Supporting Information

Steric hindrance regulation in hydrogen-bonded organic

frameworks: from nonporous to microporous

Xiaokang Wang, Hongyan Liu, Meng Sun, Fei Gao, Xueying Feng, Mingming Xu, Weidong Fan * and Daofeng Sun *

State Key Laboratory of Heavy Oil Processing, Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao Shandong 266580, China.

*Corresponding author. E-mail: dfsun@upc.edu.cn; wdfan@upc.edu.cn

Table of Contents

Experimental Procedures	S2
Materials and instruments	
Synthesis of ligands	
Synthesis of UPC-HOFs	
Single-crystal X-ray diffraction	S8
Gas sorption measurements	
Computational methods	S10
Figures S1-S19	S12
Tables S1-S5	S22
References	

Experimental Procedures

Materials and instruments

All reagents were commercially available and used without further purification.

¹H NMR spectrum was obtained on an Inova 500 MHz spectrometer. Single crystal X-ray diffraction experiments were carried out on a SuperNova diffractometer equipped with mirror Cu-K α radiation ($\lambda = 1.54184$ Å) and an Eos CCD detector. Powder X-ray diffraction (PXRD) was carried out on a Bruker D8-Focus Bragg-Brentano X-ray powder diffractometer equipped with a Cu sealed tube at 40 kV and 15 mA. Thermogravimetric analysis (TGA) was performed on a Mettler Toledo TGA/DSC1 instrument under a static N₂ atmosphere with a heating rate of 10 °C/min at the range of 40-900 °C. Infrared (IR) spectroscopy spectrum was collected on a Nicolet 330 FTIR Spectrometer within 4000-400 cm⁻¹ region. Gas sorption measurements were conducted on a Micrometritics ASAP 2020 surface area analyzer.

Synthesis of ligands

2'-methyl-[1,1':3',1"-terphenyl]-4,4",5'-tricarboxylic acid (H₃TTCA-CH₃) and 2'methoxy-[1,1':3',1"-terphenyl]-4,4",5'-tricarboxylic acid (H₃TTCA-OCH₃) were synthesized according to previous literature.¹

Scheme S1 Synthetic procedure of H₃TTCA-CH₃ ligand.

3,5-diiodo-4-methylbenzoic acid

According to literature, to finely powdered iodine (1.20 g, 4.73 mmol) suspended in H_2SO_4 (95%, 30 mL, V/V) was added NaIO₄ (0.34 g, 1.59 mmol). The mixture was stirred at about 30 °C for 30 min. 4-methylbenzoic acid (2.04 g, 15.0 mmol) was added to the solution. The mixture was stirred at 30 °C for 2 h, then poured into ice/water, and filtered by a vacuum. The solid was washed with cool water and dried by vacuum at 50 °C. After recrystallization with ethanol, crude (3.43 g, 59%) as a white solid was used without further purification.

Methyl 3,5-diiodo-4-methylbenzoate

A sample of 3,5-diiodo-4-methylbenzoic acid (19.39 g, 50.0 mmol) was suspended in 200 mL of absolute methanol at room temperature. Concentrated H₂SO₄ (9.5 mL) was slowly added with rapid stirring and then the reaction mixture was heated at reflux for 48 h. At the end of the reflux period, TLC (silica, CH_2Cl_2) indicated the complete consumption of the starting material. The solution was initially cooled to room temperature, and then put in an ice bath to precipitate the product. Vacuum filtration afforded 19.08 g (95%) of a white solid.

Trimethyl 2'-methyl-[1,1':3',1''-terphenyl]-4,4'',5'-tricarboxylate

Methyl 3,5-diiodo-4-methylbenzoate (1.61 g, 4 mmol), methyl 4-boronobenzoate (1.57 g, 9.6 mmol), $Pd(PPh_3)_4$ (0.15 g, 0.13 mmol) and K_3PO_4 (3.82 g, 18.0 mmol) were placed in a 500 mL two-necked round bottom flask under a N₂ gas atmosphere. The flask was further charged with a 200 mL of dry 1,4-dioxane, and the contents were heated at reflux for 48 h. After the mixture was cooled to room temperature, the solvent

was removed, and water was added. The water phase was washed with CH_2Cl_2 . The mixed organic phases were dried with $MgSO_4$. After the solvent was removed, the crude product was purified by column chromatography with CH_2Cl_2 as the eluent.

2'-methyl-[1,1':3',1''-terphenyl]-4,4'',5'-tricarboxylic acid

Trimethyl 2'-methyl-[1,1':3',1"-terphenyl]-4,4",5'-tricarboxylate (2.0 g, 4.8 mmol) was dissolved in 50 mL MeOH, and 50 mL 2 M NaOH aqueous solution was added. The mixture was stirred at 50 °C overnight. The organic phase was removed, and the aqueous phase was acidified with diluted hydrochloric acid to give white precipitate, which was filtered and washed with water several times. ¹H NMR (d_6 -DMSO): $\delta = 3.36$ (s, 3H), 7.59 (d, 4H), 7.80 (s, 2H), 8.05 (d, 4H), 13.10 (s, 3H).

Scheme S1 Synthetic procedure of H₃TTCA-OCH₃ ligand.

3,5-diiodo-4-methoxybenzoic acid

According to literature, to finely powdered iodine (1.20 g, 4.73 mmol) suspended in H_2SO_4 (95%, 30 mL, V/V) was added NaIO₄ (0.34 g, 1.59 mmol). The mixture was stirred at about 30 °C for 30 min. 4-methoxybenzoic acid (2.28 g, 15.0 mmol) was added to the solution. The mixture was stirred at 30 °C for 2 h, then poured into ice/water, and filtered by a vacuum. The solid was washed with cool water and dried by vacuum at 50 °C. After recrystallization with ethanol, crude (3.82 g, 63%) as a white solid was used without further purification.

Methyl 3,5-diiodo-4-methoxybenzoate

A sample of 3,5-diiodo-4-methoxybenzoic acid (20.19 g, 50.0 mmol) was suspended in 200 mL of absolute methanol at room temperature. Concentrated H_2SO_4 (9.5 mL) was slowly added with rapid stirring and then the reaction mixture was heated at reflux for 48 h. At the end of the reflux period, TLC (silica, CH_2Cl_2) indicated the complete consumption of the starting material. The solution was initially cooled to room temperature, and then put in an ice bath to precipitate the product. Vacuum filtration afforded 20.0 g (96%) of a white solid.

Trimethyl 2'-methoxy-[1,1':3',1''-terphenyl]-4,4'',5'-tricarboxylate

Methyl 3,5-diiodo-4-methoxybenzoate (1.67 g, 4 mmol), methyl 4-boronobenzoate (1.57 g, 9.6 mmol), Pd(PPh₃)₄ (0.15 g, 0.13 mmol) and K₃PO₄ (3.82 g, 18.0 mmol) were placed in a 500 mL two-necked round bottom flask under a N₂ gas atmosphere. The flask was further charged with a 200 mL of dry 1,4-dioxane, and the contents were heated at reflux for 48 h. After the mixture was cooled to room temperature, the solvent was removed, and water was added. The water phase was washed with CH_2Cl_2 . The mixed organic phases were dried with MgSO₄. After the solvent was removed, the crude product was purified by column chromatography with CH_2Cl_2 as the eluent.

2'-methoxy-[1,1':3',1''-terphenyl]-4,4'',5'-tricarboxylic acid

Trimethyl 2'-methoxy-[1,1':3',1"-terphenyl]-4,4",5'-tricarboxylate (2.0 g, 4.6 mmol) was dissolved in 50 mL MeOH, and 50 mL 2 M NaOH aqueous solution was added. The mixture was stirred at 50 °C overnight. The organic phase was removed, and the aqueous phase was acidified with diluted hydrochloric acid to give white precipitate, which was filtered and washed with water several times. ¹H NMR (d_6 -DMSO): δ = 3.53 (s, 3H), 7.73 (d, 4H), 7.96 (s, 2H), 8.05 (d, 4H), 13.11 (s, 3H).

Synthesis of UPC-HOFs

Synthesis of UPC-HOF-15

 H_3 TTCA-CH₃ precursor (10 mg) dissolving in *N*,*N*'-dimethylformamide (1 mL) and dichloromethane (3 mL) was added to a 10 mL glass vial. After slow evaporation of solvents for 3-4 weeks, colourless block crystals of UPC-HOF-15 were obtained with a yield of 52%.

Synthesis of UPC-HOF-16

 H_3 TTCA-OCH₃ precursor (10 mg) dissolving in *N*,*N'*-dimethylformamide (1 mL) and methanol (3 mL) was added to a 10 mL glass vial. After slow evaporation of solvents for 3-4 weeks, colourless needle crystals of UPC-HOF-16 were obtained with a yield of 55%.

Single-crystal X-ray diffraction

The as-synthesized crystals of UPC-HOF-15 and UPC-HOF-16 were taken from the mother liquid without further treatment, transferred to oil and mounted on to a loop for single crystal X-ray data collection. The crystal data of UPC-HOF-15 and UPC-HOF-16 were collected on an Agilent Technologies SuperNova diffractometer equipped with graphite monochromatic Cu K α radiation ($\lambda = 1.54184$ Å). With the help of Olex2, the structures of UPC-HOF-15 and UPC-HOF-16 were solved with the Superflip structure solution program using charge flipping and refined with the ShelXL refinement package using least squares minimization. The structures of UPC-HOF-15 and UPC-HOF-16 were placed in calculated ideal positions and refined as riding on their respective nonhydrogen atoms. PLATON and SQUEEZE² were used to calculate the diffraction contribution of the solvent molecules in UPC-HOF-15, and thereby produced a set of partly solvent-free diffraction intensities.

The crystal data of UPC-HOF-15 and UPC-HOF-16 have been deposited to Cambridge Crystallographic Data Center (CCDC) as 2444439 and 2444440, respectively.

Gas sorption measurements

The activated samples were prepared by immersing the as-synthesized UPC-HOF-15 and UPC-HOF-16 in acetone for solvent exchange followed by activation at 373 K under vacuum for 10 h. Gas adsorption experiments containing N₂ at 77 K, C₂H₂, CO₂, and CH₄ at 273 and 298 K, were performed by using ASAP-2020 surface area analyzer. Liquid nitrogen bath was used to stabilize the temperature at 77 K, whereas other test temperatures were maintained via a circulating water bath. The Brunauer-Emmett-Teller (BET) surface area was calculated using multi-point BET equation with the P/P₀ range of 0.005-0.1. Pore volume was calculated with the maximal adsorption capacity. Pore size distribution was calculated with non-local density functional theory (NLDFT) and the experimental adsorption isotherm by solving the integral adsorption equation.

$$N_{exp}(P/P_0) = \int_{D_{min}}^{D_{max}} N_{NLDTF}(P/P_0,D)f(D)dD$$

Here, $N_{exp}(P/P_0)$ is the experimental adsorption isotherm, D_{min} and D_{max} are the minimum and maximum pore sizes, $N_{NLDFT}(P/P_0, D)$ is the theoretical adsorption isotherms, f(D) is the pore size distribution, D is the pore size.

Computational methods

Isosteric heat of adsorption

A Virial equation comprising the temperature-independent parameters a_i and b_j was employed to calculate the enthalpies of adsorption for C₂H₂, CO₂, and CH₄ in UPC-HOF-16, which were measured at 273 and 298 K.

$$\ln P = \ln N + \frac{1}{T} \sum_{i}^{m} a_i N_i + \sum_{j}^{n} b_j N_j$$

$$Q_{st} = -R \sum_{i=0}^{m} a_i N_i$$

Here, *P* is the pressure expressed in mmHg, *N* is the amount absorbed in mmol/g, *T* is the temperature in K, a_i and b_j are virial coefficients, and *m*, *n* represent the number of coefficients required to adequately describe the isotherms (herein, m = 5 and n = 2). Q_{st} is the coverage-dependent isosteric heat of adsorption and *R* is the universal gas constant.

Selectivity based on ideal adsorbed solution theory

Before estimating the selectivity for binary gas mixture, the single-component gas adsorption isotherms were first fitted to a dual-site Langmuir-Freundlich (DSLF) model:

$$q = q_{A,sat} \frac{b_A p^{n_1}}{1 + b_A p^{n_1}} + q_{B,sat} \frac{b_B p^{n_2}}{1 + b_B p^{n_2}}$$

where q is the amount of adsorbed gas (mmol/g), p is the bulk gas phase pressure (kPa), q_{sat} is the saturation amount (mmol/g), b is the Langmuir-Freundlich parameter (kPa⁻¹), and n is the Langmuir-Freundlich exponent (dimensionless) for two adsorption sites A and B indicating the presence of weak and strong adsorption sites. b_A and b_B are both temperature-dependent.

$$b_A = b_{A0} \exp\left(\frac{E_A}{RT}\right); b_B = b_{B0} \exp\left(\frac{E_B}{RT}\right)$$

The adsorption selectivity S_{ads} was calculated by ideal adsorbed solution theory:

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$

where q_1 and q_2 are the molar loadings in the adsorbed phase in equilibrium with the bulk gas phase, p_1 and p_2 are partial pressure.

Grand canonical Monte Carlo simulations

Grand canonical Monte Carlo (GCMC) simulations were carried out using the Sorption module of Materials Studio package. The Locate and Metropolis methods were used to predict the possible binding sites of C_2H_2 , CO_2 , and CH_4 onto the framework. During the simulation, the C_2H_2 , CO_2 , and CH_4 molecules including the frameworks were considered as rigid bodies. The optimal adsorption sites were simulated under 298 K and 100 kPa by the fixed loading task and Metropolis method. The atomic partial charges of the host HOF skeleton and all gas molecules were obtained from QEq method. The equilibration steps and the production steps were set to 5.0×10^6 and 1.0×10^7 , respectively. The gas-skeleton interaction and the gas-gas interaction were characterized by the standard universal force field (UFF). The cut-off radius used for the Lennard-Jones interactions is 15.5 Å and the long-range electrostatic interactions were considered by the Ewald summation method.

Density functional theory calculations

Density functional theory (DFT) calculations were performed using Dmol3 module embedded in the Materials Studio software. Since it is a vast task to do the DFT calculations using a whole HOF unit cell, we used fragmented cluster models cleaved from unit cells representing the actual situations as high as possible, and the cleaved bonds at cluster boundaries were saturated by protons. The generalized gradient approximation (GGA) with the Perdewe Burkee Ernzerh of (PBE) exchangecorrelation functional was employed for the spin-unrestricted DFT calculations. The electronic wave functions were expanded by the double numerical plus polarization (DNP) basis set. The van der Waals correction was considered by Grimme to precisely describe the adsorption/penetration of gas molecules on/through the g-GYN and g-GYH membranes. The convergence criterion was 1×10^5 Ha for energies, 2×10^3 Ha/ Å for forces, and 5×10^3 Å for atomic displacements. The global cutoff radius was set as 6.0 Å. In all the DFT calculations, all the atoms were allowed to fully relax. The adsorption energy (ΔE_{ads}) is expressed as $\Delta E_{ads} = E_{ads+fram} - E_{fram} - E_{ads}$, where $E_{ads+fram}$, E_{fram} , and E_{ads} are the total energy of the adsorbate-framework adsorption system, adsorbent framework, and adsorbate molecule, respectively. Figures S1-S18

Fig. S2 ¹H NMR spectrum of synthesized H₃TTCA-OCH₃ ligand.

Fig. S3 Electron cloud density of UPC-HOF-15 and simulated methoxy-modified isomorphic framework.

Fig. S4 PXRD patterns of UPC-HOF-15.

Fig. S5 PXRD patterns of UPC-HOF-16.

Fig. S6 TGA curves of UPC-HOF-15 and UPC-HOF-16.

Fig. S7 IR spectra of UPC-HOF-15 and UPC-HOF-16.

Fig. S8 Experimental isotherms and NLDFT fitting theoretical isotherms.

Fig. S9 Single-component C₂H₂, CO₂, and CH₄ adsorption/desorption isotherms of UPC-HOF-15 at 273 K.

Fig. S10 Single-component C₂H₂, CO₂, and CH₄ adsorption/desorption isotherms of UPC-HOF-15 at 298 K.

Fig. S11 Virial fitting of C_2H_2 adsorption isotherms for UPC-HOF-16.

Fig. S12 Virial fitting of CO₂ adsorption isotherms for UPC-HOF-16.

Fig. S13 Virial fitting of CH₄ adsorption isotherms for UPC-HOF-16.

Fig. S14 Langmuir-Freundlich fitting of C₂H₂ adsorption isotherms for UPC-HOF-16 at 273 K.

Fig. S15 Langmuir-Freundlich fitting of CO₂ adsorption isotherms for UPC-HOF-16 at 273 K.

Fig. S16 Langmuir-Freundlich fitting of CH₄ adsorption isotherms for UPC-HOF-16 at 273 K.

Fig. S17 Langmuir-Freundlich fitting of C₂H₂ adsorption isotherms for UPC-HOF-16 at 298 K.

Fig. S18 Langmuir-Freundlich fitting of CO₂ adsorption isotherms for UPC-HOF-16 at 298 K.

Fig. S19 Langmuir-Freundlich fitting of CH₄ adsorption isotherms for UPC-HOF-16 at 298 K.

Tables S1-S5

Table S1. Crystal data of UPC-HOFs.	
Compound	I

Compound	UPC-HOF-15	UPC-HOF-16
CCDC	2444439	2444440
Formula	$C_{26.88}H_{27.38}N_{1.62}O_{7.62}$	C ₂₅ H ₂₃ NO ₈
Formula weight	495.04	465.44
Temperature/K	294.8(6)	294.0(5)
Crystal system	monoclinic	monoclinic
Space group	<i>I2/c</i>	$P2_{I}/c$
a/Å	24.5252(19)	12.0307(3)
b/Å	7.1491(5)	22.7887(5)
c/Å	30.553(2)	8.6147(2)
a/°	90	90
β/°	106.418(8)	100.092(3)
$\gamma^{ m o}$	90	90
Volume/Å ³	5138.5(7)	2325.30(10)
Z	8	4
ρ g/cm ³	1.280	1.330
μ/mm^{-1}	0.783	0.837
F(000)	2088.0	976.0
2θ range for data collection	7.516 to 133.196	7.464 to 141.012
	$-23 \le h \le 29$	$-14 \le h \le 14$
Index ranges	$-4 \le k \le 8$	$-27 \le k \le 20$
	$-36 \le l \le 36$	$-10 \le l \le 10$
Reflections collected	9639	10232
R _{int}	0.0287	0.0241
Data/restraints/parameters	4613/0/333	4403/0/313
Goodness-of-fit on F ²	1.816	1.022
Einel D in dense $[I > 2 - \langle I \rangle]$	$R_1 = 0.1324$	$R_1 = 0.0465$
Final K indexes $[1 \ge 2\sigma(1)]$	$wR_2 = 0.4163$	$wR_2 = 0.1207$
Final D indexes [all data]	$R_1 = 0.1436$	$R_1 = 0.0665$
rinai K indexes [all data]	$wR_2 = 0.4338$	$wR_2 = 0.1364$
Largest diff. peak/hole /eÅ-3	0.68/-0.40	0.17/-0.19

 Table S2. Details of hydrogen-bonding in UPC-HOF-15.

-							
_	D–H…A	D–H (Å)	H···A (Å)	D…A (Å)	D–H···A (°)	symop-for-A	
	O1–H1…O7	0.82	1.80	2.590(3)	160	x, -1+y, z	
	O3–H3…O4	0.82	1.86	2.644(5)	160	1-x, y, 1/2-z	
	O5–H5…O6	0.82	1.83	2.628(5)	169	-x, y, -1/2-z	

Table S3. Details of hydrogen-bonding in UPC-HOF-16.

D–H…A	D–H (Å)	H…A (Å)	D…A (Å)	D–H…A (°)	symop-for-A
01–H1…O4	0.82	1.85	2.665(8)	171	-x, 1/2+y, 1/2-z
O3–H3…O2	0.82	1.76	2.577(6)	171	-x, -1/2+y, 1/2-z
O5–H5…O8	0.82	1.77	2.571(5)	165	x, y, 2+z

Table S4. Comparison of adsorption performance in HOFs at room temperature.

Matariala	BET surface area	Q_{s}	$Q_{\rm st}$ (kJ/mol)		IAST selectivity		Dof
Materials	(m^{2}/g)	C_2H_2	CO_2	CH_4	C_2H_2/CH_4	$\rm CO_2/\rm CH_4$	Kel.
UPC-HOF-16	218.6	16.8	15.3	6.9	14.2	6.7	This work
UPC-HOF-13	_	14.9	3.9	3.0	5.7	4.2	3
HOF-5a	1101	27.6	22.8	19.2	13.6ª	5.0ª	4
HOF-9a	286	_	23.5	14.4	—	2.9ª	5
HOF-11a	687	18.8	19.6	16.6	7.2	3.4	6
HOF-12	320	_	28.5	-	_	5.3	7
HOF-14	2573	_	-	-	3.7	—	8
HOF-16a	302	23.0	21.6	18.5	107	8.9	6
JLU-SOF1-R	460	_	34.3	18.9	—	3.9	9
BTBA-1a	285.6	_	25.1	-	—	14	10
PTBA-1a	202.6	_	33.7	-	—	6	10
HOF-BTB	955	24.3	-	-	9.3 ^b	—	11
SOF-1a	474	36.2	27.6	20.8	—	4.2	12
SOF-7a	900	_	21.6	_	_	9.1	13

^a 296 K, ^b 295 K

 Table S5. Steric volumes of methyl and methoxy group.

Eurotional group	Van d	er Waals radi	Van der Waals volume	
Functional group	С	Н	0	(Å ³)
Methyl	1.70	1.20	_	22-25
Methoxy	1.70	1.20	1.52	30-35

References

 (1) Fan, W.; Yuan, S.; Wang, W.; Feng, L.; Liu, X.; Zhang, X.; Wang, X.; Kang, Z.; Dai, F.; Yuan, D.; et al. Optimizing Multivariate Metal–Organic Frameworks for Efficient C₂H₂/CO₂ Separation. *J. Am. Chem. Soc.* **2020**, *142* (19), 8728–8737. DOI: 10.1021/jacs.0c00805.

(2) Spek, A. L. PLATONSQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. *Acta Cryst. C* **2015**, *71* (1), 9-18. DOI: 10.1107/s2053229614024929.

(3) Wang, X.; Liu, H.; Sun, M.; Gao, F.; Feng, X.; Xu, M.; Wang, Y.; Fan, W.; Sun, D. Solventetching-induced in situ crystal structure transformation in hydrogen-bonded organic frameworks. *Chem. Commun.* **2025**, *61* (33), 6166–6169. DOI: 10.1039/d5cc00829h.

(4) Wang, H.; Li, B.; Wu, H.; Hu, T.-L.; Yao, Z.; Zhou, W.; Xiang, S.; Chen, B. A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation. *J. Am. Chem. Soc.* **2015**, *137* (31), 9963–9970. DOI: 10.1021/jacs.5b05644.

(5) Wang, H.; Wu, H.; Kan, J.; Chang, G.; Yao, Z.; Li, B.; Zhou, W.; Xiang, S.; Cong-Gui Zhao, J.; Chen, B. A Microporous Hydrogen-Bonded Organic Framework with Amine Sites for Selective Recognition of Small Molecules. *J. Mater. Chem. A* **2017**, *5* (18), 8292–8296. DOI: 10.1039/c7ta01364g.

(6) Cai, Y.; Chen, H.; Liu, P.; Chen, J.; Xu, H.; Alshahrani, T.; Li, L.; Chen, B.; Gao, J. Robust Microporous Hydrogen-Bonded Organic Framework for Highly Selective Purification of Methane from Natural Gas. *Microp. Mesop. Mater.* **2023**, *352*, 112495. DOI: 10.1016/j.micromeso.2023.112495.

(7) Yang, W.; Zhou, W.; Chen, B. A Flexible Microporous Hydrogen-Bonded Organic Framework. *Cryst. Growth Des.* **2019**, *19* (9), 5184–5188. DOI: 10.1021/acs.cgd.9b00582.

(8) Wang, B.; Lv, X.-L.; Lv, J.; Ma, L.; Lin, R.-B.; Cui, H.; Zhang, J.; Zhang, Z.; Xiang, S.; Chen,
B. A Novel Mesoporous Hydrogen-Bonded Organic Framework with High Porosity and Stability. *Chem. Commun.* 2020, *56* (1), 66–69. DOI: 10.1039/c9cc07802a.

(9) Zhou, Y.; Liu, B.; Sun, X.; Li, J.; Li, G.; Huo, Q.; Liu, Y. Self-assembly of Homochiral Porous Supramolecular Organic Frameworks with Significant CO₂ Capture and CO₂/N₂ Selectivitys. *Cryst. Growth Des.* **2017**, *17* (12), 6653–6659. DOI: 10.1021/acs.cgd.7b01282.

(10) Ding, X.; Liu, Z.; Zhang, Y.; Ye, G.; Jia, J.; Chen, J. Binary Solvent Regulated Architecture of Ultra-Microporous Hydrogen-Bonded Organic Frameworks with Tunable Polarization for Highly-Selective Gas Separation. *Angew. Chem. Int. Ed.* **2022**, *61* (13), e202116483. DOI: 10.1002/anie.202116483.

(11) Yoon, T.-U.; Baek, S. B.; Kim, D.; Kim, E.-J.; Lee, W.-G.; Singh, B. K.; Lah, M. S.; Bae, Y.-S.; Kim, K. S. Efficient Separation of C₂ Hydrocarbons in a Permanently Porous Hydrogen-Bonded Organic Framework. *Chem. Commun.* **2018**, *54* (67), 9360–9363. DOI: 10.1039/c8cc04139c.

(12) Yang, W.; Greenaway, A.; Lin, X.; Matsuda, R.; Blake, A. J.; Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N. R.; et al. Exceptional Thermal Stability in a Supramolecular Organic Framework: Porosity and Gas Storage. *J. Am. Chem. Soc.* **2010**, *132* (41), 14457–14469. DOI: 10.1021/ja1042935.

(13) Lü, J.; Perez-Krap, C.; Suyetin, M.; Alsmail, N. H.; Yan, Y.; Yang, S.; Lewis, W.; Bichoutskaia, E.; Tang, C. C.; Blake, A. J.; et al. A Robust Binary Supramolecular Organic Framework (SOF) with High CO₂ Adsorption and Selectivity. *J. Am. Chem. Soc.* **2014**, *136* (37), 12828–12831. DOI: 10.1021/ja506577g.