Supporting Information

Light/copper catalysis 1,2-alkylarylation of allylic alcohols with sulfonium salts involving radical 1,2-aryl migrations

Nan Jiang, [‡] Hui Chen, [‡] Yu Liu, Long-Jin Zhong * Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China. *‡* These authors contributed equally to this work E-mail: zlj1511@hnu.edu.cn.

List of Contents

1. General Information	S1
2. Experiment Section	S1
2.1 General Procedure for the Synthesis of Substrates	S1
2.2 Typical Experimental Procedure	S1
2.3 Additional experimental details	S2
2.4 Table S1. Screening of the Optimal Reaction Conditions	S3
2.5 The Light On/Off Experiments	S4
2.6 UV-Vis absorption experiments2.7 Cyclic Voltammetry (CV) Experiments	S5 S6
2.8 Product Derivatization	
2.9 Control Experiments	S14-S19
3. Characterization Data	S20-S31
4. Reference	
5.Spectra	S33-S95

1. General Information

Unless otherwise stated, all commercial reagents were used as received. Carboxylic acid (BK, 99%), benzaldehyde (Innochem, >98%) were used without further treatment. All reagents and solvents were commercially available and used without any further purification unless specified. All solvents were dried and distilled according to standard procedures. Flash column chromatography was performed using silica gel (0.25mm, 300-400 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25mm 300-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). All reactions were carried out with magnetic stirring and in dried glassware.Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker DRX-400 spectrometer operating at 400 MHz, 376 MHz and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants quated in Hz. The solvent peak was used as a reference value, for ¹H NMR: TMS = 0.00 ppm, for ¹³C NMR: $CDCl_3 = 77.00$ ppm. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, td = tripletof doublet, q = quartet, m = multiplet, and br = broad. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. Experiment Section

2.1 General Procedure for the Synthesis of Substrates

General procedure for synthesis of 2a.

Sulfonium salt $2a^{[1]}$ were synthesized according to the known methods.

2.2 Typical Experimental Procedure

To a schlenk tube were added 1,1-diphenylprop-2-en-1-ol 1a (0.2 mmol, 26.8 mg),

sulfonium salt **2a** (2 equiv., 0.4 mmol, 129.6 mg), $Cu(OTf)_2$ (10 mol%, 7.2 mg), Na_2CO_3 (3 equiv., 0.6 mmol, 63.6 mg), CuBr (10 mol%, 2.9 mg), **L1** (12 mol%, 16.3 mg) and DMSO (2 mL). Then the tube was stirred at room temperature in Ar atmosphere for the indicated time until complete consumption of starting material as monitored by TLC analysis. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 150 : 1) to afford the desired products.

2.3 Additional experimental details

ThelightsourceboughtfromSANYI(https://item.taobao.com/item.htm?_u=u10503hgcbe1&id=597700668537&spm=a1z09.2.0.0.1f8a2e8dVdegb2&skuId=4812351826113), 20 W blue LED light bulb (E27).The wavelength was about 400-440 nm and the wavelength of peak intensity wasabout 465.0 nm. The picture of the visible-light source (Figure S1) was shown asfollow:

Figure S1. The light source and photographs of experimental setup: (a) 20 W blue LEDs. (b) Irradiation vial.; (c) The distance from the Blue LED to the vial. (d) Reaction setup.

2.4 Table S1. Screening of the Optimal Reaction Conditions^a

entry	variation from the standard conditions	yield (%)
1	none	65
2	FeCl ₃ instead of Cu(OTf) ₂	55
3	$CuBr_2$ instead of $Cu(OTf)_2$	62
4	$In(OTf)_3$ instead of $Cu(OTf)_2$	50
5	$Yb(OTf)_3$ instead of $Cu(OTf)_2$	57
6	without Cu(OTf)2 and 20 mol% CuBr	35
7	CuCl or Cu(CH ₃ CN) ₄ PF ₆ instead of CuBr	28-45
8	L2 instead of L1	38
9	L3 - L4 instead of L1	0
10	K_3PO_4 instead of Na_2CO_3	39
11	Na_2HPO_4 instead of Na_2CO_3	35
12	^{<i>i</i>} Pr ₂ NEt instead of Na ₂ CO ₃	39
13	NaO ^t Bu instead of Na ₂ CO ₃	0
14	DMF instead of DMSO	40
15	NMP instead of DMSO	37
16	DCE instead of DMSO	0
17	at 40 $^{\circ}$ C	61
18	24 h instead of 36 h	54
19	48 h instead of 36 h	67
20	12 W instead of 20 W	32
21	35 W instead of 20 W	62
22	without CuBr or L, In dark (without light)	0 61
23^{2} 24^{c}	none	59

^{*a*} Standard reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), CuBr (10 mol%), TolBINAP (12 mol%), Cu(OTf)₂ (10 mol%), Na₂CO₃ (3 equiv.), DMSO (2 mL; 0.1 M), argon, 20 W blue LEDs, room temperature and 36 h. ^{*b*} 1 mmol scale reaction. ^{*c*} 10 mol% [Cu(TolBINAP)Br]₂ instead of (CuBr/L).

Initially, we examined the reaction of *a*,*a*-diphenylprop-2-en-1-ol **1a** and sulfonium salt **2a** under the visible-light-induced copper catalysis conditions. As shown in Table 1, several lewis acids, including FeCl₃, CuBr₂, In(OTf)₃, and Yb(OTf)₃ were investigated in the presence of 10 mol% CuBr, 12 mol% TolBINAP and 3.0 equiv. of Na₂CO₃ in DMSO provided 1,2-diphenyl-7-(*p*-tolylthio)heptan-1-one **3aa** in 50-62% yields (entries 2-5). The control experiment shows that lewis acid Cu(OTf)₂ is crucially for the improvement of the reaction yield, the yield is only 35% when lewis acid is not added (entry 6). Other copper(I) salts including CuCl, and Cu(CH₃CN)₄PF₆ were then tested for this transformation, and the CuBr was found to be the optimal copper catalyst (entry 7). Subsequently, the ligands such

as rac-BINAP L2, xantphos L3, and dppp L4, were employed instead of L1 and all of them had a negative influence on the reaction efficiency (entries 8-9). We observed a strong absorbance peak at 350-450 nm in the UV-vis absorption spectra of CuBr/L1 complexes and weak absorption peak of CuBr/L2 complexes. There was absolutely no absorption in this wavelength range of the complexes formed from ligand L3 or L4 with CuBr. This was a possible reason for the high reaction conversion efficiency by employing the CuBr/L1 complex as a photoredox. A screening study on different bases showed that Na₂CO₃ was superior to K₃PO₄, Na₂HPO₄, ^{*i*}Pr₂NEt and NaO'Bu (entries 10-13). Subsequently, the effect of reaction solvents including DMF, NMP and DCE were tested, and DMSO exhibited higher reaction efficiency (entries 14-16). And then, the effect of reaction temperatures (entry 17) and reaction times (entries 18-19) were also investigated. The results indicated that room temperature and 36 h were found to be the best choices. Next, we found that reducing or increasing light power could disadvantage the yield of the transformation, and 20 W was most efficient, delivering the desired product 3aa in 65% isolated yield (entry 1 vs entries 20-21). In addition, no reaction can be performed without the copper salt, ligand or in dark (without light) (entry 22). A light on/off experiment results further explanation that continuous blue LEDs irradiation was necessary for this transformation (see the Supporting Information Figure S2 for details). To our satisfactory, the desired product 1,2-diphenyl-7-(p-tolylthio)heptan-1-one **3aa** could be isolated in 61% yield when the reaction was scaled up to 1 mmol scale (entry 23). Finally, we employing the copper(I)-based complexes [Cu(TolBINAP)Br]₂ was used as a photoredox catalyst instead of CuBr/L, could offer the desired product 6-keto-functionalized thioethers in 59% yield (entry 24).

2.5 The Light On/Off Experiments

The above depicted reaction was performed according to the general protocol established. The reaction was irradiated with 20W blue LEDs for 12 hour and then stirred in the dark for 8 hour. This procedure was repeated for 20 hours, and the yield of the product was determined by ¹H NMR with dibromomethane as an internal standard at each point the light was turned off or on. The results are shown in the graph above. This result shows that constant light irradiation is needed to progress the reaction.

Figure S2 The light on/off Experiments

2.6 UV-Vis absorption experiments

(Copied from Adv. Synth. Catal. 2024, 366, 3868-3874)

UV-visible spectroscopy of reaction solution was recorded on a UV-2600 UV-Vis spectrophotometer. The sample was prepared by sulfonium salt **1a** (10^{-4} M), styrene **2a** (10^{-4} M), CuBr (10^{-4} M), TolBINAP (10^{-4} M), [Cu(TolBINAP)Br]₂ (10^{-4} M) in DMSO. The absorption was collected and the result was listed in Figure S3.

Figure S3 UV-Vis absorption experiments

The sample was prepared by sulfonium salt TolBINAP (10^{-3} M), [Cu(TolBINAP)Br]₂ (10^{-3} M), RacBINAP (10^{-3} M), [Cu(RacBINAP)Br]₂ (10^{-3} M), Xantphos (10^{-3} M), CuBr+Xantphos (10^{-3} M), DPPP (10^{-3} M), CuBr+DPPP (10^{-3} M)in DMSO. The absorption was collected and the result was listed in Figure S5.

Figure S4 UV-Vis absorption experiments of Ligand and catalyst

2.7 Cyclic Voltammetry (CV) Experiments

(Copied from Adv. Synth. Catal. 2024, 366, 3868-3874)

Cyclic Voltammetry was performed on a CH Electrochemical Workstation model CHI760E. A solution of the sample in DMSO was tested with 0.1 M tetrabutylammonium tetrafluoroborate as the supporting electrolyte, using a glassy carbon as the working electrode, a Pt as the counter electrode, and a Ag/AgCl as reference electrode. Scan rate = 100 mV/s. All measurements were carried out at room temperature.

Figure S5 CV spectra of sulfonium salt 1a (0.01 M) in 0.1 M tetrabutylammonium

tetrafluoroborate in DMSO.

Ep = -1.486 V (vs. Ag/AgCl)

Figure S6. CV spectra of the copper-based photocatalyst catalyst (1 mM) in 0.1 M tetrabutylammonium tetrafluoroborate in DMSO.

Figure S7. CV spectra of the copper-based photocatalyst [Cu(TolBINAP)Br]2 (1 mM) in 0.1 M tetrabutylammonium tetrafluoroborate in DMSO.

According to the emission spectra of the copper-based photocatalyst [Cu(TolBINAP)Br]₂, the maximum emission wavelength is 558 nm.

$$E_{1/2}(Cu^{II}/Cu^{I}) = 0.122V$$
$$E_{0.0} = hv = \frac{hc}{\lambda} = 2.22V$$
$$E_{1/2}(Cu^{II}/Cu^{I*}) = E_{1/2}(Cu^{II}/Cu^{I}) - E_{0.0} = 0.122 - 2.22 = -2.098V$$

Where h (J·s) is Planck's constant, c (m s⁻¹) is the speed of light and λ (m) is the maximum emission wavelength.

2.8 Product Derivatization^{[2][3]}

To a stirred solution of **3aa** (77.6 mg, 0.2 mmol) in 1 mL methanol was added NaBH₄ (21.6 mg, 0.6 mmol, 3.0 equiv.) at room temperature. Then the reaction was

kept stirring at room temperature for 12 h. The crude product was further purified by silica gel flash chromatography to give **4** in yield of 84% as yellow oil.

1,2-diphenyl-7-(p-tolylthio)heptan-1-ol: Yield: 65.5 mg, 84%; ¹H NMR (400 MHz,

CDCl₃) δ 7.36 - 7.29 (m, 6H), 7.33 - 7.25 (m, 1H), 7.27 - 7.19 (m, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 7.9 Hz, 2H), 4.68 (d, J = 8.5 Hz, 1H), 2.82 (m, J = 8.2, 4.3 Hz, 1H), 2.71 (t, J = 7.3 Hz, 2H), 2.30 (s, 4H), 1.52 (m, J = 8.0, 5.1 Hz, 1H), 1.46 - 1.31 (m, 2H), 1.29 - 1.15 (m, 1H), 0.99 (m, J = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 141.2, 135.8, 132.9, 129.7, 129.5, 128.7, 128.6, 128.3, 127.8, 126.9, 126.9, 78.8, 54.2, 34.1, 31.7, 28.9, 28.5, 26.8, 21.0. HRMS (ESI-TOF) m/z: C₂₆H₃₁OS⁺ (M + H)+ calcd for 391.5295, found 391.5260.

To a stirred solution of **3aa** (77.6 mg, 0.2 mmol) in 1 mL methanol was added H_2O_2 (30% in water, 0.017 ml, 0.22 mmol, 1.1 equiv.) at room temperature. Then the reaction was kept stirring at room temperature for 24 h. The crude product was further purified by silica gel flash chromatography to give **5** in yield of 65% as yellow oil. **The date and NMR spectra of 5.**

1,2-diphenyl-7-(p-tolylsulfinyl)heptan-1-one:Yield: 52.5 mg, 65%; ¹H NMR (400

MHz, CDCl₃) δ 7.98 - 7.93 (m, 2H), 7.51 7.45 (m, 1H), 7.38 (m, J = 8.3, 6.8 Hz, 2H),
7.28 (d, J = 4.3 Hz, 3H), 7.23 - 7.17 (m, 3H),
7.07 (d, J = 7.8 Hz, 2H), 4.52 (t, J = 7.3 Hz,

1H), 2.82 (t, J = 7.6 Hz, 1H), 2.30 (s, 3H), 2.21 - 2.11 (m, 1H), 1.86 - 1.76 (m, 1H), 1.57-1.54 (m, 2H), 1.48 - 1.38 (m, 2H), 1.26 - 1.20 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 139.7, 136.9, 135.9, 132.9, 132.8, 129.8, 129.6, 128.9, 128.7, 128.5,

128.2, 127.0, 53.6, 34.2, 33.9, 29.0, 28.7, 27.2, 21.0. HRMS (ESI-TOF) m/z: $C_{26}H_{29}O_2S^+$ (M + H)+ calcd for 405.5755, found 405.5750.

1,2-diphenyl-7-(p-tolylsulfinyl)heptan-1-one (5)

17 395

To a stirred solution of **3aa** (77.6 mg, 0.2 mmol) in 1 mL CH₂Cl₂ was added *m*-CPBA (0.1032 g, 0.6 mmol, 3.0 equiv.) at room temperature. Then the reaction was kept stirring at room temperature for 36 h. The reaction was then quenched with saturated 10 mL Na₂SO₃, extracted with 10 mL DCM, washed with saturated Na₂SO₃, dried over sodium sulfate, filtered and concentrated in vacuo in ice bath. The crude product was further purified by silica gel flash chromatography (DCM as the eluent) to give **6** (92% yield) as yellow oil.

The date and NMR spectra of 6.

7.18 (m, J = 8.7, 4.3 Hz, 1H), 4.49 (t, J = 7.2 Hz, 1H), 3.06 - 2.98 (m, 2H), 2.41 (s, 3H), 2.16 - 2.06 (m, 1H), 1.82 - 1.71 (m, 1H), 1.70 - 1.59 (m, 2H), 1.40 - 1.19 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 144.5, 139.3, 136.6, 135.9, 132.8, 130.0, 129.7, 128.8, 128.5, 128.4, 128.2, 128.0, 127.9, 126.9, 56.0, 53.3, 33.4, 28.1, 26.9, 22.4, 21.5. HRMS (ESI-TOF) m/z: C₂₆H₂₉O₃S⁺ (M + H)+ calcd for 421.5745, found 421.5743.

1,2-diphenyl-7-tosylheptan-1-one (6)

2.9 Control Experiments

2.9.1 GC-MS Analysis of trapping product 7^[4]

Molecular Weight. 5

The GC spectra of raw reaction mixture

The MS spectra of the peak at 15.955 min

[MS Spe	ectrum]										
# of Peaks 543											
Raw Spectrum 13.920 (scan : 1985)											
Background No Background Spectrum											
Base Peak m/z 179.00 (Inten : 7,450,266)											
Event#	1										
m/z Abs	olute Int	ensity 1	Relative Inte	ensity							
50.00	5127	0.07	58.05	115737	1.55	67.00	135236	1.82			
51.00	23479	0.32	59.00	48215	0.65	68.05	12371	0.17			
52.05	9562	0.13	59.95	7261	0.10	69.05	205298	2.76			
53.05	105605	1.42	60.95	8161	0.11	70.00	17546	0.24			
54.05	15363	0.21	61.95	3214	0.04	71.00	28306	0.38			
55.05	823758	11.06	63.00	18161	0.24	72.05	3260	0.04			
56.15	66667	0.89	64.05	7231	0.10	73.00	24439	0.33			
57.05	2487554	1	65.00	113188	1.52	74.00	3838	0.05			
33.39 66.05 14498 0.19 75.00 4686 0.06											

76.05	4733	0.06	120.10	57358	0.77	164.05	166177	2.23
77.00	200215	2.69	121.05	367697	4.94	165.00	56932	0.76
78.05	54757	0.73	122.05	103552	1.39	166.05	19635	0.26
79.05	291957	3.92	123.00	614695	8.25	167.00	6791	0.09
80.05	31178	0.42	124.00	211346	2.84	167.60	1521	0.02
81.05	151119	2.03	125.05	81874	1.10	168.65	4432	0.06
82.05	20221	0.27	126.05	14457	0.19	169.65	7264	0.10
83.05	161686	2.17	127.05	27150	0.36	170.55	77393	1.04
84.05	14891	0.20	128.05	86287	1.16	171.55	12484	0.17
85.00	25142	0.34	129.05	115682	1.55	171.95	11970	0.16
86.05	5244	0.07	130.05	72801	0.98	173.00	44876	0.60
87.00	150226	2.02	131.05	123554	1.66	174.05	28550	0.38
88.00	12486	0.17	132.05	27382	0.37	175.05	250130	3.36
89.00	35756	0.48	133.05	253996	3.41	176.05	53409	0.72
90.05	15257	0.20	134.05	78747	1.06	177.05	368493	4.95
91.05	567868	7.62	135.05	272075	3.65	178.05	472448	6.34
92.05	75727	1.02	136.05	66998	0.90	179.00	7450266	5 100.00
93.05	226217	3.04	137.00	2017598	8 27.08	180.00	1093468	8 14.68
94.05	27419	0.37	138.00	215052	2.89	181.00	432292	5.80
95.05	90144	1.21	139.00	99084	1.33	182.00	48754	0.65
96.05	25129	0.34	140.00	9655	0.13	183.00	7799	0.10
97.05	111430	1.50	141.00	50634	0.68	184.05	5964	0.08
98.05	9750	0.13	142.00	37218	0.50	185.00	18593	0.25
99.00	6702	0.09	143.05	66574	0.89	186.00	9516	0.13
100.00	1702	0.02	144.05	53423	0.72	187.00	32782	0.44
101.00	6498	0.09	145.05	147162	1.98	188.05	12152	0.16
102.05	7660	0.10	146.05	51221	0.69	189.00	107790	1.45
103.05	52914	0.71	147.05	206961	2.78	190.00	62778	0.84
104.05	30581	0.41	148.05	53474	0.72	191.05	97978	1.32
105.05	350938	4.71	149.05	248645	3.34	192.00	29370	0.39
106.05	46474	0.62	150.05	184701	2.48	192.95	20756	0.28
107.05	187465	2.52	151.00	118674	1.59	194.00	5271	0.07
108.05	45450	0.61	152.00	30444	0.41	194.95	5082	0.07
109.05	118565	1.59	153.00	22249	0.30	195.90	1974	0.03
110.05	27574	0.37	154.05	8184	0.11	197.00	2250	0.03
111.05	25335	0.34	155.00	22446	0.30	198.00	1478	0.02
112.10	2599	0.03	156.05	22193	0.30	199.05	17779	0.24
113.10	3817	0.05	157.00	37394	0.50	200.05	6163	0.08
114.05	2180	0.03	158.00	18978	0.25	201.00	32852	0.44
115.05	107041	1.44	159.00	98162	1.32	202.05	13418	0.18
116.05	42066	0.56	160.05	37643	0.51	203.05	497133	6.67
117.05	102294	1.37	161.00	769124	10.32	204.00	111244	1.49
118.10	31502	0.42	162.05	151776	2.04	205.05	372653	5.00
119.05	317982	4.27	163.00	633465	8.50	206.05	63476	0.85

206.95	87619	1.18	250.95	3036	0.04	295.00	1172	0.02
207.95	19310	0.26	251.90	1084	0.01	296.05	399 0.01	
208.95	11935	0.16	252.95	1601	0.02	297.10	.10 570 0.01	
209.95	2793	0.04	253.95	484 0.01 298.0		298.05	502 0.01	
211.00	1884	0.03	255.00	761 0.0	1	299.00	9180	0.12
212.00	902 0.01	l	256.05	730 0.0	1	300.00	2566	0.03
213.00	2903	0.04	257.05	5253	0.07	301.00	1818	0.02
213.95	1389	0.02	258.15	1491	0.02	302.05	951 0.01	1
215.05	8029	0.11	259.05	34173	0.46	303.00	367 0.00)
216.05	5809	0.08	260.05	9876	0.13	304.00	158 0.00)
217.05	156154	2.10	261.10	5980	0.08	305.00	170 0.00)
218.05	111531	1.50	262.05	1417	0.02	306.00	76 0.00)
219.05	534384	7.17	263.05	870 0.0	1	307.05	639 0.01	1
220.05	331508	4.45	263.95	358 0.00	0	308.00	143 0.00)
221.05	55306	0.74	264.95	4559	0.06	309.05	1184	0.02
222.10	243238	3.26	266.00	1585	0.02	309.95	318 0.00)
223.05	40891	0.55	266.95	7905	0.11	310.85	706 0.01	1
224.05	4291	0.06	268.00	2770	0.04	312.05	392 0.01	1
225.00	1446	0.02	269.00	2498	0.03	313.05	5293	0.07
226.05	1071	0.01	269.95	524 0.0	1	314.00	1434	0.02
227.00	1950	0.03	271.00	3223	0.04	315.00	1338	0.02
227.95	1351	0.02	272.10	798 0.0	1	316.00	399 0.01	
229.00	3462	0.05	273.10	2146	0.03	317.00	218 0.00	
230.00	1841	0.02	274.15	7260	0.10	318.00	209 0.00	
231.05	19940	0.27	275.15	52900	0.71	319.00	98 0.00)
232.05	7400	0.10	276.10	12335	0.17	320.00	68 0.00)
233.10	52145	0.70	277.05	1743	0.02	321.00	140 0.00)
234.05	15327	0.21	278.00	295 0.00	C	321.90	52 0.00)
235.00	9234	0.12	279.00	737 0.0	1	322.95	1688	0.02
236.05	1933	0.03	279.95	319 0.00	C	324.15	1127	0.02
237.00	2209	0.03	280.95	27493	0.37	325.05	16898	0.23
237.95	780 0.01	l	281.95	7932	0.11	326.05	6080	0.08
238.90	879 0.01	l	282.95	6033	0.08	327.00	98802	1.33
240.00	406 0.01	l	284.00	1292	0.02	328.00	25430	0.34
241.00	3158	0.04	285.00	45530	0.61	329.00	14014	0.19
242.05	1701	0.02	286.00	24050	0.32	330.00	2746	0.04
243.00	5742	0.08	287.05	8921	0.12	331.00	711 0.01	1
244.05	1315	0.02	288.00	2319	0.03	332.00	119 0.00)
245.05	8030	0.11	289.00	473 0.0	1	333.00	138 0.00)
246.05	3002	0.04	290.00	159 0.00	0	334.00	71 0.00)
247.10	6063	0.08	291.05	596 0.0	1	335.00	146 0.00)
248.05	2717	0.04	292.10	239 0.00	0	336.00	70 0.00	
248.95	5521	0.07	293.05	682 0.0	1	337.00	250 0.00)
249.95	1881	0.03	294.00	422 0.0	1	337.90	121 0.00)

338.95	1155	0.02	360.90	393 0.0)1	382.05	1044	0.01
340.05	1226	0.02	361.90	194 0.0	00	383.05	65405	0.88
341.00	47841	0.64	362.90	183 0.0	00	384.05	18105	0.24
342.05	87684	1.18	364.10	74 0.0	00	385.05	6172	0.08
343.00	22593	0.30	365.05	2456	0.03	386.05	1222	0.02
344.05	6503	0.09	366.05	612 0.0)1	386.90	665 0.0	1
345.00	1447	0.02	367.00	1082	0.01	387.90	150 0.0	0
346.00	202 0.0	0	368.00	625 0.0)1	388.90	132 0.0	0
347.00	182 0.0	0	369.05	1803	0.02	389.90	57 0.0	0
349.00	82 0.0	0	370.05	588 0.0)1	390.90	42 0.0	0
350.00	46 0.0	0	371.10	169 0.0)0	391.90	46 0.0	0
351.00	148 0.0	0	372.10	153 0.0)0	392.90	60 0.0	0
352.00	228 0.0	0	373.10	191 0.0	00	393.90	46 0.0	0
353.00	391 0.0	1	374.10	218 0.0)0	394.90	86 0.0	0
353.90	202 0.0	0	375.10	86 0.0)0	396.05	1058	0.01
354.95	9340	0.13	376.10	74 0.0)0	<u>397.15</u>	22861	0.31
356.00	3558	0.05	377.10	97 0.0)0	<u>398.05</u>	114780	<u>415.41</u>
356.90	2215	0.03	378.10	82 0.0)0	<u>399.05</u>	340531	4.57
357.90	687 0.0	1	379.10	50 0.0)0	400.05	103359	1.39
358.85	399 0.0	1	380.00	217 0.0)0	401.05	21436	0.29
359.90	204 0.0	0	381.00	1082	0.01	402.00	3607	0.05
The det	o and M	MD anostra	of 7					

The date and NMR spectra of 7.

2,6-Di-*tert*-butyl-4-methyl-4-(4-(*p*-tolylthio)butyl)cyclohexa-2,5-dien-1-one (7).

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (40 : 1) to afford a yellow oil in 45% yield (36.0 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.38 (s, 2H), 2.81 (d, J = 7.2 Hz, 2H), 2.31 (s, 3H), 1.57-1.52 (m, 4H), 1.43 (s, 3H), 1.23 (s, 18H), 1.14-1.12 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃): δ 186.6, 146.6(4C), 130.0(2C), 129.8, 129.7(2C), 124.8, 40.8, 40.0, 34.7, 34.3, 34.1, 30.4, 29.6(6C), 27.2, 23.8, 21.0.

2,6-Di-tert-butyl-4-methyl-4-(4-(p-tolylthio)butyl)cyclohexa-2,5-dien-1-one (7)

(6,6-diphenylhex-5-en-1-yl)(p-tolyl)sulfane (8) by silica gel column chromatography

(hexane/ethyl acetate = 150 : 1), Yield: 37.2 mg, 52%;¹H NMR (400 MHz, CDCl₃) δ 7.37-7.33 (m, 3H), 7.30 (d, J = 5.6 Hz, 2H), 7.25-7.20 (m, 5H), 7.15 (d, J = 7.6 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 6.03 (t, J = 7.6 Hz, 1H), 2.80 (t, J = 7.2 Hz, 2H), 2.30 (s, 3H), 2.14-2.09 (m, 2H), 1.62-1.56 (m, 4H); $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 142.6, 141.9, 140.1, 135.9, 132.8, 129.9(2C), 129.8(2C), 129.6(2C), 129.4, 128.1(2C), 128.0(2C), 127.2(2C), 126.8, 126.8, 34.1, 29.1, 28.9, 28.6, 21.0;

3. Characterization Data

1,2-diphenyl-7-(p-tolylthio)heptan-1-one (3aa), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 50.5 mg, 65%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.2 Hz, 2H), 7.47 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 8.0 Hz, 2H),

7.29-7.27 (m, 3H), 7.21 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 4.52 (t, J = 7.2 Hz, 1H), 2.82 (t, J = 7.2 Hz, 2H), 2.30 (s, 3H), 2.19-2.11 (m, 1H), 1.85-1.76 (m, 1H), 1.62-1.56 (m, 3H), 1.48-1.38 (m, 2H), 1.32-1.21 (m, 2H); $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 199.9, 139.6, 136.9, 135.8, 132.9, 132.8, 129.8(2C), 129.6(2C), 128.9(2C), 128.6(2C), 128.5(2C), 128.1(2C), 127.0, 53.5, 34.2, 33.8, 29.0, 28.6, 27.2, 21.0; HRMS (ESI-TOF) m/z: C₂₆H₂₉OS⁺ (M + H)⁺ calcd for 389.1934, found 389.1932.

1,2-bis(4-methoxyphenyl)-7-(p-tolylthio)heptan-1-one (3ba), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 40.3 mg, 45%;¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.8 Hz, 2H), 7.22-7.18 (m, 4H), 7.07 (d, J = 7.6 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.81

(d, J = 8.4 Hz, 2H), 4.42 (t, J = 7.6 Hz, 1H), 3.81 (s, 3H), 3.74 (s, 3H), 2.82 (t, J = 7.2 Hz, 2H), 2.30 (s, 3H), 2.14-2.06 (m, 1H), 1.75-1.75 (m, 1H), 1.61-1.54 (m, 2H), 1.45-1.37 (m, 2H), 1.30-1.22 (m, 2H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 198.7, 163.1, 158.4, 135.8, 132.9, 132.0(2C), 130.9, 129.7, 129.7(2C), 129.5(2C), 129.0(2C), 114.1(2C), 113.6(2C), 55.4, 55.1, 52.1, 34.1, 33.8, 28.9, 28.6, 27.1, 21.0; HRMS (ESI-TOF) m/z: C₂₈H₃₃O₃S⁺ (M + H)⁺ calcd for 449.2145, found 449.2149.

1,2-di-*p*-tolyl-7-(*p*-tolylthio)heptan-1-one (3ca),

ne (3ca), by silica gel column
chromatography (hexane/ethyl acetate = 150 : 1), Yield: 40.0 mg, 48%; ¹H NMR
(400 MHz, CDCl₃) δ 7.85 (d, J = 8.0 Hz, 2H), 7.22-7.15 (m, 6H), 7.07 (d, J = 7.6 Hz,

4H), 4.46 (t, J = 7.2 Hz, 1H), 2.82 (t, J = 7.2 Hz, 2H), 2.34 (s, 3H), 2.30 (s, 3H), 2.27 (s, 3H), 2.17-2.08 (m, 1H), 1.82-1.73 (m, 1H), 1.58-1.54 (m, 2H), 1.47-1.35 (m, 2H), 1.31-1.23 (m, 2H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 198.7, 163.1, 158.4, 135.8, 132.9, 132.0(2C), 130.9, 129.7, 129.7(2C), 129.5(2C), 129.0(2C), 114.1(2C), 113.6(2C), 55.4, 55.1, 52.1, 34.1, 33.8, 28.9, 28.6, 27.1, 21.0; HRMS (ESI-TOF) m/z: C₂₈H₃₃OS⁺ (M + H)⁺ calcd for 417.2247, found 417.2249.

1,2-bis(4-fluorophenyl)-7-(p-tolylthio)heptan-1-one (3da), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 35.6 mg, 42%; ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.94 (m, 2H), 7.25-7.20 (m, 4H), 7.08-7.03 (m, 4H), 6.97 (t, *J* = 8.8 Hz, 2H), 4.45 (t, *J* = 7.6 Hz, 1H),

2.83 (t, J = 7.2 Hz, 2H), 2.30 (s, 3H), 2.17-2.07 (m, 1H), 1.82-1.73 (m, 1H), 1.62-1.54 (m, 2H), 1.49-1.38 (m, 2H), 1.32-1.71 (m, 2H); ¹⁹F NMR (282 MHz, CDCl₃) δ : -105.1 (s, 1F), -115.3 (s, 1F); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 198.2, 165.5 (d, $J_{C-F} = 253.4$ Hz, 1C), 161.8 (d, $J_{C-F} = 244.4$ Hz, 1C), 135.8, 135.1 (d, $J_{C-F} = 3.2$ Hz, 1C), 132.9 (d, $J_{C-F} = 2.9$ Hz, 1C), 132.8, 131.2 (d, $J_{C-F} = 9.3$ Hz, 2C), 129.7(2C), 129.55(2C), 129.54 (d, $J_{C-F} = 8.0$ Hz, 2C), 115.8 (d, $J_{C-F} = 21.3$ Hz, 2C), 115.6 (d, $J_{C-F} = 21.8$ Hz, 2C), 52.5, 34.1, 33.8, 28.9, 28.5, 27.0, 20.9; HRMS (ESI-TOF) m/z: C₂₆H₂₇F₂OS⁺ (M + H)⁺ calcd for 425.1745, found 425.1742.

1,2-bis(4-chlorophenyl)-7-(p-tolylthio)heptan-1-one (3ea), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 52.9 mg, 58%; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.8 Hz, 2H), 7.27-7.17 (m, 6H), 7.08 (d, *J* = 7.6 Hz, 2H), 4.42 (t,

J = 7.2 Hz, 1H), 2.83 (t, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.16-2.08 (m, 1H), 1.80-1.74 (m, 1H), 1.61-1.54 (m, 2H), 1.47-1.37 (m, 2H), 1.29-1.22 (m, 2H); $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 198.3, 139.5, 137.7, 135.9, 134.8, 133.0, 132.8, 130.0(2C), 129.7(2C), 129.6(2C), 129.4(2C), 129.1(2C), 128.9(2C), 52.8, 34.1, 33.6, 28.9, 28.5,

27.0, 21.0; HRMS (ESI-TOF) m/z: $C_{26}H_{27}Cl_2OS^+$ (M + H)⁺ calcd for 457.1154, found 457.1149.

2-([1,1'-biphenyl]-4-yl)-1-phenyl-7-(p-tolylthio)heptan-1-one (3fa), by silica gel

column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 65.0 mg, 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.2 Hz, 2H), 7.54-7.48 (m, 5H), 7.42-7.30 (m, 7H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 2H), 4.57

(t, J = 7.2 Hz, 1H), 2.83 (t, J = 7.2 Hz, 2H), 2.30 (s, 3H), 2.24-2.17 (m, 1H), 1.88-1.81 (m, 1H), 1.63-1.56 (m, 2H), 1.52-1.40 (m, 2H), 1.37-1.26 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 199.9, 140.5, 139.8, 138.6, 136.8, 135.8, 132.9, 132.9, 129.7(2C), 129.6(2C), 128.7(2C), 128.6(2C), 128.5(2C), 128.5(2C), 127.6(2C), 127.2, 126.9(2C), 53.1, 34.1, 33.8, 28.9, 28.6, 27.2, 21.0; HRMS (ESI-TOF) m/z: C₃₂H₃₃OS⁺ (M + H)⁺ calcd for 465.2247, found 465.2248.

2-(4-chlorophenyl)-1-phenyl-7-(p-tolylthio)heptan-1-one (3ga), by silica gel

column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 49.0 mg, 58%; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.2 Hz, 2H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.26-7.20 (m, 6H), 7.08 (d, *J* = 8.0 Hz,

2H), 4.50 (t, J = 7.6 Hz, 1H), 2.82 (t, J = 6.8 Hz, 2H), 2.30 (s, 3H), 2.18-2.09 (m, 1H), 1.82-1.75 (m, 1H), 1.61-1.56 (m, 2H), 1.48-1.37 (m, 2H), 1.31-1.21 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 199.6, 138.0, 136.5, 135.9, 133.0, 132.8, 132.8, 129.8(2C), 129.6(2C), 129.5(2C), 129.0(2C), 128.6(2C), 128.5(2C), 52.7, 34.1, 33.7, 28.9, 28.5, 27.1, 21.0; HRMS (ESI-TOF) m/z: C₂₆H₂₈ClOS⁺ (M + H)⁺ calcd for 423.1544, found 423.1549.

2-(4-bromophenyl)-1-phenyl-7-(*p***-tolylthio)heptan-1-one (3ha),** by silica gel column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 57.8 mg, 62%; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.42-1.38 (m, 4H), 7.21 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.0

Hz, 2H), 4.49 (t, J = 7.2 Hz, 1H), 2.83 (t, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.17-2.08 (m, 1H), 1.82-1.73 (m, 1H), 1.59-1.54 (m, 2H), 1.48-1.37 (m, 2H), 1.29-1.22 (m, 2H); ${}^{13}C{}^{1}H{NMR}$ (100 MHz, CDCl₃) δ : 199.5,

138.6, 136.5, 135.9, 133.1, 132.8, 132.0,(2C) 129.9(2C), 129.8(2C), 129.6(2C), 128.6(2C), 128.6(2C), 121.0, 52.8, 34.1, 33.7, 28.9, 28.5, 27.1, 21.0; HRMS (ESI-TOF) m/z: $C_{26}H_{28}BrOS^+$ (M + H)⁺ calcd for 467.1039, found 467.1044.

1-(3-chlorophenyl)-2-phenyl-7-(p-tolylthio)heptan-1-one (3ia), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 40.5 mg, 48%; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.26-7.18 (m,

6H), 7.08 (d, J = 7.6 Hz, 2H), 4.50 (t, J = 7.2 Hz, 1H), 2.83 (t, J = 7.2 Hz, 2H), 2.30 (s, 3H), 2.19-2.10 (m, 1H), 1.83-1.74 (m, 1H), 1.60-1.54 (m, 2H), 1.49-1.38 (m, 2H), 1.33-1.21 (m, 2H); $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 199.3, 141.5, 136.5, 135.9, 134.6, 133.1, 132.8, 130.1, 129.8(2C), 129.6(2C), 128.6(2C), 128.6(2C), 128.2, 127.2, 126.4, 53.0, 34.1, 33.8, 28.9, 28.5, 27.1, 21.0; HRMS (ESI-TOF) m/z: C₂₆H₂₈ClOS⁺ (M + H)⁺ calcd for 423.1544, found 423.1550.

1-phenyl-7-(p-tolylthio)-2-(4-(trifluoromethyl)phenyl)heptan-1-one (3ja), by silica

gel column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 57.4 mg, 63%; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.5 Hz, 2H), 7.56-7.49 (m, 3H), 7.47 - 7.38 (m, 4H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 7.9 Hz,

2H), 4.61 (t, J = 7.2 Hz, 1H), 2.83 (t, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.21 - 2.14 (m, 1H), 1.86 - 1.77 (m, 1H), 1.59 - 1.53 (m, 2H), 1.47 - 1.39 (m, 2H), 1.28 - 1.22 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5; ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 199.3, 143.6, 136.5, 135.9, 133.2(2C), 132.8, 129.8(2C), 129.6(2C), 128.7(2C), 128.6(2C), 128.5(2C), 125.8(q, J = 3.7 Hz, 2C), 53.1, 34.2, 33.8, 28.9, 28.5, 27.1, 20.9; HRMS (ESI-TOF) m/z: C₂₇H₂₈F₃OS⁺ (M + H)⁺ calcd for 457.1807, found 457.1802.

4-(1-oxo-1-phenyl-7-(p-tolylthio)heptan-2-yl)benzonitrile (3ka), by silica gel

column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 45.4 mg, 55%; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 6.7 Hz, 2H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.47 - 7.39 (m, 4H), 7.21 (d, *J* = 7.2 Hz,

2H), 7.08 (d, J = 7.6 Hz, 2H), 4.60 (t, J = 7.3 Hz, 1H), 2.82 (t, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.22 – 2.13 (m, 1H), 1.84 – 1.76 (m, 1H), 1.60 - 1.54 (m, 2H), 1.48 - 1.38 (m, 2H), 1.31 - 1.17 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 198.9, 144.9, 136.3, 135.9, 133.4, 132.8, 132.6, 129.8, 129.6, 129.0, 128.7, 128.5, 118.6, 111.0, 53.2, 34.1, 33.8, 28.8, 28.4, 27.1, 21.0; HRMS (ESI-TOF) m/z: C₂₇H₂₈NOS+ (M + H)⁺ calcd for 414.1886, found 414.1889.

2-(2,4-difluorophenyl)-1-phenyl-7-(p-tolylthio)heptan-1-one (3la), by silica gel

column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 42.4 mg, 50%; ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.94 (m, 2H), 7.25-7.20 (m, 4H), 7.09-7.04 (m, 4H),

6.98 (t, J = 8.8 Hz, 2H), 4.45 (t, J = 7.2 Hz, 1H), 2.83 (t, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.16-2.07 (m, 1H), 1.80-1.73 (m, 1H), 1.62-1.56 (m, 2H), 1.48-1.38 (m, 2H), 1.32-1.20 (m, 2H); ¹⁹F NMR (282 MHz, CDCl₃) δ : -105.1 (s, 1F), -115.4 (s, 1F); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 198.2, 165.5 (d, $J_{C-F} = 253.4$ Hz, 1C) , 161.8 (d, $J_{C-F} = 244.2$ Hz, 1C),135.9, 135.1 (d, $J_{C-F} = 3.2$ Hz, 1C), 133.0 (d, $J_{C-F} = 2.9$ Hz, 1C), 132.8, 131.3(2C), 131.2(2C), 129.7(2C), 129.6, 129.6(2C), 129.5, 115.8 (d, $J_{C-F} =$ 21.2 Hz, 1C), 115.7 (d, $J_{C-F} = 21.6$ Hz, 1C), 52.6, 34.1, 33.8, 28.9, 28.5, 27.1, 21.0; HRMS (ESI-TOF) m/z: C₂₆H₂₇F₂OS⁺ (M + H)⁺ calcd for 403.2090, found 403.2091.

2-phenyl-1-(*p*-tolyl)-7-(*p*-tolylthio)heptan-1-one (3ma), by silica gel column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 50.7 mg, 63%; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6, 1H), 7.29-7.19 (m, 8H), 7.15 (t, *J* = 7.6 Hz, 2H), 7.08

(d, J = 8.0 Hz, 2H), 4.33 (t, J = 7.2 Hz, 1H), 2.83 (t, J = 7.6 Hz, 2H), 2.30 (s, 3H), 2.29 (s, 3H), 2.23-2.14 (m, 1H), 1.85-1.76 (m, 1H), 1.63-1.55 (t, J = 7.3 Hz, 2H),

1.49-1.39 (m, 2H), 1.34-1.25 (m, 2H); ${}^{13}C{}^{1}H{NMR}$ (100 MHz, CDCl₃) δ : 204.2, 138.8, 138.8, 137.8, 135.8, 132.8, 131.5, 130.7, 129.7(2C), 129.6(2C), 128.7(2C), 128.3(2C), 127.7, 127.0, 125.3, 56.7, 34.1, 33.1, 28.9, 28.6, 27.2, 21.0, 20.7; HRMS (ESI-TOF) m/z: C₂₇H₃₁OS⁺ (M + H)⁺ calcd for 403.2090, found 403.2091.

1-(3,4-dimethylphenyl)-2-phenyl-7-(p-tolylthio)heptan-1-one (3na), by silica gel

column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 45.8 mg, 55%; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.18-7.15

(m, 4H), 7.07 (d, J = 8.0 Hz, 4H), 4.46 (t, J = 7.2 Hz, 1H), 2.82 (t, J = 7.2 Hz, 2H), 2.34 (s, 3H), 2.30 (s, 3H), 2.27 (s, 3H), 2.17-.08 (m, 1H), 1.80-1.73 (m, 1H), 1.61-1.54 (m, 2H), 1.46-1.37 (m, 2H), 1.29-1.20 (m, 2H); $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 199.6, 143.5, 136.8, 136.5, 135.8, 134.3, 132.9, 129.7(2C), 129.6(2C), 129.5(2C), 129.1(2C), 128.7(2C), 128.0(2C), 52.9, 34.1, 33.7, 29.0, 28.7, 27.2, 21.6, 21.0, 21.0.; HRMS (ESI-TOF) m/z: C₂₈H₃₃OS⁺ (M + H)⁺ calcd for 417.2247, found 417.2248.

2-(4-fluorophenyl)-1-(4-methoxyphenyl)-7-(p-tolylthio)heptan-1-one (3oa), by

silica gel column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 50.6 mg, 58%; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.8 Hz, 2H), 7.26-7.20 (m, 4H), 7.07 (d, J = 7.6 Hz,

2H), 6.96 (t, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 4.47 (t, J = 7.2 Hz, 1H), 3.83 (s, 3H), 2.82 (t, J = 7.2 Hz, 2H), 2.30 (s, 3H), 2.16-2.07 (m, 1H), 1.81-1.72 (m, 1H), 1.59-1.54 (m, 2H), 1.46-1.37 (m, 2H), 1.30-1.21 (m, 2H); ¹⁹F NMR (282 MHz, CDCl₃) δ : -115.9 (s, 1F), -115.4 (s, 1F); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 198.4,

163.4, 163.2 (d, $J_{C-F} = 244.0$ Hz, 1C), 135.9, 135.8 (d, $J_{C-F} = 3.3$ Hz, 1C), 132.9, 130.9(2C), 129.8(2C), 129.7, 129.6(2C), 129.6, 126.9, 126.6, 115.7 (d, $J_{C-F} = 21.2$ Hz, 1C), 113.8(2C), 55.5, 52.1, 34.2, 34.0, 29.0, 28.6, 27.2, 21.0; HRMS (ESI-TOF) m/z: $C_{27}H_{30}FO_2S^+$ (M + H)⁺ calcd for 437.1945, found 437.1946.

1-(4-(tert-butyl)phenyl)-7-(p-tolylthio)-2-(4-(trifluoromethyl)phenyl)heptan-1-on

e (3pa), by silica gel column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 68.6 mg, 67%; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.9 Hz,

2H), 7.54 (d, J = 7.9 Hz, 2H), 7.45 - 7.41 (m, 4H), 7.22 (d, J = 7.6 Hz, 2H), 7.08 (d, J = 7.5 Hz, 2H), 4.61 (t, J = 7.2 Hz, 1H), 2.83 (t, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.22 - 2.14 (m, 1H), 1.86 - 1.77 (m, 1H), 1.60 - 1.55 (m, 2H), 1.47 - 1.39 (m, 2H), 1.31 (s, 9H), 1.27 - 1.17 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4; ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 198.8, 157.1, 143.9, 135.9, 133.9, 132.9, 129.8(2C), 129.57, 129.61(2C), 128.6(2C), 128.5(2C), 125.8 (q, $J_{C-F} = 3.5$ Hz, 2C), 125.7(2C), 53.0, 35.1, 34.2, 34.0, 31.0, 29.0, 28.6, 27.2, 21.0; HRMS (ESI-TOF) m/z: C₃₁H₃₆F₃OS⁺ (M + H)⁺ calcd for 513.2433, found 513.2439.

2-phenyl-1-(thiophen-2-yl)-7-(p-tolylthio)heptan-1-one (3qa), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 49.7 mg, 63%; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.2 Hz, 2H), 7.21 (d,

J = 8.0 Hz, 2H), 7.17 (d, J = 4.8 Hz, 1H), 7.07 (d, J = 8.0 Hz, 2H), 6.90-6.89 (m, 2H), 4.85 (t, J = 7.2 Hz, 1H), 2.83 (t, J = 7.3 Hz, 2H), 2.30 (s, 3H), 2.20-2.11 (m, 1H), 1.93-1.84 (m, 1H), 1.62-1.55 (m, 2H), 1.50-1.39 (m, 2H), 1.34-1.27 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 198.9, 141.9, 136.3, 135.8, 133.1, 132.8, 129.8(2C), 129.6(2C), 128.6(2C), 128.6(2C), 126.8, 125.4, 124.7, 47.7, 34.7, 34.1, 28.9, 28.5, 27.0, 21.0; HRMS (ESI-TOF) m/z: $C_{24}H_{27}OS_2^+$ (M + H)⁺ calcd for 395.1498, found 395.1496.

2-cyclopropyl-1-(thiophen-2-yl)-7-(*p***-tolylthio)heptan-1-one (3ra),** by silica gel column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 38.7 mg, 54%; ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.21 (m, 3H), 7.08 (d, J =

7.6 Hz, 2H), 6.98-6.95 (m, 1H), 6.89 (d, J = 3.2 Hz, 1H), 4.02 (t, J = 7.6 Hz, 1H), 2.84 (t, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.11-2.03 (m, 1H), 2.00-1.95 (m, 1H), 1.79-1.74 (m, 1H), 1.61-1.56 (m, 2H), 1.47-1.39 (m, 2H), 1.31-1.25 (m, 2H), 1.03-0.98 (m, 2H), 0.87-0.78 (m, 2H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 209.2, 141.7, 135.9, 132.9, 129.8(2C), 129.6(2C), 126.9, 125.4, 124.6, 54.3, 34.2, 33.0, 28.9, 28.4, 26.9, 21.0, 19.5, 11.6, 11.5; HRMS (ESI-TOF) m/z: $C_{21}H_{27}OS_{2}^{+}$ (M + H)⁺ calcd for 359.1498, found 359.1496.

7-((4-methoxyphenyl)thio)-1,2-diphenylheptan-1-one (3ab), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 34.0 mg, 52%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.50-7.45 (m, 1H), 7.38 (t, *J* = 8.0 Hz,

2H), 7.31-7.28 (m, 5H), 7.21-7.17 (m, 1H), 6.86-6.81 (m, 3H), 4.52 (t, J = 7.2 Hz, 1H), 3.78 (s, 3H), 2.76 (t, J = 7.2 Hz, 2H), 2.21-2.11 (m, 1H), 1.85-1.76 (m, 1H), 1.56-1.50 (m, 2H), 1.46-1.36 (m, 2H), 1.30-1.19 (m, 2H); $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 199.9, 158.6, 139.6, 136.8, 132.9(2C), 132.8, 128.8(2C), 128.6(2C), 128.5(2C), 128.1(2C), 126.9, 114.5, 114.4(2C), 55.3, 53.5, 35.6, 33.8, 29.0, 28.5, 27.2; HRMS (ESI-TOF) m/z: $C_{26}H_{29}O_2S^+$ (M + H)⁺ calcd for 405.1883, found 405.1889.

7-((4-isopropylphenyl)thio)-1,2-diphenylheptan-1-one (3ac), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 52.4 mg, 63%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.2 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.38 (t, J =

6.8 Hz, 2H), 7.30-7.27 (m, 4H), 7.25-7.23 (m, 2H), 7.13 (t, J = 6.8 Hz, 3H), 4.52 (t, J = 7.6 Hz, 1H), 2.88-2.82 (m, 3H), 2.21-7.12 (m, 1H), 1.85-1.78 (m, 1H), 1.6-1.57 (m, 2H), 1.47-1.41 (m, 2H), 1.34-1.27 (m, 2H), 1.23 (s, 3H), 1.21 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 199.9, 146.7, 139.6, 136.8, 133.3, 132.8, 129.9, 129.5(2C), 128.8(2C), 128.6(2C), 128.5(2C), 128.1(2C), 126.9(2C), 53.5, 34.0, 33.8, 33.6, 29.0, 28.7, 27.2, 23.9(2C); HRMS (ESI-TOF) m/z: C₂₈H₃₃OS⁺ (M + H)⁺ calcd for 417.2247, found 417.2249.

7-((4-(tert-butyl)phenyl)thio)-1,2-diphenylheptan-1-one (3ad), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 65.4 mg, 76%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 2H), 7.47 (t, J = 7.2 Hz, 1H), 7.37 (t, J =

7.6 Hz, 2H), 7.29-7.27 (m, 7H), 7.25-7.24 (m, 2H), 4.52 (t, J = 7.2 Hz, 1H), 2.84 (t, J = 7.6 Hz, 2H), 2.21-2.12 (m, 1H), 1.84-1.77 (m, 1H), 1.64-1.56 (m, 2H), 1.51-1.38 (m, 4H), 1.29 (s, 9H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 199.9, 148.9, 139.6, 136.8, 133.1, 132.8, 129.4, 129.0(2C), 128.8(2C), 128.6(2C), 128.5(2C), 128.1(2C), 126.9, 125.8, 53.5, 34.4, 33.8, 33.8, 31.2, 29.0, 28.7, 27.2(3C); HRMS (ESI-TOF) m/z: $C_{29}H_{35}OS^{+}(M + H)^{+}$ calcd for 431.2403, found 431.2410.

7-((4-chlorophenyl)thio)-1,2-diphenylheptan-1-one (3ae), by silica gel column

chromatography (hexane/ethyl acetate = 150:1), Yield: 40.0 mg, 49%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.0 Hz, 2H), 7.48 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 7.6 Hz,

2H), 7.29-7.28 (m, 4H), 7.24-7.18 (m, 5H), 4.52 (t, J = 7.2 Hz, 1H), 2.84 (t, J = 7.2 Hz, 2H), 2.21-2.12 (m, 1H), 1.85-1.76 (m, 1H), 1.63-1.58 (d, J = 7.5 Hz, 2H), 1.49-1.41 (m, 2H), 1.32-1.23 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 199.9, 139.6, 136.8, 135.3, 132.9(2C), 131.6, 130.2(2C), 128.9(2C), 128.6(2C), 128.5(2C), 128.1(2C), 127.0(2C), 53.5, 33.8, 33.6, 28.7, 28.6, 27.2; HRMS (ESI-TOF) m/z: C₂₅H₂₆ClOS⁺ (M + H)⁺ calcd for 409.1387, found 409.1386.

1,2-diphenyl-7-(*m*-tolylthio)heptan-1-one (3af), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 42.7 mg, 55%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.2 Hz, 2H), 7.48 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 8.0 Hz, 2H), 7.29-7.28

(m, 3H), 7.21-7.08 (m, 5H), 6.96 (d, J = 7.2 Hz, 1H), 4.52 (t, J = 7.2 Hz, 1H), 2.86 (t, J = 7.2 Hz, 2H), 2.30 (s, 3H), 2.20-2.12 (m, 1H), 1.85-1.78 (m, 1H), 1.64-1.59 (m, 2H), 1.48-1.40 (m, 2H), 1.33-1.26 (m, 2H); $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 199.9, 139.6, 138.5, 136.8, 136.5, 132.8, 129.4, 128.9(2C), 128.6, 128.6(2C), 128.5(2C), 128.1(2C), 127.0, 126.5, 125.7, 53.5, 33.8, 33.3, 28.9, 28.7, 27.2, 21.3; HRMS (ESI-TOF) m/z: $C_{26}H_{29}OS^+$ (M + H)⁺ calcd for 389.1934, found 389.1928.

1,2-diphenyl-7-(o-tolylthio)heptan-1-one (3ag), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 41.1 mg, 53%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.2 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.29-7.28

(m, 4H), 7.22-7.17 (m, 2H), 7.14 (d, J = 7.2 Hz, 2H), 7.07 (d, J = 7.6 Hz, 1H), 4.53 (t, J = 7.2 Hz, 1H), 2.85 (t, J = 7.2 Hz, 2H), 2.33 (s, 3H), 2.24-2.13 (m, 1H), 1.87-1.78 (m, 1H), 1.67-1.60 (m, 2H), 1.54-1.42 (m, 2H), 1.35-1.23 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 199.9, 139.6, 137.0, 136.8, 136.2, 132.8, 129.9, 128.9(2C), 128.6(2C), 128.5(2C), 128.1(2C), 127.1, 127.0, 126.3, 125.2, 53.5, 33.8, 32.5, 28.8, 28.7, 27.2, 20.3; HRMS (ESI-TOF) m/z: C₂₆H₂₉OS⁺ (M + H)⁺ calcd for 389.1934, found 389.1928.

7-((2,4-dimethylphenyl)thio)-1,2-diphenylheptan-1-one (3ah), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 53.9 mg, 67%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.2 Hz, 1H), 7.53-7.47 (m, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.29-7.14 (m,

9H), 7.08 (d, *J* = 7.6 Hz, 1H), 4.52 (t, *J* = 7.2 Hz, 0.5H), 4.33 (t, *J* = 7.6 Hz, 0.5H), 2.85-2.78 (m, 2H), 2.32-2.28 (m, 6H), 2.21-2.14 (m, 1H), 1.85-1.76 (m, 1H),

1.64-1.59 (m, 2H), 1.50-1.42 (m, 2H), 1.36-1.28 (m, 2H); ${}^{13}C{}^{1}H{NMR}$ (100 MHz, CDCl₃) δ : 199.9, 139.6, 137.7, 136.8, 135.4, 132.8, 132.2, 130.9, 128.8(2C), 128.7, 128.6(2C), 128.5(2C), 128.1(2C), 127.0, 126.9, 53.5, 33.8, 33.3, 28.8(2C), 27.2, 20.8, 20.3; HRMS (ESI-TOF) m/z: C₂₇H₃₁OS⁺ (M + H)⁺ calcd for 403.2090, found 403.2091.

7-((3,5-dimethylphenyl)thio)-1,2-diphenylheptan-1-one (3ai), by silica gel column

chromatography (hexane/ethyl acetate = 150: 1), Yield: 55.5 mg, 69%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 2H),

7.29-7.28 (m, 4H), 7.23-7.17 (m, 1H), 6.91 (s, 2H), 6.78 (s, 1H), 4.53 (t, J = 7.2 Hz, 1H), 2.85 (t, J = 7.2 Hz, 2H), 2.26 (s, 6H), 2.22-2.13 (m, 1H), 1.85-1.81 (m, 1H), 1.64-1.59 (d, J = 7.4 Hz, 2H), 1.48-1.40 (m, 2H), 1.34-1.23 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 199.9, 139.6, 138.4(2C), 136.8, 136.3, 132.8, 128.9(2C), 128.6(2C), 128.5(2C), 128.1(2C), 127.5, 127.0, 126.4(2C), 53.5, 33.8, 33.3, 28.9, 28.7, 27.2, 21.2(2C); HRMS (ESI-TOF) m/z: C₂₇H₃₁OS⁺ (M + H)⁺ calcd for 403.2090, found 403.2091.

1,2-diphenyl-7-(thiophen-2-ylthio)heptan-1-one (3aj), by silica gel column

chromatography (hexane/ethyl acetate = 150 : 1), Yield: 43.3 mg, 57%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.32-7.28 (m,

5H), 7.22-7.18 (m, 1H), 7.07 (d, J = 3.6 Hz, 1H), 6.97-6.93 (m, 1H), 4.52 (t, J = 7.2 Hz, 1H), 2.74 (t, J = 7.2 Hz, 2H), 2.54-2.45 (m, 1H), 2.21-2.12 (m, 1H), 1.61-1.53 (m, 2H), 1.48-1.39 (m, 2H), 1.34-1.22(m, 2H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 199.9, 139.6, 136.9, 133.3, 132.8, 128.9(4C), 128.6(2C), 128.5(2C), 128.2(2C), 127.4, 127.0, 53.5, 38.8, 33.8, 29.1, 28.3, 27.2; HRMS (ESI-TOF) m/z: C₂₃H₂₅OS₂⁺ (M + H)⁺ calcd for 381.1341, found 381.1344.

1,2-diphenyl-8-(*p*-tolylthio)octan-1-one (3ak), by silica gel column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 38.6mg, 48%; ¹H NMR (400 MHz, CDCl₃) δ

7.95 (d, J = 7.6 Hz, 2H), 7.48 (t, J = 7.6 Hz, 1H), 7.38 (t, J = 8.0 Hz, 2H), 7.29-7.28 (m, 4H), 7.22 (d, J = 8.0 Hz, 3H), 7.08 (d, J = 8.0 Hz, 2H), 4.52 (t, J = 7.2 Hz, 1H), 2.83

(t, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.20-2.12 (m, 1H), 1.85-1.76 (m, 1H), 1.59-1.53 (m, 2H), 1.39-1.32 (m, 6H); ${}^{13}C{}^{1}H{NMR}$ (100 MHz, CDCl₃) δ : 200.0, 139.7, 136.8, 135.8, 132.9, 132.8, 129.7(2C), 129.6(2C), 128.8(2C), 128.6(2C), 128.5(2C), 128.1(2C), 126.9, 53.6, 34.2, 33.9, 29.1, 29.1, 28.5, 27.5, 21.0; HRMS (ESI-TOF) m/z: $C_{27}H_{31}OS^+$ (M + H)⁺ calcd for 403.2090, found 403.2091.

1,2-diphenylbutan-1-one (3al), by silica gel column chromatography (hexane/ethyl acetate = 150 : 1), Yield: 25.1 mg, 56%; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.2 Hz, 2H), 7.48 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.31-7.26 (m, 4H), 7.22-7.18 (m, 1H), 4.45 (t, J = 7.2 Hz, 1H), 2.26-2.19 (m, 1H), 1.91-1.81 (m, 1H), 0.90 (t, J = 7.6 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 199.0, 138.6, 135.9, 131.7,

127.8(2C), 127.6(2C), 127.4(2C), 127.2(2C), 125.9, 54.4, 26.1, 11.3; HRMS (ESI-TOF) m/z: $C_{16}H_{17}O^+$ (M + H)⁺ calcd for 225.1274, found 225.1277.

4. Reference

- W.-W. Cui, X.-F. Li, G.-J. Guo, X.-Y. Song, J. Lv, D.-S, Radial Type Ring Opening of Sulfonium Salts with Dichalcogenides by Visible Light and Copper Catalysis, Yang. Org. Lett. 2022, 24, 5391-5396.
- X.-Q. Liu, X.-F. Li, L.-Y.Wang, Y.-J. Shi, J. Lv, D.-S. Yang, Visible Light/Copper Catalysis Enabled Heck-Like Coupling between Alkenes and Cyclic Sulfonium Salts via Selective C-S Bond Cleavage, *Org. Chem. Front.* 2024,11, 2195-2200.
- P.-F. Yuan, Z. Yang, S.-S. Zhang, C.-M. Zhu, X.-L. Yang, Q.-Y. Meng, Deconstructive Carboxylation of Activated Alkenes with Carbon Dioxide, *Angew. Chem. Int. Ed.* 2024, 63, e202313030.
- L.-J. Zhong, H. Chen, X. Shang, J.-H. Fan, K.-W. Tang, Y. Liu, J.-H. Li, Photoredox Ring Opening 1,2-Alkylarylation of Alkenes with Sulfonium Salts Toward Thioether-Substituted Oxindoles, *J. Org. Chem.* 2024, 89, 12, 8721-8733.

5.Spectra

1,2-diphenyl-7-(p-tolylthio)heptan-1-one (3aa)

1,2-bis(4-methoxyphenyl)-7-(*p*-tolylthio)heptan-1-one (3ba)

1,2-bis(4-fluorophenyl)-7-(*p*-tolylthio)heptan-1-one (3da)

1,2-bis(4-chlorophenyl)-7-(*p*-tolylthio)heptan-1-one (3ea)

2- ([1,1'-biphenyl]-4-yl)-1-phenyl-7-(p-tolylthio)heptan-1-one (3fa)

3-(4-chlorophenyl)-1-phenyl-7-(*p*-tolylthio)heptan-1-one (3ga)

2-(4-bromophenyl)-1-phenyl-7-(*p*-tolylthio)heptan-1-one (3ha)

1-(3-chlorophenyl)-2-phenyl-7-(*p*-tolylthio)heptan-1-one (3ia)

1-(2,4-difluorophenyl)-1-phenyl-7-(p-tolylthio)heptan-1-one (3la)

1-phenyl-1-(*p*-tolyl)-7-(*p*-tolylthio)heptan-1-one (3ma)

1-(3,4-dimethylphenyl)-2-phenyl-7-(*p*-tolylthio)heptan-1-one (3na)

3-(4-fluorophenyl)-1-(4-methoxyphenyl)-7-(*p*-tolylthio)heptan-1-one (3oa)

1-(4-(tert-butyl)phenyl)-7-(p-tolylthio)-2-(4-(trifluoromethyl)phenyl)heptan-1-on e (3pa)

2-phenyl-1-(thiophen-2-yl)-7-(*p*-tolylthio)heptan-1-one (3qa)

1-cyclopropyl-1-(thiophen-2-yl)-7-(p-tolylthio)heptan-1-one (3ra)

8-((4-isopropylphenyl)thio)-1,2-diphenylheptan-1-one (3ac)

7-((4-(tert-butyl)phenyl)thio)-1,2-diphenylheptan-1-one (3ad)

8-((4-chlorophenyl)thio)-1,2-diphenylheptan-1-one (3ae)

1,2-diphenyl-7-(*m*-tolylthio)heptan-1-one (3af)

1,2-diphenyl-7-(o-tolylthio)heptan-1-one (3ag)

7-((2,4-dimethylphenyl)thio)-1,2-diphenylheptan-1-one (3ah)

8-((3,5-dimethylphenyl)thio)-1,2-diphenylheptan-1-one (3ia)

1,2-diphenyl-8-(p-tolylthio)octan-1-one (3ja)

1,2-diphenyl-7-(thiophen-2-ylthio)heptan-1-one (3la)

