Supporting Information

Carbene-organocatalyzed enantioselective [5+5] annulation of dienols and dienals towards tetrahydroisochromen-1-ones

Ke Xu[‡], Jiayi Zhao[‡], Kejun Lin, Tingshun Zhu*

[‡]These authors contributed equally to this work.

Table of Contents

I.	General information	3
II.	General procedure for the preparation of substrates	3
III.	General procedure for the cycloaddition reactions of penta-substituted cyclohexene	4
IV.	Experimental details for product transformations	4
V.	Details of the Optimization of Reaction Conditions	6
VI.	Some ineffective results	9
VII.	Calculation details	10
VIII.	Characterization of the substrates	13
IX.	Characterization and SFC Chromatograms of Products	15
X.	Absolute configuration determination	47
XI.	Copies of ¹ H NMR spectra of 1	52
XII.	Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR spectra of products	57
XIII.	References cited in the SI	105

I. General information

Commercial reagents were purchased from TCI, J&K, 3A Chemicals, Accela, Macklin, Bidepharm or Adamas and used without further purification. The solvents used in the experiments were all purchased anhydrous solvents and used directly. All reactions were carried out with oven-dried glassware. Analytical thin layer chromatography was performed on 0.20 mm silica gel HSGF-254 plates (Huanghai, China), and visualized under 254 nm UV light. Column chromatography was performed on 200-300 mesh silica gel (General-Reagent, China).

¹H, ¹⁹F, ³¹P and ¹³C NMR spectra were recorded on a Bruker Ascend 400MHz spectrometer and Bruker Ultrashield 300MHz at ambient temperature. Chemical shifts were recorded in parts per million (ppm, δ) relative to chloroform (for ¹H NMR, δ = 7.26 ppm, singlet; for ¹³C NMR, δ = 77.16 ppm, triplet). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets); m (multiplets). All first-order splitting patterns were assigned based on the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br).

High resolution mass spectra of new compounds were recorded on Thermo scientific QExactive MS (ESI). Infrared (IR) spectra were recorded on PerkinElmer Frontier spectrometer and reported in wave numbers (cm⁻¹). The determination of enantiomeric excesses was performed via chiral stationary phases analysis using Supercritical Fluid Chromatography (SFC) by Waters Acquity UltraPerformance Convergence Chromatography (UPCC) (Chiral stationary phases column: Chiralpak OX-3, OD-3 column from Daicel Chiral Technologies and Trefoil CEL-1, CEL-2, AMY-1 column from Waters). Optical rotations were recorded on an Anton Paar MCP-500 polarimeter. Its X-ray diffraction data was collected on Rigakuoxford diffraction SuperNova using the CuKα radiation at 150 K or 100 K. Electronic circular dichroism (ECD) spectra were recorded on a Circular Dichroism Spectrometer J1700.

II. General procedure for the preparation of substrates

In a 50 mL Schlenk flask were placed substituted phenylacetic acid (5 mmol) and anhydrous THF (20 ml) under N₂ atmosphere. The solution was cooled down to 0 °C. LiAlH₄ (7.5 mmol) was added by portion and the mixture was stirred at 0 °C for 1.5 h. The mixture was quenched saturated aq. NH₄Cl, and the suspension was filtered through a celite pad. Then the filtrate was extracted with EtOAc (20 ml×3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Crude corresponding phenethyl alcohol was used to the next step without further purification.

To a solution of phenethyl alcohol in 20 ml CH₂Cl₂, Dess-Martin periodinane (5 mmol) was added. The mixture was stirred for 2 h at room temperature. After the reaction, the solution was diluted by H₂O and extracted with CH₂Cl₂ (20 ml×3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography with PE/ethyl acetate to give the corresponding substituted phenylacetaldehyde.

Acetic acid (190 µl, 3.3 mmol) and piperidine (54 µl, 0.55 mmol) were added to solution of ethyl acetoacetate (704 ml, 5.5 mmol) or other substituted diketones in toluene (20 ml) in two-neck round bottom flask. Equipped with DeaneStark apparatus and reflux condenser, corresponding phenylacetaldehyde (5 mmol) was added and the mixture was refluxed for 6 h until no more aldehyde was observed by TLC analysis. After completion of the reaction, the reaction mixture was diluted with by H₂O and extracted with ethyl acetate (30 ml×3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography with PE/ethyl acetate to give the corresponding product **1** as yellow oil or solids.

(2) unsaturated enals 2.^[2]

(1) enol substrates 1.^[1]

DMF (2 ml, 26 mmol) in 25 mL dry CHCl₃ was added PBr₃ (2.2 ml, 23 mmol) dropwise at 0 °C, and a white solid precipitated during the addition process. The suspension was stirred at rt for a further 30 min, and acetophenone (10 mmol) in 5 mL dry CHCl₃ was added dropwise at 0 °C. The mixture was allowed to warm to rt and stirred for about 8 h. After complete consumption of acetophenone determined by TLC, the mixture was poured into ice water, and NaHCO₃ was added to neutralize to pH \approx 6. After extraction with CH₂Cl₂, the organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced

pressure and afford the crude product of β -bromo-enal. To the β -bromo-enal was added alkene (40 mmol), PdCl₂ (177 mg, 1 mmol), ^{*n*}Bu₄NBr (3.2 g, 10 mmol), Na₂CO₃ (4.2 g, 40 mmol) and H₂O (50 ml). The mixture was stirred for 3 h, and then quenched with saturated NH₄Cl (aq.), extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and purified by silica gel column chromatography to afford the corresponding α , β , γ , δ -diunsaturated enal **2**.

III. General procedure for the cycloaddition reactions of penta-substituted cyclohexene

A solution of enol **1** (0.24 mmol), enal **2** (0.2 mmol), **C1** (16.4 mg, 20 mol%), K₃PO₄ (8.4 mg, 20 mol%) and oxidant **B** (82 mg, 0.24 mmol) in 6 mL DCM was stirred at 0 °C for 24 hours. The mixture was concentrated under reduced pressure and purified by silica gel column chromatography to afford the corresponding product **3** and **4**.

IV. Experimental details for product transformations

To a solution of **3i/4i** (50.9 mg, 0.1 mmol) in dichloromethane (2 ml) was added 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ, 50 mg, 0.22 mmol). The mixture was stirred at rt for 2 h before being quenched with aqueous saturated NaHCO₃. Products were extracted with EtOAc (10 ml×3), and extracts were dried (MgSO₄) and concentrated in vacuo. The crude product was purified by column chromatography (SiO₂, hexane/ethyl acetate, by increasing the gradient from 10:1 to 3:1 v/v) to afford 38 mg (80% yield) of **6** as a yellow solid.^[3]

A solution of enol **1y** (0.1 mmol), enal **2** (0.2 mmol), **C3** (7.3 mg, 0.02mmol), additive **D1** (10 mg, 0.02 mmol), NEt₃ (11 μ l, 0.08 mmol), oxidant B (123 mg, 0.3 mmol) and 100 mg 4Å MS in 1.5 mL PhCF₃ was stirred at 0 °C and slowly warm (about 3 h) to rt for 24-72 hours. The mixture was concentrated under reduced pressure and purified by silica gel column chromatography to afford the corresponding product (*R*)-**8**.

The lactone compound **3i** (0.1 mmol, 50.9mg) and LiOH monohydrate (24 mg, 10 equiv.) were charged to a 25 ml flask. To this mixture was then added MeOH (4 ml), THF (2 mL), and H₂O (1 ml). The reaction was then stirred for 2 h at room temperature and followed the course of the reaction by TLC until completion. The MeOH and THF were then removed in vacuo, and the resulting residue was diluted with H₂O (15 ml), ice, and EtOAc (20 ml). After acidification with 1M HCl, the solution was extracted with EtOAc for three times. The combined organic extract was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by silica gel column chromatography to afford **9** as a white solid (32 mg, 60% yield).^[4]

A suspension of **3i** (50.9 mg, 0.1 mmol), potassium osmate(VI) dihydrate (6 mg, 20 mmol) and N-methylmorpholine N-oxide (23 mg, 0.2 mmol) in acetone (0.8 ml) and water (0.2 ml) was vigorously stirred for 24 h at room temperature. The reaction mixture was quenched by the dropwise addition of sat. sodium sulfite (0.5 ml) and stirring continued for 5 mins before the black suspension was extracted with EtOAc (5 ml×3). The combined organic extracts were washed with H₂O and brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by silica gel column chromatography to afford **10** as a white solid (42 mg, 78% yield).^[5]

A solution of **3b** (57.2 mg, 0.1 mmol) in DCM (2 ml) was stirred at room temperature and Na₂CO₃ (10% w/v aq., 0.9 mL, 0.1 mmol) added in one portion. mCPBA (77% w/w, 23 mg, 0.1 mmol) was then added cautiously. Vigorous stirring was continued for 24 h and the reaction mixture subsequently diluted with DCM (10 ml). The aqueous and organic phases were separated and the organic layer washed with 2 ml sat. sodium thiosulfate, H₂O and brine before being dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by **11** as a white solid (35 mg, 60% yield).^[5]

BTI (1.0 equiv.) was added at -15° C to a solution of **3b** (57.2 mg, 0.1 mmol) and I₂ (0.6 equiv.) in a 4:1 mixture of CH₃CN and H₂O and the vessel was allowed to reach room temperature. The red–brown colour of the solution disappears in a few minutes, and continually stirred for 2 h at room temperature. The reaction mixture was quenched by the dropwise addition of sat. sodium sulfite (0.5 ml) and stirring continued for 5 mins and then extracted with EtOAc (5 ml×3). The combined organic extracts were washed with H₂O and brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by silica gel column chromatography to afford **12** as a white solid (65 mg, 88% yield).^[6]

A solution of **3b/3n** (0.1 mmol), N-bromosuccinimide (0.1 mmol, 1 equiv), H_2O (5 mmol, 50 equiv) in MeCN (2 ml) was stirred at room temperature for 12 h and then extracted with EtOAc (5 ml×3). The combined organic extracts were washed with H_2O and brine, dried over anhydrous Na_2SO_4 and concentrated in vacuo. The crude product was purified silica gel column chromatography to afford **13** as a yellow solid (38 mg, 57% yield) or **14** as a yellow solid (54 mg, 86% yield).^[7]

V. Details of the Optimization of Reaction Conditions

0. PMP NHC (20 mol%) EtOOC омр PMP PMP EtOOC EtOOC EtOOC Oxi B (1.5 eqiuv.) Cs₂CO₃ (0.5 eqiuv.) THF NO₂Ph Ph NO₂ 1a O₂N 2a rt, 24 h 3a 5a NO. r ΞN ۶N __.Ń Cl BF_4 BF4 BF_4 C1 СЗ C2 NO2 C4 ^tBu ^tBu = N 0= BF_4 C5 ^tBu oxidant ${\boldsymbol{\mathsf{B}}}$ ^tBu entry NHC catalyst yield 3a/%[b] ee 3a[c] yield 4a/%^[b] ee **4a**^[c] 1 C5 74 _ n.d. _

Table S1. Screening of catalysts. [a][b][c]

15 -2 C1 27 54 17 n.d. 78 3 C2 46 -3 n.d. 31 50 4 C3 57 5 n.d. 29 80 5 C4 54 26 n.d. 29 80

yield 5a/%[b]

ee 5a^[c]

[a] All reactions were performed by using 1a (0.1 mmol), 2a (0.15 mmol), catalyst (20 mol%), base (50 mol%), oxidant B (0.15 mmol) and solvent (2 mL) at rt for 24 h. [b] Isolated yield. [c] Determined by chiral-phase stationary supercritical fluid chromatography (SFC).

Preliminary screening gave product 5a with high enantioselectivity and product 3a with near racemic.

Table S2. Screening of solvents.

OH 0 H				
EtOOC + Oxi B (1.5 c) base (0.5 c)	qiuv.) EtOOC	EtOOC	EtOOC	
1a O ₂ N Ph 2a rt 24 h	NO ₂ Ph 3a	NO ₂ ^{Ph} 4a	NO ₂ ^{Ph} 5a	Br C4

entry	base	yield 3a /% ^[b]	ee 3a ^[c]	yield 4a /% ^[b]	ee 4a ^[c]	yield 5a /% ^[b]	ee 5a ^[c]
1	Cs ₂ CO ₃	54	26	n.d.	-	29	80
2	CsF	<5	-	n.d.	-	<5	
3	CH₃COOCs	64	-13	n.d.	-	23	79
4	DBU	55	7	n.d.	-	17	79
5	DIPEA	<5	-	n.d.	-	<5	
6	NEt ₃	<5	-	n.d.	-	<5	
7	DMAP	36	2	n.d.	-	18	76
8	DABCO	47	-9	n.d.	-	15	71
9	LiOH	<5	-	n.d.	-	<5	
10	NaHCO₃	<5	-	n.d.	-	<5	
11	K ₂ CO ₃	55	-10	n.d.	-	16	77
12	K ₃ PO ₄	50	-11	n.d.	-	25	78
13	^t BuOK	60	-7	n.d.	-	21	77

[a] All reactions were performed by using 1a (0.1 mmol), 2a (0.15 mmol), catalyst (20 mol%), base (50 mol%), oxidant B (0.15 mmol) and solvent (2 mL) at rt for 24 h. [b] Isolated yield. [c] Determined by chiral-phase stationary supercritical fluid chromatography (SFC).

Base screening shows that inorganic strong bases are better than organic bases in yields and have similar stereoselectivity.

Table S3. Screening of solvent.

$EtOOC + PMP \underbrace{C4 (20 \text{ mol}\%)}_{\text{base} (0.5 \text{ eqiuv.})} EtOOC + PMP \\ H \\ 1a O_2N + Dh \\ 2a \\ th \\ NO_2 \\ 3a \\ C4 \\ NO_2 \\ Sa \\ Sa \\ NO_2 \\ Sa \\ $
--

entry	solvent	yield 3a /% ^[b]	ee 3a ^[c]	yield 4a /% ^[b]	ee 4a ^[c]	yield 5a /% ^[b]	ee 5a ^[c]
1	THF	54	26	n.d.	-	29	80
2	Dioxane	42	16	n.d.	-	18	80
3	Et ₂ O	30	-30	n.d.	-	24	80
4	CH₃CN	46	42	n.d.	-	17	69
5	EA	59	6	n.d.	-	30	80
6	Toluene	35	-4	n.d.	-	15	72
7	PhCF ₃	35	45	n.d.	-	16	82
8	DMF	33	16	n.d.	-	14	59
9	^t BuOH	30	-25	n.d.	-	21	72
10	Acetone	59	26	n.d.	-	15	79
11	DCM	64	56	n.d.	-	28	81
12	DCE	62	57	n.d.	-	28	80
13	CHCl₃	46	26	n.d.	-	26	71

[a] All reactions were performed by using 1a (0.1 mmol), 2a (0.15 mmol), catalyst (20 mol%), base (80 mol%), oxidant B (0.15 mmol) and solvent (2 mL) at rt for 24 h. [b] Isolated yield. [c] Determined by chiral-phase stationary supercritical fluid chromatography (SFC).

Solvent screening shows that chlorinated solvent (DCM/DCE) could improve the enantioselectivity of product 3a.

Etooc	 H PMP C4 (20 mol%) Oxi B (1.5 eqiuv.) Cs₂CO₃ (0.5 eqiuv.) DCE 2a additive (0.2 equiv.) 	NO ₂ 3a	tooc P NO ₂ ^{Ph} 4a	MP EtOOC	PMP Ph 2 5a Br	0 N N N N N N N SF ₄ C4	
entry	additive	yield 3a/% ^[b]	ee 3a ^[c]	yield 4a/% ^[b]	ee 4a ^[c]	yield 5a/% ^[b]	ee 5a ^[c]
1	None	62	57	n.d.	-	26	71
2 ^[d]	Sc(OTf) ₃	50	78	<10	98	<10	37
3	^t BuOH	50	40	n.d.	-	29	80
4	1,3-bis(3,5- bis(trifluoromethyl)phenyl)thiourea	50	74	n.d.	-	11	77
5 ^[d]	Yb(OTf) ₃	51	79	12	99	n.d.	-
6	LiCl	45	66	n.d.	-	19	82

Table S4. Screening of additives.

[a] All reactions were performed by using 1a (0.1 mmol), 2a (0.15 mmol), catalyst (20 mol%), base (50 mol%), additive (20 mol%), oxidant B (0.15 mmol) and solvent (2 mL) at rt for 24 h. [b] Isolated yield. [c] Determined by chiral-phase stationary supercritical fluid chromatography (SFC). [d] 0.8 equiv. base.

Additive screening shows that Lewis acid could give another product **4a** instead of **5a** and improve the enantioselectivity of **3a**. When use Lewis acid as additive, the use of 0.5 equiv. of base prevents the reaction from proceeding. It is necessary to increase the amount of base to 0.8 equiv. to react normally.

Table S5. Screening of temperature and time.

entry	temperature/ºC	time/h	yield 3a/% ^[b]	ee 3a ^[c]	yield 4a/% ^[b]	ee 4a ^[c]	yield 5a /% ^[b]	ee 5a ^[c]
1	rt	16	19	91	<10	99	n.d.	-
2	0	8	59	94	9	30	20	99
3	45	4	65	61	<10	66	<10	99
4	60	4	61	54	n.d.	-	<10	70
5	80	4	61	56	n.d.	-	<10	63
6 ^[d]	0	9	65	90	20	99	n.d.	-
7 ^[e]	0	6	52	93	17	99	n.d.	-
8 ^[f]	0	3	39	92	<10	99	n.d.	-

[a] All reactions were performed by using 1a (0.1 mmol), 2a (0.15 mmol), catalyst (20 mol%), base (80 mol%), additive (20 mol%), oxidant B (0.15 mmol) and DCE (2 mL). [b] Isolated yield. [c] Determined by chiral-phase stationary supercritical fluid chromatography (SFC). [d] 3 ml DCE. [e] 5 ml DCE. [f] 10 ml DCE.

Lower the temperature of reduce the reaction time could obtain product **4a** instead of **5a** and improve the enantioselectivity of **3a**, which means **4a** is an intermediate product.

Table S6. Screening of the amount of base.

EtOOC	+ Ph 2a	NHC (20 mol%) Oxi B (1.5 eqiuv.) EtOC Ss2CO3 (0.5 eqiuv.) DCM temp.	DC NO ₂ ^{Ph} 3a	AP tooc	$ \begin{array}{c} $	DC NO ₂ ^{Ph} 5a	MP 0 BF4 C4, X = C1, X =	Br H	
entry	NHC	temperature/°C	time/h	yield 3a /% ^[b]	ee 3a ^[c]	yield 4a /% ^[b]	ee 4a ^[c]	yield 5a /% ^[b]	ee 5a ^[c]
1	C4	rt	5	21	76	<10	99	<5	40
2	C4	0	9	21	91	<10	99	<5	20
3	C4	0	12	28	90	11	99	<5	26
4	C4	-10	10	24	91	8	99	<5	30
5	C1	-10	10	49	96	12	99	<5	51
6 ^[d]	C1	-20	24	49	99	15	99	<5	14
7	C1	-20	24	51	96	9	99	<5	-14
8 ^[e]	C1	-20	24	59	95	11	99	<5	8
9 ^[f]	C1	-20	24	53	96	10	99	10	76
10 ^[g]	C1	-20	24	36	90	n.d.	-	7	80

[a] All reactions were performed by using 1a (0.1 mmol), 2a (0.12 mmol), catalyst (20 mol%), base (50 mol%), oxidant B (0.15 mmol) and DCM (3 mL). [b] Isolated yield. [c] Determined by chiral-phase stationary supercritical fluid chromatography (SFC). [d] 0.2 equiv. base. [e] 0.8 equiv. base. [f] 1 equiv. base. [g] 2 equiv. base.

Under low temperature conditions, catalyst C1 could give higher yields than C4 with similar stereoselectivity control. Even though under -20 °C, the increase of the amount of base reduced the stereoselectivity of product **3a** and transforms **4a** to **5a**.

Table S7. Adjust the dosage ratio of substrates. [a][b][c]

[a] All reactions were performed by using **1a** (0.12 mmol), **2a** (0.1 mmol), catalyst (20 mol%), base (20 mol%), oxidant **B** (0.12 mmol) and DCM (3 mL). [b] Isolated yield. [c] Determined by chiral-phase stationary supercritical fluid chromatography (SFC).

Since **1a** would disappear completely and **2a** wound remain a little after most reactions, we changed the proportion of substrates to **2a** with 0.1 mmol and **1a** with 1.2 equivalent. After reduce the amount of base to 0.2 equiv., the reaction enantioselectivity could remain while increasing the reaction temperature to 0 °C. Replace the base from Cs_2CO_3 to K_3PO_4 slightly increases the product yields.

VI. Some ineffective results

Figure S1. The ineffective results under standard reaction conditions

Some ineffective results were also presented in **Figure S1**. Replacing the methyl to a more steric-hindered ethyl resulted in a low yield (**3z1**). Changing ortho-NO2 to ortho-CF3 phenyl ring (**3z3**),or 2,4-Cl(**3z2**), also gave ineffective results. These might due to The weaker electron-withdrawing effect than -NO₂. Introducing ortho-F(**3z4**) led to the addition being blocked so that undesirable yield.

VII. Calculation details

I. Electrophilicity indexes, equilibrium geometries and transition states calculations

All data in this study were calculated with the Gaussian 16 Revision A.03 software package ^[8] and were optimized at the B3LYP-D3 level of density functional theory (DFT)^[9]. The basis set 3-21G was selected for all atoms. Vibrational frequency analysis was computed to ensure the saddle points have only one corresponding imaginary frequency. VMD and Multiwfn were used for drawing the transition state model.^[10,11] To take the solvent and temperature effects into account, solvation-corrected single-point energy calculations were computed with M062x/def2TZVPP based on the previous optimized geometries at 273 K. In order to reduce computational complexity, the ethyl group was replaced with methyl, and aromatic groups in diene substrate were simplified with methyl.^[12] The relative free Gibbs energies (273 K, in kcal/mol) are used for the following discussion.

II. Cartesian coordinates of optimized structures and transition state

TS-endo: -2023.8092338 Hartree

•	т 1	<u>c</u> .	•	C	•	1
N	lumhor	ot 1m	0 m1m	ru tran	110101001	
1.	NUITIDEL		avinc	$\mathbf{u} \vee \mathbf{u} \subset \mathbf{v}$	ucheres.	

	L) _	2)	
С	-2.61769444	0.09785071	-0.24600640
С	-1.63597128	-0.41684070	0.63975797
С	-0.99363103	-1.78136194	0.41695425
С	-1.82094844	-2.81769109	1.25052747
0	-1.38517167	-3.07142880	2.35836412
С	-3.11089817	-3.40203432	0.73822385
С	-3.75740147	0.87746111	0.32579378
С	-5.08079797	0.82550153	-0.16995419
С	-6.11054363	1.60644700	0.36208387
С	-5.85705952	2.45479636	1.43255919
С	-4.56297979	2.52934635	1.94929835
С	-3.54055387	1.76163883	1.39671657
Н	-1.68237481	-0.14536652	1.68938319
Н	-2.91020858	-0.59635206	-1.02358919
С	-0.67667255	-2.07248299	-1.04651188
0	0.36496076	-1.69921797	-1.56297625
0	-1.62983898	-2.74012911	-1.69259034
С	-1.38747059	-3.04031823	-3.09001500
N	-5.48250575	-0.06045153	-1.27950520
0	-4.87132810	-1.12459304	-1.44784411
0	-6.42343576	0.29986117	-1.97734400
С	1.04790554	0.77455792	1.58312125
С	0.25478372	1.05440096	0.40617439
С	-0.34531783	2.32428946	0.16390965
С	-1.27467492	2.42057893	-0.85943801

С	-1.73984408	1.30705494	-1.60856005
0	1.02171691	1.37387578	2.65709015
С	1.98895699	-0.42745778	1.52923806
Ν	2.12376671	-1.33525174	2.50193342
Ν	3.06544229	-2.26929645	2.19594846
С	3.52734441	-1.90198928	1.02668572
Ν	2.89449118	-0.77060714	0.57808187
С	4.56056964	-2.59067809	0.18415404
0	5.11925190	-1.67972665	-0.73565460
С	4.14950246	-1.02607645	-1.55429088
С	3.25553004	-0.08977478	-0.68949177
С	4.92034498	-0.04781874	-2.45391707
С	5.02811421	1.19724004	-1.59848622
С	4.09865717	1.16603169	-0.55076380
Ċ	5.89108324	2.28079924	-1.73554524
Ċ	5.82151712	3.32374969	-0.80732122
Č	4.90145703	3.28210389	0.24405943
Č	4.02512234	2.20077392	0.37853629
H	-3.65914872	-3.82670326	1.58155438
Н	-2.89063310	-4 20007890	0.02031948
Н	-3.72154464	-2.66412002	0.21038960
Н	-7 10030829	1 52625552	-0 07042791
H	-6 66039139	3 04796291	1 85698188
H	-4 34530392	3 18887858	2 78414105
H	-2 54088111	1 85293302	1 80650609
H	-1 23829155	-2 11635983	-3 65199546
Н	-0 50488137	-3 67573897	-3 18594022
H	0 42146201	0 39653034	-0.43660424
н Н	-1 81066086	3 36112268	-0.43000424
H H	-1.00220345	0 54952682	-0.97179199
н Ц	1.00220343	3 11775016	0.32770684
н Н	5 36085153	-2.96783061	0.81338905
H H	3 55218426	-2.76785001	-2 10042874
H H	2 31015052	0.09652574	-2.100+207+ -1.22080489
H	4 35647130	0.14097422	-1.22000407
H	5 88591127	-0.47670380	-2.73785648
H H	6 61935523	2 31050325	-2.75785048
H	6 49708443	4 16924681	-2.34135410
H H	4 86873160	4.00224081	0.96634174
H H	3 32747586	2 17738785	1 21100283
H H	-2 28224/300	-3 56008293	-3 42753884
II C	1 35307557	1 / 8035876	3 74705561
с u	1.00547671	-1.48033870	<i>J</i> .74705501 <i>A</i> 10875451
П Ц	0.45005060	-0.48723770 2 07710454	3 5/3/8061
П П	0.43995000	1 00582008	J.J4J48001
П	2.00043263	-1.99362096	4.43022074
U U	-2.75501598	1.34236433	-2.70344313
п Ц	-2.2041/813	2.032020/4	-3.333/4222
л U	-3.17020330	0.00001003	-3.0/0/8123
	-3.30090931	2.1700/122	-2.3/293/82
	-0.06922900	3.32234080	1.0408/433
П U	-0.491/0120	3.3/80048/ 2 70012062	2.03030046
П П	0.962034/9	5./0913903	1.1/203/19
П	-0.34694/43	4.41309166	0.01490186
п	-0.022/6300	-1./9/42225	0.91136532

TS-exo: -2023.8088667 Hartree

Number of	of imaginary fro	eguencies: 1	
С	-2.68411217	0.55924565	0.62677244
С	-2.21385147	-0.51265244	-0.18955469
С	-2.52104568	-1.91389788	0.18603981
С	-4.10087489	-2.14380474	0.17848250
0	-4.74832117	-1.66534511	1.07558546
С	-4.69330739	-2.93676725	-0.95975195
С	-2.86894692	1.87237872	-0.09532881
С	-4.08532405	2.58162139	-0.17389434
Ċ	-4.21703184	3.75816476	-0.91465218
С	-3.11955365	4.28565992	-1.58488788
Ċ	-1.90116347	3.60886289	-1.53281089
C	-1.79187502	2.42405531	-0.80814236
Н	-1.86221897	-0.34211877	-1.20150922
Н	-3 54910285	0.26083214	1 21797824
C	-1 79777050	-2 92086054	-0.69197636
0	-1 43743448	-2 69703309	-1 83254051
0	-1 64954577	-4 08639725	-0.05934808
C	-0.94994568	-5 12939939	-0 78068857
N N	-5 31915620	2 12381271	0 50124360
0	-5 21331702	1 51821181	1 56940642
0	-6 38497633	2 40007637	-0.03922526
C	1 17057777	-1.41350542	-0.03722320 -0.23822929
C C	0 3/7/8760	0.64804504	0.64683802
C	0.07771267	1 07532454	1 03078005
C	-0.07771207	-1.0/332434	2 62030314
C	-1.00500070	-0.30730079	2.02030314
0	1 38080515	0.90075505	0.24680801
0 C	1.36060313	-2.03248904	1 22088262
C N	1.91502240	-0.031//018	-1.52086505
IN N	2 80862022	-0.94980078	-2.01555272
IN C	2.80803023	-0.11/30101	-3.30079332
C N	2 74016417	0.70982570	-2.40464023
IN C	2.74910417	1 99/97055	-1.1044/918
	4.10110578	1.00407933	1 28055242
0 C	4.62092012	2.20020314	-1.36933343
C C	3.93063713	2.43340030	-0.29801943
C	J.10999/4J 1 01/05201	1.119/3011	0.07191900
C	4.01403301	2.70287003	0.9331/892
C C	3.11106243	1.51055992	1.44940/84
C C	4.20061212	0.3/833303	0.92300403
C	0.11004304	0.89092393	2.518/309/
C	0.21109/3/	-0.438390/1	2.04080708
C	3.31420303	-1.3803/380	2.11095505
U U	4.29392282	-0.9/43404/	1.24555929
П	-3./81/3300	-2.8/09134/	-0.912/30/3
П	-4.38344927	-3.98030111	-0.8//3/210
П	-4.32824011	-2.30402933	-1.9231/109
П	-5.185555591	4.241928/0	-0.951/3494
П	-3.21901421	3.2090841/	-2.1400023/
П	-1.03002988	4.00093394	-2.000/0193
н ц	-0.84160696	1.89/12/18	-0.80130401
H H	-1.42163445	-5.29898708	-1./50/2/11
H	0.09316126	-4.83631498	-0.91190/49
п	0.26545648	0.40430661	U.4U3Y6331

Н	-1.37243818	-0.66973733	3.57849608
Н	-0.88916214	1.52985183	1.55041475
Н	3.59505514	2.73683668	-2.98522645
Н	4.95348022	1.64494267	-3.33606003
Н	3.24379292	3.25324434	-0.54243613
Н	2.28603373	1.35341466	0.64336198
Н	4.26251430	3.30190243	1.66965447
Н	5.70506204	3.27016004	0.64599555
Н	6.82707492	1.61176232	2.72506625
Н	6.99796054	-0.79533755	3.31625172
Н	5.40902314	-2.43813348	2.36370704
Н	3.61555579	-1.71043259	0.82796575
Н	-1.02805950	-6.01383850	-0.15016846
С	1.34939423	-2.07040340	-3.32524181
Н	2.06476930	-2.89426462	-3.37632083
Н	0.44910743	-2.38252290	-2.79936779
Н	1.11180437	-1.72065042	-4.32970035
С	-2.41986893	1.71340012	3.08183336
Н	-1.75444436	2.10669061	3.85981818
Н	-2.91754366	2.55940916	2.60478103
Н	-3.18603682	1.10157929	3.56614909
С	0.41519352	-2.36975169	2.54580903
Н	0.06861307	-3.23709199	1.97655911
Н	1.50941990	-2.41476773	2.54814149
Н	0.06311623	-2.46425740	3.57669544
Н	-2.26636989	-2.07356311	1.24478753

VIII. Characterization of the substrates

References for the known compounds:

- 1. Guo, Y., Wu, L., Qiu, F. G., *Org. Lett.* 2022, **24**, 8370-8374. (**1b, 1d**);
- 2. Singha, R., Dhara, S., Ray, J. K., Tetrahedron Lett. 2013, 54, 4841-4843. (2a, 2f);
- 3. Chatterjee, I., Bastida, D., Melchiorre, P., Adv. Synth. Catal. 2013, 355, 3124-3130. (2c, 2k);
- 4. Zhu, T., Mou, C., Li, B., Smetankova, M., Song, B.-A., Chi, Y. R., *J. Am. Chem. Soc.* 2015, **137**, 5658-5661. (**2b, 2d, 2g, 2h, 2l, 2m**); 5. Xu, K., Li, W., Zhu, S., Zhu, T., *Angew. Chem. Int. Ed.* 2019, **58**, 17625-17630. (**2e, 2i**);
- 6. Li, Y., Luo, H., Tang, Z., Li, Y., Du, L., Xin, X., Li, S., Li, B., Org. Lett. 2021, 23, 6450-6454. (2j).

ethyl (E)-3-hydroxy-2-((E)-2-nitrostyryl) but-2-enoate (1a)

¹H NMR (400 MHz, CDCl₃) δ 13.60 (s, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.3 Hz, 1H), 7.18 (d, J = 16.1 Hz, 1H), 6.76 (d, J = 16.1 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H).

ethyl (*E*)-2-((*E*)-2-bromostyryl) -3-hydroxybut-2-enoate (1b)

¹H ŇŇŘ (400) MHz, CDCl₃) δ 13.55 (s, 1H), 7.57 (m, *J* = 7.8, 3.5, 1.5 Hz, 2H), 7.32 (m, *J* = 7.5, 1.3 Hz, 1H), 7.11 (m, *J* = 7.5, 1.6 Hz, 1H), 7.05 (d, 1H), 6.71 (d, *J* = 16.2 Hz, 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 2.29 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 3H).

ethyl (E)-3-hydroxy-2-((E)-2-methylstyryl) but-2-enoate (1d)

¹**H** NMR (400 MHz, CDCl₃) δ 13.39 (s, 1H), 7.52 - 7.46 (m, 1H), 7.24 - 7.14 (m, 3H), 6.88 (d, *J* = 16.2 Hz, 1H), 6.62 (d, *J* = 16.1 Hz, 1H), 4.38 - 4.28 (m, 2H), 2.37 (s, *J* = 2.2 Hz, 3H), 2.25 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H).

ethyl (E)-2-((E)-3-bromostyryl) -3-hydroxybut-2-enoate(1e)

¹H NMR (400 MHz, CDCl₃) δ 13.44 (s, 1H), 7.53 (t, *J* = 1.8 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.18 (t, *J* = 7.8 Hz, 1H), 6.73 (d, *J* = 16.2 Hz, 1H), 6.55 (d, *J* = 16.3 Hz, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 2.23 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H).

ethyl (E)-3-hydroxy-2-((E)-4-nitrostyryl) but-2-enoate (1f)

¹**H NMR (400 MHz, CDCl**₃) δ 13.69 (s, 1H), 8.21 (d, *J* = 8.6 Hz, 2H), 7.52 (d, *J* = 8.6 Hz, 2H), 6.98 (d, *J* = 16.3 Hz, 1H), 6.78 (d, *J* = 16.2 Hz, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 2.31 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 3H).

methyl (E)-3-hydroxy-2-((E)-2-nitrostyryl) but-2-enoate (1g)

¹**H** NMR (400 MHz, \vec{CDC}_{3}) δ 13.54 (s, 1H), 7.58 (dd, J = 6.7, 4.3 Hz, 2H), 7.32 (d, J = 7.5 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 7.06 (d, J = 16.4 Hz, 1H), 6.71 (d, J = 16.2 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 2.30 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H).

allyl (E)-3-hydroxy-2-((E)-2-nitrostyryl) but-2-enoate (1h)

¹**H** NMR (400 MHz, CDC₁₃) δ 13.43 (s, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.12 (d, J = 16.1 Hz, 1H), 6.76 (d, J = 16.1 Hz, 1H), 6.08 – 5.87 (m, 1H), 5.37 (d, J = 16.7 Hz, 1H), 5.29 (m, J = 10.4, 1.3 Hz, 1H), 4.77 (d, J = 5.7 Hz, 2H), 2.29 (s, 3H).

(E)-4-hydroxy-3-((E)-2-nitrostyryl) pent-3-en-2-one (1i)

¹**H** NMŘ (400 MHž, ĆDCl₃) δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.70 – 7.57 (m, 2H), 7.43 (td, *J* = 8.4, 6.9, 1.9 Hz, 1H), 6.89 (d, *J* = 16.0 Hz, 1H), 6.73 (d, *J* = 16.0 Hz, 1H), 2.28 (s, 6H).

2-((1*E*,3*E*) -3-acetyl-4-hydroxypenta-1,3-dien-1-yl) benzonitrile (1j)

¹H NMR (400 MHz, CDC₁₃) δ 7.66 (dd, J = 7.8, 2.5 Hz, 2H), 7.58 (t, J = 7.7 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 16.0 Hz, 1H), 6.77 (d, J = 16.1 Hz, 1H), 2.29 (s, 6H).

(*E***)-3-((***E***)-2-bromostyryl) -4-hydroxypent-3-en-2-one (1k) ¹H NMR (400 MHz, CDCI₃) δ 7.59 (t,** *J* **= 8.2 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.15 (td,** *J* **= 7.7, 1.7 Hz, 1H), 6.80 (d,** *J* **= 16.0 Hz, 1H), 6.69 (d,** *J* **= 16.0 Hz, 1H), 2.29 (s, 6H).**

IX. Characterization and SFC Chromatograms of Products

ethyl (4aR,5S,6R,8aR)-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (3a)

24h, light yellow solid; 51% yield, 96% ee;

HRMS (ESI+): calcd. for C₃₂H₂₉NO₇ +Na⁺ [M+Na⁺] 562.1836, found 562.1832;

IR: v_{max} (film, cm⁻¹): 3480, 2931, 1780, 1708, 1515, 1247, 699;

¹H NMR (400 MHz, CDCl₃): δ 7.70 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.54 (td, *J* = 7.6, 1.4 Hz, 1H), 7.45 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.30 – 7.26 (m, 1H), 7.17 – 7.10 (m, 3H), 6.92 – 6.83 (m, 4H), 6.21 (d, *J* = 2.9 Hz, 1H), 3.92 – 3.73 (m, 8H), 3.64 (dd, *J* = 12.0, 10.4 Hz, 1H), 2.24 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 167.6, 166.1, 160.9, 159.4, 151.8, 141.3, 134.0, 133.4, 132.6, 131.3, 129.9, 128.8, 128.6, 128.1, 127.8, 127.2, 127.1, 123.8, 114.1, 109.6, 60.8, 55.5, 51.4, 44.1, 43.6, 38.5, 18.8, 14.2;

 $[\alpha]^{25}$ _D = -262.3 (*c* = 0.7 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 50:50 in the first 5 mins and maintaining in 50:50 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.3 min, t_R (minor) = 8.1 min.

ethyl (4a*S*,5*R*,6*R*,8a*R*)-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (4a)

light yellow solid; 19% yield, >99% ee;

HRMS (ESI+): calcd. for C₃₂H₂₉NO₇ +Na⁺ [M+Na⁺] 562.1836, found 562.1829;

IR: *v*_{max} (film, cm⁻¹): 3480, 2930, 1774, 1712, 1514, 1076, 780;

¹H NMR (400 MHz, CDCl₃): δ 7.87 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.34 – 7.30 (m, 2H), 7.28 – 7.23 (m, 1H), 7.18 – 7.03 (m, 4H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.77 – 6.63 (m, 2H), 6.31 (dd, *J* = 5.6, 2.0 Hz, 1H), 6.10 (dd, *J* = 8.0, 1.4 Hz, 1H), 4.38 – 4.33 (m, 2H), 4.01 – 3.93 (m, 1H), 3.83 (s, 3H), 3.60 – 3.45 (m, 3H), 1.98 (d, *J* = 1.9 Hz, 3H), 0.95 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 167.7, 166.0, 159.1, 154.4, 150.8 138.0, 134.7, 133.4, 132.56, 131.62 130.5, 129.78, 129.5, 128.1, 127.4, 127.4, 126.4, 124.6, 114.9, 114.0, 61.1, 55.4, 46.2, 45.1, 39.7, 32.2, 17.2, 13.9;

 $[\alpha]^{25}_{D} = -28.0 \ (c = 0.5 \text{ in acetone}, \lambda = 589 \text{ nm});$

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 50:50 in the first 5 mins and maintaining in 50:50 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 6.7 min, t_R (minor) = 7.4 min.

ethyl (4a*S*,5*R*,6*R*,8a*S*)-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (5a)

light yellow solid; 78% ee;

¹H NMR (400 MHz, CDCI₃) δ 7.63 (dd, J = 8.1, 1.4 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.21 – 7.11 (m, 4H), 6.95 – 6.90 (m, 2H), 6.89 – 6.84 (m, 3H), 6.31 (d, J = 4.4 Hz, 1H), 6.10 (dd, J = 8.1, 1.3 Hz, 1H), 4.18 (dd, J = 6.3, 4.4 Hz, 1H), 3.99 (d, J = 5.2 Hz, 1H), 3.95 – 3.85 (m, 2H), 3.83 (s, 3H), 3.83 – 3.74 (m, 2H), 2.12 (s, 3H), 1.08 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.3, 166.8, 159.5, 159.1, 151.6, 139.5, 133.3, 133.0, 132.8, 131.6, 130.4, 129.9, 128.2, 127.7, 127.5, 127.4, 127.1, 123.6, 114.2, 110.5, 61.0, 55.5, 46.9, 44.0, 41.9, 32.7, 18.6, 14.1;

 $[\alpha]^{25}$ _D = -80.0 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 50:50 in the first 5 mins and maintaining in 50:50 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 6.0 min, t_R (minor) = 6.3 min.

ethyl (4a*R*,5*S*,6*R*,8a*R*)-5-(2-bromophenyl)-8-(4-methoxyphenyl)-3-methyl-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (3b)

23 h, light yellow solid; 42% yield, 96% ee;

HRMS (ESI+): calcd. for C₃₂H₂₉BrO₅ +Na⁺ [M+Na⁺] 595.1091, found 595.1082;

IR: *v*_{max} (film, cm⁻¹): 2932, 1777, 1703, 1514, 1249, 1067, 700;

¹H NMR (400 MHz, CDCl₃): δ 7.47 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.32 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.18 – 7.10 (m, 3H), 7.02 – 6.95 (m, 3H), 6.93 – 6.87 (m, 2H), 6.25 (d, *J* = 2.8 Hz, 1H), 3.93 – 3.87 (m, 2H), 3.82 (s, 3H), 3.80 – 3.75 (m, 1H), 3.73 – 3.63 (m, 3H), 2.24 (s, 3H), 1.11 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃): δ 168.3, 165.9, 156.0, 159.4, 141.8, 139.0, 133.1, 132.8, 132.7, 129.4, 129.3, 128.5, 128.4, 128.3, 127.6, 127.1, 126.9, 126.7, 114.1, 110.0, 60.6, 55.5, 50.7, 48.3, 43.6, 39.1, 18.6, 14.2;

 $[\alpha]^{25}$ _D = -110.4 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 50:50 in the first 5 mins and maintaining in 50:50 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.4 min, t_R (minor) = 8.6 min.

ethyl (4a*S*,5*R*,6*R*,8a*R*)-5-(2-bromophenyl)-8-(4-methoxyphenyl)-3-methyl-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (4b)

light yellow solid; 10% yield, 99% ee;

HRMS (ESI+): calcd. for $C_{32}H_{29}BrO_5 + Na^+ [M+Na^+] 595.1091$, found 595.1085;

IR: *v*_{max} (film, cm⁻¹): 2931, 1781, 1709, 1514, 1244, 1089, 699;

¹**H NMR (400 MHz, CDCI**₃) δ 7.47 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.32 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.16 – 7.11 (m, 3H), 7.01 – 6.95 (m, 3H), 6.92 – 6.87 (m, 2H), 6.25 (d, *J* = 2.8 Hz, 1H), 3.93 – 3.87 (m, 2H), 3.82 (s, 3H), 3.80 – 3.75 (m, 1H), 3.72 – 3.62 (m, 3H), 2.24 (s, 3H), 1.11 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 166.0, 160.0, 159.4, 141.8, 139.0, 133.1, 132.8, 132.7, 129.5, 129.3, 128.5, 128.4, 128.4, 127.6, 127.1, 126.9, 126.7, 114.1, 110.0, 60.6, 55.5, 50.7, 48.3, 43.6, 39.1, 18.7, 14.2.

 $[\alpha]^{25}_{D} = -132.0 \ (c = 0.5 \text{ in acetone}, \lambda = 589 \text{ nm});$

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 80:20 in the first 5 mins and maintaining in 80:20 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 6.5 min, t_R (minor) = 7.0 min.

ethyl (4a*R*,5*S*,6*R*,8a*R*)-5-(2-fluorophenyl)-8-(4-methoxyphenyl)-3-methyl-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (3c)

23 h, light yellow solid; 41% yield,1.2:1 dr ,97% ee;

HRMS (ESI+): calcd. for $C_{32}H_{29}FO_5$ +Na⁺ [M+Na⁺] 535.1891, found 535.1886;

IR: *v*_{max} (film, cm⁻¹): 2989, 1777, 1704, 1516, 1261, 1066, 706;

¹**H NMR (400 MHz, CDCI**₃): δ 7.47 (d, J = 6.6 Hz, 1H), 7.44 – 7.38 (m, 5H), 7.13 (dq, J = 10.5, 5.9, 4.5 Hz, 10H), 6.97 (s, 5H), 6.93 – 6.88 (m, 5H), 6.80 (d, J = 8.8 Hz, 2H), 6.49 (d, J = 21.1 Hz, 1H), 6.25 (d, J = 3.0 Hz, 2H), 4.24 (d, J = 10.4 Hz, 1H), 4.10 – 3.99 (m, 1H), 3.90 (dd, J = 5.5, 1.2 Hz, 4H), 3.82 (s, 8H), 3.67 (q, J = 9.9, 8.1 Hz, 4H), 3.35 (t, J = 11.5 Hz, 1H), 2.59 (t, J = 11.4 Hz, 1H), 2.23 (s, 7H), 1.13 (dt, J = 22.9, 7.3 Hz, 7H).

¹³C NMR (100 MHz, CDCl₃): δ 167.4(d, J_{CF} = 262.6 Hz), 167.1(d, J_{CF} = 262.6 Hz), 160.5, 159.7, 159.7, 159.2, 133.3, 132.9(d, J_{CF} = 7.07 Hz), 132.7(d, J_{CF} = 7.07 Hz), 129.1, 128.8, 128.4, 128.2, 126.9, 126.8, 124.0, 123.3, 115.5(d, J_{CF} = 29.3 Hz),115.3(d, J_{CF} = 31.3 Hz),114.0, 111.2, 110.4, 60.6, 55.4, 51.7,49.9, 47.6, 43.3, 41.3, 38.6, 36.7, 18.4, 14.0, 13.8.

¹⁹F NMR (377 MHz, CDCI₃) δ-111.4, -118.3.

 $[\alpha]^{25}_{D} = -208.0 \ (c = 0.5 \text{ in acetone}, \lambda = 589 \text{ nm});$

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 80:20 in the first 5 mins and maintaining in 80:20 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 9.5 min, t_R (minor) = 10.9 min.

ethyl (4aR,5S,6R,8aR)-8-(4-methoxyphenyl)-3-methyl-1-oxo-6-phenyl-5-(o-tolyl)-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (3d)

18 h, light yellow solid; 32% yield, 94:6 dr, 96% ee;

Ph Me

EtOOC

HRMS (ESI+): calcd. for C₃₃H₃₂O₅ +Na⁺ [M+Na⁺] 531.2142, found 531.2136;

IR: *v*_{max} (film, cm⁻¹): 2986, 1775, 1704, 1514, 1253, 1067, 706;

¹H NMR (400 MHz, CDCI₃): δ 7.47 – 7.42 (m, 2H), 7.39 (dd, J = 7.8, 1.3 Hz, 1H), 7.16 (td, J = 7.5, 1.4 Hz, 1H), 7.13 – 7.10 (m, 3H), 7.02 (td, J = 7.4, 1.3 Hz, 1H), 6.94 – 6.86 (m, 5H), 6.29 (d, J = 3.0 Hz, 1H), 3.91 (dd, J = 5.3, 1.2 Hz, 1H), 3.87 (dd, J = 10.3, 2.9 Hz, 1H), 3.83 (s, 3H), 3.81 – 3.65 (m, 3H), 3.09 (dd, J = 12.4, 10.2 Hz, 1H), 2.17 (s, 3H), 1.60 (s, 3H),1.12 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCI₃): δ 168.8, 166.0, 159.3, 158.0, 142.6, 138.1, 137.8, 133.2, 132.8, 129.9, 129.3, 128.4, 128.3, 127.5, 127.0, 126.7, 126.6, 125.4, 114.1, 111.8, 60.7, 55.5, 51.5, 45.7, 43.6, 39.0, 19.6, 18.2, 14.1;

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.1 min, t_R (minor) = 8.2 min.

ethyl (4a*R*,5*S*,6*R*,8a*R*)-5-(3-bromophenyl)-8-(4-methoxyphenyl)-3-methyl-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (3e)

23 h, light yellow solid; 38% yield, 96% ee;

HRMS (ESI+): calcd. for C₃₂H₂₉BrO₅ +Na⁺ [M+Na⁺] 595.1091, found 595.1086;

IR: v_{max} (film, cm⁻¹): 2990, 1783, 1706, 1515, 1255, 1062, 706;

¹**H NMR (400 MHz, CDCl**₃): δ 7.43 – 7.38 (m, 2H), 7.31 – 7.27 (m, 1H), 7.20 – 7.08 (m, 4H), 7.03 – 6.96 (m, 1H), 6.96 – 6.85 (m, 5H), 6.23 (d, *J* = 3.0 Hz, 1H), 3.92 – 3.84 (m, 3H), 3.82 (s, 3H), 3.80 – 3.71 (m, 2H), 2.65 (dd, *J* = 12.3, 10.3 Hz, 1H), 2.23 (s, 3H), 1.19 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 165.8, 159.4, 159.0, 142.2, 142.2, 133.0, 132.6, 130.3, 129.6, 128.9, 128.6, 128.4, 127.0, 127.0, 122.0, 114.1, 111.3, 61.1, 55.5, 51.9, 50.8, 43.4, 38.8, 18.5, 14.2; (two aromatic carbon signals overlap with others in the 120-135 ppm region)

 $[\alpha]^{25}$ _D = -80.8 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Chiralpak AD-3, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 12.8 min, t_R (minor) = 8.3 min.

0₂N ~

ethyl (4a*R*,5*S*,6*R*,8a*R*)-8-(4-methoxyphenyl)-3-methyl-5-(4-nitrophenyl)-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (3f)

27 h, light yellow solid; 46% yield, 97:3 dr, 94% ee;

HRMS (ESI+): calcd. for C₃₂H₂₉NO₇ +Na⁺ [M+Na⁺] 562.1836, found 562.1834;

IR: *v*_{max} (film, cm⁻¹): 2935, 1777, 1702, 1513, 1344, 1064, 701;

¹H NMR (600 MHz, CDCl₃) δ 8.03 (br, 2H), 7.41 – 7.38 (m, 2H), 7.16 – 7.11 (m, 4H), 6.91 – 6.88 (m, 5H), 6.23 (d, *J* = 2.9 Hz, 1H),

3.92 – 3.88 (m, 2H), 3.84 – 3.82 (m, 1H), 3.82 (s, 3H), 3.82 – 3.80 (m, 1H), 3.78 – 3.72 (m, 1H), 2.83 (dd, *J* = 12.3, 10.2 Hz, 1H), 2.23 (s, 3H), 1.10 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 168.1, 165.8, 159.7, 159.6, 147.8, 147.2, 141.7, 133.2, 132.4, 128.8, 128.6, 128.3, 127.2, 127.1, 123.1, 114.2, 110.9, 61.1, 55.5, 52.3, 51.0, 43.4, 38.6, 18.7, 14.2; (one aromatic carbon signal overlaps with others in the 120-135 ppm region)

 $[\alpha]^{25}$ _D = -41.6 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-2, gradient 100% CO₂ to CO₂/MeOH = 80:20 in the first 5 mins and maintaining in 80:20 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 11.8 min, t_R (minor) = 12.6 min.

methyl (4a*R*,5*S*,6*R*,8a*R*)-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (3g)

17 h, light yellow solid; 43% yield, 98% ee;

Ph

HRMS (ESI+): calcd. for $C_{31}H_{27}NO_7$ +Na⁺ [M+Na⁺] 548.1680, found 548.1671;

IR: *v*_{max} (film, cm⁻¹): 2953, 1782, 1710, 1515, 1247, 1071, 700;

¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 8.0, 1.4 Hz, 1H), 7.55 (td, J = 7.6, 1.4 Hz, 1H), 7.45 (dd, J = 8.2, 1.4 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.31 – 7.26 (m, 1H), 7.18 – 7.11 (m, 3H), 6.93 – 6.84 (m, 4H), 6.20 (d, J = 2.9 Hz, 1H), 3.91 (dd, J = 5.1, 1.3 Hz, 1H), 3.89 – 3.84 (m, 1H), 3.82 (s, 3H), 3.79 (d, J = 5.3 Hz, 1H), 3.63 (dd, J = 12.0, 10.4 Hz, 1H), 3.37 (s, 3H), 2.24 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 167.5, 166.4, 161.4, 159.4, 151.7, 141.3, 133.9, 133.3, 132.6, 131.2, 129.9, 128.8, 128.7, 128.1, 127.9, 127.3, 127.1, 123.9, 114.1, 109.2, 55.5, 51.5, 51.3, 44.1, 43.5, 38.6, 18.7;

 $[\alpha]^{25}_{D} = -69.6 \ (c = 0.5 \text{ in acetone}, \lambda = 589 \text{ nm});$

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 50:50 in the first 5 mins and maintaining in 50:50 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.7 min, t_R (minor) = 11.3 min.

methyl (4a*S*,5*R*,6*R*,8a*R*)-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (4g)

light yellow solid; 17% yield, >99% ee;

HRMS (ESI+): calcd. for C₃₁H₂₇NO₇ +Na⁺ [M+Na⁺] 548.1680, found 548.1669;

IR: *v*_{max} (film, cm⁻¹): 2948, 1770, 1712, 1515, 1244, 1091, 706;

¹**H NMR (400 MHz, CDCI**₃) δ 7.86 (dd, J = 8.1, 1.4 Hz, 1H), 7.35 – 7.27 (m, 3H), 7.19 – 7.13 (m, 1H), 7.12 – 7.05 (m, 3H), 6.95 – 6.86 (m, 2H), 6.70 (br, 2H), 6.32 (dd, J = 6.3, 1.9 Hz, 1H), 6.08 (dd, J = 8.1, 1.3 Hz, 1H), 4.35 (t, J = 5.8 Hz, 1H), 4.27 (dd, J = 12.7, 5.2 Hz, 1H), 3.95 (dt, J = 13.1, 1.7 Hz, 1H), 3.83 (s, 3H), 3.54 (td, J = 12.8, 2.1 Hz, 1H), 3.11 (s, 3H), 1.99 (d, J = 1.9 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 167.6, 166.4, 159.1, 155.3, 150.7, 141.0, 137.8, 134.4, 133.3, 132.6, 131.8, 130.5, 129.7, 129.3, 128.1, 127.5, 126.4, 124.5, 114.4, 114.0, 55.4, 51.8, 46.2, 45.0, 39.9, 32.1, 17.3;

 $[\alpha]^{25}_{D} = -20.8$ (*c* = 0.5 in acetone, $\lambda = 589$ nm);

the enantioselectivity was determined by SFC (Trefoil CEL-2, gradient 100% CO₂ to CO₂/MeOH = 50:50 in the first 5 mins and maintaining in 50:50 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 6.7 min, t_R (minor) = 7.2 min.

allyl (4aR,5S,6R,8aR)-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromene-4-carboxylate (3h)

24 h, light yellow solid; 49% yield, 94:6 dr, 97% ee;

HRMS (ESI+): calcd. for C33H29NO7+Na⁺ [M+Na⁺] 574.1836, found 574.1827

IR: *v*_{max} (film, cm⁻¹): 3027, 1778, 1709, 1515, 1240, 1057, 700;

¹**H NMR (400 MHz, CDCI**₃) δ 7.69 (dd, J = 8.1, 1.4 Hz, 1H), 7.56 – 7.50 (m, 1H), 7.46 – 7.37 (m, 3H), 7.31 – 7.27 (m, 1H), 7.17 – 7.12 (m, 3H), 6.92 – 6.85 (m, 4H), 6.21 (d, J = 2.9 Hz, 1H), 5.76 (ddt, J = 16.6, 10.4, 5.8 Hz, 1H), 5.27 – 5.18 (m, 2H), 4.30 (ddt, J = 13.2, 5.6, 1.4 Hz, 1H), 4.20 – 4.12 (m, 1H), 3.92 (dd, J = 5.2, 1.3 Hz, 1H), 3.88 – 3.84 (m, 1H), 3.82 (s, 3H), 3.83 – 3.79 (m, 1H), 3.64 (dd, J = 12.1, 10.4 Hz, 1H), 2.26 (s, 3H);

¹³**C NMR (100 MHz, CDCI**₃) δ 167.5, 165.7, 161.4, 159.4, 151.7, 141.2, 133.8, 133.2, 132.5, 131.8, 131.4, 129.9, 128.8, 128.6, 128.1, 127.8, 127.2, 127.1, 123.8, 118.8, 114.1, 109.2, 65.5, 55.4, 51.3, 44.1, 43.5, 38.4, 18.8; $[\alpha]^{25}_{D} = -80.8$ (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 90:10 in the first 5 mins and maintaining in 90:10 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 26.6 min, t_R (minor) = 44.4 min.

2	26.762	6879119	44.97	201646	59.96
3	35.367	760499	4.97	12765	3.80
4	44.064	7180310	46.94	106600	31.70
					1
	0	~			4
~	\sim	//		\searrow	0

	RI	Area	% Area	Height	% Height
1	25.673	182441	0.79	6922	1.00
2	26.633	21563901	93.02	660906	95.32
3	35.328	1127590	4.86	19842	2.86
4	44.395	308874	1.33	5674	0.82

0 NO₂ Ph

allyl (4aS,5R,6R,8aR)-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1H-isochromene-4-carboxylate (4h)

light yellow solid; 12% yield, >99% ee;

HRMS (ESI+): calcd. for C33H29NO7+Na+ [M+Na+] 574.1836, found 574.1829

IR: *v*_{max} (film, cm⁻¹): 2924, 1774, 1713, 1515, 1244, 1090, 703;

¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 8.2, 1.4 Hz, 1H), 7.35 - 7.30 (m, 2H), 7.28 - 7.24 (m, 1H), 7.18 - 7.02 (m, 4H), 6.95 - 6.86 (m, 2H), 6.71 (s, 2H), 6.31 (dd, J = 5.9, 2.1 Hz, 1H), 6.10 (dd, J = 8.0, 1.3 Hz, 1H), 5.57 (ddt, J = 17.4, 10.1, 6.0 Hz, 1H), 5.17 - 5.08 (m, 2H), 4.41 – 4.31 (m, 2H), 4.01 – 3.93 (m, 2H), 3.91 – 3.85 (m, 1H), 3.83 (s, 3H), 3.54 (td, J = 12.6, 2.1 Hz, 1H), 1.99 (d, J = 1.9 Hz. 3H):

¹³C NMR (100 MHz, CDCI₃) δ 167.6, 165.7, 159.1, 154.8, 150.6, 137.9, 134.6, 133.3, 132.5, 131.8, 131.3, 130.5, 129.8, 129.4, 128.1, 127.4, 126.4, 124.6, 119.4, 114.5, 114.0, 65.8, 55.4, 46.1, 45.0, 39.7, 32.2, 17.3;

 $[\alpha]^{25}$ _D = -8.8 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO2 to CO2/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.2 min, t_R (minor) = 7.7 min.

(4aR,5S,6R,8aR)-4-acetyl-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3i)

13 h, light yellow solid; 72% yield, >99% ee;

HRMS (ESI+): calcd. for C₃₁H₂₇NO₆ +Na⁺ [M+Na⁺] 532.1731, found 532.1727;

IR: *v*_{max} (film, cm⁻¹): 2956, 1775, 1510, 1356, 1242, 1100, 702;

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.53 (m, 2H), 7.42 – 7.35 (m, 3H), 7.32 – 7.26 (m, 1H), 7.19 – 7.12 (m, 3H), 6.94 – 6.83 (m, 4H), 6.19 (d, *J* = 2.8 Hz, 1H), 3.93 – 3.83 (m, 3H), 3.81 (s, 3H), 3.47 (t, *J* = 11.3 Hz, 1H), 2.18 (s, 3H), 1.73 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 198.7, 167.6, 159.4, 157.5, 151.8, 141.3, 134.1, 133.3, 132.6, 131.8, 130.1, 128.8, 128.6, 128.1, 128.0, 127.3, 127.1, 123.4, 119.9, 114.1, 55.5, 51.1, 44.2, 43.4, 39.2, 30.2, 19.3;

 $[\alpha]^{25}$ _D = -66.4 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 50:50 in the first 5 mins and maintaining in 50:50 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.3 min, t_R (minor) = 10.1 min.

(4a*S*,5*R*,6*R*,8a*R*)-4-acetyl-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (4i)

light yellow solid; 14% yield, >99% ee;

NO₂ Ph

HRMS (ESI+): calcd. for C₃₁H₂₇NO₆ +Na⁺ [M+Na⁺] 532.1731, found 532.1724;

IR: v_{max} (film, cm⁻¹): 2930, 1770, 1522, 1357, 1243, 1085, 702;

¹H NMR (400 MHz, CDCI₃) δ 7.85 (dd, J = 8.1, 1.4 Hz, 1H), 7.33 – 7.27 (m, 3H), 7.20 – 7.08 (m, 3H), 7.04 (td, J = 7.6, 1.4 Hz, 1H), 6.94 – 6.87 (m, 2H), 6.75 (br, 2H), 6.30 (dd, J = 6.2, 2.0 Hz, 1H), 6.04 (dd, J = 7.9, 1.3 Hz, 1H), 4.38 – 4.32 (m, 1H), 4.26 (dd, J = 12.7, 5.4 Hz, 1H), 3.93 (dt, J = 12.9, 1.7 Hz, 1H), 3.83 (s, 3H), 3.52 (td, J = 12.8, 2.0 Hz, 1H), 1.94 (d, J = 1.8 Hz, 3H), 1.54 (s, 3H); ¹³C NMR (100 MHz, CDCI₃) δ 201.3, 167.8, 159.1, 151.3, 150.9, 138.1, 135.1, 133.4, 132.6, 131.3, 130.6, 129.7, 129.6, 128.1, 127.7, 127.5, 126.5, 124.7, 123.6, 114.0, 55.4, 46.1, 45.3, 39.1, 33.8, 31.6, 17.4;

 $[\alpha]^{25}$ _D = +45.6 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-2, gradient 100% CO₂ to CO₂/MeOH = 50:50 in the first 5 mins and maintaining in 50:50 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.1 min, t_R (minor) = 9.7 min.

2-((4aR,5S,6R,8aR)-4-acetyl-8-(4-methoxyphenyl)-3-methyl-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-5-yl)benzonitrile (3j)

13 h, light yellow solid; 67% yield, >99% ee;

HRMS (ESI+): calcd. for $C_{32}H_{27}NO_4$ +Na⁺ [M+Na⁺] 512.1832, found 512.1835

IR: *v*_{max} (film, cm⁻¹): 2955, 2224, 1776, 1510, 1240, 1104, 702;

¹H NMR (400 MHz, CDCI₃) δ 7.60 – 7.53 (m, 2H), 7.41 – 7.37 (m, 3H), 7.30 – 7.26 (m, 1H), 7.19 – 7.13 (m, 3H), 6.96 (dd, J = 7.7, 1.8 Hz, 2H), 6.91 – 6.87 (m, 2H), 6.22 (d, J = 2.9 Hz, 1H), 3.95 – 3.90 (m, 1H), 3.88 – 3.85 (m, 1H), 3.83 – 3.82 (m, 1H), 3.81 (s, 3H), 3.34 (dd, J = 11.8, 10.4 Hz, 1H), 2.22 (s, 3H), 1.71 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 198.0, 167.4, 159.4, 157.6, 144.0, 141.4, 133.2, 132.6, 132.6, 132.5, 128.8, 128.7, 128.6, 128.2, 127.8, 127.2, 127.1, 119.7, 116.8, 114.9, 114.1, 114.0, 55.4, 50.4, 48.9, 43.3, 39.7, 30.1, 19.2;

 $[\alpha]^{25}$ _D = -114.4 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.6 min, t_R (minor) = 10.6 min.

CN Ph

2-((4a*S*,5*R*,6*R*,8a*R*)-4-acetyl-8-(4-methoxyphenyl)-3-methyl-1-oxo-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-5-yl)benzonitrile (4j)

light yellow solid; 13% yield, >99% ee;

HRMS (ESI+): calcd. for C₃₂H₂₇NO₄ +Na⁺ [M+Na⁺] 512.1832, found 512.1829

IR: *v*_{max} (film, cm⁻¹): 2906, 2222, 1778, 1674, 1514, 1242, 1080, 706;

¹H NMR (400 MHz, CDCI₃) δ 7.70 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.23 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.18 – 7.12 (m, 1H), 7.11 – 7.04 (m, 3H), 6.94 – 6.87 (m, 2H), 6.62 (br, 2H), 6.28 (dd, *J* = 6.3, 2.1 Hz, 1H), 6.05 (d, *J* = 7.9 Hz, 1H), 4.31 (dd, *J* = 12.9, 5.4 Hz, 1H), 4.06 – 3.98 (m, 2H), 3.83 (s, 3H), 3.53 (td, *J* = 13.0, 2.0 Hz, 1H), 1.97 (d, *J* = 1.9 Hz, 3H), 1.64 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 201.0, 167.8, 159.1, 151.0, 144.2, 137.5, 133.4, 133.3, 132.9, 131.7, 130.3, 129.3, 128.1, 127.5, 127.4, 126.5, 123.5, 117.6, 114.1, 114.0, 55.4, 46.7, 45.2, 42.3, 33.1, 31.8, 17.4;

 $[\alpha]^{25}$ _D = -132.0 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.4 min, t_R (minor) = 9.4 min.

(4aR,5S,6R,8aR)-4-acetyl-5-(2-bromophenyl)-8-(4-methoxyphenyl)-3-methyl-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3k)

15 h, light yellow solid; 58% yield, 99% ee;

HRMS (ESI+): calcd. for C₃₁H₂₇BrO₄ +Na⁺ [M+Na⁺] 565.0985, found 565.0981;

IR: *v*_{max} (film, cm⁻¹): 2956, 1772, 1510, 1240, 1100, 1026, 765;

¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.38 (m, 2H), 7.36 (dd, J = 7.9, 1.7 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.17 – 7.10 (m, 3H), 7.02 (td, J = 7.6, 1.6 Hz, 1H), 6.98 – 6.94 (m, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.23 (d, J = 2.8 Hz, 1H), 3.88 – 3.83 (m, 2H), 3.82 (s, 3H), 3.76 (dd, J = 12.3, 5.3 Hz, 1H), 3.61 (dd, J = 12.2, 10.4 Hz, 1H), 2.15 (s, 3H), 1.64 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 199.0, 168.3, 159.4, 155.9, 141.8, 139.6, 133.1, 132.8, 132.7, 129.7, 129.2, 128.6, 128.5, 128.5, 128.4, 127.5, 127.5, 127.1, 126.9, 120.1, 114.1, 55.5, 50.6, 48.3, 43.5, 40.4, 29.9, 19.0;

 $[\alpha]^{25}$ _D = -151.2 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 9.7 min, t_R (minor) = 12.9 min.

(4aR,5S,6R,8aR)-4-acetyl-3-methyl-5-(2-nitrophenyl)-6,8-diphenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3I) 13 h, light yellow solid; 45% yield, 99% ee;

 $\label{eq:HRMS} \text{(ESI+): calcd. for } C_{30}H_{25}NO_5 + Na^+ [M+Na^+] \ 502.1625, \ found \ 502.1620;$

IR: *v*_{max} (film, cm⁻¹): 3028, 1768, 1651, 1520, 1102, 750, 698;

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.53 (m, 2H), 7.48 – 7.43 (m, 2H), 7.42 – 7.27 (m, 5H), 7.21 – 7.13 (m, 3H), 6.92 – 6.85 (m, 2H), 6.29 (d, *J* = 2.8 Hz, 1H), 3.96 – 3.84 (m, 3H), 3.49 (dd, *J* = 11.8, 10.4 Hz, 1H), 2.19 (s, 3H), 1.74 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 198.6, 167.6, 157.5, 151.8, 141.1, 140.0, 134.0, 134.0, 131.9, 130.2, 130.1, 128.8, 128.7, 128.1, 128.0, 127.9, 127.3, 126.0, 123.4, 119.9, 51.1, 44.2, 43.4, 39.2, 30.2, 19.3;

 $[\alpha]^{25}$ _D = -83.2 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.0 min, t_R (minor) = 9.8 min.

(4a*S*,5*R*,6*R*,8a*R*)-4-acetyl-3-methyl-5-(2-nitrophenyl)-6,8-diphenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (4l) light yellow solid; 10% yield, >99% ee;

HRMS (ESI+): calcd. for $C_{30}H_{25}NO_5 + Na^+$ [M+Na⁺] 502.1625, found 502.1625; **IR**: v_{max} (film, cm⁻¹): 3031, 1772, 1522, 1359, 1085, 976, 705; ¹**H NMR (400 MHz, CDCI₃)** δ 7.85 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.41 – 7.33 (m, 4H), 7.32 – 7.27 (m, 2H), 7.21 – 7.09 (m, 3H), 7.04 (td, *J* = 7.6, 1.4 Hz, 1H), 6.76 (br, 2H), 6.37 (dd, *J* = 6.2, 2.0 Hz, 1H), 6.05 (dd, *J* = 8.1, 1.4 Hz, 1H), 4.40 – 4.34 (m, 1H), 4.27 (dd, *J* = 12.8, 5.4 Hz, 1H), 3.98 (dt, *J* = 12.9, 1.7 Hz, 1H), 3.53 (td, *J* = 12.9, 2.0 Hz, 1H), 1.95 (d, *J* = 1.9 Hz, 3H), 1.54 (s, 3H); ¹³**C NMR (100 MHz, CDCI₃)** δ 201.3, 167.7, 151.3, 151.0, 140.9, 138.0, 135.1, 133.2, 131.3, 131.1, 130.6, 129.6, 128.6, 128.2, 127.8, 127.5, 127.5, 125.4, 124.7, 123.5, 46.0, 45.3, 39.1, 33.8, 31.6, 17.4;

 $[\alpha]^{25}_{D} = -2.4$ (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.7 min, t_R (minor) = 10.3 min.

(4aR,5S,6R,8aR)-4-acetyl-8-(4-bromophenyl)-3-methyl-5-(2-nitrophenyl)-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3m)

13 h, light yellow solid; 48% yield, >99% ee;

HRMS (ESI+): calcd. for C₃₀H₂₄BrNO₅ +Na⁺ [M+Na⁺] 580.0730, found 580.0724;

IR: *v*_{max} (film, cm⁻¹): 3025, 1770, 1655, 1526, 1354, 1097, 700;

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.54 (m, 2H), 7.50 – 7.45 (m, 2H), 7.43 – 7.37 (m, 1H), 7.35 – 7.28 (m, 3H), 7.19 – 7.12 (m, 3H), 6.88 – 6.82 (m, 2H), 6.26 (d, *J* = 2.8 Hz, 1H), 3.91 (dd, *J* = 12.1, 5.3 Hz, 1H), 3.87 – 3.81 (m, 2H), 3.49 (dd, *J* = 12.0, 10.4 Hz, 1H), 2.18 (s, 3H), 1.73 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 198.5, 167.4, 157.5, 151.8, 140.8, 139.0, 133.8, 133.2, 131.9, 131.8, 130.9, 123.0, 128.9, 128.1, 128.1, 127.7, 127.4, 123.5, 121.9, 119.8, 51.0, 44.0, 43.3, 39.1, 30.2, 19.3;

 $[\alpha]^{25}$ _D = -71.2 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 10.1 min, t_R (minor) = 11.9 min.

(4a*S*,5*R*,6*R*,8a*R*)-4-acetyl-8-(4-bromophenyl)-3-methyl-5-(2-nitrophenyl)-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (4m)

light yellow solid; 9% yield, >99% ee;

HRMS (ESI+): calcd. for C₃₀H₂₄BrNO₅+Na⁺ [M+Na⁺] 580.0730, found 580.0726;

IR: *v*_{max} (film, cm⁻¹): 3030, 1770, 1523, 1350, 1073, 975, 705;

¹H NMR (600 MHz, CDCI₃) δ 7.85 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 8.9 Hz, 2H), 7.18 (t, J = 7.3 Hz, 1H), 7.12 (br, 2H), 7.04 (t, J = 7.7 Hz, 1H), 6.74 (br, 2H), 6.34 (d, J = 6.1 Hz, 1H), 6.05 (d, J = 7.9 Hz, 1H), 4.36 (t, J = 5.9 Hz, 1H), 4.26 (dd, J = 12.9, 5.4 Hz, 1H), 3.91 (d, J = 12.9 Hz, 1H), 3.52 (t, J = 12.9 Hz, 1H), 1.94 (s, 3H), 1.53 (s, 3H); ¹³C NMR (150 MHz, CDCI₃) δ 201.1, 167.6, 151.3, 151.0, 140.0, 137.8, 135.0, 132.4, 131.7, 131.4, 129.6, 128.3, 127.8, 127.6, 127.2, 124.7, 123.5, 121.4, 46.0, 45.3, 39.1, 33.8, 31.5, 17.4;

 $[\alpha]^{25}$ _D = +17.6 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-2, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 9.5 min, t_R (minor) = 11.3 min;

(4aR,5S,6R,8aR)-4-acetyl-8-(4-isobutylphenyl)-3-methyl-5-(2-nitrophenyl)-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3n)

15 h, light yellow solid; 46% yield, 99% ee;

HRMS (ESI+): calcd. for C₃₄H₃₃NO₅ +Na⁺ [M+Na⁺] 558.2251, found 558.2242;

IR: *v*_{max} (film, cm⁻¹): 2956, 1772, 1660, 1524, 1353, 1106, 701;

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.52 (m, 2H), 7.42 – 7.34 (m, 3H), 7.30 (ddd, *J* = 8.3, 6.7, 1.9 Hz, 1H), 7.20 – 7.09 (m, 5H), 6.89 – 6.86 (m, 2H), 6.27 (d, *J* = 2.8 Hz, 1H), 3.94 – 3.84 (m, 3H), 3.49 (t, *J* = 11.1 Hz, 1H), 2.47 (d, *J* = 7.2 Hz, 2H), 2.18 (s, 3H), 1.86 (dt, *J* = 13.5, 6.8 Hz, 1H), 1.74 (s, 3H), 0.90 (d, *J* = 6.6 Hz, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 198.6, 167.7, 157.5, 151.8, 141.6, 141.2, 137.3, 134.1, 133.8, 131.8, 130.1, 129.5, 129.3, 128.8, 128.1, 128.0, 127.3, 125.6, 123.4, 119.9, 51.1, 45.2, 44.2, 43.3, 39.2, 31.1, 30.3, 30.2, 22.5, 19.3;

 $[\alpha]^{25}$ _D = -115.2 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.4 min, t_R (minor) = 9.0 min.

(4a*S*,5*R*,6*R*,8a*R*)-4-acetyl-8-(4-isobutylphenyl)-3-methyl-5-(2-nitrophenyl)-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (4n)

light yellow solid; 8% yield, 84:16 dr, >99% ee;

HRMS (ESI+): calcd. for C₃₄H₃₃NO₅ +Na⁺ [M+Na⁺] 558.2251, found 558.2243;

IR: *v*_{max} (film, cm⁻¹): 2954, 1777, 1671, 1520, 1352, 1080, 969, 709;

¹**H NMR (400 MHz, CDCI**₃) δ 7.85 (dd, J = 8.1, 1.4 Hz, 1H), 7.31 – 7.27 (m, 3H), 7.21 – 7.07 (m, 5H), 7.04 (td, J = 7.6, 1.4 Hz, 1H), 6.76 (br, 2H), 6.36 (dd, J = 6.2, 2.0 Hz, 1H), 6.04 (dd, J = 8.0, 1.3 Hz, 1H), 4.38 – 4.31 (m, 1H), 4.26 (dd, J = 12.8, 5.4 Hz, 1H), 3.97 (dt, J = 13.0, 1.8 Hz, 1H), 3.52 (td, J = 12.8, 1.9 Hz, 1H), 2.48 (d, J = 7.2 Hz, 2H), 1.94 (d, J = 1.9 Hz, 3H), 1.88 (dt, J = 13.5, 6.8 Hz, 1H), 1.54 (s, 3H), 0.91 (d, J = 6.6 Hz, 6H);

¹³C NMR (150 MHz, CDCl₃) δ 201.3, 167.8, 151.3, 151.0, 141.0, 138.1, 138.1, 135.1, 133.0, 131.3, 130.6, 130.3, 129.6, 129.3, 128.1, 127.7, 127.5, 125.0, 124.7, 123.6, 46.1, 45.3, 45.3, 39.1, 33.8, 31.6, 30.3, 22.6, 17.4;

 $[\alpha]^{25}_{D} = -26.4$ (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.0 min, t_R (minor) = 12.3 min.

(4aR,5S,6R,8aR)-4-acetyl-3-methyl-5-(2-nitrophenyl)-6-phenyl-8-(*m*-tolyl)-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3o) 15 h, light yellow solid; 63% yield, >99% ee;

HRMS (ESI+): calcd. for C₃₁H₂₇NO₅ +Na⁺ [M+Na⁺] 516.1781, found 516.1777;

IR: *v*_{max} (film, cm⁻¹): 3027, 1779, 1646, 1526, 1359, 1110, 702;

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.53 (m, 2H), 7.42 – 7.38 (m, 1H), 7.30 (ddd, *J* = 8.3, 6.5, 2.1 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.26 – 7.23 (m, 2H), 7.19 – 7.14 (m, 3H), 7.13 – 7.09 (m, 1H), 6.91 – 6.85 (m, 2H), 6.27 (d, *J* = 2.9 Hz, 1H), 3.95 – 3.81 (m, 3H), 3.49 (t, *J* = 11.0 Hz, 1H), 2.36 (s, 3H), 2.19 (s, 3H), 1.74 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 198.6, 167.6, 157.5, 151.8, 141.2, 139.9, 138.3, 134.0, 131.8, 130.1, 130.0, 128.8, 128.7, 128.6, 128.2, 128.0, 127.3, 126.7, 123.4, 123.1, 119.9, 51.1, 44.2, 43.3, 39.2, 30.2, 21.7, 19.3;

 $[\alpha]^{25}$ _D = -85.6 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.9 min, t_R (minor) = 8.1 min.

(4aS,5R,6R,8aR)-4-acetyl-3-methyl-5-(2-nitrophenyl)-6-phenyl-8-(*m*-tolyl)-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (4o) light yellow solid; 11% yield, 72:28 dr, >99% ee;

HRMS (ESI+): calcd. for C₃₁H₂₇NO₅ +Na⁺ [M+Na⁺] 516.1781, found 516.1780;

IR: *v*_{max} (film, cm⁻¹): 2921, 1774, 1663, 1523, 1354, 1109, 699;

¹H NMR (600 MHz, CDCI₃) δ 7.85 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.29 – 7.27 (m, 2H), 7.24 (d, *J* = 7.7 Hz, 1H), 7.21 – 7.09 (m, 5H), 7.04 (t, *J* = 7.7 Hz, 1H), 6.76 (br, 2H), 6.35 (dd, *J* = 6.2, 2.0 Hz, 1H), 6.05 (d, *J* = 7.9 Hz, 1H), 4.35 (t, *J* = 5.8 Hz, 1H), 4.26 (dd, *J* = 12.9, 5.4 Hz, 1H), 3.97 (dd, *J* = 12.4, 2.3 Hz, 1H), 3.56 – 3.49 (m, 1H), 2.37 (s, 3H), 1.95 (s, 3H), 1.54 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 201.3, 167.8, 151.3, 150.9, 140.9, 138.1, 138.0, 135.1, 133.2, 131.3, 130.9, 129.6, 128.4, 128.3, 128.2, 127.7, 127.5, 126.2, 124.7, 123.5, 122.5, 46.0, 45.3, 39.1, 33.8, 31.6, 21.7, 17.4;

 $[\alpha]^{25}_{D} = -2.4$ (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-2, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.7 min, t_R (minor) = 8.2 min.

(4aR,5S,6R,8aR)-4-acetyl-3-methyl-8-(naphthalen-2-yl)-5-(2-nitrophenyl)-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3p)

13 h, light yellow solid; 61% yield, 99% ee;

HRMS (ESI+): calcd. for $C_{34}H_{27}NO_5 + Na^+$ [M+Na⁺] 552.1781, found 552.1779;

IR: *v*_{max} (film, cm⁻¹): 3030, 1770, 1652, 1519, 1354, 1106, 704;

¹H NMR (400 MHz, CDCI₃) δ 7.87 – 7.78 (m, 4H), 7.63 (dd, J = 8.7, 2.0 Hz, 1H), 7.61 – 7.54 (m, 2H), 7.50 – 7.44 (m, 2H), 7.41 (dd, J = 8.0, 1.3 Hz, 1H), 7.31 (ddd, J = 8.3, 6.8, 1.7 Hz, 1H), 7.22 – 7.15 (m, 3H), 6.95 – 6.88 (m, 2H), 6.43 (d, J = 2.9 Hz, 1H), 4.05 (dd, J = 5.4, 1.3 Hz, 1H), 3.98 (dd, J = 12.1, 5.3 Hz, 1H), 3.94 – 3.89 (m, 1H), 3.55 (dd, J = 12.1, 10.5 Hz, 1H), 2.21 (s, 3H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCI₃) δ 198.6, 167.6, 157.6, 151.8, 141.1, 137.2, 134.0, 133.9, 133.5, 133.0, 131.9, 130.8, 130.0, 128.9, 128.4, 128.2, 128.1, 127.7, 127.4, 126.4, 126.2, 124.8, 124.2, 123.5, 119.9, 51.2, 44.2, 43.4, 39.3, 30.2, 19.3; [α]²⁵_D = -74.4 (c = 0.5 in acetone, $\lambda = 589$ nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 12.9 min, t_R (minor) = 13.7 min.

O S S NO₂ Ph

(4aR,5S,6R,8aR)-4-acetyl-3-methyl-5-(2-nitrophenyl)-6-phenyl-8-(thiophen-2-yl)-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3q)

15 h, light yellow solid; 36% yield, 98% ee;

HRMS (ESI+): calcd. for C₂₈H₂₃NSO₅+Na⁺ [M+Na⁺] 508.1189, found 508.1196;

IR: *v*_{max} (film, cm⁻¹): 3028, 1776, 1655, 1526, 1353, 1105, 701;

¹**H NMR (400 MHz, CDCI**₃) δ 7.58 – 7.54 (m, 2H), 7.42 – 7.38 (m, 1H), 7.33 – 7.28 (m, 1H), 7.20 (dd, *J* = 4.4, 1.8 Hz, 1H), 7.17 – 7.13 (m, 3H), 7.02 – 6.98 (m, 2H), 6.87 – 6.82 (m, 2H), 6.34 (d, *J* = 2.9 Hz, 1H), 3.91 (dd, *J* = 12.1, 5.4 Hz, 1H), 3.88 – 3.82 (m, 2H), 3.48 (dd, *J* = 12.1, 10.4 Hz, 1H), 2.20 (s, 3H), 1.74 (s, 3H);

 $^{13}C \text{ NMR (100 MHz, CDCl}_3) \delta 198.4, 167.1, 157.5, 151.8, 144.1, 140.7, 133.7, 131.9, 130.0, 128.8, 128.6, 128.2, 128.1, 127.7, 127.4, 124.6, 123.7, 123.5, 119.7, 50.9, 44.2, 43.9, 38.9, 30.2, 19.3;$

 $[\alpha]^{25}$ _D = -180.0 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.5 min, t_R (minor) = 10.4 min.

(4aR,5S,6R,8aR)-4-acetyl-8-(furan-2-yl)-3-methyl-5-(2-nitrophenyl)-6-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3r) 15 h, light yellow solid; 34% yield, 98% ee;

HRMS (ESI+): calcd. for C₂₈H₂₃NO₆ +Na⁺ [M+Na⁺] 492.1418, found 492.1422;

IR: *v*_{max} (film, cm⁻¹): 3140, 1774, 1663, 1524, 1109, 759, 700;

¹**H NMR (400 MHz, CDCl**₃) δ 7.55 (d, *J* = 4.1 Hz, 2H), 7.41 – 7.35 (m, 2H), 7.32 – 7.27 (m, 1H), 7.16 – 7.11 (m, 3H), 6.87 – 6.82 (m, 2H), 6.44 (d, *J* = 3.0 Hz, 1H), 6.42 (dd, *J* = 3.4, 1.8 Hz, 1H), 6.31 (d, *J* = 3.4 Hz, 1H), 3.90 – 3.84 (m, 2H), 3.81 (dd, *J* = 5.5, 1.4 Hz, 1H), 3.48 (dd, *J* = 12.0, 10.3 Hz, 1H), 2.19 (s, 3H), 1.73 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 198.5, 167.0, 157.4, 153.2, 151.7, 142.1, 140.8, 133.8, 131.9, 130.0, 128.8, 128.1, 127.3, 126.8, 124.4, 123.5, 119.6, 111.6, 106.1, 50.6, 44.2, 41.4, 38.6, 30.2, 19.3;

 $[\alpha]^{25}$ _D = -146.4 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.3 min, t_R (minor) = 7.7 min.

(4aR,5S,6R,8aR)-4-acetyl-3-methyl-5-(2-nitrophenyl)-8-phenyl-6-(*p*-tolyl)-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3s) 15 h, light yellow solid; 44% yield, 97:3 dr, 99% ee;

HRMS (ESI+): calcd. for $C_{31}H_{27}NO_5$ +Na⁺ [M+Na⁺] 516.1781, found 516.1778;

IR: *v*_{max} (film, cm⁻¹): 3025, 1763, 1626, 1520, 1355, 1097, 742;

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 2H), 7.47 – 7.40 (m, 3H), 7.38 – 7.27 (m, 4H), 6.99 – 6.94 (m, 2H), 6.81 – 6.75 (m, 2H), 6.26 (d, *J* = 2.8 Hz, 1H), 3.94 – 3.80 (m, 3H), 3.55 – 3.46 (m, 1H), 2.24 (s, 3H), 2.18 (s, 3H), 1.74 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 198.6, 167.6, 157.5, 151.8, 140.0, 138.0, 136.9, 134.2, 133.7, 131.9, 130.6, 130.0, 129.5, 128.7, 128.0, 127.8, 126.0, 123.5, 119.9, 50.6, 44.0, 43.4, 39.3, 30.2, 21.2, 19.3; (one aromatic carbon signal overlaps with others in the 120-135 ppm region)

 $[\alpha]^{25}_{D} = -112.0$ (*c* = 0.5 in acetone, λ = 589 nm);

Me

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.0 min, t_R (minor) = 9.7 min.

(4a*S*,5*R*,6*R*,8a*R*)-4-acetyl-3-methyl-5-(2-nitrophenyl)-8-phenyl-6-(*p*-tolyl)-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (4s) light yellow solid; 7% yield, >99% ee;

HRMS (ESI+): calcd. for C₃₁H₂₇NO₅ +Na⁺ [M+Na⁺] 516.1781, found 516.1779;

IR: *v*_{max} (film, cm⁻¹): 2924, 1765, 1676, 1521, 1364, 1088, 726;

¹**H NMR (400 MHz, CDCI**₃) δ 7.85 (dd, J = 8.2, 1.4 Hz, 1H), 7.40 – 7.27 (m, 6H), 7.07 (td, J = 7.7, 1.4 Hz, 1H), 6.93 (d, J = 7.8 Hz, 2H), 6.64 (br, 2H), 6.35 (dd, J = 6.2, 2.0 Hz, 1H), 6.09 (d, J = 7.9 Hz, 1H), 4.31 (t, J = 5.5 Hz, 1H), 4.24 (dd, J = 12.7, 5.4 Hz, 1H), 3.97 (dt, J = 13.0, 1.7 Hz, 1H), 3.53 (td, J = 12.8, 2.0 Hz, 1H), 2.28 (s, 3H), 1.94 (d, J = 1.8 Hz, 3H), 1.54 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 201.3, 167.8, 151.3, 150.9, 141.0, 137.2, 135.2, 134.7, 132.9, 131.4, 129.8, 128.9, 128.6, 127.7, 127.4, 125.4, 124.6, 123.6, 45.7, 45.4, 39.2, 33.8, 31.6, 21.1, 17.4; (one aromatic carbon signal is overlap among 120-135 ppm) $[\alpha]^{25}_{D}$ = -7.2 (*c* = 0.5 in acetone, *λ* = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.7 min, t_R (minor) = 9.9 min.

(4aR,5S,6R,8aR)-4-acetyl-6-(4-chlorophenyl)-3-methyl-5-(2-nitrophenyl)-8-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3t)

15 h, light yellow solid; 49% yield, 99% ee;

HRMS (ESI+): calcd. for C₃₀H₂₄CINO₅+Na⁺ [M+Na⁺] 536.1235, found 536.1238;

IR: *v*_{max} (film, cm⁻¹): 3026, 1764, 1627, 1519, 1356, 1092, 743;

¹**H NMR (400 MHz, CDCl**₃) δ 7.56 (d, *J* = 3.9 Hz, 2H), 7.46 – 7.44 (m, 1H), 7.44 – 7.41 (m, 2H), 7.39 – 7.28 (m, 4H), 7.16 – 7.11 (m, 2H), 6.85 – 6.80 (m, 2H), 6.22 (d, *J* = 2.7 Hz, 1H), 3.91 (t, *J* = 6.1 Hz, 1H), 3.89 – 3.85 (m, 2H), 3.44 (dd, *J* = 11.7, 10.5 Hz, 1H), 2.19 (s, 3H), 1.74 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 198.4, 167.5, 157.8, 151.8, 139.8, 139.6, 134.5, 133.6, 133.2, 131.9, 129.9, 129.6, 129.5, 129.0, 128.8, 128.2, 128.0, 126.0, 123.6, 119.8, 50.3, 44.0, 43.4, 39.2, 30.2, 19.3;

 $[\alpha]^{25}_{D}$ = -113.6 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.9 min, t_R (minor) = 11.3 min.

(4a*S*,5*R*,6*R*,8a*R*)-4-acetyl-6-(4-chlorophenyl)-3-methyl-5-(2-nitrophenyl)-8-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (4t)

light yellow solid; 7% yield, >99% ee;

HRMS (ESI+): calcd. for C₃₀H₂₄CINO₅+Na⁺ [M+Na⁺] 536.1235, found 536.1233;

IR: *v*_{max} (film, cm⁻¹): 3060, 1768, 1672, 1522, 1088, 728, 699;

¹H NMR (400 MHz, CDCI₃) δ 7.87 (dd, J = 8.1, 1.4 Hz, 1H), 7.39 – 7.28 (m, 6H), 7.16 – 7.07 (m, 3H), 6.69 (br, 2H), 6.32 (dd, J = 6.2, 2.0 Hz, 1H), 6.12 (dd, J = 8.0, 1.3 Hz, 1H), 4.36 (td, J = 5.9, 1.5 Hz, 1H), 4.27 (dd, J = 12.8, 5.4 Hz, 1H), 3.97 (dt, J = 13.0, 1.8 Hz, 1H), 3.50 – 3.41 (m, 1H), 1.96 (d, J = 1.8 Hz, 3H), 1.55 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 201.2, 167.6, 151.2, 140.6, 136.6, 134.8, 133.7, 133.6, 131.6, 130.5, 129.5, 128.6, 128.3, 128.0, 127.7, 125.4, 124.9, 123.3, 45.4, 45.3, 39.0, 33.7, 31.6, 17.4;

 $[\alpha]^{25}$ _D = -13.6 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.4 min, t_R (minor) = 11.7 min.

(4aR,5S,6R,8aR)-4-acetyl-6-(3-chlorophenyl)-3-methyl-5-(2-nitrophenyl)-8-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3u)

15 h, light yellow solid; 46% yield, 99% ee;

HRMS (ESI+): calcd. for C₃₀H₂₄CINO₅ +Na⁺ [M+Na⁺] 536.1235, found 536.1232;

IR: *v*_{max} (film, cm⁻¹): 3024, 1778, 1649, 1525, 1115, 763, 698;

¹H NMR (400 MHz, CDCI₃) δ 7.60 – 7.54 (m, 2H), 7.46 – 7.42 (m, 3H), 7.39 – 7.28 (m, 4H), 7.17 – 7.09 (m, 2H), 6.86 (td, J = 4.2, 1.7 Hz, 1H), 6.80 (d, J = 1.2 Hz, 1H), 6.23 (d, J = 2.7 Hz, 1H), 3.95 – 3.83 (m, 3H), 3.46 (t, J = 11.1 Hz, 1H), 2.19 (s, 3H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCI₃) δ 198.3, 167.4, 157.8, 151.82 143.1, 139.8, 134.6, 134.4, 133.4, 132.0, 130.3, 129.9, 129.3, 128.8, 128.3, 128.1, 127.6, 126.2, 126.0, 123.6, 119.7, 50.6, 43.8, 43.4, 39.2, 30.2, 19.3;

 $[\alpha]^{25}$ _D = -131.2 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.9 min, t_R (minor) = 12.0 min.

(4a*S*,5*R*,6*R*,8a*R*)-4-acetyl-6-(3-chlorophenyl)-3-methyl-5-(2-nitrophenyl)-8-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (4u)

light yellow solid; 7% yield, 63:37 dr, >99% ee;

HRMS (ESI+): calcd. for C₃₀H₂₄CINO₅+Na⁺ [M+Na⁺] 536.1235, found 536.1234;

IR: *v*_{max} (film, cm⁻¹): 2920, 1769, 1522, 1350, 1087, 979, 753;

¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, J = 8.1 Hz, 1H), 7.38 – 7.35 (m, 3H), 7.32 (t, J = 7.6 Hz, 2H), 7.17 (d, J = 8.0 Hz, 1H), 7.14 – 7.06 (m, 2H), 6.78 – 6.54 (m, 3H), 6.32 (d, J = 6.0 Hz, 1H), 6.12 (d, J = 7.9 Hz, 1H), 4.35 (t, J = 6.0 Hz, 1H), 4.29 (dd, J = 13.0, 5.4 Hz, 1H), 3.97 (d, J = 13.0 Hz, 1H), 3.46 (t, J = 13.1 Hz, 1H), 1.95 (s, 3H), 1.55 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 201.2, 167.4, 151.3, 151.2, 140.7, 140.4, 134.8, 134.2, 134.0, 131.4, 130.2, 129.4, 129.4, 128.6, 128.1, 127.7, 127.7, 125.5, 124.9, 123.3, 45.8, 45.3, 39.1, 33.8, 31.6 17.4;

 $[\alpha]^{25}_{D} = -3.2$ (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.3 min, t_R (minor) = 11.5 min.

(4aR,5S,6R,8aR)-4-acetyl-6-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-8-phenyl-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (3v)

13 h, light yellow solid; 86% yield, >99% ee;

HRMS (ESI+): calcd. for $C_{31}H_{27}NO_6$ +Na⁺ [M+Na⁺] 532.1731, found 532.1725;

IR: *v*_{max} (film, cm⁻¹): 2836, 1764, 1661, 1509, 1238, 1095, 759;

¹**H NMR (400 MHz, CDCl**₃) δ 7.59 – 7.52 (m, 2H), 7.47 – 7.40 (m, 3H), 7.38 – 7.27 (m, 4H), 6.83 – 6.77 (m, 2H), 6.72 – 6.66 (m, 2H), 6.26 (d, *J* = 2.9 Hz, 1H), 3.93 – 3.85 (m, 2H), 3.82 (dd, *J* = 10.3, 2.4 Hz, 1H), 3.72 (s, 3H), 3.48 (t, *J* = 10.8 Hz, 1H), 2.18 (s, 3H), 1.74 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 198.6, 167.6, 158.8, 157.5, 151.8, 140.0, 134.2, 133.7, 133.1, 131.9, 130.7, 130.0, 129.1, 128.7, 128.0, 127.8, 126.0, 123.5, 119.9, 114.2, 55.3, 50.2, 44.2, 43.4, 39.3, 30.2, 19.3;

 $[\alpha]^{25}$ _D = -108.0 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 9.4 min, t_R (minor) = 10.5 min.

(4aS,5R,6R,8aR)-4-acetyl-6-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-8-phenyl-4a,5,6,8a-tetrahydro-1H-isochromen-1one (4v)

light yellow solid; 7% yield, >99% ee;

HRMS (ESI+): calcd. for C₃₁H₂₇NO₆ +Na⁺ [M+Na⁺] 532.1731, found 532.1725;

IR: *v*_{max} (film, cm⁻¹): 3007, 1761, 1678, 1511, 1254, 1075, 728;

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.2 Hz, 1H), 7.40 – 7.27 (m, 7H), 7.09 (t, J = 7.6 Hz, 1H), 6.67 (br, 3H), 6.35 (d, J = 6.1 Hz, 1H), 6.11 (d, J = 7.9 Hz, 1H), 4.30 (t, J = 5.8 Hz, 1H), 4.23 (dd, J = 12.7, 5.3 Hz, 1H), 4.03 – 3.90 (m, 1H), 3.76 (d, J = 1.2 Hz, 3H), 3.50 (t, J = 12.8 Hz, 1H), 1.94 (s, 3H), 1.55 (d, J = 1.1 Hz, 3H);

¹³C NMR (150 MHz, CDCI₃) δ 201.3, 167.8, 159.1, 151.3, 150.9, 140.9, 135.2, 132.8, 131.4, 131.4, 129.8, 128.6, 127.7, 127.5, 125.4, 124.6, 123.6, 113.5, 55.4, 45.3, 45.3, 39.2, 33.8, 31.6, 17.4;

 $[\alpha]^{25}$ _D = -12.8 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO2 to CO2/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.3 min, t_R (minor) = 10.7 min.

15 h, light yellow solid; 71% yield, 99% ee;

HRMS (ESI+): calcd. for $C_{31}H_{26}BrNO_6$ +Na⁺ [M+Na⁺] 610.0836, found 610.0829;

IR: *v*_{max} (film, cm⁻¹): 2958, 1776, 1510, 1356, 1241, 1098, 823;

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.39 – 7.26 (m, 5H), 6.93 – 6.86 (m, 2H), 6.80 – 6.73 (m, 2H), 6.13 (d, J = 2.8 Hz, 1H), 3.91 – 3.82 (m, 3H), 3.81 (s, 3H), 3.41 (dd, J = 12.0, 10.4 Hz, 1H), 2.18 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCI₃) δ 198.4, 167.6, 159.5, 157.7, 151.8, 140.4, 133.8, 133.6, 132.3, 131.9, 129.9, 129.8, 128.2, 127.9, 127.1, 123.6, 121.2, 119.8, 114.1, 55.5, 50.4, 43.9, 43.4, 39.2, 30.2, 19.3;

 $[\alpha]^{25}$ _D = -99.2 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 11.0 min, t_R (minor) = 15.5 min.

(4aS,5R,6R,8aR)-4-acetyl-6-(4-bromophenyl)-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-4a,5,6,8a-tetrahydro-1*H*-isochromen-1-one (4w)

light yellow solid; 6% yield, >99% ee;

HRMS (ESI+): calcd. for $C_{31}H_{26}BrNO_6 + Na^+ [M+Na^+] 610.0836$, found 610.0831;

IR: *v*_{max} (film, cm⁻¹): 2928, 1778, 1673, 1511, 1349, 1072, 822, 732;

¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.33 – 7.27 (m, 4H), 7.25 – 7.23 (m, 1H), 7.14 (td, *J* = 7.7, 1.4 Hz, 1H), 6.95 – 6.85 (m, 2H), 6.62 (br, 2H), 6.25 (dd, *J* = 6.1, 2.0 Hz, 1H), 6.11 (dd, *J* = 8.0, 1.3 Hz, 1H), 4.37 – 4.30 (m, 1H), 4.26 (dd, *J* = 12.7, 5.4 Hz, 1H), 3.92 (dt, *J* = 13.0, 1.7 Hz, 1H), 3.83 (s, 3H), 3.43 (ddd, *J* = 14.8, 11.9, 2.0 Hz, 1H), 1.95 (d, *J* = 1.8 Hz, 3H), 1.55 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 201.2, 167.7, 159.2, 151.3, 151.2, 137.2, 134.8, 133.1, 132.2, 131.6, 131.2, 129.5, 129.1, 128.0, 126.4, 124.8, 123.4, 121.6, 114.0, 55.4, 45.5, 45.3, 38.9, 33.8, 31.5, 17.4.

 $[\alpha]^{25}$ _D = +27.2 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 9.1 min, t_R (minor) = 23.1 min.

(S)-4-acetyl-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-6-phenyl-1*H*-isochromen-1-one (S-6) light yellow solid; 80% yield, 83:17 er;

HRMS (ESI+): calcd. for $C_{31}H_{23}NO_6 + H^+ [M+H^+] 506.1598$, found 506.1598;

IR: *v*_{max} (film, cm⁻¹): 2840, 1738, 1692, 1515, 1337, 1040, 700;

¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.57 (td, *J* = 7.5, 1.4 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.42 (s, 1H), 7.39 – 7.32 (m, 3H), 7.20 – 7.08 (m, 3H), 7.00 – 6.95 (m, 2H), 6.89 – 6.85 (m, 2H), 3.87 (s, 3H), 2.17 (s, 3H), 1.83 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 201.4, 159.5, 159.5, 153.0, 149.5, 147.5, 146.3, 139.1, 137.0, 134.8, 134.1, 133.6, 133.0, 132.6, 131.6, 130.3, 129.9, 129.1, 128.1, 127.8, 125.0, 118.9, 117.7, 113.6, 55.4, 32.0, 18.2;

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 9.0 min, t_R (minor) = 9.7 min.

(*R*)-4-acetyl-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-6-phenyl-1*H*-isochromen-1-one (*R*-6) light yellow solid; 80% yield, 84:16 er;

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 9.7 min, t_R (minor) = 9.0 min.

(*R*)-10-(2-bromophenyl)-3-chloro-7-(4-chlorophenyl)-9-phenyl-6*H*-benzo[*c*]chromen-6-one (8) yellow solid; 65% yield, 94% ee;

the enantioselectivity was determined by UPCC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 80:20 in the first 5 mins and maintaining in 80:20 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 22.0 min, t_R (minor) = 21.1 min; $\|\boldsymbol{\alpha}\|_{D}^{20} = -0.60$ (*c* = 0.67 in acetone, λ = 589 nm);

HRMS (ESI+): calcd. for C₃₁H₁₇BrCl₂O₂+Na⁺ [M+Na⁺] 592.9681, found 592.9656;

IR: *v*_{max} (film, cm⁻¹): 3061, 1734, 1604, 1397, 1088, 1067, 737, 705;

¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.48 (s, 1H), 7.41 (d, *J* = 8.6 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.34 – 7.31 (m, 1H), 7.27 (s, 1H), 7.23 – 7.13 (m, 5H), 7.11 – 7.06 (m, 2H), 6.78 (d, *J* = 1.9 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 159.2, 151.8, 148.6, 145.5, 140.5, 140.4, 139.6, 135.9, 135.7, 134.6, 134.5, 133.8, 133.5, 132.7, 130.0, 129.8, 129.1, 128.4, 128.2, 127.9, 127.6, 125.0, 124.1, 118.8, 117.7, 117.5.

methyl (1'R,2'R,3'S,4'R)-3'-(2,4-dioxopentan-3-yl)-5'-(4-methoxyphenyl)-2"-nitro-1',2',3',4'-tetrahydro-[1,1':2',1"-terphenyl]-4'- carboxylate (9)

light yellow solid; 70% yield, 99% ee;

HRMS (ESI+): calcd. for C₃₂H₃₁NO₇ +Na⁺ [M+Na⁺] 564.1993, found 564.1986;

IR: *v*_{max} (film, cm⁻¹): 2955, 1733, 1536, 1233, 1159, 767, 708;

¹H NMR (600 MHz, CDCl₃) δ 7.51 (t, *J* = 7.6 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.31 – 7.26 (m, 3H), 7.14 – 7.07 (m, 3H), 6.86 – 6.82 (m, 4H), 6.07 (d, *J* = 2.7 Hz, 1H), 4.55 (d, *J* = 10.4 Hz, 1H), 4.23 (d, *J* = 4.4 Hz, 1H), 3.85 (t, *J* = 11.0 Hz, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 3.75 – 3.67 (m, 2H), 2.30 (s, 3H), 1.50 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 202.6, 201.5, 172.8, 159.4, 152.5, 142.2, 134.7, 134.5, 132.9, 132.4, 131.7, 128.7, 128.5, 128.2, 128.0, 127.3, 127.1, 123.1, 114.0, 71.0, 55.4, 52.9, 52.4, 45.8, 43.3, 42.8, 31.7, 30.4;

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 6.8 min, t_R (minor) = 7.0 min.

(4aR,5R,6R,8R,8aR)-4-acetyl-7,8-dihydroxy-8-(4-methoxyphenyl)-3-methyl-5-(2-nitrophenyl)-6-phenyl-4a,5,6,7,8,8a-hexahydro-1*H*-isochromen-1-one (10)

light yellow solid; 78% yield, >99% ee;

HRMS (ESI+): calcd. for $C_{31}H_{29}NO_8+Na^+$ [M+Na⁺] 566.1785, found 566.1778;

IR: *v*_{max} (film, cm⁻¹): 3460, 2932, 1783, 1649, 1524, 1357, 1250, 1036, 699;

¹**H NMR (400 MHz, Acetone)** δ 7.80 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.55 (td, *J* = 7.7, 1.4 Hz, 1H), 7.47 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.17 – 7.08 (m, 4H), 7.06 – 7.00 (m, 1H), 6.87 – 6.81 (m, 2H), 4.96 (dd, *J* = 9.6, 6.4 Hz, 1H), 4.30 (d, *J* = 1.3 Hz, 1H), 4.22 (dd, *J* = 11.8, 5.0 Hz, 1H), 3.90 (dd, *J* = 6.5, 1.7 Hz, 1H), 3.82 (d, *J* = 12.0 Hz, 1H), 3.77 (s, 3H), 3.65 (dd, *J* = 12.0, 9.6 Hz, 1H), 3.49 (d, *J* = 4.9 Hz, 1H), 2.82 (d, *J* = 1.5 Hz, 1H), 2.06 (s, 3H), 1.79 (s, 3H).

¹³C NMR (100 MHz, Acetone) δ 197.1, 167.0, 159.5, 158.4, 151.8, 141.6, 137.5, 135.1, 133.0, 131.2, 130.2, 129.9, 128.9, 128.5, 127.2, 124.6, 120.2, 113.3, 75.5, 72.6, 55.4, 53.5, 52.9, 43.2, 38.2, 18.8.

 $[\alpha]^{25}$ _D = +179.2 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.6 min, t_R (minor) = 16.8 min.

ethyl (1a*R*,2*R*,3*R*,3a*R*,7a*R*,7b*R*)-3-(2-bromophenyl)-7b-(4-methoxyphenyl)-5-methyl-7-oxo-2-phenyl-1a,3,3a,7,7a,7b-hexahydro-2*H*-oxireno[2,3-*h*]isochromene-4-carboxylate (11)

light yellow solid; 60% yield, 95% ee;

HRMS (ESI+): calcd. for $C_{32}H_{29}BrO_6$ +Na⁺[M+Na⁺] 611.1040, found 611.1030;

IR: *v*_{max} (film, cm⁻¹): 2930, 1773, 1697, 1516, 1248, 1022, 759;

¹H NMR (400 MHz, Acetone) δ 7.64 (dd, J = 7.9, 1.6 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.41 (td, J = 7.6, 1.3 Hz, 1H), 7.30 (dd, J = 8.1, 1.3 Hz, 1H), 7.27 – 7.17 (m, 3H), 7.13 – 7.05 (m, 3H), 6.96 – 6.91 (m, 2H), 4.17 (dd, J = 4.8, 0.8 Hz, 1H), 3.86 – 3.80 (m, 4H), 3.79 – 3.75 (m, 2H), 3.69 (d, J = 10.3 Hz, 1H), 3.64 – 3.56 (m, 1H), 3.43 (dd, J = 12.4, 10.4 Hz, 1H), 2.17 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Acetone) δ 168.1, 165.7, 161.3, 160.6, 141.9, 140.2, 133.0, 132.0, 131.3, 130.1, 129.5, 129.3, 129.2, 128.1, 127.8, 127.5, 114.3, 110.6, 62.3, 62.1, 61.0, 55.6, 49.8, 48.1, 45.2, 35.4, 18.4, 14.3;

 $[\alpha]^{25}_{D}$ = -18.4 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 7.2 min, t_R (minor) = 7.7 min.

ethyl 2-((4aR,5R,6R,7S,8R,8aR)-5-(2-bromophenyl)-8-hydroxy-7-iodo-8-(4-methoxyphenyl)-3-methyl-1-oxo-6-phenyl-4a,5,6,7,8,8a-hexahydro-1*H*-isochromen-4-yl)-2-oxoacetate (12)

light yellow solid; 88% yield, 85:15 dr, 93% ee;

HRMS (ESI+): calcd. for C₃₂H₃₀IO₆Br +Na⁺ [M+Na⁺] 739.0163, found 739.0141;

IR: *v*_{max} (film, cm⁻¹): 3480, 2899, 1764, 1663, 1518, 1251, 1023, 758;

¹**H NMR (400 MHz, Acetone)** δ 7.65 – 7.59 (m, 2H), 7.45 (dd, J = 8.1, 1.3 Hz, 1H), 7.33 (dd, J = 7.9, 1.7 Hz, 1H), 7.17 – 7.08 (m, 5H), 7.07 – 7.02 (m, 1H), 6.98 – 6.92 (m, 1H), 6.90 – 6.84 (m, 2H), 5.19 (s, 1H), 5.10 (ddd, J = 9.6, 3.1, 1.4 Hz, 1H), 4.19 – 4.11 (m, 3H), 4.08 – 4.03 (m, 1H), 3.81 (s, 3H), 3.68 (dq, J = 10.9, 7.1 Hz, 1H), 3.47 (dq, J = 10.9, 7.1 Hz, 1H), 2.24 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H). ¹³**C NMR (100 MHz, Acetone)** δ 166.2, 165.5, 160.7, 159.9, 143.3, 140.5, 136.9, 133.2, 131.5, 130.6, 128.8, 128.6, 128.2, 128.0, 127.1, 113.50 110.2, 75.8, 60.7, 55.5, 49.0, 47.2, 46.9, 44.9, 44.8, 39.4, 18.8, 14.3.

 $[\alpha]^{25}$ _D = +226.4 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 80:20 in the first 5 mins and maintaining in 80:20 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 18.9 min, t_R (minor) = 15.3 min.

Br Ph

ethyl (4a*R*,5*R*,6*R*,7*S*,8*R*,8a*R*)-7-bromo-5-(2-bromophenyl)-8-hydroxy-8-(4-methoxyphenyl)-3-methyl-1-oxo-6-phenyl-4a,5,6,7,8,8a-hexahydro-1*H*-isochromene-4-carboxylate (13)

light yellow solid; 57% yield, 93% ee;

HRMS (ESI+): calcd. for C₃₂H₃₀Br₂O₆ +Na⁺ [M+Na⁺] 691.0301, found 691.0294;

IR: *v*_{max} (film, cm⁻¹): 3481, 2895, 1769, 1706, 1250, 1061, 1025, 760;

¹**H NMR (400 MHz, Acetone)** δ 7.65 – 7.60 (m, 2H), 7.43 (dd, J = 8.1, 1.3 Hz, 1H), 7.35 (dd, J = 7.9, 1.7 Hz, 1H), 7.24 – 7.19 (m, 2H), 7.15 – 7.08 (m, 3H), 7.07 – 7.01 (m, 1H), 6.95 (ddd, J = 8.8, 7.3, 1.7 Hz, 1H), 6.90 – 6.85 (m, 2H), 5.20 (s, 1H), 5.01 (d, J = 2.7 Hz, 7.15 – 7.08 (m, 2H), 7.07 – 7.01 (m, 1H), 6.95 (ddd, J = 8.8, 7.3, 1.7 Hz, 1H), 6.90 – 6.85 (m, 2H), 5.20 (s, 1H), 5.01 (d, J = 2.7 Hz, 7.15 – 7.08 (m, 2H), 7.07 – 7.01 (m, 1H), 6.95 (ddd, J = 8.8, 7.3, 1.7 Hz, 1H), 6.90 – 6.85 (m, 2H), 5.20 (s, 1H), 5.01 (d, J = 2.7 Hz, 7.15 – 7.08 (m, 2H), 7.07 – 7.01 (m, 1H), 6.95 (ddd, J = 8.8, 7.3, 1.7 Hz, 1H), 6.90 – 6.85 (m, 2H), 5.20 (s, 1H), 5.01 (d, J = 2.7 Hz, 7.15 – 7.08 (m, 2H), 7.07 – 7.01 (m, 2H

1H), 4.59 (dd, *J* = 11.7, 2.9 Hz, 1H), 4.34 – 4.25 (m, 1H), 4.15 – 4.08 (m, 2H), 3.81 (s, 3H), 3.68 (dq, *J* = 10.9, 7.1 Hz, 1H), 3.46 (dq, *J* = 10.9, 7.1 Hz, 1H), 2.23 (s, 3H), 1.07 (t, *J* = 7.1 Hz, 3H);

¹³C NMR (100 MHz, Acetone) δ 166.2, 165.1, 160.8, 159.9, 141.9, 140.4, 136.4, 133.2, 131.2, 130.7, 128.9, 128.5, 128.3, 128.2, 128.0, 127.1, 113.7, 110.3, 76.3, 62.8, 60.7, 55.5, 48.6, 47.3, 42.8, 39.1, 18.9, 14.3;

 $[\alpha]^{25}$ _D = +179.2 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 8.6 min, t_R (minor) = 7.6 min.

(4aR,5R,6R,7S,8R,8aR)-4-acetyl-7-bromo-5-(2-bromophenyl)-8-hydroxy-8-(4-methoxyphenyl)-3-methyl-6-phenyl-4a,5,6,7,8,8a-hexahydro-1*H*-isochromen-1-one (14)

light yellow solid; 86% yield, 98% ee;

HRMS (ESI+): calcd. for $C_{31}H_{28}Br_2O_6$ +Na⁺ [M+Na⁺] 661.0196, found 661.0187;

IR: *v*_{max} (film, cm⁻¹): 3480, 2899, 1762, 1664, 1252, 1105, 1029, 759;

¹H NMR (600 MHz, MeOD) δ 7.62 – 7.57 (m, 2H), 7.42 (dd, J = 8.1, 1.3 Hz, 1H), 7.24 (dd, J = 7.9, 1.7 Hz, 1H), 7.18 – 7.15 (m, 2H), 7.09 (t, J = 7.6 Hz, 2H), 7.07 – 7.01 (m, 2H), 6.96 – 6.93 (m, 1H), 6.93 – 6.89 (m, 2H), 4.90 – 4.88 (br, 1H), 4.49 (dd, J = 11.7, 2.8 Hz, 1H), 4.26 (t, J = 11.6 Hz, 1H), 4.08 – 4.01 (m, 2H), 3.81 (s, 3H), 2.19 (s, 3H), 1.79 (s, 3H);

¹³C NMR (100 MHz, MeOD) δ 199.8, 166.9, 160.4, 159.0, 141.9, 141.2, 136.5, 133.9, 131.2, 130.9, 129.4, 128.8, 128.7, 128.6, 128.6 127.5, 120.1, 114.1, 76.5, 62.9, 55.7, 48.9, 47.7, 43.1, 40.6, 29.7, 19.3;

 $[\alpha]^{25}$ _D = +51.2 (*c* = 0.5 in acetone, λ = 589 nm);

the enantioselectivity was determined by SFC (Trefoil CEL-1, gradient 100% CO₂ to CO₂/MeOH = 60:40 in the first 5 mins and maintaining in 60:40 CO₂/MeOH in the rest of time, flow rate: 0.5 mL/min, λ = 254 nm), t_R (major) = 10.7 min, t_R (minor) = 8.5 min.

X. Absolute configuration determination

X-Ray Crystallographic Data

Absolute configurations of products **3** were assigned based on the crystal X-ray structures of **3i**, **3j**. Absolute configurations of products **4**, **5** were assigned based on the crystal X-ray structures of **4a**, **5a**. Absolute configurations of products **8** were assigned based on the crystal X-ray structures of **8**. Absolute configurations of all-substituted cyclohexanes were assigned based on the crystal X-ray structures of *rac-9*, *rac-10*, and *rac-14*. A light yellow rodlike crystal of **3i**, **3j** were obtained by vaporization of *n*-hexane/DCM (3:1) solution of corresponding compounds. A light yellow rodlike crystal of **8** were obtained by vaporization of *n*-hexane/Acetone (3:1) solution of corresponding compounds. A light yellow needle-like crystal of **4a**, **5a** were obtained by vaporization of *n*-hexane/Acetone (3:1) solution of corresponding compounds. A light yellow needle-like crystal of **4a**, **5a** were obtained by vaporization of *n*-hexane/Acetone (3:1) solution of corresponding compounds. A light yellow needle-like crystal of **4a**, **5a** were obtained by vaporization of *n*-hexane/Acetone (3:1) solution of corresponding compounds. A light yellow block-shaped crystal of *rac-9*, *rac-10*, *rac-14* were obtained by vaporization of *n*-hexane/DCM (3:1) solution of corresponding compounds. A light yellow block-shaped crystal of *rac-9*, *rac-10*, *rac-14* were obtained by vaporization of *n*-hexane/DCM (3:1) solution of corresponding compounds.

Figure S4. The crystal structure of 3i.

Figure S5. The crystal structure of 3j.

Figure S6. The crystal structure of *rac*-3c.

Figure S8. The crystal structure of (R)-8.

Figure S9. The crystal structure of rac-9

●C ●H ●Br ●O ●Q

Figure S10. The crystal structure of rac-10.

Figure S11. The crystal structure of *rac*-14.

Compound number	4a	5a	3i	3j	(R)- 8
Deposition number	2246562	2377578	2244572	2244570	2235169
Empirical formula	C ₃₂ H ₂₉ NO7	C ₃₂ H ₂₉ NO7	C ₃₁ H ₂₇ NO ₆	C ₃₂ H ₂₇ NO ₄	C31H17BrCl2O2
Formula weight	539.56	539.56	509.56	489.57	572.26
Temperature/K	100(2)	149.99(10)	150.00(10)	150.00(10)	149.99(10)
Crystal system	orthorhombic	tetragonal	monoclinic	triclinic	monoclinic
Space group	P212121	P 4 ₃	<i>P</i> 21	<i>P</i> 1	C2
a/Å	10.51673(10)	16.7397(3)	7.02860(10)	7.28960(10)	43.9803(4)
b/Å	11.34590(10)	16.7397(3)	19.9167(2)	9.99900(10)	8.17570(10)
c/Å	22.2044(2)	10.5216(3)	10.57480(10)	10.3560(2)	14.36051(10)
a/°	90	90	90	90.9030(10)	90
β/°	90	90	103.5740(10)	104.2710(10)	105.4170(10)
γ/°	90	90	90	97.5320(10)	90
Volume/Å ³	2649.47(4)	2948.33(12)	1438.98(3)	724.321(19)	4977.80(9)
Ζ	4	4	2	1	8
$ ho_{calc}g/cm^3$	1.353	1.313	1.372	1.317	1.527
µ/mm ⁻¹	0.096	0.742	2.415	2.327	4.450
<i>F</i> (000)	1136	1236	620	300	2304
Crystal size/mm ³	0.260 × 0.180 × 0.120	0.22 × 0.15 × 0.08	0.1 × 0.09 × 0.07	0.13 × 0.12 × 0.1	0.31 × 0.06 × 0.04
Radiation	Μο <i>Κ</i> α (λ = 0.71073)	Cu <i>K</i> α (λ = 1.54184)	Cu <i>K</i> α (<i>λ</i> = 1.54184)	Cu <i>K</i> α (<i>λ</i> = 1.54184)	Cu <i>Kα</i> (λ = 1.54184)
2O range for data collection/°	5.592 to 59.992	7.468 to 152.312	8.602 to 148.556	8.822 to 148.958	6.384 to 148.378
Index ranges	-14 ≤ h ≤ 13, -15 ≤ k ≤ 15, -31 ≤ l ≤ 31	-19 ≤ h ≤ 19, -20 ≤ k ≤ 13, -12 ≤ l ≤ 12	-8 ≤ h ≤ 8, -24 ≤ k ≤ 24, -12 ≤ l ≤ 11	-9 ≤ h ≤ 9, -12 ≤ k ≤ 12, -12 ≤ l ≤ 12	-54 ≤ h ≤ 54, -10 ≤ k ≤ 9, -17 ≤ l ≤ 17
Reflections collected	48521	20352	15310	21601	37893
Independent reflections	7623 $[R_{int} = 0.0247, R_{sigma} = 0.0139]$	$\begin{array}{ll} 5846 & [R_{\text{int}} = & 0.0265, \\ R_{\text{sigma}} = & 0.0251] \end{array}$	$\begin{array}{ll} 5652 & [R_{\rm int}= & 0.0367, \\ R_{\rm sigma}= 0.0419] \end{array}$	$\begin{array}{ll} 5516 & [R_{\text{int}} = & 0.0259, \\ R_{\text{sigma}} = & 0.0210] \end{array}$	9656 $[R_{int} = 0.0611, R_{sigma} = 0.0438]$
Data/restraints/parameters	7623/0/364	5846/60/539	5652/1/373	5516/3/364	9656/2/649
Goodness-of-fit on F ²	1.045	1.055	1.056	1.022	1.065
Final <i>R</i> indexes [I>=2σ (I)]	R ₁ = 0.0297, wR ₂ = 0.0791	$R_1 = 0.0710, wR_2 = 0.2088$	$R_1 = 0.0364, wR_2 = 0.0926$	$R_1 = 0.0295, wR_2 = 0.0766$	$R_1 = 0.0386, wR_2 = 0.1032$
Final R indexes [all data]	R ₁ = 0.0303, wR ₂ = 0.0798	<i>R</i> ₁ = 0.0749, w <i>R</i> ₂ = 0.2159	R ₁ = 0.0395, wR ₂ = 0.0945	$R_1 = 0.0302, wR_2 = 0.0774$	<i>R</i> ₁ = 0.0399, <i>wR</i> ₂ = 0.1051
Largest diff.peak/hole/eÅ-3	0.30/-0.17	0.80/-0.36	0.39/-0.37	0.20/-0.33	0.64/-0.93
Flack parameter	-0.06(12)	0.01(2)	-0.023(9)	0.005(4)	-0.016(9)

Table S8. Crystal data and structure refinement of optical compounds.

Compound number	rac- 3c	rac-3f	rac- 9	rac-10	rac- 14
Deposition number	2244575	2244573	2244569	2244568	2243102
Empirical formula	C ₃₂ H ₂₉ FO ₅	C ₃₂ H ₂₉ NO7	C ₃₂ H ₃₁ NO7	C31H29NO8	C ₃₁ H ₂₈ Br ₂ O ₅
Formula weight	512.55	539.56	541.58	543.6	640.35
Temperature/K	100.00(10)	149.99(10)	149.99(10)	100.00(10)	99.98(10)
Crystal system	monoclinic	triclinic	monoclinic	monoclinic	monoclinic
Space group	P21/c	<i>P</i> -1	<i>P</i> 2 ₁ /c	<i>P</i> 2 ₁ /n	<i>P</i> 2 ₁ /c
a/Å	10.7735(2)	10.3074(3)	8.2745(2)	22.0372(3)	14.45320(10)
b/Å	28.0445(5)	10.5620(4)	33.3961(7)	9.66930(10)	14.99130(10)
c/Å	8.8667(2)	12.7619(4)	10.3175(2)	26.7286(4)	12.68540(10)
α/°	90	102.425(3)	90	90	90
β/°	104.427(2)	99.324(3)	104.258(2)	110.983(2)	101.1850(10)
γ/°	90	101.043(3)	90	90	90
Volume/Å ³	2594.48(9)	1301.40(8)	2763.27(11)	5317.76(14)	2696.37(3)
Ζ	4	2	4	4	4
ρ _{calc} g/cm ³	1.312	1.377	1.302	1.358	1.577
µ/mm ⁻¹	0.758	0.799	0.752	0.814	4.143
<i>F</i> (000)	1080	568	1144	2288	1296.0
Crystal size/mm ³	0.11 × 0.1 × 0.07	0.25 × 0.1 × 0.1	0.1 × 0.1 × 0.1	0.23 × 0.12 × 0.04	0.18×0.15×0.13
Radiation	Cu <i>K</i> α (<i>λ</i> = 1.54184)	Cu <i>K</i> α (<i>λ</i> = 1.54184)	Cu <i>K</i> α (<i>λ</i> = 1.54184)	Cu <i>K</i> α (<i>λ</i> = 1.54184)	Cu <i>Kα</i> (λ = 1.54184)
2O range for data collection/°	6.304 to 148.372	7.258 to 149.078	9.232 to 149.438	6.472 to 148.89	8.574 to 149.004
Index ranges	-13 ≤ h ≤ 12, -28 ≤ k ≤ 34, -9 ≤ l ≤ 11	-12 ≤ h ≤ 12, -13 ≤ k ≤ 13, -15 ≤ l ≤ 8	-9 ≤ h ≤ 10, -35 ≤ k ≤ 41, -12 ≤ l ≤ 11	-25 ≤ h ≤ 27, -12 ≤ k ≤ 11, -33 ≤ l ≤ 31	-9 ≤ h ≤ 17, -17 ≤ k ≤ 12, -15 ≤ l ≤ 15
Reflections collected	13083	12729	15386	30744	15346
Independent reflections	5108 [$R_{int} = 0.0564$, $R_{sigma} = 0.0521$]	5112 [$R_{int} = 0.0274$, $R_{sigma} = 0.0388$]	5479 $[R_{int} = 0.0340, R_{sigma} = 0.0406]$	10519 [$R_{int} = 0.0591$, $R_{sigma} = 0.0484$]	5330 [$R_{int} = 0.0276$, $R_{sigma} = 0.0252$]
Data/restraints/parameters	5108/62/401	5112/0/364	5479/0/365	10519/0/731	5330/0/347
Goodness-of-fit on F ²	1.12	1.068	1.072	1.06	1.068
Final <i>R</i> indexes [I>=2σ (I)]	$R_1 = 0.0634, wR_2 = 0.1862$	$R_1 = 0.0436, wR_2 = 0.1115$	$R_1 = 0.0417, wR_2 = 0.1043$	<i>R</i> ₁ = 0.0534, w <i>R</i> ₂ = 0.1479	$R_1 = 0.0309, wR_2 = 0.0852$
Final R indexes [all data]	<i>R</i> ₁ = 0.0794, w <i>R</i> ₂ = 0.1954	$R_1 = 0.0522, wR_2 = 0.1160$	$R_1 = 0.0514, wR_2 = 0.1090$	$R_1 = 0.0607, wR_2 = 0.1560$	$R_1 = 0.0320, wR_2 = 0.0860$
Largest diff.peak/hole/eÅ-3	0.23/-0.23	0.24/-0.21	0.19/-0.23	0.32/-0.34	0.82/-0.81

 Table S9. Crystal data and structure refinement of racemic compounds.

ECD determination Data

Figure S12. Comparsion of the calculated vs experimental ECD spectra in CH₃CN for compound 6 (left from 3i, right from 4i).

ECD calculation methods:

Monte Carlo conformational searches were carried out by means of the Spartan's 14 software using Merck Molecular Force Field (MMFF). The conformers with Boltzmann-population of over 5% were chosen for ECD calculations, and then the conformers were initially optimized at B3LYP/6-31g level in gas. The theoretical calculation of ECD was conducted in Acetonitrile using Time-dependent Density functional theory (TD-DFT) at the B3LYP/6-31+g (d, p) level for all conformers of compounds **6**. Rotatory strengths for a total of 30 excited states were calculated. ECD spectra were generated using the program SpecDis 1.6 (University of Würzburg, Würzburg, Germany) and GraphPad Prism 5 (University of California San Diego, USA) from dipole-length rotational strengths by applying Gaussian band shapes with sigma = 0.3 eV.

XI. Copies of ¹H NMR spectra of 1

XII. Copies of ¹H NMR, ¹³C NMR, ¹⁹F NMR spectra of products

XIII. References cited in the SI

- (a) Liu, S., Nakajima, K., Nishibayashi, Y., RSC Adv. 2019, 9, 18918-18922; (b) Hong, S., Shin, Y., Jung, M., Ha, M. W., Park, Y., Lee, Y.-J., Shin, J., Oh, K. B., Lee, S. K., Park, H.-g., Eur. J. Med. Chem. 2015, 96, 218-230; (c) Guo, Y., Wu, L., Qiu, F. G., Org. Lett. 2022, 24, 8370-8374.
- [2] (a) Yasmin, N., Ray, J. K., Synlett 2010, 6, 924-930; (b) Singha, R., Dhara, S., Ray, J. K., Tetrahedron Lett. 2013, 54, 4841-4843; (c) Zhu, T., Mou, C., Li, B., Smetankova, M., Song, B.-A., Chi, Y. R., J. Am. Chem. Soc. 2015, 137, 5658–5661; (d) Chatterjee, I., Bastida, D., Melchiorre, P., Adv. Synth. Catal. 2013, 355, 3124-3130; (e) Xu, K., Li, W., Zhu, S., Zhu, T., Angew. Chem. Int. Ed. 2019, 58, 17625-17630; (f) Li, Y., Luo, H., Tang, Z., Li, Y., Du, L., Xin, X., Li, S., Li, B., Org. Lett. 2021, 23, 6450-6454.
- [3] Ma, L.-J., Li, X.-X., Kusuyama, T., El-Sayed, I. E.-T., Inokuchi, T., J. Org. Chem. 2009, 74, 9218-9221.
- [4] Zhang, M., Ruzi, R., Li, N., Xie, J., Zhu, C., Org. Chem. Front. 2018, 5, 749-752.
- [5] Jackman, H., Marsden, S. P., Shapland, P., Barrett, S., Org. Lett. 2007, 9, 5179-5182.
- [6] De Corso, R. D., Panunzi, B., Tingoli, M., *Tetrahedron Lett.* 2001, **42**, 7245-7247.
- [7] Wang, H., Toh, R. W., Shi, X., Wang, T., Cong, X., Wu, J., Nat. Commun. 2020, 11, 4462.
- [8] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J., *Gaussian, Inc., Wallingford CT* 2016.
- (a) Becke, A. D., J. Chem. Phys. 1993, 98, 5648; (b) Becke, A. D., J. Chem. Phys. 1993, 98, 5648-5652; (c) Lee, C., Yang, W., Parr, R. G., Phys. Rev. B 1988, 37, 785-789; (d) Becke, A. D., Phys. Rev. A 1988, 38, 3098-3100.
- [10] Lu, T., Chen, F., J. Comput. Chem. 2012, 33, 580-592.
- [11] Humphrey, W., Dalke, A., Schulten, K., J. Mol. Graphics 1996, 14, 33-38.
- (a) Liu, W.-B., Zheng, C., Zhuo, C.-X., Dai, L.-X., You, S.-L., J. Am. Chem. Soc. 2012, 134, 4812-4821; (b) Huang, Y., Yang, X., Lv, Z., Cai, C., Kai, C., Pei, Y., Feng, Y., Angew. Chem. Int. Ed. 2015, 54, 7299-7302.