Electronic Supplementary Information (ESI) for Chemical Communications. This journal is (c) The Royal Society of Chemistry 2025. Electronic Supplementary Information (ESI)

Zn-thiocatecholate functionalized MOF modified separator stabilizing zinc anodes for long-life aqueous zinc-ion

batteries

Hujing Zhou,^{‡a} Ruwei Chen,^{‡a} Zhixin Jiang,^a Jiangtao Li,^a Hongyuan Liang,^a Lai-Hon Chung,^a Xuanhe Hu*^{ab} and Jun He*^{ab}

^a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.

^b Guangdong Provincial Laboratory of Chemistry and Fine Chemcial Engineering Jieyang Center, Jieyang 515200, P. R. China.

‡ These authors contributed equally to this work

E-mail: huxh@gdut.edu.cn, junhe@gdut.edu.cn

Experimental section

Synthesis of UiO-66

UiO-66 was synthesized following the previously reported procedure.^[1] 2.5 mmol ZrCl₄ (583 mg) and 2.5 mmol 1,4-benzenedicarboxylic acid (H₂BDC) (415 mg) were dissolved in 30 mL *N*, *N*-dimethylformamide (DMF). Then, the mixture was heated at 120 °C for 24 h. After the reaction was completed, the product was collected by filtration, followed by washing with DMF and ethanol and drying in a vacuum oven at 60 °C for 12 h.

Synthesis of UiO-dcbdt-Zn

UiO-dcbdt was synthesized following previously reported procedures.^[2, 3] The reaction of 1,4-dicarboxylbenzene-2,3-dithiol (H₂dcbdt) (0.214 mmol) with ZrCl₄ (0.17 mmol) led to the precipitation of UiO-dcbdt. The activated UiO-dcbdt (50 mg) was immersed in 1M aqueous Zn(OAc)₂ solution (40 mL), and stirred at room temperature for 72 h to yield UiO-dcbdt-Zn, replacing the solution with fresh every day. The powder was collected by filtration, washed several times with H₂O to ensure removal of solvent molecules, and then the collected product was dried under vacuum at 60 °C for 12h.

Fabrication of modified separator

The MOF modified separator was fabricated by vacuum filtration method. For example, 9 mg UiO-dcbdt-Zn and 1.0 mg polyvinylidene fluoride were first dispersed into 10 mL 1-methyl-2-pyrrolidinoneby ultrasonic vibration.^[4] Then, vacuum filtration was performed to uniformly load the UiO-dcbdt-Zn onto the glass fibers separator. After drying at 60 °C for 12 h, the UiO-dcbdt-Zn modified separator with an areal loading of 0.50 mg cm⁻² was obtained. UiO-66 modified separator were prepared by a similar procedure starting with UiO-66 in place of UiO-dcbdt-Zn.

Characterization

X-ray diffraction pattern was recorded on an X-ray powder diffractometer under Cu K α radiation ($\lambda = 1.54056$ Å, 40 kV, 15 mA) with a scanning rate of 10° min⁻¹ (Rigaku SmartLab). Fourier transform infrared spectrometry was performed using a spectrometer (Nicolet iS50R). The morphologies of the samples were examined by scanning electron microscopy (Hitachi 4300N). The cycling measurement was carried

out on a battery tester (Neware BTS-CT-3008-TC). Electrochemical impedance spectroscopy test was performed on a workstation (Donghua DH7006) in the frequency from 100 kHz to 0.01 Hz with an amplitude of 10 mV.

Electrochemical Measurements

Zn||Zn symmetric cells and Zn||Cu asymmetric cells were constructed using 2 M ZnSO₄ aqueous solution as the electrolyte and the Whatman glass fiber as the separator. For the preparation of Zn||MnO₂ full cells, α -MnO₂ electrode and 2 M ZnSO₄ + 0.1 M MnSO₄ aqueous solution were adopted as cathode and electrolyte, respectively. The slurry consisted of 70 wt% α -MnO₂, 20 wt% Ketjen black and 10 wt% PVDF was coated onto the carbon cloth to obtain the cathode. The mass loading of α -MnO₂ was controlled at 1.0~1.2 mg cm⁻². Galvanostatic charge/discharge and cycling tests were performed on a Neware automatic battery tester. Cyclic voltammetry (CV), chronoamperometry (CA), Electrochemical impedance spectroscopy (EIS) and Tafel data were recorded on a DH7006 electrochemical workstation.

Theoretical Calculations

The theoretical calculations employed the Vienna Ab-inito Simulation Package (VASP).^[5, 6] The generalized gradient approximation (GGA) method with Perdew-Burke-Ernzerhof (PBE) functional is used to describe the exchange-correlation effects.^[7, 8] The core-valence interactions were accounted by the projected augmented wave (PAW) method.^[9] The energy cutoff of the plane-wave basis was set to 400 eV. The $3\times3\times1$ k-points were selected to sample the Brillouin zone integration. The structural optimization was completed for energy and force convergence set at 1.0×10^{-4} eV and 0.02 eV Å⁻¹, respectively. The adsorption energy (Eads) was calculated by

$$E_{ads} = E_{total} - E_{Zn}^{2+} - E_{sub}$$

where E_{ads} is the calculated energies after the adsorption of Zn^{2+} on the substrates, E_{Zn}^{2+} is the calculated energy of adsorbent, and E_{sub} means the calculated energy of UiO-66 or UiO-dcbdt-Zn surface.

Supplementary Figures

Figure S1. FT-IR spectrum of UiO-dcbdt-Zn, UiO-dcbdt and H₂dcbdt.

Figure S2. SEM images and EDS mapping of UiO-dcbdt-Zn.

Figure S3. (a) N_2 adsorption isotherms and (b) pore size distribution curves of UiO-66

and UiO-dcbdt-Zn.

Figure S4. (a, b) SEM images and (c) EDS mapping of UiO-dcbdt-Zn@GF.

Figure S5. Nyquist plots of symmetric cells with (a) UiO-dcbdt-Zn@GF, (b) UiO-66@GF and (c) GF before and after CA measurement.

Figure S6. Cycling stability of Zn||Zn symmetrical cells using different separators at 3 $mA \text{ cm}^{-2}$, 1 mA h cm⁻².

Figure S7. Cycling stability of Zn||Zn symmetrical cells using different separators at 5 mA cm⁻², 1 mA h cm⁻².

Figure S8. Voltage profiles of Zn||Cu cells with (a) UiO-dcbdt-Zn@GF, (b) UiO-66@GF and (c) GF at selected cycles.

Figure S9. Nyquist plots of Zn||Zn cells with (a) UiO-dcbdt-Zn@GF, (b) UiO-66@GF and (c) GF at different temperatures.

Figure S10. Equivalent electrical circuit of the EIS spectra.

Figure S11. The charging/discharging curves of the Zn||MnO₂ cells with (a) UiO-dcbdt-Zn@GF, (b) UiO-66@GF and (c) GF.

Figure S12. Evaluation of self-discharging level for $Zn||MnO_2$ cells rested at 100% stage of charge for 24 and 48 h.

Strategy	Materials	Current density (A g ⁻¹)	Cycle number (N)	Capacity decay rate	Reference
Separator modification	UiO-dcbdt- Zn@GF	1	2500	0.0060%	This work
	UC/GF	1	3600	0.0077%	[10]
	MOF-NS/PAN	1	1500	0.0178%	[11]
	UiO-66-GF	1	1000	0.0150%	[12]
	GF-PFC-31	1.2	1000	0.0175%	[13]
	GF-Bio-MOF- 100	0.5	1000	0.0161%	[14]
	Modified separator	1	500	0.0787%	[15]
Artificial protective layer	WSe ₂ /ZIF@Zn	1	2000	0.0048%	[16]
	MOF-74	0.2	1000	0.0226%	[17]
	Zn-SQ-3d- coated Zn	1	660	0.0150%	[18]
	ZIF-7/Zn	0.7	600	0.0180%	[19]
	ZIF-L/Zn	0.5	250	0.0400%	[20]

Table S1. Comparison of cycling performance of $Zn||MnO_2$ full cells with MOF modified separators and Zn anodes.

References

- M. L. Foo, S. Horike, T. Fukushima, Y. Hijikata, Y. Kubota, M. Takata and S. Kitagawa, *Dalton Trans.*, 2012, 41, 13791-13794.
- [2] H. Zhong, S. Chen, Z. Jiang, J. Hu, J. Dong, L. H. Chung, Q. C. Lin, W. Ou, L. Yu and J. He, *Small*, 2023, **19**, 2207266.
- [3] G. Q. Lai, Z. Jiang, H. Zhong, L. H. Chung, N. Li and J. He, *Chinese J. Struc. Chem.*, 2023, 42, 100090.
- [4] R. Chen, G. Zhang, H. Zhou, J. Li, J. Li, L. H. Chung, X. Hu and J. He, Small, 2024, 20, 2305687.
- [5] G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558.
- [6] G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251.
- [7] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- [8] G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758.

- [9] P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953.
- [10] P. Yang, K. Zhang, S. Liu, W. Zhuang, Z. Shao, K. Zhu, L. Lin, G. Guo, W. Wang and Q. Zhang, *Adv. Funct. Mater.*, 2024, 34, 2410712.
- [11] C.-Y. Liu, Y.-D. Wang, H. Liu, Q. Chen, X. Jiang, H. Jia and J.-P. Lang, Compos. Part B-Eng., 2024, 272, 111227.
- [12] Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang, L. Dai, P. Zhou, B. Lu, J. Zhou and Z. He, *Nano-Micro Lett.*, 2022, 14, 218.
- [13] R. Li, L. Pan, Z. Peng, N. Zhao, Z. Zhang, J. Zhu, L. Dai, L. Wang and Z. He, J. Energy Chem., 2024, 93, 213-220.
- [14] R. Li, B. Yan, Z. Chen, Z. He and J. Yang, J. Energy Chem., 2025, 25, 01043.
- [15] Y. Chen, C. Gao, J. Li, X. Liu, B. Zhou, J. Guo and C. Yu, *J. Energy Storage*, 2024, 103, 114442.
- [16] H. Wang, P. Wang, K. Yu, X. Wang, J. Cao, P. Jia, Y. Yuan and C. Liang, *Chem. Eng. J.*, 2024, **485**, 149544.
- [17] D. Bi, T. Zhao, Q. Lai, J. Zhao and S. A. Grigoriev, J. Alloy. Compd., 2024, 1002, 175448.
- [18] H. Lv, J. Wang, X. Gao, Y. Wang, Y. Shen, P. Liu, G. Wang, L. Chen and T. Gu, ACS Appl. Mater. Interfaces, 2023, 15, 47094-47102.
- [19] H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu, P. He and H. Zhou, Angew. Chem. Int. Ed., 2020, 132, 9463-9467.
- [20] W. He, T. Gu, X. Xu, S. Zuo, J. Shen, J. Liu and M. Zhu, ACS Appl. Mater. Interfaces, 2022, 14, 40031-40042.