Supporting Information

In-situ Oxidizable Directing Group-Enabled Enantioselective Synthesis of Chiral Platform Ferrocene Formaldehydes

Devendra Parganiha, Ashwini Dilip Dhumale, Yagya Dutt Upadhyay, Vishal Choudhary, Svastik Jaiswal, Raushan Kumar Jha, and Sangit Kumar*

Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, India, 462 066

E-mail: sangitkumar@iiserb.ac.in

S. No	Contents	Page No.
1	General experimental details and synthesis of ferrocenyl amines,	S2-S5
	MPAA ligands, and acrylates.	
2	Optimization of the reaction condition for the enantioselective C-	S6-S10
	H activation of ferrocenyl amines	
3	Synthesis of chiral 1-alkenylated-2-ferrocene formaldehydes and	S11-S37
	their HPLC traces	
4	Post-synthetic transformation of chiral 1,2-ferrocene	S38-S41
	formaldehydes.	
5	Mechanistic investigation on enantioselective C-H activation	S42-S49
	versus β - H oxidation	
6	Computational Studies	S50-S56
7	Multinuclear (¹ H, ¹³ C, ¹⁹ F, ⁷⁷ Se) NMR spectra of chiral 1,2-	S57-S114
	ferrocene formaldehyde derivatives and post-derivatized	
	compounds	
8	References	S115

General Experimental Details

Starting materials were prepared under an inert atmosphere (N₂, Ar), and Pd-Catalyzed 1,2 substituted ferrocene formaldehyde was prepared under dry air. Primary analyses were carried out using thin-layer chromatography (TLC) with silica-coated plates. Reagents were procured from commercial sources, including Sigma Aldrich, Alfa Aesar, BLD Pharma, and Spectrochem. The Solvents were meticulously dried by following standard procedures. Nuclear Magnetic Resonance (NMR) spectral data were collected using Bruker 400, 500, and 700 MHz spectrometers, with chemical shift values reported in parts per million (ppm) relative to CDCl₃ as an internal standard (7.26 ppm for ¹H, 77.16 ppm for ¹³C). ¹⁹F NMR data are reported in δ units (ppm) and were measured relative to the signals for residual CFCl₃ (0.00 ppm) in the deuterated chloroform solvent unless otherwise stated. Multiplicity was denoted using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), td (triplet of doublet), and m (multiplet). High-resolution mass spectrometric (HRMS) analyses were performed using a quadrupole time-of-flight mass spectrometry (Q-TOF-MS) instrument with an electrospray ionization (ESI) technique. Chiral analysis was carried out using highperformance liquid chromatography (HPLC) equipment from Agilent Technologies, employing CHIRALCELL OZ-3, AD-H, IC-3, and AD-3 chiral HPLC columns. The weighing balance utilized was from Sartorius (model BSA224S-CW). Single crystal X-ray data were collected using a Bruker APEX-II CCD diffractometer equipped with a CMOS Photon 100 detector. Crystal structures were refined using the Olex2 and WinGX Program System package with the SHELXL-2019/2 program. The starting material and amines were freshly prepared by following a reported procedure with slight modifications, while ferrocene carboxaldehyde was directly purchased from BLD Pharm India and used without further purification. Amino acids and R-BINOL were directly purchased from commercial sources and further modified using the reported procedure.

Synthesis of ferrocenyl amines precursors 1a-1h

Ferrocenyl amines **1a-1f**, and **1h** were synthesized according to the previously reported literature procedure¹ and ferrocenyl amine **1g** was purchased commercially.

Figure S1. Synthesis of ferrocenyl amines 1a-1h

Synthesis of olefins precursors 2a-2aa

Olefins **2a-2t**, **2z**, and **2aa** were synthesized according to the previously reported literature procedure², and olefins **2u-2y** were purchased commercially.

Figure S2. Synthesis of olefins 2a-2aa

Synthesis of monoprotected amino acid ligand L1-L9

Monoprotected amino acid-derived ligand L1-L9 was synthesized according to the reported

literature procedure.³

Figure S3. Synthesis of monoprotected amino acid ligand L1-L9

Reaction Optimization

Reaction optimization for enantioselective synthesis of Chiral 1,2-alkenylated ferrocene formaldehydes.

Table S1. Reaction optimization by varying the solvents, time, and temperature ^a

Entry	Solvent	Time (h)	Temp. (°C)	Yield (%)"	<i>er</i> (%) ^c
1	THF	24	60	20	90:10
2	Toluene	24	60	18	85:15
3	DMF	24	60	15	70:30
4	DMSO	24	60	10	78:22
5	<i>tert</i> -amyl alcohol	24	60	32	70:30
6	<i>tert</i> -amyl alcohol	30	60	38	70:30
7	<i>tert</i> -amyl alcohol	30	55	42	78:22

Reaction conditions: (a) **1a** (35 mg, 0.1 mmol, 1 equiv), **2a** (2 equiv), $Pd(OAc)_2$ (10 mol%), L1 (40 mol%), Cs_2CO_3 (2 equiv), $Cu(OAc)_2$ (1.5 equiv), DMSO (5 equiv), dry solvent (1 mL), air, 60 °C, 24h. (b) Crude yield of **3a** is determined by ¹H NMR with CH_2Br_2 as an internal standard. (c) *er* of **3a** was determined by HPLC analysis. (d) The reaction was stirred for 30 h at 55 °C.

 Table S2. Ligand Screening ^a

<u> </u>	L2 (40 mol 70)	15	10.2
3	L3 (40 mol%)	65	96:4
4	L4 (40 mol%)	68	94:6
5	L5 (40 mol%)	64	95:5
6	L6 (40 mol%)	50	94:6
7	L7 (40 mol%)	32	87:13
8	L8 (40 mol%)	61	96:4
9	L9 (40 mol%)	42	92:8
10	L2 (20 mol%)	45	92:8
11	L2 (30 mol%)	51	94:6
12	L2 (50 mol%)	73	98:2
13 ^d	L2 (40 mol%)	60	96:4

Reaction conditions: (a) **1a** (35 mg, 0.1 mmol, 1 equiv), **2a** (2 equiv), $Pd(OAc)_2$ (10 mol%), ligand (mol%), Cs_2CO_3 (2 equiv), $Cu(OAc)_2$ (1.5 equiv), DMSO (5 equiv), dry *tert*-amyl alcohol (1 mL), air, 55 °C, 24h. (b) Crude yield of **3a** is determined by ¹H NMR with CH₂Br₂ as an internal standard. (c) *er* of **3a** was determined by HPLC analysis. (d) THF solvent was used instead of *tert*-amyl alcohol.

Table S3. Base Optimization ^a

9

10

11

12

13

<u>14</u>

15

NaOAc

KF

CsF

NEt₃

 Cs_2CO_3

Cs₂CO₃

 Cs_2CO_3

2

2

2

2

1.5

1

2.5

18

15

20

3

68

60

71

80:20

87:13

89:11

N.R.

97:3

94:6

98:2

Reaction conditions: (a) **1a** (35 mg, 0.1 mmol, 1 equiv), **2a** (2 equiv), $Pd(OAc)_2$ (10 mol%), **L2** (40 mol%), Base, $Cu(OAc)_2$ (1.5 equiv), DMSO (5 equiv), *tert*-amyl alcohol (1 mL), air, 55 °C, 30h. (b) Crude yield of **3a** is determined by ¹H NMR with CH₂Br₂ as an internal standard. (c) *er* of **3a** was determined by HPLC analysis.

 Table S4. Oxidant Screening ^a

Entry	Oxidant	Equiv	Yield (%) ^b	er (%) ^c
1	Air	1.5	5	96:4
2	O ₂	1.5	7	95:5
3	Ag ₂ CO ₃	1.5	16	95:5
4	AgOAc	1.5	30	95:5
5	Cu(OTf) ₂	1.5	35	96:4
6	CuOTf	1.5	20	95:5
7	Cu(OAc) ₂	1.5	75	98:2
8	CuO	1.5	32	99:1
9	$Cu(OAc)_2$	1.0	58	98:2
10	Cu(OAc) ₂	2.0	76	98:2

Reaction conditions: (a) **1a** (35 mg, 0.1 mmol, 1 equiv), **2a** (2 equiv), $Pd(OAc)_2$ (10 mol%), **L2** (40 mol%), Cs_2CO_3 (2.0 equiv), oxidant, DMSO (5 equiv), *tert*-amyl alcohol (1 mL), air, 55 °C, 30h. (b) Crude yield of **3a** is determined by ¹H NMR with CH_2Br_2 as an internal standard. (c) *er* of **3a** was determined by HPLC analysis.

Table S5. Amine Screening ^a

Reaction conditions: (a) **1** (1 equiv), **2a** (2 equiv), Pd(OAc)₂ (10 mol%), **L2** (40 mol%), Cs₂CO₃, (2 equiv), Cu(OAc)₂ (1.5 equiv), DMSO (5 equiv), *tert*-amyl alcohol (1 mL), air, 55 °C, 30h. (b) Crude yield of **3a** is determined by ¹H NMR with CH₂Br₂ as an internal standard. (c) *er* of **3a** was determined by HPLC analysis.

General procedure for the Pd-catalyzed C-H activation, oxidative deamination of ferrocenylamine 1a with olefins 2a-2aa

Scheme S1. Pd-catalyzed C-H activation oxidative deamination of ferrocenylamine 1a with olefins 2a-2aa

In a Schlenk tube, $Pd(OAc)_2$ (2.3 mg, 0.011 mmol, 10 mol%), L2 (10 mg, 0.044 mmol, 40 mol%), $Cu(OAc)_2$ (30.0 mg, 0.16 mmol, 1.5 equiv), Cs_2CO_3 (71.2 mg, 0.22 mmol, 2 equiv), DMSO (40 μ L, 0.55 mmol, 5 equiv), and ferrocenyl amine **1a** (38 mg, 0.11 mmol, 1 equiv) were added in dry *tert*-amyl alcohol (1.5 mL) under an inert atmosphere and the resulting green-colored solution was stirred for 10 min. After pre-stirring, olefin **2a** (24 μ L, 0.22 mmol, 2 equiv) was added to the resulting reaction mixture. The tube was sealed with a rubber septum, and a dry air atmosphere was maintained in the flask with a balloon. The reaction mixture was passed through a celite pad, evaporation, and column chromatography on silica gel (mesh 230-400) using a hexane: ethyl acetate solvent system to afford Chiral 1,2 alkenylated ferrocene formaldehydes (**3a-3aa**).

Chiral 1,2-formyl ferrocenyl acrylate 3a was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 85:15), obtained as an orange solid, mp: 114-116 °C. Yield: 24 mg (70%). ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 8.04 (d, J = 15.9 Hz, 1H), 6.27 (d, J = 15.9 Hz, 1H), 5.04 – 4.96 (m, 2H), 4.81 (t, J = 2.7 Hz, 1H), 4.31 (s, 5H), 4.30 – 4.24 (m, 2H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.7 (CH), 166.7 (C), 141.8 (CH), 118.3 (CH), 80.9 (C), 78.3 (C), 73.9 (CH), 73.3 (CH), 71.7 (CH), 71.4 (CH), 60.5 (CH₂), 14.3 (CH₃). HRLCMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₆H₁₇FeO₃ 313.0522, found 313.0501. Enantioselectivity of **3a** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Racemic sample (3a)

7.663 MM

9.075 MM

1

2

97.9511

2.0489

0.4128 3.74173e4 1510.84119

40.90013

0.3189 782.67926

Chiral 1,2-formyl ferrocenyl acrylate 3b was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 90:10), obtained as an orange solid, mp:110-112 °C. Yield: 22 mg (68%). ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 8.07 (d, *J* = 15.9 Hz, 1H), 6.27 (d, *J* = 15.9 Hz, 1H), 5.00 (t, *J* = 2.9 Hz, 2H), 4.81 (t, *J* = 2.7 Hz, 1H), 4.31 (s, 5H), 3.82 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.7 (CH), 167.1 (C), 142.1 (CH), 117.8 (CH), 80.7 (C), 78.4 (C), 74.0 (CH), 73.5 (CH), 71.7 (CH), 71.4 (CH), 51.6 (CH₃). HRLCMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₅FeO₃ 299.0365, found 299.0357. Enantioselectivity of **3b** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Chiral 1,2-formyl ferrocenyl acrylate 3c was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 85:15), obtained as an orange solid, mp:118-120 °C. Yield: 27 mg (71%). ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 7.92 (d, *J* = 15.8 Hz, 1H), 6.19 (d, *J* = 15.8 Hz, 1H), 4.99 (dd, *J* = 7.7, 6.4 Hz, 2H), 4.79 (t, *J* = 2.6 Hz, 1H), 4.31 (s, 5H), 1.56 (s, 9H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.7 (C), 166.1 (C), 140.5 (CH), 120.3 (CH), 81.4 (C), 80.5 (C), 78.2 (C), 73.8 (CH), 72.9 (CH), 71.7 (CH), 71.3 (CH), 28.2 (CH₃). HRLCMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₈H₂₀FeO₃Na 363.0654, found 363.0641. Enantioselectivity of **3c** was determined by chiral HPLC analysis on AD-3 (hexane: isopropanol = 98:2, 1 mL/min, λ =254 nm).

31.266 MM

2

1.1246 2078.46118

30.80349

2.3973

Chiral 1,2-formyl ferrocenyl acrylate 3d was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 80:20), obtained as an orange solid, mp:129-131 °C. Yield: 27 mg (68%). ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 8.01 (d, *J* = 15.9 Hz, 1H), 6.26 (d, *J* = 16.0 Hz, 1H), 5.00 (s, 2H), 4.86 – 4.91 (m, 1H), 4.81 (d, *J* = 1.7 Hz, 1H), 4.31 (s, 5H), 1.96 (dd, *J* = 9.5, 5.3 Hz, 2H), 1.81 (dd, *J* = 9.8, 6.5 Hz, 2H), 1.58 – 1.35 (m, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.9 (C), 166.3 (C), 141.5 (CH), 118.9 (CH), 81.0 (C), 78.2 (C), 74.0 (CH), 73.2 (CH), 72.9 (CH), 71.8 (CH), 71.4 (CH), 31.7 (CH₂), 25.4 (CH₂), 23.8 (CH₂). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₂₃FeO₃ 367.0991, found 367.0977. Enantioselectivity of 3d was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 75:25, 1 mL/min, λ =254 nm).

Racemic sample (3d)

Chiral 1,2-formyl ferrocenyl acrylate 3e was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 80:20), obtained as an orange solid, mp:139-141 °C. Yield: 30 mg (65%). ¹H NMR (700 MHz, CDCl₃) δ 10.20 (s, 1H), 7.90 (d, J = 15.8 Hz, 1H), 6.18 (d, J = 15.8 Hz, 1H), 4.98 (d, J = 24.6 Hz, 2H), 4.78 (s, 1H), 4.30 (s, 5H), 4.24 – 4.07 (m, 1H), 2.22 (s, 8H), 1.80 – 1.66 (m, 7H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.6 (CH), 165.7 (C), 140.4 (CH), 120.4 (CH), 81.4 (C), 80.6 (C), 78.2 (CH), 73.8 (CH), 72.7 (CH), 71.7 (CH), 71.3 (CH), 41.4 (CH), 36.2 (CH), 30.8 (CH₂), 29.7 (CH₂), 28.6 (CH₂). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₄H₂₇FeO₃ 419.1304, found 419.1270. Enantioselectivity of **3e** was determined by chiral HPLC analysis on IC-3 (hexane: isopropanol = 60:40, 1 mL/min, λ =254 nm).

Chiral 1,2-formyl ferrocenyl acrylate 3f was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 80:20), obtained as an orange solid, mp:136-139 °C. Yield: 26 mg (67%). ¹H NMR (700 MHz, CDCl₃) δ 10.21 (s, 1H), 8.27 (d, *J* = 15.8 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.26 (s, 1H), 7.20 (d, *J* = 7.8 Hz, 2H), 6.46 (d, *J* = 15.8 Hz, 1H), 5.06 (d, *J* = 10.2 Hz, 2H), 4.87 (s, 1H), 4.36 (s, 5H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.7 (CH), 165.1 (C), 150.8 (C), 144.3 (CH), 129.4 (CH), 125.7 (CH), 121.6 (CH), 117.2 (CH), 80.3 (C), 78.6 (C), 74.3 (CH), 74.0 (CH), 72.0 (CH), 71.5 (CH). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₁₇FeO₃ 361.0522, found 361.0529. Enantioselectivity of the product **3f** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 85:15, 1 mL/min, λ =254 nm).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.335	VB	0.6536	1.43848e4	312.18893	97.3443
2	22.268	MM	0.7854	392.44504	8.32751	2.6557

2 27.043 BB

0.7720 869.02753

14,99706

2.5133

Chiral 1,2-formyl ferrocenyl acrylate 3g was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 75:25), obtained as an orange solid, mp:144-146 °C. Yield: 29 mg (65%). ¹H NMR (400 MHz, CDCl₃) δ 10.23 (s, 1H), 8.32 (d, *J* = 15.8 Hz, 1H), 7.95 – 7.83 (m, 3H), 7.69 (d, *J* = 1.9 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.35 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.52 (d, *J* = 15.8 Hz, 1H), 5.12 – 5.05 (m, 2H), 4.88 (t, *J* = 2.7 Hz, 1H), 4.38 (s, 5H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.7 (C), 165.3 (C), 148.5 (C), 144.5 (C), 133.4 (CH), 131.5 (CH), 129.4 (CH), 127.8 (CH), 127.7 (CH), 126.5 (C), 125.6 (CH), 121.3 (CH), 118.6 (CH), 117.1 (CH), 80.3 (C), 78.6 (C), 74.4 (CH), 74.2 (CH), 72.0 (CH), 71.5 (CH). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₄H₁₉FeO₃ 411.0678, found 411.0678. Enantioselectivity of **3g** was determined by chiral HPLC analysis on AD-3 (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Chiral 1,2-formyl ferrocenyl acrylate 3h was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 75:25), obtained as an orange solid, mp:140-141 °C. Yield: 26 mg (64%). ¹H NMR (700 MHz, CDCl₃) δ 10.19 (s, 1H), 8.09 (s, 1H), 7.45 (d, J = 7.2 Hz, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.37 (d, J = 7.2 Hz, 1H), 6.31 (d, J = 15.8 Hz, 1H), 5.26 (d, J = 4.6 Hz, 2H), 5.02 – 5.00 (m, 1H), 4.98 (s, 1H), 4.81 (t, J = 2.6 Hz, 1H), 4.31 (s, 5H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.6 (CH), 166.5 (C), 142.6 (CH), 136.1 (C), 128.6 (CH), 128.4 (CH), 128.2 (CH), 117.8 (CH), 80.7 (C), 78.5 (C), 74.1 (CH), 73.4 (CH), 71.8 (CH), 71.4 (CH), 66.3 (CH₂). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₁₉FeO₃ 375.0678, found 375.0689. Enantioselectivity of **3h** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

2 14.465 MM

0.4799 1917.67139

66.59586

4,9264

Chiral 1,2-formyl ferrocenyl acrylate 3i was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 80:20), obtained as an orange solid, mp:140-142 °C. Yield: 27 mg (65%). ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 8.25 (d, *J* = 16.6 Hz, 1H), 7.23 (d, *J* = 8.6 Hz, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 6.46 (d, *J* = 16.1 Hz, 1H), 5.06 (s, 2H), 4.87 (s, 1H), 4.36 (s, 5H), 2.39 (s, 3H).¹³C {¹H} NMR (176 MHz, CDCl₃) δ 192.7 (CH), 165.3 (C), 148.6 (C), 144.1 (C), 135.4 (CH), 129.9 (CH), 121.3 (CH), 117.3 (CH), 80.4 (C), 78.5 (C), 74.3 (CH), 73.9 (CH), 72.0 (CH), 71.5 (CH), 20.9 (CH₃). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₁₉FeO₃ 375.0678, found 375.0644. Enantioselectivity of **3i** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Racemic sample (3i)

1 12.182 MM

2 17.739 MM

0.6487 2.97893e4

0.6395 1504.81995

765.38721

39.21744

95.1914

4.8086

Chiral 1,2-formyl ferrocenyl acrylate 3j was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as an orange solid, mp:142-144 °C. Yield: 25 mg (60%). ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.28 (d, *J* = 15.9 Hz, 1H), 7.24 – 7.04 (m, 4H), 6.45 (d, *J* = 15.2 Hz, 1H), 5.06 (brs, 2H), 4.87 (s, 1H), 4.36 (s, 5H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.7 (C), 165.1 (C), 160.1 (d, *J*_{C-F} = 244.1 Hz; CF).144.7 (C), 123.0 (CH), 116.8 (CH), 115.9 (CH), 80.1 (C), 78.6 (C), 74.4 (CH), 74.3 (CH), 72.0 (CH), 71.5 (CH). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₁₆FFeO₃ 379.0428, found 379.0399. Enantioselectivity of **3j** was determined by chiral HPLC analysis on IC-3 (hexane: isopropanol = 60:40, 1 mL/min, λ =254 nm).

Racemic sample (**3j**)

					0	
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.966	MM	1.0664	4.27127e4	667.55646	94.0874
2	19.918	MM	1.0715	2684.13940	41.74949	5.9126

Chiral 1,2-formyl ferrocenyl acrylate 3k was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as an orange solid, mp:147-149 °C. Yield: 22 mg (52%). ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 8.28 (d, J = 8.8 Hz, 2H), 8.19 (d, J = 15.8 Hz, 1H), 7.61 (d, J = 8.7 Hz, 2H), 6.34 (d, J = 16.3 Hz, 1H), 5.02 (s, 2H), 4.86 – 4.82 (m, 1H), 4.32 (s, 5H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.7 (C), 166.2 (C), 147.7 (C), 143.9 (C), 143.5 (C), 128.4 (C), 123.8 (C), 116.9 (C), 80.2 (C), 78.6 (C), 74.2 (C), 71.9 (C), 71.5 (C), 64.7 (CH). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₈H₁₄FeNO₅ 380.0202, found 380.0187. Enantioselectivity of **3k** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 70:30, 1 mL/min, λ =254 nm)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.798	MM	0.8526	6504.28711	127.15352	91.3087
2	17.105	BB	0.7084	619.11993	11.79384	8.6913

Chiral 1,2-formyl ferrocenyl acrylate 31 was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as an orange solid, mp:144-146 °C. Yield: 24 mg (54%). ¹H NMR (400 MHz, CDCl₃) δ 10.23 (s, 1H), 8.24 (d, *J* = 15.7 Hz, 1H), 7.27 – 7.21 (m, 1H), 6.63 (d, *J* = 8.7 Hz, 1H), 6.53 (dd, *J* = 7.2, 5.3 Hz, 2H), 6.46 (d, *J* = 16.0 Hz, 1H), 5.06 (s, 2H), 4.86 (s, 1H), 4.36 (s, 5H), 2.99 (s, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.6 (C), 165.3 (C), 151.9 (C), 151.7 (C), 143.8 (C), 129.6 (C), 117.6 (C), 109.9 (C), 109.3 (C), 105.6 (C), 80.5 (C), 78.6 (C), 74.2 (C), 73.8 (C), 71.9 (C), 71.5 (C), 40.5 (CH₃). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₂H₂₃FeNO₃ 404.0944, found 404.0964. Enantioselectivity of **31** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 70:30, 1 mL/min, λ =254 nm).

-						
1	13.037	MM	0.8582	6.16035e4	1196.37036	94.3174
2	17.010	MM	0.6100	3711.58936	101.40859	5.6826

Chiral 1,2 formyl ferrocenyl acrylate 3m was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as an orange solid, mp:140-141 °C. Yield: 22 mg (52%). ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 8.27 (d, *J* = 15.8 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 1H), 6.80 (dd, *J* = 18.2, 9.5 Hz, 3H), 6.45 (d, *J* = 15.7 Hz, 1H), 5.06 (s, 2H), 4.87 (s, 1H), 4.36 (s, 5H), 3.85 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 192.6 (CH), 164.9 (C), 160.5 (C), 151.8 (C), 144.3 (CH), 129.8 (CH), 117.2 (CH), 113.8 (CH), 111.7 (CH), 107.6 (CH), 80.3 (C), 78.6 (C), 74.0 (CH), 72.0 (CH), 71.5 (CH), 68.6 (CH), 55.4 (CH₃). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₁₉FeO₄ 391.0627, found 391.0638. Enantioselectivity of **3m** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 70:30, 1 mL/min, λ =254 nm).

Chiral 1,2 formyl ferrocenyl acrylate 3n was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as an orange solid, mp:134-136 °C. Yield: 28 mg (62%). ¹H NMR (400 MHz, CDCl₃) δ 10.19 (s, 1H), 8.07 (d, *J* = 15.9 Hz, 1H), 7.39 (d, *J* = 8.6 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 6.29 (d, *J* = 15.8 Hz, 1H), 5.19 (d, *J* = 2.8 Hz, 2H), 4.99 (d, *J* = 16.9 Hz, 2H), 4.81 (t, *J* = 2.6 Hz, 1H), 4.30 (s, 5H), 3.85 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.6 (C), 166.6 (C), 159.7 (C), 142.3 (CH), 130.2 (CH), 128.2 (C), 118.0 (CH), 114.0 (CH), 80.8 (C), 78.4 (C), 74.0 (CH), 73.3 (CH), 71.8 (CH), 71.4 (CH), 66.1 (CH₂), 55.3 (CH₃). HRLCMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₂H₂₀FeO₄Na 427.0603, found 427.0597. Enantioselectivity of **3n** was determined by chiral HPLC analysis on AD-3 (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Chiral 1,2-formyl ferrocenyl acrylate 30 was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 75:25), obtained as an orange solid, mp:139 °C. Yield: 29 mg (64%). ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 8.04 (d, *J* = 16.0 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.23 (d, *J* = 7.4 Hz, 3H), 6.26 (d, *J* = 15.6 Hz, 1H), 5.00 (d, *J* = 9.5 Hz, 2H), 4.81 (s, 1H), 4.31 (s, 5H), 4.24 (t, *J* = 5.1 Hz, 2H), 2.71 (t, *J* = 6.3 Hz, 2H), 1.77 (t, *J* = 9.7 Hz, 4H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 192.6 (CH), 166.7 (C), 142.1 (C), 141.9 (CH), 128.4 (CH), 128.3 (CH), 125.8 (CH), 118.2 (CH), 80.9 (C), 78.4 (C), 74.0 (CH), 73.3 (CH), 71.7 (CH), 71.3 (CH), 68.6 (CH₂), 64.4 (CH₂), 35.5 (CH₂), 27.8 (CH₂). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₄H₂₅FeO₃ 417.1148, found 417.1124. Enantioselectivity of **30** was determined by chiral HPLC analysis on AD-3 (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.535	MM	0.6131	6.30308e4	1713.43518	97.0472
2	11.107	MM	0.3462	1917.77332	92.33771	2.9528

Chiral 1,2 formyl ferrocenyl acrylate 3p was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as an orange solid, mp:142 °C. Yield: 26 mg (55%). ¹H NMR (700 MHz, CDCl3) δ 10.20 (s, 1H), 8.36 (d, J = 15.9 Hz, 1H), 7.51 (d, J = 2.5 Hz, 1H), 7.31 (dd, J = 8.6, 2.5 Hz, 1H), 7.21 (d, J = 8.6 Hz, 1H), 6.46 (d, J = 15.8 Hz, 1H), 5.09 (d, J = 1.2 Hz, 1H), 5.07 (d, J = 2.8 Hz, 1H), 4.89 (t, J = 2.7 Hz, 1H), 4.36 (s, 5H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.7 (CH), 163.8 (C), 145.9 (C), 131.8 (C), 130.1 (CH), 128.0 (CH), 127.9 (CH), 124.7 (CH), 115.6 (CH), 79.5 (C), 78.8 (C), 74.6 (CH), 74.5 (CH), 72.0 (CH), 71.6 (CH). HRLCMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₀H₁₄FeCl₂O₃Na 450.9562, found 450.9577. Enantioselectivity of **3p** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 70:30, 1 mL/min, λ =254 nm).

S27

Chiral 1,2-formyl ferrocenyl acrylate 3q was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 80:20), obtained as an orange solid, mp:140-141 °C. Yield: 26 mg (59%). ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.25 (d, *J* = 15.3 Hz, 1H), 6.82 (d, *J* = 8.8 Hz, 1H), 6.73 (s, 1H), 6.64 (d, *J* = 8.3 Hz, 1H), 6.43 (d, *J* = 15.9 Hz, 1H), 6.02 (s, 2H), 5.05 (s, 2H), 4.87 (s, 1H), 4.36 (s, 5H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.6 (CH), 165.3 (C), 148.0 (C), 145.3 (C), 145.1 (C), 144.3 (CH), 117.0 (CH), 114.0 (CH), 108.0 (CH), 103.8 (CH), 101.7 (CH₂), 80.2 (C), 78.6 (C), 74.3 (CH), 74.0 (CH), 71.9 (CH), 71.5 (CH). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₁₇FeO₅ 405.0420, found 405.0428. Enantioselectivity of **3q** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Chiral 1,2-formyl ferrocenyl acrylate 3r was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 80:20), obtained as an orange solid, mp:132-135 °C. Yield: 26 mg (58%). ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.11 (d, *J* = 16.0 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.39 – 7.30 (m, 3H), 6.74 (d, *J* = 16.0 Hz, 1H), 6.47 – 6.35 (m, 1H), 6.31 (d, *J* = 15.8 Hz, 1H), 5.05 – 4.97 (m, 2H), 4.88 (d, *J* = 6.2 Hz, 2H), 4.82 (s, 1H), 4.32 (s, 5H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.6 (CH), 166.4 (C), 142.4 (C), 136.2 (CH), 134.2 (CH), 128.6 (CH), 128.0 (CH), 126.6 (CH), 123.3 (CH), 117.9 (CH), 80.7 (CH), 78.4 (CH), 74.0 (CH), 73.0 (CH), 71.7 (CH), 71.4 (CH), 65.1 (CH₂). HRLCMS (ESI) *m/z*: [M+H]+ calcd for C₂₃H₂₁FeO₃ 401.0835, found 401.0851. Enantioselectivity of **3r** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Chiral 1,2 formyl ferrocenyl acrylate 3s was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 80:20), obtained as an orange solid, mp:135-137 °C. Yield: 27 mg (52%). ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 8.25 (d, *J* = 14.9 Hz, 1H), 7.52 – 7.35 (m, 7H), 7.12 (d, *J* = 7.9 Hz, 2H), 7.02 (d, *J* = 7.5 Hz, 2H), 6.45 (d, *J* = 14.5 Hz, 1H), 5.09 (s, 2H), 5.06 (s, 2H), 4.86 (s, 1H), 4.36 (s, 5H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 192.6 (CH), 165.4 (C), 156.44 (C), 144.5 (C), 144.0 (C), 128.6 (CH), 128.0 (CH), 127.5 (CH), 122.4 (CH), 117.3 (CH), 116.0 (CH), 115.4 (CH), 80.4 (C), 78.6 (C), 74.2 (CH), 73.9 (CH), 71.9 (CH), 71.5 (CH), 70.4 (CH₂). HRLCMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₇H₂₃FeO₄ 467.0941, found 467.0964. Enantiopurity of **3s** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Racemic sample (3s)

Chiral 1,2-formyl ferrocenyl acrylate 3t was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 75:25), obtained as an orange solid, mp:137-139 °C. Yield: 33 mg (62%). ¹H NMR (700 MHz, CDCl₃) δ 10.20 (s, 1H), 8.24 (d, *J* = 15.8 Hz, 1H), 7.30 (d, *J* = 7.1 Hz, 2H), 7.28 – 7.25 (m, 4H), 7.23 – 7.19 (m, 1H), 7.09 (d, *J* = 8.7 Hz, 2H), 6.44 (d, *J* = 15.8 Hz, 1H), 5.13 – 4.99 (m, 2H), 4.87 (t, *J* = 2.7 Hz, 1H), 4.35 (s, 5H), 1.72 (s, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.8 (CH), 165.2 (C), 150.4 (C), 148.6 (C), 148.1 (CH), 144.2 (CH), 128.0 (CH), 127.8 (CH), 126.8 (CH), 125.7 (CH), 120.9 (CH), 117.2 (CH), 80.3 (C), 78.5 (C), 74.3 (CH), 74.0 (CH), 72.0 (CH), 71.5 (CH), 42.7 (C), 30.8 (CH₃). HRLCMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₉H₂₆FeO₃Na 501.1124, found 501.1149. Enantiopurity of **3t** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 70:30, 1 mL/min, λ =254 nm).

Chiral 1,2-formyl ferrocenyl acrylate (3u) was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as an orange solid, mp:124-126 °C. Yield: 25 mg (61%). ¹H NMR (700 MHz, CDCl₃) δ 10.14 (s, 1H), 8.08 (d, *J* = 15.2 Hz, 1H), 7.98 (d, *J* = 8.3 Hz, 2H), 7.63 (t, *J* = 9.5 Hz, 1H), 7.57 (t, *J* = 9.2 Hz, 2H), 6.82 (d, *J* = 15.3 Hz, 1H), 5.02 (s, 1H), 4.92 (s, 1H), 4.82 (s, 1H), 4.31 (s, 5H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.4 (CH), 141.0 (C), 140.8 (CH), 133.2 (CH), 129.3 (CH), 127.5 (CH), 126.5 (CH), 78.8 (C), 78.0 (C), 75.0 (CH), 74.4 (CH), 72.7 (CH), 71.5 (CH). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₉H₁₇FeO₃S 381.0242, found 381.0247. Enantiopurity of **3u** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 70:30, 1 mL/min, λ =254 nm).

Racemic sample (3u)

Chiral 1,2-formyl ferrocenyl acrylate 3v was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as an orange solid, mp:128 °C. Yield: 25 mg (65%). ¹H NMR (700 MHz, CDCl₃) δ 10.17 (s, 1H), 7.84 (dd, J = 22.0, 17.4 Hz, 1H), 6.09 (t, J = 18.1 Hz, 1H), 5.17 - 4.90 (m, 2H), 4.80 (t, J = 2.7 Hz, 1H), 4.30 (s, 5H), 3.81 (dd, J = 11.1, 4.6 Hz, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.6 (d, J_{C-P} = 3.6 Hz; CH), 146.4 (d, J_{C-P} = 7.5 Hz; CH), 112.4 (d, *J*_{*C-P*} = 192.6 Hz; CH), 81.4 (d, *J*_{*C-P*} = 27.2 Hz; C), 78.1 (CH), 73.9 (CH), 73.7 (CH), 71.8 (CH), 71.4 (CH), 52.5 (CH₃). HRLCMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₅H₁₇FeO₄PNa 371.0106, found 371.0087. Enantiopurity of **3v** was determined by chiral HPLC analysis on OJ-3 (hexane: isopropanol = 90:10, 1 mL/min, λ =254 nm).

Racemic sample (3v)

	[.]		[-]	[[]		
1	29.369	MM	0.8577	3167.40869	61.55090	8.3641	
2	38.613	MM	1.5779	3.47018e4	366.54413	91.6359	

Chiral 1,2-formyl ferrocenyl acrylate 3w was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as an orange solid, mp:135-136 °C. Yield: 27mg (66%). ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 7.81 (dd, J = 21.8, 17.6 Hz, 1H), 6.12 (dd, J = 18.0, 17.4 Hz, 1H), 4.98 (s, 2H), 4.79 (s, 1H), 4.30 (s, 5H), 4.24 – 4.06 (m, 4H), 1.40 (t, J = 7.0 Hz, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.6 (d, J_{C-P} = 4.2 Hz; CH), 145.3 (d, J_{C-P} = 7.5 Hz; CH), 114.1 (d, J_{C-P} = 191.9 Hz; CH), 81.7 (d, J_{C-P} = 27.2 Hz; C), 78.0 (C), 73.8 (CH), 73.4 (CH), 71.7 (CH), 71.3 (CH), 61.9 (dd, J_{C-P} = 12.0, 5.5 Hz; CH₂), 16.4 (d, J_{C-P} = 6.3 Hz; CH₃). Enantiopurity of **3w** was determined by chiral HPLC analysis on OJ-3 (hexane: isopropanol = 90:10, 1 mL/min, λ =254 nm).

Racemic sample (**3w**)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.399	MM	0.6020	4.70102e4	1301.45166	97.4601
2	15.971	MM	0.7151	1225.13220	28.55343	2.5399

Chiral 1,2-formyl ferrocenyl acrylate 3x was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as an orange solid, mp:130-132 °C. Yield: 19 mg (55%). ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 7.83 (d, *J* = 15.2 Hz, 1H), 6.83 (d, *J* = 14.5 Hz, 1H), 5.01 (s, 1H), 4.93 (s, 1H), 4.77 (s, 1H), 4.30 (s, 5H), 3.17 (s, 3H), 3.08 (s, 3H). ¹³C {¹H} NMR (176 MHz, CDCl₃) δ 192.5 (CH), 166.5 (C), 138.5 (CH), 118.1 (CH), 82.9 (C), 78.0 (C), 73.5 (CH), 72.7 (CH), 72.4 (CH), 71.2 (CH), 42.6 (CH₃). HRLCMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₆H₁₇FeNO₂Na 334.0501, found 334.0509. Enantiopurity of **3x** was determined by chiral HPLC analysis on OJ-3 (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Racemic sample (3x)

Chiral 1,2-formyl ferrocenyl acrylate 3y was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 70:30), obtained as a yellow-orange solid, mp:113-115 °C. Yield: 17 mg (48%). ¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 7.43 – 7.30 (m, 4H), 7.26 – 7.21 (m, 1H), 6.55 – 6.28 (m, 2H), 4.78 (s, 1H), 4.56 (d, *J* = 14.4 Hz, 2H), 4.28 (s, 5H), 3.70 – 3.45 (m, 2H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 193.7 (CH), 137.3 (C), 130.9 (CH), 128.6 (CH), 128.5 (CH), 127.2 (CH), 126.1 (CH), 90.0 (C), 74.0 (C), 73.2 (CH), 71.43 (CH), 70.3 (CH), 70.1 (CH), 31.4 (CH₂). HRLCMS (ESI) *m/z*: [M+Na]⁺ calcd for C₂₀H₁₈FeONa 353.0599, found 353.0621. Enantiopurity of **3y** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 90:10, 1 mL/min, λ =254 nm). Racemic sample (**3y**)

Chiral 1,2-formyl ferrocenyl acrylate 3z was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 85:15), obtained as a yellow-orange solid, mp:123-126 °C. Yield: 24 mg (51%). ¹H NMR (700 MHz, CDCl₃) δ 10.18 (s, 1H), 7.98 (d, J = 15.8 Hz, 1H), 6.25 (d, J = 15.8 Hz, 1H), 5.01 (dd, J = 2.6, 1.3 Hz, 1H), 4.99 (d, J = 2.3 Hz, 1H), 4.84 – 4.79 (m, 2H), 4.31 (s, 5H), 2.09 (t, J = 7.9 Hz, 1H), 1.95 (ddd, J = 13.9, 9.1, 4.2 Hz, 1H), 1.73 (dd, J = 14.1, 2.6 Hz, 3H), 1.51 – 1.46 (m, 1H), 1.10 – 1.03 (m, 2H), 0.94 (dd, J = 6.8, 1.0 Hz, 6H), 0.83 (d, J = 6.9 Hz, 3H). ¹³C {¹H} NMR (176 MHz, CDCl₃) δ 192.9 (CH), 166.5 (C), 141.6 (CH), 118.8 (CH), 81.1 (C), 78.1 (C), 74.4 (CH), 74.0 (CH), 73.2 (CH), 72.0 (CH), 71.4 (CH), 47.1 (CH), 40.9 (CH), 34.2 (CH), 31.4 (CH₂), 26.42 (CH₂), 23.62 (CH₂), 22.0 (CH₃), 20.7 (CH₃), 16.5 (CH₃). HRLCMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₁FeO₃ 423.1617, found 423.1631.

Chiral 1,2-formyl ferrocenyl acrylate 3aa was purified on silica gel (mesh 230-400) in (hexanes: ethylacetate; 80:20), obtained as a yellow-orange solid, mp:133-135 °C. Yield: 36 mg (49%). ¹H NMR (500 MHz, CDCl₃) δ 10.18 (d, J = 1.9 Hz, 1H), 8.00 (d, J = 15.8 Hz, 1H), 6.25 (d, J = 15.8 Hz, 1H), 5.42 (d, J = 5.0 Hz, 1H), 5.00 (t, J = 3.1 Hz, 2H), 4.81 (t, J = 2.8 Hz, 1H), 4.79 – 4.69 (m, 1H), 4.31 (s, 5H), 2.42 (d, J = 7.9 Hz, 2H), 2.00 – 1.83 (m, 5H), 1.70 (m, 1H), 1.57 – 1.44 (m, 5H), 1.36 (dd, J = 7.8, 3.5 Hz, 3H), 1.21 – 1.11 (m, 4H), 1.07 (s, 3H), 0.94 (d, J = 6.5 Hz, 4H), 0.89 (dd, J = 6.6, 2.3 Hz, 9H), 0.71 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 193.0 (CH), 166.3 (C), 141.8 (CH), 139.6 (CH), 122.7 (CH), 118.7 (CH), 80.9 (C), 78.2 (C), 74.2 (CH), 74.1 (CH), 73.4 (CH), 71.9 (CH), 71.4 (CH), 56.7 (CH₂), 56.1 (CH₂), 50.0 (C), 42.3 (C), 39.7 (CH), 39.5 (CH), 38.2 (CH), 37.0 (CH), 36.6 (CH), 36.1 (CH), 35.8 (CH₂), 31.9 (CH₂), 21.0 (CH₃), 19.3 (CH₃), 18.7 (CH₃), 11.8 (CH₃). HRLCMS (ESI) *m/z*: [M+H]⁺ calcd for C4₂H₅₈FeO₃ 666.3731, found 666.3711.

Post-synthetic Transformation of Chiral 1,2-Ferrocene Formaldehydes

Reduction of *tert*-butyl-(*E*)-3-(2-formylferrocenyl)acrylate 3c with BH₃·SMe₂

Scheme S2. Reduction with BH₃·SMe₂

In a Schlenk tube, *tert*-butyl-(*E*)-3-(2-formylferrocenyl)acrylate **3c** (17 mg, 0.05 mmol, 1 equiv), BH₃.SMe₂ (20 µL, 0.1mmol, 2 equiv) was mixed in DCM at room temperature and stirred for 3h under an inert atmosphere. The crude reaction mixture passed through a celite pad, quenched with 1N HCl, evaporation, and column chromatography on silica gel (mesh 230-400) using hexane: ethyl acetate solvent system to afford *tert*-butyl 3-(*o*-methylferrocenyl)propanoate (**4**) as a yellow solid (mp:129-131 °C). Yield: 15 mg (90%).¹H NMR (400 MHz, CDCl₃) δ 4.04 (s, 6H), 3.99 (dd, *J* = 2.5, 1.5 Hz, 1H), 3.93 (t, *J* = 2.4 Hz, 1H), 2.72 – 2.61 (m, 2H), 2.49 – 2.36 (m, 2H), 1.98 (s, 3H), 1.48 (s, 9H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 172.6 (C), 86.2 (C), 82.6 (C), 80.3 (CH), 77.2 (CH), 69.1 (CH), 67.2 (CH), 64.9 (C), 36.5 (CH₂), 28.1 (CH₂), 23.5 (CH₃), 13.1 (CH₃). HRLCMS (ESI) *m/z*: [M] calcd for C₁₈H₂₄FeO₂ 328.1120, found 328.1118. Enantiopurity of **4** was determined by chiral HPLC analysis on OJ-3 (hexane: isopropanol = 100:00, 0.5 mL/min, λ =254 nm).

Racemic sample (4)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.405	MM	1.2700	8672.67090	113.81454	50.0231
2	41.022	MM	1.8593	8664.66699	77.67159	49.9769

Asymmetric sample (4)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.425	MM	1.3058	1.04226e4	133.02591	97.1869
2	40.856	MM	0.8524	301.68549	5.89861	2.8131

Reduction of methyl-(E)-3-(2-formylferrocenyl)acrylate 3b with sodium borohydride

Scheme S3. Reduction with NaBH₄

In a Schlenk tube, methyl-(*E*)-3-(2-formylferrocenyl)acrylate **3b** (17 mg, 0.05 mmol, 1 equiv), NaBH₄ (4 mg, 0.11mmol, 2.1 equiv) was mixed in MeOH at room temperature and stirred for 4h under an inert atmosphere. The crude reaction mixture passed through a celite pad, quenched with 1N HCl, evaporation, and column chromatography on silica gel (mesh 230-400) using hexane: ethyl acetate solvent system to afford methyl-(*E*)-3-(2-(hydroxymethyl)ferrocenyl)acrylate (5) as a yellow solid (mp: 131-134 °C). Yield: 11 mg (70%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 15.7 Hz, 1H), 6.16 (d, J = 15.8 Hz, 1H), 4.68 -4.56 (m, 2H), 4.53 (s, 2H), 4.45 (s, 1H), 4.19 (s, 5H), 3.80 (s, 3H), 2.07 (s, 1H). ${}^{13}C{}^{1}H{}$ NMR (176 MHz, CDCl₃) δ 167.5 (C), 143.5 (CH), 115.7 (CH), 88.2 (C), 78.0 (C), 71.9 (CH), 70.0 (CH), 67.7 (CH), 60.4 (CH), 59.1 (CH₃), 51.5 (CH₂). HRLCMS (ESI) *m/z*: [M+Na]⁺ calcd for C₁₅H₁₆FeO₃Na 323.0341, found 323.0319. Enantiopurity of **5** was determined by chiral HPLC analysis on AD-H (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Racemic sample (5)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.423	MM	0.5109	1.19553e4	390.03912	49.9404
2	8.669	MM	0.6492	1.19838e4	307.66867	50.0596

Asymmetric sample (5)

Mechanistic Investigation

Control experiment 1: Understanding of C-H activation versus oxidation pathways

(a) Possibility of transient directed C-H activation

In a Schlenk tube, $Pd(OAc)_2$ (2.3 mg, 0.011 mmol, 10 mol%), L2 (10 mg, 0.044 mmol, 40 mol%), $Cu(OAc)_2$ (30.0 mg, 0.16 mmol, 1.5 equiv), Cs_2CO_3 (71.2 mg, 0.22 mmol, 2 equiv), DMSO (40 µL, 0.55 mmol, 5 equiv), ferrocene carboxaldehyde (24 mg, 0.11 mmol, 1 equiv), and trifluoromethanesulfonamide (16 mg, 0.11 mmol, 1 equiv) were added in dry *tert*-amyl alcohol (1.5 mL) under an argon atmosphere and the resulted green colored solution was stirred for 10 min. After pre-stirring, olefin **2a** (24 µL, 0.22 mmol, 2 equiv) was added. The tube was sealed with a rubber septum, and a dry air atmosphere was maintained in the flask with a balloon. The reaction was heated at 55 °C, stirred for 30 h, and then cooled to room temperature. The crude reaction mixture was passed through a celite pad, evaporation, and subjected to crude NMR.

Scheme S4. Controlled experiment for determining the possibility of transient directed C-H activation

(b) Possibility of free radical-driven amine oxidation.

In a Schlenk tube, $Pd(OAc)_2$ (2.3 mg, 0.011 mmol, 10 mol%), L2 (10 mg, 0.044 mmol, 40 mol%), $Cu(OAc)_2$ (30.0 mg, 0.16 mmol, 1.5 equiv), Cs_2CO_3 (71 mg, 0.22 mmol, 2 equiv), DMSO (40 µL, 0.55 mmol, 5 equiv) TEMPO (17 mg, 0.11 mmol, 1 equiv) or BHT (24 mg, 0.11 mmol, 1 equiv) and ferrocenyl amine **1a** (38 mg, 0.11 mmol, 1 equiv) were added in dry *tert*-amyl Alcohol (1.5 mL) under a dry AIR atmosphere. The reaction was heated at 55 °C, stirred for 30 h, and then cooled to room temperature. The crude reaction mixture was passed through a celite pad, evaporation, and subjected to crude NMR and mass analysis.

Scheme S5. Controlled experiment for free radical-driven amine oxidation

(c) Possibility of base driven amine deamination

In a Schlenk tube, Cs_2CO_3 (71 mg, 0.22 mmol, 2 equiv), DMSO (40 µL, 0.55 mmol, 5 equiv) and ferrocenyl amine **1a** (38 mg, 0.11 mmol, 1 equiv) were added in dry *tert*-amyl Alcohol (1.5 mL) under a dry air atmosphere. The reaction was heated at 55 °C, stirred for 30 h, and then cooled to room temperature. The crude reaction mixture was passed through a celite pad, evaporation, and subjected to crude NMR.

Scheme S6. Controlled experiment with base Cs₂CO₃

(d). Possibility of heterogeneous palladium nanoparticle-driven amine oxidation

In a Schlenk tube, Pd(NPs) (12 mg, 0.11 mmol, 1 equiv), DMSO (40 μ L, 0.55 mmol, 5 equiv) and ferrocenyl amine **1a** (38 mg, 0.11 mmol, 1 equiv) were added in dry *tert*-amyl Alcohol (1.5 mL) under a dry air atmosphere. The reaction was heated at 55 °C, stirred for 30 h, and then cooled to room temperature. The crude reaction mixture was passed through a celite pad, dried under vacuo, and subjected to crude NMR.

Scheme S7. Controlled experiment with Pd nanoparticles

(e) Possibility of transition metal-driven amine oxidation

In a Schlenk tube, the stoichiometry of the reagents was varied as shown in Scheme S12 below. The reaction was heated at 55 °C, stirred for 30 h, and then cooled to room temperature. The crude reaction mixture was passed through a celite pad, evaporation, and subjected to crude NMR.

1.	1a	Cu(OAc)₂ (1eq) t-AmylOH, 30h	FeCHO (25%) 1a (75%)
2.	1a	Pd(OAc)₂ (0.1eq) t-AmylOH, 30h	FeCHO (3%) 1a (97%)
3.	1a	$\underbrace{\text{Cu(OAc)}_2 (1eq),}_{\text{Cs}_2\text{CO}_3(1eq), \text{ t-AmylOH}, 30h}$	FeCHO (72%) 1a (28%)
4.	1a	$\underbrace{Pd(OAc)_{2},(0.1eq),}_{Cs_{2}CO_{3}}$	FeCHO (7%) 1a (93%)
5.	1a	Pd(OAc) ₂ ,(0.1eq), L2 (0.4eq) ► Cs ₂ CO ₃ (1eq), t-AmylOH, 30h	FeCHO (2%) 1a (98%)
6.	1a	Pd(OAc) ₂ (0.1eq),Cu(OAc) ₂ ,(1eq) Cs₂CO ₃ ,(1eq), t-AmylOH, 30h	FeCHO (80%) 1a (20%)

Scheme S8. Controlled experiments with variation in stoichiometry of the reagents

Control experiment 2: Relative rate of C-H activation versus amine oxidation with ligand (L2)

In a Schlenk tube, $Pd(OAc)_2$ (2.3 mg, 0.011 mmol, 10 mol%), L2 (10 mg, 0.044 mmol, 40 mol%), $Cu(OAc)_2$ (30 mg, 0.16 mmol, 1.5 equiv), Cs_2CO_3 (71 mg, 0.22 mmol, 2 equiv), DMSO (40 µL, 0.55 mmol, 5 equiv), and ferrocenyl amine 1b (44 mg, 0.11 mmol, 1 equiv) were added in dry *tert*-amyl alcohol (1.5 mL) under an inert atmosphere and the result in green colored solution was stirred for 10 min. Next, olefin 2d (34 µL, 0.22 mmol, 2 equiv) was added to the reaction mixture. The tube was sealed with a rubber septum, and a dry air atmosphere was maintained in the flask with a balloon. The reaction was heated at 55 °C, and after every 10 min time interval 250µL aliquot was taken and passed through a celite pad, evaporation and submitted for crude ¹H NMR. Fractional conversion of C-H activated product with oxidized aldehyde has been monitored with time.

Figure S4. ¹H NMR plot for fractional conversion of C-H activated product along with FeCHO with time

Figure S5. Plot for a relative rate of C-H activation and amine oxidation versus time with L2

Control experiment 3: Relative rate of C-H activation *versus* amine oxidation without ligand (L2)

In a Schlenk tube, $Pd(OAc)_2$ (2.3 mg, 0.011 mmol, 10 mol%), $Cu(OAc)_2$ (30 mg, 0.16 mmol, 1.5 equiv), Cs_2CO_3 (71 mg, 0.22 mmol, 2 equiv), DMSO (40 µL, 0.55 mmol, 5 equiv), and ferrocenyl amine **1b** (44 mg, 0.11 mmol, 1 equiv) were added in dry *tert*-amyl alcohol (1.5 mL) under an inert atmosphere and the resulted in green colored solution was stirred for 10 min. Next, olefin **2d** (34 µL, 0.22 mmol, 2 equiv) was added to the reaction mixture. The tube was sealed with a rubber septum, and a dry air atmosphere was maintained in the flask with a balloon. The reaction was heated at 55 °C, and after every 10 min time interval 250 µL aliquot was taken and passed through a celite pad, evaporation and submitted for crude ¹H NMR. Fractional conversion of C-H activated product with oxidized aldehyde has been monitored with time.

Figure S6. NMR plot for fractional conversion of C-H activated product along with oxidized FeCHO with time

Figure S7. Plot for a relative rate of C-H activation versus amine oxidation without L2

Control experiment 4: Ligand acceleration experiment

Two parallel reactions were performed in two different Schlenk tubes. In one Schlenk tube, $Pd(OAc)_2$ (2.3 mg, 0.011 mmol, 10 mol%), $Cu(OAc)_2$ (30 mg, 0.16 mmol, 1.5 equiv), Cs_2CO_3 (71 mg, 0.22 mmol, 2 equiv), DMSO (40 µL, 0.55 mmol, 5 equiv), Ferrocenyl amine **1b** (44 mg, 0.11 mmol, 1 equiv), and ligand **L2** (10 mg, 0.044 mmol, 40 mol%) were added to the dry *tert*-amyl alcohol (1.5 mL) under an inert atmosphere and the resulted in green colored solution was pre-stirred for 10 min. In another Schlenk tube, all reagents were added to the dry *tert*-amyl alcohol (1.5 mL) except ligand **L2** under an inert atmosphere at pre-stirred for 10 min. Next, Olefin **2d** (34 µL, 0.22 mmol, 2 equiv) was added to the resulting reaction mixture. The tube was sealed with a rubber septum, and a dry air atmosphere was maintained in the flask with a balloon. The reaction was heated at 50 °C, and after every 10 min time interval 250µL aliquot was taken and passed through a celite pad, evaporation and submitted for crude ¹H NMR. The fractional conversion of C-H-activated products has been monitored with time.

Figure S8. Ligand acceleration experiment plot

Control experiment 5: ¹⁹F NMR experiment for determining triflamide coordination with Cs⁺

In an NMR tube, ferrocenyl amine **1a** (10 mg, 0.03 mmol, 1 equiv), Cs_2CO_3 (20 mg, 0.06 mmol, 2 equiv), DMSO (10 µL, 0.55 mmol, 5 equiv) were added in CD₃OD solvent (0.5 mL). In another NMR tube CsOAc (12 mg, 0.06 mmol, 2 equiv) was added in the place of Cs_2CO_3 in CD₃OD solvent (0.5 mL). ¹⁹F NMR were recorded after 30 minutes of mixing on both of the NMR tubes and we have compared the ¹⁹F NMR chemical shifts of triflamide in the presence of cesium acetate and cesium carbonate with respect to the triflamide. A downfield chemical shift difference of 1.24 ppm was observed in case of triflamide and Cs_2CO_3 and 0.22 ppm was observed in triflamide and CsOAc with respect to only triflimide in the ¹⁹FNMR. This chemical shift difference suggestive of an interaction occurs even in the presence of acetate and carbonate anion between cesium and triflamide

Figure S9. ¹⁹F NMR experiment using protic solvent, CD₃OD, combined with 5 eq of DMSO, of cesium acetate and cesium carbonate with respect to the triflamide.

Computational Studies

Computational studies were performed with the Gaussian 09 Revision A.02 program suite with the DFT method of Becke's three-parameter hybrid Hartree-Fock procedure with the Lee Yang-Parr correlation function (B3LYP). The geometry optimization and energy calculations of the reactants, intermediates, and transition state were fully optimized by the DFT/B3LYP method with LANL2DZ basis set in the solution phase using the CPCM (conductor-like Polarizable Continuum Model) model in tetrahydrofuran (THF) solvent. Energy obtained from computation is listed in Hartree and converted to kcal/mol. The difference between the favorable and unfavorable transition states is 2.48 kcal/mol.

Figure S10. Optimized structure of favorable and unfavorable transition states

Energy Data

Structure	Electronic and Thermal Correction to G _{solv}	ΔG_{solv}
TS I	-2034.381945	0.00 kcal/mol
TS II	-2034.377985	+2.48 kcal/mol

Relative energies were calculated at the level of B3LYP/LANL2DZ/CPCM(THF) at 298K

Co-ordinates of Optimized Structures

Favourable TS I

Electronic + Thermal Free Energies: -2034.381945

Correction to Gibbs' free energy: 0.422242

Zero-point correction: 0.502647

Imaginary vibration frequency: 1 (associated imaginary frequency $i1277.14 \text{ cm}^{-1}$)

Atomic	Forces (Hartrees/Bohr)				
Number	Х	Y Z			
Fe	0.000726564	-0.000035682	-0.001004340		
С	-0.001454155	-0.001851942	-0.000481310		
С	-0.000744977	0.000164172	0.001643055		
С	-0.003341090	0.001315388	-0.003654564		
С	0.001443667	-0.003294859	-0.000717470		
С	0.003050478	0.000166106	0.002601633		
С	0.000080818	0.002580173	0.002524857		
Н	-0.000243959	0.000537294	-0.000214023		
Н	0.000138087	0.000260520	0.000160404		
Н	0.000204188	0.000460223	0.000218217		
Н	-0.000117785	0.000116618	-0.000073666		
Н	-0.000020471	-0.000248107	0.000077476		
Н	0.000073468	-0.000005200	0.000195202		
S	-0.000329268	-0.000261712	-0.000251436		
0	0.000045398	-0.000320812	0.000110026		
Ο	-0.000077743	0.000114062	0.000147438		
С	0.002566861	-0.001391706	0.002514457		
Н	-0.000347328	-0.000104308	-0.000133825		
С	-0.002861000	0.004060085	-0.002851233		
С	0.000779685	-0.000349235	-0.000055059		
С	-0.000517333	-0.000171772	-0.000882900		

Н	0.000027533	-0.000146675	0.000072857
Η	-0.000075310	0.000153315	-0.000155719
F	0.000097625	0.000004073	-0.000051113
F	-0.000236034	0.000153687	-0.000134025
F	-0.000295496	0.000257105	0.000236074
Ν	0.000027443	0.000001296	-0.000138806
С	-0.001008938	0.000178168	0.000922373
Н	0.000123992	-0.000655180	-0.000538553
С	-0.000083353	-0.000088353	0.000059931
С	0.001141231	-0.000203875	-0.000894764
Pd	-0.000955333	0.000623300	-0.000387234
0	-0.000235914	-0.000428463	-0.000068055
0	0.000159931	0.000139531	0.000249015
Cs	-0.000096668	0.000268067	0.000059241
С	0.002951089	-0.002494076	0.000104109
Η	0.000030940	0.000149053	0.000028257
0	-0.000048840	0.000012040	-0.000021202
0	0.000045654	-0.000001451	0.000074850
С	0.000011211	0.000001122	0.000028782
С	-0.000024236	0.000018677	-0.000016617
Н	-0.000011687	0.000006427	-0.000015360
Н	-0.000017362	0.000003152	0.000030993
Η	0.000023267	-0.000013428	0.00000873
С	0.000017747	0.000013544	-0.000012545
Η	-0.000009043	0.000033842	0.000018621
Η	0.000036376	0.000037523	-0.000046288
Η	-0.000011612	-0.000036200	0.000004686
С	-0.000004255	-0.000007782	0.000007850
Н	-0.000045891	0.000002747	0.000002655
Н	-0.000000709	-0.000032872	-0.000021939

1	0.000027962	0.000021439	0.000013317
6	-0.000007446	0.000048067	0.000015065
6	0.000016512	0.000022982	-0.000017928
1	-0.000002517	-0.000012468	-0.000011735
1	-0.000014226	0.000007004	-0.000001313
1	0.000004295	-0.000011859	-0.000013611
6	0.000016133	0.000006587	-0.000004024
1	-0.000002018	0.000004378	-0.000000591
1	-0.000007081	-0.000003222	-0.000000072
1	0.000000205	0.000000520	-0.000016468
6	0.000002968	0.000005806	-0.000012170
1	-0.000002939	0.000005692	0.000000528
1	0.000000546	-0.000003061	0.000006947
1	0.000004016	0.000004629	-0.000003176
6	0.000062556	-0.000017434	-0.000029374
1	0.000067203	-0.000030653	-0.000001447
7	-0.000753633	0.000263974	0.000804168

Unfavorable TS II

Electronic + Thermal Free Energies: -2034.377985

Correction to Gibbs' free energy: 0.423065

Zero-point correction: 0.502632

Imaginary vibration frequency: 1 (associated imaginary frequency *i*1100.96 cm⁻¹)

Atomic	Force	es (Hartrees/Boł	nr)
Number	Х	Y	Ζ
Fe	0.000214113	0.001143114	-0.000067044
С	0.000075349	-0.000221431	0.000005507
С	-0.000038673	-0.000018047	-0.000008942
С	-0.000016415	-0.000192574	0.000157195
С	-0.000125925	-0.000186952	-0.000107353

С	-0.000022683	-0.000027720	0.000016479
С	0.000009334	-0.000043021	0.000018703
Н	0.000004815	0.000013752	-0.000001527
Н	0.000032756	0.000034248	0.000009322
Н	0.000007632	-0.000005982	0.000008707
Н	-0.000033977	-0.000006825	-0.000023859
Η	0.000024756	0.000023762	0.000005976
Η	-0.000016296	0.000054623	-0.000017909
S	0.000038002	-0.000036901	-0.000080416
0	-0.000107399	0.000058795	0.000008788
0	-0.000076785	-0.000001327	-0.000000736
С	0.000066313	-0.000184949	0.000183997
Н	-0.000025281	0.000012761	-0.000012067
С	0.000021159	-0.000203876	0.000034134
С	-0.000005779	-0.000003000	0.000004955
С	0.000017322	0.000010133	-0.000028336
Н	0.000008454	0.000003258	-0.000008277
Η	-0.000002083	0.000007146	0.000004625
F	0.000030562	-0.000005184	-0.000025848
F	-0.000012152	0.000014036	-0.000009150
F	0.000058190	-0.000035649	0.000001846
Ν	0.000025480	-0.000017500	0.000049945
С	-0.000199896	-0.000175348	-0.000156346
Н	0.000008119	0.000002149	0.000008483
С	-0.000001852	-0.000015383	-0.000006850
С	-0.000045787	0.000045490	-0.000023211
Pd	-0.000003302	-0.000025887	-0.000020113
0	0.000056773	-0.000002882	-0.000024291
0	0.000006026	0.000014375	0.000047915
Cs	0.000046013	0.000031840	0.000053665

С	-0.000017660	-0.000043420	-0.000012273
Η	-0.000005450	0.000016898	-0.000010908
0	0.000003471	-0.000004700	-0.000021735
0	0.000032098	-0.000020531	0.000018281
С	-0.000012424	-0.000005362	-0.000012968
С	-0.000002204	-0.00000706	-0.000001468
Η	-0.000000241	-0.00000235	-0.000001199
Н	-0.000000615	0.00000013	-0.00000936
Н	0.00000204	-0.00000309	-0.000001681
С	0.000000219	-0.000002142	0.000002613
Η	0.000002021	-0.000002742	-0.000001463
Н	-0.000001731	0.00000638	0.000002565
Н	-0.000000631	0.000002878	-0.000003014
С	0.000001908	0.000001174	-0.00000272
Н	0.00000784	0.00000802	-0.000001079
Н	-0.000000575	0.000001141	-0.000000921
Η	-0.000000679	0.000000461	-0.000001076
С	-0.000001649	0.000015411	-0.000001814
С	-0.000000724	-0.000018066	0.000001749
Η	0.000000183	-0.000009652	-0.000002593
Н	-0.000001473	0.000002257	0.000008856
Н	0.000000794	0.000008531	-0.000007530
С	0.000008120	0.000004919	0.000000677
Н	0.000009117	0.000005661	-0.000001470
Н	-0.000000428	-0.000008299	0.000009331
Η	-0.000011037	0.000006191	-0.000003259
С	-0.000010806	0.000004183	0.000000930
Н	-0.000006945	0.000002340	0.000000514
Н	0.000003049	-0.00000636	0.000004470
Н	0.000000762	-0.000001425	-0.000005384

C -0.000007	621 0.000003723	-0.000008831
-------------	-----------------	--------------

- Н 0.000008975 -0.000002307 0.000009067
- N -0.000005698 -0.000015731 0.000044855

NMR Spectra of Chiral 1,2-Ferrocene Formaldehyde Derivatives and Post-derivatized Compounds

¹H NMR Spectrum of 3a

¹³C{¹H} NMR Spectrum of 3a

¹³C{¹H} NMR Spectrum of 3b

¹H NMR Spectrum of 3c

¹³C{¹H} NMR Spectrum of 3c

¹H NMR Spectrum of 3d

S63

¹³C{¹H} NMR Spectrum of 3d

¹H NMR Spectrum of 3e

¹³C{¹H} NMR Spectrum of 3e

¹H NMR Spectrum of 3f

¹³C{¹H} NMR Spectrum of 3f

¹H NMR Spectrum of 3g

¹³C{¹H} NMR Spectrum of 3g

¹H NMR Spectrum of 3h

¹³C{¹H} NMR Spectrum of 3h

¹H NMR Spectrum of 3i

S73

¹³C{¹H} NMR Spectrum of 3i

¹H NMR Spectrum of 3j

¹³C{¹H} NMR Spectrum of 3j

¹H NMR Spectrum of 3k

¹³C{¹H} NMR Spectrum of 3k

¹H NMR Spectrum of 31

¹³C{¹H} NMR Spectrum of 3l

¹H NMR Spectrum of 3m

S81

¹³C{¹H} NMR Spectrum of 3m

¹H NMR Spectrum of 3n

¹³C{¹H} NMR Spectrum of 3n

¹H NMR Spectrum of 30

S85

¹³C{¹H} NMR Spectrum of 30

S86

¹H NMR Spectrum of 3p

¹³C{¹H} NMR Spectrum of 3p

¹H NMR Spectrum of 3q

¹³C{¹H} NMR Spectrum of 3q

¹H NMR Spectrum of 3r

¹³C{¹H} NMR Spectrum of 3r

¹H NMR Spectrum of 3s

¹³C{¹H} NMR Spectrum of 3s

¹H NMR Spectrum of 3t

¹³C{¹H} NMR Spectrum of 3t

¹H NMR Spectrum of 3u

S97

¹³C{¹H} NMR Spectrum of 3u

¹H NMR Spectrum of 3v

¹³C{¹H} NMR Spectrum of 3v

¹H NMR Spectrum of 3w

¹³C{¹H} NMR Spectrum of 3w

¹H NMR Spectrum of 3x

¹³C{¹H} NMR Spectrum of 3x

¹H NMR Spectrum of 3y

During purification, of **3y**, slight inseparable impurities of aldehyde is observed after several repeated attempts.

¹³C{¹H} NMR Spectrum of 3y

During purification, of 3y slight inseparable impurities of aldehyde is observed after several attempts.

¹H NMR Spectrum of 3z

¹³C{¹H} NMR Spectrum of 3z

¹H NMR Spectrum of 3aa

¹³C{¹H} NMR Spectrum of 3aa

¹³C{¹H} NMR Spectrum of 4

¹H NMR Spectrum of 5

¹³C{¹H} NMR Spectrum of 5

References:

- D. Parganiha, R. A. Thorat, A. D. Dhumale, Y. D. Upadhyay, R. K. Jha, S. Raju, and S. Kumar, *Chem. Sci.*, 2025, 16, 700-708.
- Q. J. Yao, P. P. Xie, Y. J. Wu, Y. L. Feng, M. Y. Teng, X. Hong, and B. F. Shi, J. Am. Chem. Soc., 2020, 142, 18266–18276.
- (a) B.-F. Shi, N. Maugel, Y. H. Zhang, and J.-Q. Yu, *Angew. Chem. Int. Ed.*, 2008, 47, 4882–4886.
 (b) J. M. González, X. Vidal, M. A. Ortuño, J. L. Mascareñas, and M. Gulías, *J. Am. Chem. Soc.*, 2022, 144, 21437–21442.