Supplementary Information

A pillar[S]arene- and calix[4]pyrrole-based supramolecular polymer for selective removal of

naphthols from water
Deniz Memis,* Saide Akin,* and Abdullah Aydogan®®*
@ Department of Chemistry, Istanbul Technical University, Maslak, 34469, Istanbul, Tiirkiye

® Department of Nanoscience and Nanoengineering, Istanbul Technical University, Maslak, 34469

Istanbul, Tiirkiye

*Corresponding author e-mail: aydoganab@itu.edu.tr

Table of Contents

General CONSIAETALIONS .......eouiiuiiriieiiirtirit ettt ettt ettt et ettt st s b et sbe et esbe et enbeeanenaeenees 2
EXPEITMENTAL .....ccuiiiiiiiiieiiicieeeee ettt ettt et e st e e e e e b e e be e seeesseassaesseesseessaessseenseessesseenns 2
N 1TSS 0 5 PP 3
SYNTNESIS OF ...ttt ettt et e e eetae e b e esbeessaesasessseesseesssessseesseesseesseesssennss 3
N0 1T o i TS 4
SYNTNESIS OF 7.ttt ettt e st e et e eeaeeebeesseesseesaseesseesseesssessseesseesseesseensseessas 6
N0 1TSS I 0§ PP 8
NMR and FTIR SPECIIA ...c.uviiiiiiiieiieeiieiieiteette et este e eesaeeveesseessaessseesseesseesssessseesseessaesseessseessenns 10
Surface Area and Porosity ANALYSIS .......ccierierieeiiieiieeieeie ettt et seeesete et et e et et e neeeaeens 16
Micropollutant REMOVAL ..........c.ccoiiiiiiiiiiiiecie ettt ettt e b e ssbeesbeensaenneas 17
AdSOTPLION EXPETIMEIILS ....vevveeerierierereereeteesteeeeteeseesseesseesseeesseesseessessssesseeseesssesssesseesseesssessssanns 17
REMOVAL ©fFICIENCY ..veovviiiiieiiiciicieeeeee et ettt b e et essaeeeseesseesteenneas 17
PN 0] 5 012 (o) 0 - T 2 (o1 RS US 18
AdSOTPLION TSOTNEIINS .....eiviiiiiciiieiiecie ettt ettt et e et e et e e beessaeesseesbeesseesssessseenseeseesssennns 23
Binary-Component AdSOTPHIONS ......c.ceiieeiiieiierie et etee ettt et e et e e sneeseeeseeseeeneas 24
RETEIEIICES ...ttt ettt sttt a ettt ettt ebe e 25

S1



General Considerations

All reagents and solvents were acquired from commercial suppliers and used as received, unless
otherwise specified. Pollutant solutions were prepared with deionized water at neutral pH. Column

chromatography was performed over silica gel.

'H-, NEOSY-, COSY-, and DOSY-NMR spectra were recorded on Agilent VNMRS 500
spectrometers using TMS as an internal reference at 25 °C. Mass spectra were measured on a Thermo
Scientific Thermo Q Exactive HR mass spectrometer equipped with a LC unit. Melting points were
determined using a Stuart SMP10 instrument with 1 °C min~! temperature increment under ambient
conditions. SEM analyses were carried out by using FEI QuantaFEG 250 SEM instrument in ESEM
mode or using Tescan Vega 3 instrument. XRD measurements were carried out with a PANalytical
X’Pert PRO instrument equipped with Cu Ka X-Ray source at 1.5406 A wavelength and 3°/min scan
rate. FTIR spectra were collected on a Perkin Elmer FT-IR Spectrum One spectrometer.
Stereomicroscope imaging was conducted by using a Discovery V20 microscope equipped with an
AxioCam ICc 1 digital camera system. Surface area and pore size analyses were carried out with a

Quantachrome Autosorb iQ instrument.

Compounds 3,' 4,2 and 5° were prepared according to previous literature procedures.
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Synthesis of 3

Compound 3 was synthesized similar to a previously reported procedure as a white powder with 27%

yield.!
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Figure S1. '"H NMR spectrum of 3 recorded in CDCl3 (500 MHz, 25 °C).
Synthesis of 4
Compound 4 was prepared based on our previously published procedure.”
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Figure S2. '"H NMR spectrum of 4 recorded in CDCl3 (500 MHz, 25 °C).
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Synthesis of 1

A mixture of 3 (2.0 g, 2.52 mmol), 4 (1.08 g, 2.29 mmol), and DMAP (28.2 mg, 0.23 mmol) in
methylene chloride (45 mL) was heated in a Schlenk tube to obtain a clear solution. DCC (524 mg,
2.52 mmol in 5 mL CH>Clz) was then added dropwise in to the mixture. The final reaction mixture
was allowed to stir for 72 h under N> atmosphere. Once completed, the reaction mixture was washed
sequentially with (i) HCI solution (50 mL, 0.2 N), (ii) saturated NaHCO3 solution (50 mL), and (iii)
distilled water (50 mL) twice. After drying the organic phase with anhydrous Na>SO4, CH2Cl> was
evaporated under reduced pressure. TLC analysis of the crude mixture revealed Rf value of 0.32 for
the product when DCM was used as mobile phase. Column chromatography (silica gel, CH2CI2
eluent) afforded compound 1 as a white solid (1.60 g, 56%). '"H NMR (500 MHz, CDCl3) § = 7.08 (s,
2H, NH), 7.06 (s, 2H, NH), 6.94 (s, 1H, CH), 6.82-6.78 (m, 8H, CH), 6.72 (s, 1H, CH), 5.92-5.89 (m,
8H, pyrrole-CH), 4.45 (s, 2H, -CH2-), 4.09 (t, J = 6.7 Hz, 2H, —CH>-), 3.86 (s, 2H, —CH>-), 3.79
(m, 6H, —-CH»-), 3.76 (s, 2H, —CHz-), 3.68-3.65 (m, 27H, —-OCH3), 1.92-1.89 (m, 2H, —CH>-), 1.53-
1.51 (m, 20H, —CH3), 1.46 (s, 3H, —CH3) ppm. '*C NMR (126 MHz, CDCl3) 6 = 169.3, 151.5, 150.9,
150.8, 149.0, 138.8, 138.6, 138.4, 136.7, 129.0, 128.2, 128.1, 128.0, 115.4, 114.2, 114.1, 113.9, 103.9,
102.9, 102.8, 69.8, 66.5, 65.3, 55.8, 55.7, 55.6, 53.1, 38.5, 36.8, 35.2, 29.8, 29.6, 29.3, 29.2, 29.0,
26.2, 23.9, 18.9 ppm. HRMS (ESI): m/z calcd for C76Ho2NsO12 [M+NH4]*: 1266.67425; found:
1266.671809.

O T NON N D 0N OO oo AN O M~ ©

OSSN~ o @ S OONNO0 @® 00T

NN OO oo 0w A o0 T o P T o0 B o0 B o0 T S i sttt ol

NN \/ IS NN
6,7

. k , ]0
* * |
)
31 2 "
I '
| IV

bt i e i W A

NS = © © © o &8 S«

%3558 3 s 8 S 23

) — 00 ~ N N (321 N - ™

T T y T y g T — T T T T T T ' y T T
80 75 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

S (ppm)

Figure S3. '"H NMR spectrum of 1 recorded in CDCl3 (500 MHz).
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Figure S4. 3C NMR spectrum of 1 recorded in CDCl3 (126 MHz).
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Figure S5. HR-ESIMS spectrum of 1.
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Synthesis of 7

To a 4 mL CH:Cl; solution of 5-azidopentanenitrile (220 mg, 1.77 mmol) and 10-undecynoic acid
(363 mg, 1.95 mmol), 4 mL distilled water was added. Then, sodium ascorbate (421 mg, 2.13 mmol)
and CuSO4:(H20)s5 (177 mg 0.71 mmol) were added in one portion to the aqueous phase. The final
mixture was stirred at rt for 48 h under N> atmosphere. After completion, the reaction mixture was
diluted with 50 mL CH2Cl> and washed with acetic acid (0.2 M, 4 x 30 mL) and water (4 x 10 mL).
Organic phase was then dried over anhydrous Na;SO4, and the solution was concentrated under
reduced pressure. Precipitation into hexane afforded a white solid (358 mg, 66%). M.p. 71-73 °C. 'H
NMR (500 MHz, CDCl3) 8 = 7.31 (s, 1H), 4.40 (t, /= 6.8 Hz, 2H), 2.76 — 2.69 (m, 2H), 2.41 (t, J =
6.9 Hz, 2H), 2.35 (t, /=7.5 Hz, 2H), 2.14 — 2.04 (m, 2H), 1.74 — 1.60 (m, 6H), 1.40 — 1.30 (m, 8H).
3C NMR (126 MHz, CDCl3) § = 178.8, 148.6, 120.7, 119.0, 49.1, 34.0, 29.3, 29.0, 28.9, 25.4, 24.7,
22.3,16.7 ppm. HRMS (ESI): m/z calcd for C16H27N4O2 [M+H]*: 307.21285; found: 307.21289.
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Figure S6. 'H NMR spectrum of 7 recorded in CDCl3 (500 MHz).
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Figure S7. 3C NMR spectrum of 7 recorded in CDCl; (126 MHz).
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Figure S8. HRMS (ESI) spectrum of 7.
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Synthesis of 2

To a CHCIl; solution (2 mL) of 7 (33 mg, 0.11 mmol), isopropyl alcohol solution of
tetrabutylammonium hydroxide (TBAOH) (106 mM, 1 mL) was added dropwise. The reaction
mixture was stirred at room temperature for 20 min. Removal of solvent followed by drying under
vacuum afforded 2 quantitatively as a colorless sticky liquid. "TH NMR (500 MHz, CDCl3) § 7.33 (s,
1H), 4.37 (t, J= 6.8 Hz, 2H), 3.31 — 3.24 (m, 8H), 2.66 (t, J= 7.7 Hz, 2H), 2.39 (t, J = 7.0 Hz, 2H),
2.17 - 2.12 (m, 2H), 2.10 — 2.00 (m, 2H), 1.72 — 1.51 (m, 14H), 1.41 (h, J = 7.4 Hz, 8H), 1.28 (m,
8H), 0.98 (t,J= 7.3 Hz, 12H) ppm. *C NMR (126 MHz, CDCl3) §=179.3, 148.7,120.7, 119.1, 58.7,
48.9, 38.1, 29.7, 29.4, 29.3, 29.2, 29.1, 29.1, 26.6, 25.6, 24.0, 22.3, 19.7, 16.6, 13.7 ppm. HRMS
(ESI): m/z calcd for Ci16H25N4O>~ [M—TBA] : 305.19830; found: 305.19809.
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Figure S9. '"H NMR spectrum of 2 recorded in CDCl3 (500 MHz).
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Figure S10. '3C NMR spectrum of 2 recorded in CDCls (126 MHz).
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Figure S11. HRMS (ESI) spectrum of 2 recorded in negative ionization mode.
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NMR and FTIR Spectra
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Figure S12. Partial NOESY spectrum of SP recorded in CDCI3 (500 MHz) at 25 °C. The correlation

peaks indicate the inclusion of alkylnitrile unit of guest 2 into the PSA segment of host 1.
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Figure S13. '"H NMR spectra recorded in CDCl; (500 MHz) showing the changes on C4P, P5A, and
alkylnitrile peaks during the titration of 1 (10 mM) with incremental amount of 2. From bottom

to top the equivalent of 2 increases in the order of 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
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Figure S14. "H NMR spectra recorded in CDCl; (500 MHz) showing the changes on C4P, P5A, and
alkylnitrile peaks during the titration of 2 (10 mM) with incremental amount of 1. From bottom

to top the equivalent of 1 increases in the order of 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
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Figure S15. '"H NMR spectra, recorded in CDCl; (500 MHz), showing the peak broadenings and
chemical shift changes upon increasing the concentration of SP. From bottom to top the

concentration of SP: 5, 10, 20, 40, 80, 160, and 233 mM.
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Surface Area and Porosity Analysis
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Figure S20. N> adsorption (solid symbols) and desorption (open symbols) isotherms at 77.35 K of
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Micropollutant Removal

Adsorption experiments

Experiments for pollutant removal were conducted at room temperature (25.0 °C) in an aqueous
environment using 1-naphthol (1N), 2-naphthol (2N), 1-naphthyl amine (1NA), and 2-naphylamine
(2NA), bisphenol A (BPA), methylene blue (MB), methyl orange (MO), rhodamine B (RB),
Fluorescein sodium (FL), methyl violet (MV), paraquat (PQ), diquat (DQ), as organic
micropollutants. For studies involving XG, the supramolecular polymer xerogel (5.00 mg) was
initially cleansed with deionized water for 5.00 minutes and subsequently filtered using Whatman
filter paper. Subsequently, XG was transferred to a 10.0 mL vial. A pollutant stock solution (0.100
mM, 5.00 mL) was then added to the flask. The mixture was promptly transferred to a shaker, and at
predetermined intervals, 1.00 mL of the sample from the flask was taken using a calibrated syringe,
diluted with a certain amount of deionized water (dilution factors are 2.5 for 1N and 2N, 6.0 for the
other micropollutants), and immediately filtered through a membrane filter. UV/Vis spectroscopy
was employed to measure the residual concentration of the pollutant in each sample. The detection

wavelengths were determined by the characteristic absorption peak of each sample.

Removal efficiency

The pollutant removal efficiency (in %) by adsorbent XG was calculated using this equation:

Co—C
0t 100

Pollutant removal ef ficiency (%) =
where €, (mM) and C; (mM) are the concentrations of pollutant before and after adsorption,
respectively.

The adsorbed pollutant amount was calculated using the following equation:

(Co— Co) X M,
m

q: =

where q; (mg g') is amount of pollutant adsorbed per g of sorbent at time ¢ (min). C, (mmol L")
and C, (mmol L') are the initial and residual concentration of pollutant in the stock solution and
filtrate, respectively; m (g) is the mass of sorbent used in the study. M,, (g mol™!) is the molar mass

of the pollutant.
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Adsorption kinetics

The adsorption kinetics were quantified using the pseudo-first order model,* the pseudo-second order
model® and the Weber and Morris intra-particle diffusion model® were employed. These adsorption

kinetics are expressed by the following equations:

Model Equation Nonlinear curve fit equation
Pseudo-first order In(q, — q¢) = In(q,) — kqt qt = q.(1 — e F1t) Si
t
t 1 g = ———
Pseudo-second order =t Tt + 1 S2
qe qe 29e qe kzqez
Weber and Morris qe = kit’?+C S3

where g, (mg g!) is the amount of dye adsorbed by the adsorbent at time ¢ (min); g, (mg g') is the
amount of dye adsorbed by the adsorbent at equilibrium, respectively, k; (min™"); k, (g mg~' min™")
and k; (mg g~! min®®) stand for the pseudo-first-order model, the pseudo-second-order model and the
Weber and Morris intra-particle diffusion model rate constants, respectively; C represents a constant
related to the thickness of the boundary layer. The constants mentioned here can be determined by

performing a nonlinear or linear fit of the experimental data using the appropriate model.
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Figure S22. Micropollutant removal efficiencies of XG based on the proper calculations from

micropollutant calibration curves.
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Figure S23. UV/Vis absorption spectra of aqueous solutions of organic micropollutants (0.1 mM) in

the presence of XG (1.0 mg mL") recorded as a function of increasing adsorption times.
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Table S1. Rate parameters and nonlinear regression correlation coefficients of the pseudo-first-order
model, the pseudo-second-order model and the Weber and Morris intraparticle diffusion model of XG

in adsorptions.

Pseudo-first order Pseudo-second order
model model Weber and Morris model
Ent Eff. qe kq R? k, R? ki R? ki R?
ntry o, / P IR 12 s 12
0 mg/g min g mg " min mg g min mg g min

1IN 80.5 11.56  0.02099 0.99573 0.00431 0.88904 1.37607 0.98517 0.10165 0.8835
2N 84.8 11.8  0.01765 0.99824 0.00347 0.89143 1.16183 0.9915 0.05989 0.81756

INA 203 29 0.01338 0.9985 0.01138 0.96108
2NA 2211 32 0.01565 0.99649 0.01296 0.95527
BPA 253 58 0.01142 0.99469 0.00393 0.92179
MB 148 4.7 0.01353 0.99606 0.01271 0.92967
MO 4.0 1.3 0.01464 0.99755 0.02209 0.9307
RB 34  1.63  0.01531 0.98741 0.01862 0.90243
FL 9.1 342  0.01415 0.99414 0.0082 0.92015
MV 2.9 1.2 0.01549 0.98589 0.02571 0.90414
PQ 7.8 2.0 0.02199 0.99697 0.03461 0.9683

DQ 10.1 3.5 0.04471 0.99925 0.03861 0.98824

1.8
1.6 1N — 1Stock 2.5 2N - 1Stcck
1.4 204
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Figure S24. UV/Vis spectra showing the inefficient micropollutant uptake performance of the
supramolecular monomer 1 (1 mg/mL) after 3 h contact with 5 mL 1N and 2N solutions (0.1

mM).
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Figure S25. Pseudo-first- and pseudo-second-order nonlinear curve fits

micropollutants studied.
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Figure S26. Fits to Weber and Morris intra-particle diffusion model for 1N and 2N uptakes by XG.
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Figure S27. 1N and 2N removal efficiencies by XG after consecutive regeneration cycles.
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Adsorption isotherms

The adsorption isotherm was described using the Langmuir adsorption isotherm model.” The

corresponding isotherm parameter can be calculated using the following equation:

C, 1 C,

= +
de  9maxK  Qmax

where K stands for the Langmuir constant, and G4, (mg g™') is the maximum adsorption amount,
C, (mg L) is the residual dye concentrations of the dye adsorbed by XG at equilibrium and g, (mg
g™!) is the amount of dye adsorbed by XG at equilibrium. All the constants mentioned above can be
calculated by the linear fitting of the experimental data using the isotherm model. See main text Fig.

2 for the corresponding isotherm graphics.
We also utilized the empirical Freundlich adsorption isotherm model.* ? The isotherm parameters in
question can be determined by applying the following equation:

1
InQ, = InKy + ElnCe

In this equation, Ky represents the Freundlich equilibrium constant (mg/L), while n indicates the

energy heterogeneity of adsorption sites, reflecting the nonlinearity between solution concentration

and adsorption. See main text Fig. 2 for the corresponding isotherm graphics.

Table S2. The adsorption isotherm parameters derived from fitting isotherm models to the

experimental data of XG in the adsorption process.

Langmuir isotherm model Freundlich isotherm model
Micropollutant KL (L mg™) (mex (Mg g71) R, Kr (L mg™) n R?
1IN 6665 108.7 0.9952 4.78 1.09  0.9844
2N 8426 122.6 0.9943 6.62 1.12 0.9884
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Binary-Component Adsorptions
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Figure S28. UV/Vis absorption spectra belonging to aqueous solutions of binary mixtures of organic

micropollutants (0.1 mM each) in the presence of XG (1.0 mg mL") recorded as a function

of increasing adsorption times (0, 60, 120, and 180 min). Second components (MB, MO, and

PQ) were also included in the spectra for comparison.

The ability of XG to adsorb 1IN and 2N selectively from aqueous binary organic micropollutant

mixtures containing equimolar MB, MO and PQ were carried out similar to kinetic experiments. For

instance, an XG sample (1 mg mL™') was added to an equimolar mixture of 1N and MB (0.1 mM)

and supernatants (1 mL) were taken at certain time intervals from adsorption medium. After dilution

of the sample to 2.5 mL UV/Vis measurements were carried out (Figure S27). Other binary

S24



components were also analyzed under the same conditions. Efficiency and selectivity results based

on UV/Vis analyses can be found at Table S3.

Table S3. Removal efficiency and selectivity data belonging to binary-components after 180 min.

1IN efficiencies Second component efficiencies
Eff. (%)  Change (%) Eff. (%) Eff. (%)  Change (%)

IN only 75.65

1IN + MB 72.22 -3.43 MB only 13.95 IN + MB 27.01 +13.06

IN + MO 74.53 -1.12 MO only 3.77 IN +MO 3.65 -0.12

IN +PQ 72.95 -2.70 PQ only 7.76 IN +PQ 7.41 -0.35

2N efficiencies Second component efficiencies
Eff.(%)  Change (%) EAf. (%) Eff.(%)  Change (%)

2N only 77.97

2N + MB 76.70 -1.27 MB only 13.95 2N +MB 28.98 +15.03

2N + MO 75.99 -1.98 MO only 3.77 2N + MO 4.50 +0.73

2N +PQ 74.23 -3.74 PQ only 7.76 2N +PQ 7.78 +0.02
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