm

1.0 equiv BPhBr₂ δ Et₃PO•BPhBr₂ = 86.6 ppm

Figure S24: ³¹P{¹H} NMR spectra of the Et₃PO•BPh₂Br adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BPh₂Br.

3.0 equiv BPh₂Br δ Et₃PO•BPh₂Br = 81.8 ppm

1.0 equiv BPh_2Br $\delta Et_3PO \bullet BPh_2Br = 81.8 \text{ ppm}$

140 -40 -((ppm) -140 -160 -180 -200 -220 -240 120 100 80 60 40 20 Ó -20 -60 -80 -100 -120

Figure S25: ³¹P{¹H} NMR spectra of the Et₃PO•BPh₃ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BPh₃.

3.0 equiv BPh₃ δ Et₃PO•BPh₃ = 57.1 ppm 1.0 equiv BPh₃ δ Et₃PO•BPh₃ = 54.0 ppm 140 120 100 80 60 40 20 ò -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 (ppm)

Figure S26: ³¹P{¹H} NMR spectra of the Et₃PO•BPhCl₂ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BPhCl₂.

3.0 equiv BPhCl₂ δ Et₃PO•BPhCl₂ = 83.7 ppm

1.0 equiv BPhCl₂ δ Et₃PO•BPhCl₂ = 83.7 ppm

140 -240 120 -40 -((ppm) -140 -160 -180 -200 -220 100 80 60 40 20 ò -20 -60 -80 -100 -120

Figure S27: ${}^{31}P{}^{1}H$ NMR spectra of Et₃PO with B(OMe)₃ in CDCl₃ (162 MHz) with 1 and 3 equivalents of B(OMe)₃.

3.0 equiv B(OMe)₃ $\delta B(OMe)_3 = 52.3 \text{ ppm}$ 1.0 equiv B(OMe)₃ δ B(OMe)₃ = 52.3 ppm -100 -120 -140 -160 -180 -200 -220 -240 140 120 100 80 60 40 20 ò -20 -40 -60 -80 (ppm)

Figure S28: ³¹P{¹H} NMR spectra of the Et₃PO•BH(C₆F₅)₂ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BH(C₆F₅)₂.

Figure S29: ³¹P{¹H} NMR spectra of the Et₃PO•B(C₆F₅)₃ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of B(C₆F₅)₃.

3.0 equiv $B(C_6F_5)_3$ $\delta Et_3PO \cdot B(C_6F_5)_3 = 75.9 \text{ ppm}$

1.0 equiv $B(C_6F_5)_3$ $\delta Et_3PO \cdot B(C_6F_5)_3 = 75.9 \text{ ppm}$

Figure S30: ³¹P{¹H} NMR spectra of the Et₃PO•BBr^{Ph}oCb₂ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BBr^{Ph}oCb₂.

Figure S31: ³¹P{¹H} NMR spectra of the Et₃PO•BBr^{Me}oCb₂ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BBr^{Me}oCb₂.

3.0 equiv BBr^{Me}oCb₂ δ Et₃PO•BBr^{Me}oCb₂ = 86.2 ppm

1.0 equiv BBr^{Me}oCb₂ δ Et₃PO•BBr^{Me}oCb₂ = 86.2 ppm

Figure S32: ³¹P{¹H} NMR spectra of the Et₃PO•BH^{Me}oCb₂ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BH^{Me}oCb₂.

Figure S33: ³¹P{¹H} NMR spectra of the Et₃PO•BoCb₃ adduct in CDCl₃ (162 MHz) with 1 and 3 equivalents of BoCb₃.

3.0 equiv $BoCb_3$ $\delta Et_3PO \cdot BoCb_3 = 79.8 \text{ ppm}$

1.0 equiv $BoCb_3$ $\delta Et_3PO \cdot BoCb_3 = 79.9 \text{ ppm}$

Figure S34: ¹¹B{¹H} NMR spectrum of the FBN•BBr₃ adduct in CDCl₃ (128 MHz) with 3 equivalents of BBr₃.

Figure S35: ¹¹B{¹H} NMR spectrum of the FBN•BCl₃ adduct in CDCl₃ (128 MHz) with 3 equivalents of BCl₃.

Figure S36: ${}^{11}B{}^{1}H{}$ NMR spectrum of the FBN•BPhBr₂ adduct in CDCl₃ (128 MHz) with 3 equivalents of BPhBr₂.

Figure S37: ${}^{11}B{}^{1}H{}$ NMR spectrum of the FBN•BPh₂Br adduct in CDCl₃ (128 MHz) with 3 equivalents of BPh₂Br.

-53.67

Figure S38: ${}^{11}B{}^{1}H{}$ NMR spectrum of the FBN•BPhCl₂ adduct in CDCl₃ (128 MHz) with 3 equivalents BPhCl₂.

Figure S39: ${}^{11}B{}^{1}H{}$ NMR spectrum of the FBN•BH(C₆F₅)₂ adduct in CDCl₃ (128 MHz) with 3 equivalents BH(C₆F₅)₂.

Figure S40: ¹¹B{¹H} NMR spectrum of the FBN•B(C₆F₅)₃ adduct in CDCl₃ (128 MHz) with 3 equivalents B(C₆F₅)₃.

Figure S41: ¹¹B{¹H} NMR spectrum of the FBN•BBr^{Ph}oCb₂ adduct in CDCl₃ (128 MHz) with 3 equivalents BBr^{Ph}oCb₂.

Figure S42: ¹¹B{¹H} NMR spectrum of the FBN•BBr^{Me}oCb₂ adduct in CDCl₃ (128 MHz) with 3 equivalents BBr^{Me}oCb₂.

Figure S43: ¹¹B{¹H} NMR spectrum of the FBN•BH^{Me}oCb₂ adduct in CDCl₃ (128 MHz) with 3 equivalents BH^{Me}oCb₂.

Figure S44: ${}^{11}B{}^{1}H$ NMR spectrum of the FBN•BoCb₃ adduct in CDCl₃ (128 MHz) with 3 equivalents BoCb₃.

Figure S45: ${}^{11}B{}^{1}H{}$ NMR spectrum of the Et₃PO•BBr₃ adduct in CDCl₃ (128 MHz) with 3 equivalents of BBr₃.

Figure S46: ${}^{11}B{}^{1}H{}$ NMR spectrum of the Et₃PO•BCl₃ adduct in CDCl₃ (128 MHz) with 3 equivalents of BCl₃.

Figure S47: ${}^{11}B{}^{1}H{}$ NMR spectrum of Et₃PO with Et₂O•BF₃ in CDCl₃ (128 MHz) with 3 equivalents of Et₂O•BF₃.

Figure S48: ¹¹B{¹H} NMR spectrum of the Et₃PO•BPhBr₂ adduct in CDCl₃ (128 MHz) with 3 equivalents of BPhBr₂.

Figure S49: ${}^{11}B{}^{1H}$ NMR spectrum of the Et₃PO•BPh₂Br adduct in CDCl₃ (128 MHz) with 3 equivalents of BPh₂Br.

Figure S50: ${}^{11}B{}^{1}H{}$ NMR spectrum of the Et₃PO•BPh₃ adduct in CDCl₃ (128 MHz) with 3 equivalents of BPh₃.

Figure S51: ¹¹B{¹H} NMR spectrum of the Et₃PO•BPhCl₂ adduct in CDCl₃ (128 MHz) with 3 equivalents of BPhCl₂.

Figure S52: ¹¹B{¹H} NMR spectrum of the Et₃PO•BH(C₆F₅)₂ adduct in CDCl₃ (128 MHz) with 3 equivalents BH(C₆F₅)₂.

Figure S53: ¹¹B{¹H} NMR spectrum of the Et₃PO•B(C₆F₅)₃ adduct in CDCl₃ (128 MHz) with 3 equivalents B(C₆F₅)₃.

Figure S54: ¹¹B{¹H} NMR spectrum of the Et₃PO•BBr^{Ph}oCb₂ adduct in CDCl₃ (128 MHz) with 3 equivalents BBr^{Ph}oCb₂.

Figure S55: ¹¹B{¹H} NMR spectrum of the Et₃PO•BBr^{Me}oCb₂ adduct in CDCl₃ (128 MHz) with 3 equivalents BBr^{Me}oCb₂.

Figure S56: ¹¹B{¹H} NMR spectrum of the Et₃PO•BH^{Me}oCb₂ adduct in CDCl₃ (128 MHz) with 3 equivalents BH^{Me}oCb₂.

Figure S57: ¹¹B{¹H} NMR spectrum of the Et₃PO•BoCb₃ adduct in CDCl₃ (128 MHz) with 3 equivalents BoCb₃.

4. Theoretical Calculations:

Calculations were performed using Gaussian 16.⁷ Coordinates (gas phase calculations) and enthalpy/free energies are given for BPV86/SVP geometry optimizations and single point vibrational frequency calculations. Enthalpies are given for fluoride and each Lewis acid. The values for HB^{Me}oCb₂, BrB^{Me}oCb₂, HB(C₆F₅)₂, B(C₆F₅)₃ and BoCb₃, have been reported and were used.^{1, 2} Fluoride and hydride affinities were calculated using Krossing's method, which uses an isodesmic comparison to the fluoride and hydride affinity of [(CH₃)₃–Si]⁺.⁸

Percent buried volume values (% V_{Bur}) were obtained using the SambVca 2.1 routine for all Lewis acids below, using their Cartesian coordinates for their optimized geometries obtained using BPV86/SVP method.^{9, 10} The values were obtained using the start orientation (below) looking down the z axis (B-F bond) and with the xy plane defined as the B-X3 plane of the molecule.

X - Substituted groups

BBr₃

Enthalpy: -7747.325412 Hartree

В	0.000000	0.000000	0.000000
Br	-0.000000	1.915714	0.000000
Br	1.659057	-0.957857	0.000000
Br	1.659057	-0.957857	0.000000

F•BBr₃-

Enthalpy: -7847.243280 Hartree

0.000014	0.000125	0.515729
-1.093788	1.616102	-0.186018
1.947301	0.138473	-0.186242
-0.853747	-1.754645	-0.185967
0.000900	0.000204	1.884366
	0.000014 -1.093788 1.947301 -0.853747 0.000900	0.000014 0.000125 -1.093788 1.616102 1.947301 0.138473 -0.853747 -1.754645 0.000900 0.000204

BCl3

Enthalpy: -1405.262034 Hartree

В	0.000000	0.000000	0.000000
Cl	0.000000	1.756188	0.000000

Cl	-1.520903	-0.878094	0.000000
Cl	1.520903	-0.878094	0.000000

F•BCl₃⁻

Enthalpy: -1505.165955 Hartree

В	-0.000037	0.000029	0.315128
F	0.000179	-0.000067	1.693552
Cl	-0.791950	1.602831	-0.329704
Cl	-0.992226	-1.487189	-0.329739
Cl	1.784092	-0.115614	-0.329827

PhBBr₂

Enthalpy: -5404.571547 Hartree

С -3.932520 -0.000067 -0.000013 С -3.228539 -1.217602 -0.000239 С -1.827627 -1.215874 -0.000256 С -1.090618 -0.000042 0.000008 С -1.827650 1.215781 0.000295 С -3.228560 1.217482 0.000231 Η -5.033769 -0.000076 -0.000040 Η -3.777063 -2.172008 -0.000440 Η -1.281803 -2.171860 -0.000408 Η -1.281838 2.171778 0.000462 Η -3.777104 2.171877 0.000415 В 0.463245 0.000014 -0.000005 Br 1.480769 -1.645369 0.000095 Br 1.480615 1.645430 -0.000099

$F{\bullet}BPhBr_{2}{}^{-}$

Enthalpy: -5504.478274 Hartree

С	-3.898773 -0.000063 -0.379047
С	-2.947420 -0.000189 -1.418033
С	-1.575941 -0.000175 -1.121101
С	-1.102431 -0.000031 0.212817
С	-3.454904 0.000075 0.953535
Η	-4.977367 -0.000074 -0.609555
Η	-3.282918 -0.000301 -2.469216
Η	-0.838352 -0.000281 -1.939933
Н	-1.733518 0.000193 2.285609
Н	-4.188369 0.000170 1.778266
В	$0.462442 \ 0.000008 \ 0.599295$
Br	0 1.382521 -1.708013 -0.237694
Br	1.382404 1.708054 -0.237809

Ph₂BBr

Enthalpy: -3061.808864 Hartree

С	-3.897514 -1.666223 0.130088
С	-3.799177 -0.394220 -0.464649
С	-2.564780 0.269584 -0.501270
С	-1.386954 -0.325310 0.026847
С	-1.514363 -1.613023 0.617960
С	-2.753398 -2.270829 0.679752
Н	-4.868988 -2.183917 0.169580
Н	-4.693322 0.084081 -0.894197
Η	-2.501068 1.272959 -0.951000
Η	-0.628614 -2.096980 1.058321
Η	-2.827234 -3.259835 1.158509
В	0.000012 0.395499 0.000410
Br	0.000047 2.354107 -0.000056
С	1.386966 -0.325342 -0.026435
С	1.514158 -1.613006 -0.617715
С	2.564949 0.269446 0.501435
С	2.753145 -2.270858 -0.679898
Η	0.628259 -2.096877 -1.057867
С	3.799306 -0.394417 0.464437
Н	2.501398 1.272783 0.951272
С	3.897429 -1.666356 -0.130465
Η	2.826834 -3.259811 -1.158788
Н	4.693580 0.083786 0.893828

Н 4.868869 -2.184093 -0.170269

F•BPh2Br-

Enthalpy: -3161.705532 Hartree

С	-3.837765	-1.665921	-0.375284
С	-3.199929	-0.860146	-1.335828
С	-2.009017	-0.184489	-1.016362
С	-1.403922	-0.291844	0.259074
С	-2.072854	-1.103809	1.208210
С	-3.268209	-1.779852	0.905011
Н	-4.775001	-2.193405	-0.620170
Н	-3.642428	-0.748757	-2.340681
Н	-1.541221	0.479897	-1.761875
Н	-1.639502	-1.193966	2.217909
Н	-3.762260	-2.398935	1.673802
В	0.009282	0.397046	0.680727
Br	0.123828	2.339940	-0.291226
С	1.332003	-0.414855	0.187015
С	1.509235	-0.899748	-1.131289
С	2.372502	-0.688903	1.106633
С	2.660200	-1.606443	-1.516971
Н	0.720660	-0.712997	-1.878840
С	3.531569	-1.394178	0.734734
Н	2.256900	-0.329656	2.142104
С	3.683033	-1.858288	-0.583160
Н	2.762919	-1.967006	-2.554913
Н	4.323936	-1.585090	1.479277
Н	4.588598	-2.412780	-0.881598
F	0.060659	0.630049	2.073728

PhBCl₂ Enthalpy: -1176.538961 Hartree

- C 0.00000228 -0.00000002 -0.00000080
- C 0.000000249 -0.000000307 0.000000063
- C 0.00000761 -0.00000000 0.00000056
- C -0.000000426 -0.00000002 -0.000000102

- C 0.00000248 0.00000309 0.00000138
- Н -0.00000298 -0.00000000 0.00000006
- Н -0.000000129 0.000000119 -0.000000009
- Н 0.000000162 -0.000000130 -0.000000008
- H 0.000000162 0.000000130 0.000000019
- Н -0.000000130 -0.000000119 -0.000000040
- B -0.00000865 0.00000000 -0.00000026
- Cl 0.00000231 0.00000264 0.00000007
- Cl 0.00000231 -0.00000264 0.00000009

F•BPhCl2-

Enthalpy: -1276.435622 Hartree

С	-3.341047	-0.231161	0.002270
С	-2.474799	-1.342036	0.012246
С	-1.083602	-1.153715	0.010313
С	-0.504292	0.137671	-0.001524
С	-1.394936	1.235375	-0.011401
С	-2.792053	1.062027	-0.009597
Н	-4.434742	-0.375346	0.003736
Н	-2.893287	-2.363435	0.021572
Н	-0.413357	-2.028811	0.018085
Н	-0.967137	2.251300	-0.020757
Н	-3.458348	1.942316	-0.017526
В	1.097598	0.383214	-0.003906
Cl	1.863748	-0.432361	1.565138
C1	1.864113	-0.464240	-1.555745
F	1.427737	1.739019	-0.017678

BrB^{Ph}oCb₂

Enthalpy: -3722.743 Hartree

B -0.000000 0.000000 0.669511

В	1.441331 0.990239 -1.677033
Н	1.164540 0.008031 -2.298261
В	0.262347 2.221390 -1.154355
Н	-0.894452 2.080547 -1.444784
В	0.730891 2.745890 0.482877
Н	-0.097195 2.954578 1.331559
В	2.193803 1.841257 0.937368
Н	2.382854 1.440357 2.047827
В	3.510710 2.297696 -0.162965
Н	4.641331 2.166400 0.230916
В	2.337509 3.521347 0.381535
Н	2.654108 4.382006 1.166213
В	1.135885 3.759304 -0.928623
Н	0.569191 4.810660 -1.106275
В	1.574755 2.659282 -2.279833
Н	1.343468 2.894430 -3.440853
В	3.038776 1.768102 -1.797415
Н	3.848154 1.290634 -2.549705
В	2.852225 3.483173 -1.332680
Н	3.568378 4.327716 -1.814165
В	-1.441330 -0.990240 -1.677033
Н	-1.164539 -0.008031 -2.298261
В	-0.262346 -2.221390 -1.154355
Н	0.894453 -2.080547 -1.444783
В	-0.730890 -2.745889 0.482877
Н	0.097196 -2.954577 1.331560
В	-2.193803 -1.841257 0.937368
Н	-2.382854 -1.440357 2.047827
В	-3.510709 -2.297697 -0.162965
Н	-4.641330 -2.166401 0.230915
В	-3.038776 -1.768103 -1.797415
Н	-3.848153 -1.290635 -2.549705
В	-1.574754 -2.659283 -2.279832
Н	-1.343467 -2.894431 -3.440852
В	-1.135884 -3.759305 -0.928622
Н	-0.569190 -4.810661 -1.106273
В	-2.337509 -3.521347 0.381536
Н	-2.654107 -4.382006 1.166214
В	-2.852224 -3.483174 -1.332680
Н	-3.568376 -4.327718 -1.814165
Br	-0.000001 0.000001 2.591857
С	0.939085 1.112440 -0.030105
С	2.620448 0.847185 -0.409958
С	-0.939084 -1.112440 -0.030104
С	-2.620447 -0.847185 -0.409959
С	3.247369 -0.508390 -0.174540

С	3.591908 -0.948537 1.122171
Η	3.386935 -0.308577 1.989923
С	4.208461 -2.194901 1.312499
Η	4.467813 -2.519706 2.331414
С	4.499413 -3.017820 0.213120
Η	4.984781 -3.993871 0.364274
С	4.169944 -2.584538 -1.081466
Η	4.395844 -3.218065 -1.952259
С	3.547227 -1.343165 -1.274775
Η	3.298066 -1.015989 -2.293134
С	-3.247369 0.508389 -0.174541
С	-3.547227 1.343165 -1.274776
Η	-3.298065 1.015988 -2.293135
С	-4.169944 2.584537 -1.081467
Η	-4.395844 3.218065 -1.952260
С	-4.499414 3.017819 0.213119
Η	-4.984783 3.993870 0.364272
С	-4.208463 2.194900 1.312498
Η	-4.467815 2.519706 2.331413
С	-3.591909 0.948536 1.122170
Н	-3.386937 0.308576 1.989922

F•BBr^{Ph}oCb2⁻ Enthalpy: -3822.692 Hartree

В	1.568056 0.754640 -1.695838
Н	1.324818 -0.279976 -2.247065
В	0.352096 2.007215 -1.349127
Н	-0.784335 1.837224 -1.691560
В	0.748638 2.708073 0.221298
Н	-0.098774 3.028354 1.008065
В	2.194084 1.853426 0.811502
Н	2.356673 1.558268 1.963370
В	3.551865 2.262021 -0.286216
Н	4.677643 2.210993 0.145993
В	2.341001 3.494036 0.101430
Н	2.619668 4.441073 0.802136
В	1.191482 3.581996 -1.268672
Н	0.614213 4.602526 -1.572637
В	1.685535 2.359914 -2.480556
Н	1.485595 2.475176 -3.668965
В	3.152632 1.566792 -1.877203
Н	3.997034 1.031767 -2.553068
В	2.918009 3.309765 -1.587081
Н	3.637368 4.121388 -2.127255
В	-1.415276 -1.157456 -1.642761

Н	-1.053109 -0.230540 -2.304060
В	-0.346115 -2.443777 -1.050030
Н	0.824671 -2.402305 -1.321067
В	-0.896968 -2.890964 0.572632
Н	-0.127669 -3.168278 1.452451
В	-2.294657 -1.873153 0.957564
Н	-2.502960 -1.440067 2.053128
В	-3.609191 -2.283442 -0.178795
Н	-4.746738 -2.067438 0.162295
В	-3.055784 -1.837187 -1.806629
Н	-3.814220 -1.324847 -2.592551
В	-1.641414 -2.832088 -2.212166
Н	-1.389849 -3.115111 -3.362073
В	-1.327540 -3.918472 -0.824561
Н	-0.832710 -5.015939 -0.959008
В	-2.543714 -3.559989 0.436714
Н	-2.948496 -4.378960 1.231272
В	-3.005395 -3.540961 -1.293191
Η	-3.769145 -4.348089 -1.776337
Br	-0.687789 0.675153 2.472441
С	0.962021 1.028125 -0.092779
С	2.718048 0.779523 -0.425512
С	-0.958508 -1.245599 0.024436
С	-2.604834 -0.904706 -0.427414
С	3.467908 -0.484674 -0.066231
С	4.127563 -0.603152 1.175343
Н	4.022665 0.196694 1.920084
С	4.901009 -1.733780 1.470943
Н	5.400368 -1.807211 2.449620
С	5.033241 -2.769668 0.531009
Η	5.636490 -3.660604 0.765945
С	4.387007 -2.658227 -0.709862
Н	4.479214 -3.460899 -1.457757
С	3.614092 -1.525142 -1.006817
Н	3.118576 -1.447041 -1.983398
С	-3.232584 0.465178 -0.274876
С	-3.367021 1.313614 -1.394989
Н	-2.960752 0.999261 -2.365346
С	-4.023921 2.548679 -1.287357
Н	-4.109620 3.195225 -2.174211
С	-4.563149 2.957532 -0.057331
Н	-5.074975 3.928837 0.029439
С	-4.442742 2.117185 1.060779
Н	-4.858389 2.424746 2.032728
С	-3.784653 0.882857 0.954433
Н	-3.692564 0.235389 1.834751

F 1.170744 -1.061231 1.254508 B 0.173524 -0.205463 0.778969

BBr^{Me}*o***Cb**₂ Enthalpy: -3339.639166 Hartree

С	1.409438	-0.172749	-0.167800
С	2.683299	0.456612	0.790475
С	2.467324	1.686067	1.662867
Η	1.486581	1.666241	2.173062
Н	2.544264	2.618784	1.077082
Н	3.249927	1.696062	2.443988
С	-1.483324	-0.070866	-0.180173
С	-1.816929	0.547749	2.493683
Η	-0.934217	-0.024404	2.835010
Н	-2.572844	0.519202	3.300038
Н	-1.531779	1.604752	2.335056
С	-2.416207	-0.058698	1.232548
В	1.560195	-1.897982	-0.246757
Н	0.567915	-2.557700	-0.320558
В	-1.856397	-1.470096	-1.121533
Н	-0.980089	-1.947494	-1.788004
В	-3.571992	-1.317023	-1.571510
Η	-3.964223	-1.770667	-2.619099
В	-4.188863	0.228173	-0.903764
Η	-5.024791	0.907576	-1.447830
В	-0.010010	0.586475	-0.248320
В	3.658210	-0.818401	1.391990
Н	4.119124	-0.666140	2.495379
В	4.199843	0.202949	0.039083
Н	5.032724	1.057717	0.209375
В	1.889875	-1.013077	1.261880
Н	1.166855	-0.966713	2.222428

В	-3.090580	-2.365829	-0.193574
Η	-3.134481	-3.571281	-0.218872
В	3.100150	-2.228767	-1.061118
Н	3.220109	-3.210020	-1.753461
В	4.410179	-1.569896	-0.043627
Η	5.512245	-2.058212	0.022110
В	2.071546	-0.861876	-1.603792
Η	1.414472	-0.778835	-2.610671
В	2.979692	-2.323603	0.727518
Η	3.015242	-3.356237	1.350721
В	-3.407596	-1.457121	1.309956
Η	-3.601055	-1.926445	2.403368
В	-1.759668	-1.557198	0.658183
Η	-0.867282	-2.031201	1.298927
В	3.849581	-0.655226	-1.484333
Η	4.517652	-0.477414	-2.473322
В	-4.084812	0.130084	0.871798
Η	-4.739537	0.755589	1.667799
В	2.776198	0.631970	-0.925988
Η	2.612504	1.722704	-1.393539
В	-4.539481	-1.319960	-0.068043
Η	-5.656156	-1.773076	0.004402
В	-2.856732	1.014801	-0.046568
Н	-2.656662	2.183490	0.124787
В	-2.523811	0.130044	-1.552381
Н	-2.084944	0.740535	-2.493842
В	0.034263	2.484922	-0.565127

F•BBr^{Me}oCb2⁻

Enthalpy: -3439.597154 Hartree

С	1.481715	0.178649	-0.022024
С	2.836466	-0.355894	0.895018
С	2.702578	-1.519419	1.871078
Н	2.106090	-2.338547	1.430742
Н	2.216966	-1.202588	2.809602
Н	3.717145	-1.899072	2.095829
С	-1.457984	0.242268	0.068813
С	-2.935041	-2.063662	0.785972
Н	-2.925700	-2.731714	-0.092531
Н	-3.848834	-2.252890	1.380951
Н	-2.052182	-2.299027	1.405369
С	-2.936884	-0.599082	0.366889
В	2.060749	0.688453	-1.564272
Н	1.344089	0.519591	-2.518042
В	-1.749572	1.434109	-1.127503

-0.862671	1.694627	-1.894920
-2.943676	2.579548	-0.447032
-2.917616	3.752334	-0.748166
-3.347090	2.023602	1.206037
-3.608485	2.773891	2.119711
-0.000999	-0.599401	0.320836
4.297594	-0.214495	0.004901
5.136516	-1.061705	0.203395
3.880196	0.948409	1.278551
4.437753	0.912292	2.350631
2.787408	-0.723377	-0.779169
2.613884	-1.861036	-1.106381
-3.467861	1.307455	-1.594561
-3.827013	1.534172	-2.728234
3.149287	2.087103	-1.267972
3.231377	2.989968	-2.071100
4.528436	1.523909	-0.286599
5.642643	1.994745	-0.360956
1.673156	1.874005	-0.306078
0.703874	2.565509	-0.387491
3.839663	0.470273	-1.566983
4.434269	0.170101	-2.578132
-4.188542	-0.013662	-0.645498
-4.998388	-0.819319	-1.040784
-2.517665	-0.157298	-1.246930
-2.191756	-1.018192	-2.014882
3.172308	2.381545	0.503558
3.273696	3.481685	0.998426
-4.117505	0.434557	1.067828
-4.876328	-0.068680	1.862672
2.108555	1.163359	1.259331
1.466947	1.262063	2.271020
-4.460819	1.683359	-0.153962
-5.562271	2.182271	-0.234696
-1.989214	0.145585	2.575237
-1.680954	1.869967	0.599400
-0.754195	2.446642	1.096102
0.011343	-0.973152	1.676194
0.00/055	2 200202	0 707001
	-0.862671 -2.943676 -2.917616 -3.347090 -3.608485 -0.000999 4.297594 5.136516 3.880196 4.437753 2.787408 2.613884 -3.467861 -3.827013 3.149287 3.231377 4.528436 5.642643 1.673156 0.703874 3.839663 4.434269 -4.188542 -4.998388 -2.517665 -2.191756 3.172308 3.273696 -4.117505 -4.876328 2.108555 1.466947 -4.460819 -5.562271 -1.989214 -1.680954 -0.754195 0.011343	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

F 0.000000 0.000000 0.000000

5. References:

- 1. M. O. Akram, J. R. Tidwell, J. L. Dutton and C. D. Martin, *Angew. Chem. Int. Ed.*, 2022, **61**, e202212073.
- 2. M. O. Akram, J. R. Tidwell, J. L. Dutton and C. D. Martin, *Angew. Chem. Int. Ed.*, 2023, **62**, e202307040.
- 3. J. N. Bentley, E. Pradhan, T. Zeng and C. B. Caputo, *Dalton Trans.*, 2020, **49**, 16054-16058.
- 4. Y. Li, M. Tamizmani, M. O. Akram and C. D. Martin, *Chem. Sci.*, 2024, 15, 7568-7575.
- 5. I. B. Sivaev and V. I. Bregadze, Coord. Chem. Rev., 2014, 270-271, 75-88.
- 6. M. A. Beckett, D. S. Brassington, S. J. Coles and M. B. Hursthouse, *Inorg. Chem. Commun.*, 2000, **3**, 530-533.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 8. H. Böhrer, N. Trapp, D. Himmel, M. Schleep and I. Krossing, *Dalton Trans.*, 2015, 44, 7489-7499.
- 9. L. Zapf, M. Riethmann, S. A. Föhrenbacher, M. Finze and U. Radius, *Chem. Sci.*, 2023, 14, 2275-2288.
- 10. L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano and L. Cavallo, *Nat. Chem.*, 2019, **11**, 872-879.