Supporting Information

Synthesis and Isolation of Less Stable Cyclopropene-1-

Carboxylates

Jiahao Ling,^{a,‡} Jiabao Tian,^{a,‡} Xinhai Zhu,*^b and Lei Zhou*^a

^a Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China. E-mail: <u>zhoul39@mail.sysu.edu.cn</u>

^b Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, 510275, Email: zhuxinh@mail.sysu.edu.cn

CONTENTS

1. General information	2
2. Preparation of vinyldiazo compounds	3
3. Experimental procedure for the denitrogenative cyclization	13
4. Experimental procedure for transformations of 2a	15
5. Decay plots from the kinetic experiments	16
6. Mechanism studies	24
7. Characterization data	26
8. References	34
9. Copies of ¹ H NMR and ¹³ C NMR spectra of substances and products	35

1. General information

Unless otherwise noted, all commercially available compounds and analytic pure grade solvents were used as provided without further purification. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.5 mm) or Sorbent Silica Gel 60 F254 plates. For column chromatography, 200-300 mesh silica gel (Qingdao, China) were used. High-resolution mass spectra (HRMS) were performed on ThermoFisher Q Exactive using orbitrap as the mass analyser with atmospheric pressure chemical ionization (APCI) source or electrospray ionization (ESI) source. UV-Vis absorbance spectra were recorded on Shimadzu UV-2700 UV-Vis spectrophotometer. ¹H and ¹³C NMR spectra were recorded on Brucker ARX 400 spectrometer or Brucker ARX 600 spectrometer in CDCl₃, DMSO-*d*6, CD₃OD. Chemical shifts for ¹H NMR spectra were reported in ppm downfield from TMS with the solvent resonance as the internal standard (CDCl₃: δ 7.26 ppm; DMSO-*d*6: δ 2.50 ppm; CD₃OD: δ 3.31 ppm). Chemical shifts for ¹³C NMR spectra were given in Hz. The letters s, d, t, q and m are used to indicate a singlet, doublet, triplet, quadruplet, and multiplet, respectively.

2. Preparation of vinyldiazo compounds

All the vinyldiazo compounds were prepared according to the known methods.¹⁻⁵ Except for **1d**,⁶ other vinyldiazo compounds are new. They are stable in a -18 °C freezer and can be stored for about two weeks.

Caution: To the best of our knowledge, the relevant safety studies have not been carried out on vinyldiazo compounds. However, diazo compounds are potentially explosive, and therefore must be handled with caution. They are also toxic and prone to cause development of specific sensitivity. We recommend that all operations be carried out in a well-ventilated hood behind a blast shield.

2.1 Preparation of vinyldiazo compounds 1a-1c.¹⁻⁴

Synthesis of S1: A solution of alcohol (10 mmol) and NaHCO₃ (30 mmol, 3.0 equiv.) in acetonitrile (30 mL) was cooled to 0 °C. Bromoacetyl bromide (15 mmol, 1.5 equiv.) was added dropwise via syringe over 10 minutes. The reaction mixture was maintained at 0 °C with vigorous stirring for 30 minutes, then quenched with water (20 mL). The aqueous layer was extracted with dichloromethane $(3 \times 20 \text{ mL})$. The combined organic phases were washed with saturated brine (30 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure to yield the crude bromoacetate which was used in the next step without purification.

Synthesis of S2: The bromoacetate product S1 and *N*,*N'*-ditosylhydrazine (2 equiv.) were dissolved in THF (50 mL), and cooled to 0 °C. 1,8-Diazabicycloundec-7-ene (DBU, 5.0 equiv.) was added dropwise over 15 minutes while maintaining the temperature at 0 °C. The resulting solution was stirred for 45-60 minutes at 0 °C, then quenched with saturated NaHCO₃ (30 mL) and extracted with Et₂O (3×30 mL). The combined organic phases were washed with saturated brine (30 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure to yield the crude diazo compound which was purified on a silica column using petroleum ether/ethyl acetate (10:1, v/v) as the eluent to give desired diazoacetate as a pale-yellow oil. *Synthesis of S3:* DBU (1 equiv.) was added to a solution of **S2**, isobutyraldehyde (1.2 equiv.) in MeCN (20.0 mL) at room temperature. The mixture was stirred until consumption of the starting material (typically 6 to 12 h) as monitored by TLC. After completed the reaction, the solvent was removed under reduced pressure, and the residue was purified on a silica column using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to give the desired β -hydroxy- α -diazo carbonyl product as yellow oil.

Synthesis of 1a-1c: To a solution of **S3** and Et_3N (4.0 equiv.) in CH_2Cl_2 (0.33 M) at 0 °C was slowly added a solution of POCl₃ (1.5 equiv.) in CH_2Cl_2 over 20 minutes. The resulting solution was warmed to room temperature and stirred for 2 h. The solution was washed with water and dried over anhydrous Na₂SO₄. The crude product was purified on a silica column using petroleum ether/ethyl acetate (100:1, v/v) as the eluent to give desired vinyldiazo compounds as red oil.

benzyl 2-diazo-4-methylpent-3-enoate (1a)

Red oil. (1.522 g, 66% yield over four steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 5H), 5.43 (s, 1H), 5.24 (s, 2H), 1.86 (s, 3H), 1.68 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 136.1, 135.8, 128.6, 128.3, 128.2, 106.4, 66.6, 26.2, 19.2.
HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₃H₁₅N₂O₂ 231.1128; Found 231.1122.

allyl 2-diazo-4-methylpent-3-enoate (1b)

Red oil. (0.996 g, 55% yield over four steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 6.03 – 5.86 (m, 1H), 5.42 (s, 1H), 5.32 (d, J = 17.2 Hz, 1H), 5.24

(d, *J* = 10.4 Hz, 1H), 4.69 (d, *J* = 5.7 Hz, 2H), 1.86 (s, 3H), 1.68 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.7, 135.8, 132.3, 118.2, 106.4, 65.5, 26.1, 19.2.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₉H₁₃N₂O₂ 181.0972; Found 181.0966.

prop-2-yn-1-yl 2-diazo-4-methylpent-3-enoate (1c)

Red oil. (0.839 g, 47% yield over four steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 5.42 (s, 1H), 4.79 (d, J = 2.4 Hz, 2H), 2.48 (t, J = 2.5 Hz, 1H), 1.86 (s, 3H), 1.68 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.1, 136.4, 106.0, 77.7, 75.0, 52.3, 26.1, 19.2. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₉H₁₁N₂O₂ 179.0815; Found 179.0813.

2.2 Preparation of vinyldiazo compounds 1d-11.5

Synthesis of S4: DBU (10 mmol, 1 equiv.) was added to a solution of ethyl diazoacetate (12 mmol, 1.2 equiv.), aldehyde (10 mmol, 1 equiv.) in MeCN (20.0 mL) at room temperature. The mixture was stirred until consumption of the starting material (typically 6 to 12 h) monitored by TLC. After completed the reaction, the solvent was removed under reduced pressure, and the residue was purified on a silica column using ethyl acetate/hexanes (20:80, v/v) as the eluent to give the desired β -hydroxy- α -diazo carbonyl product as yellow oil.

Synthesis of 1d-11: To a solution of S4 and Et₃N (4.0 equiv.) in CH₂Cl₂ (0.33 M) at 0 °C was slowly added a solution of POCl₃ (1.5 equiv.) in CH₂Cl₂ over 20 minutes. The resulting solution was warmed to room temperature and stirred for 2 h. The solution was washed with water and dried over anhydrous Na₂SO₄. The crude product was purified on a silica column using ethyl acetate/hexanes (1:80, v/v) as the eluent to give the desired γ , γ -disubstituted vinyldiazoacetates as red oil.

ethyl 3,3-dimethylcycloprop-1-ene-1-carboxylate (1d)⁵

Red oil. (1.293 g, 70% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 5.43 (s, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 1.88 (s, 3H), 1.70 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0, 135.4, 106.5, 61.0, 26.1, 19.1, 14.5.

ethyl-2-diazo-4-methylhex-3-enoate (1e)

Red oil. (1.315 g, 72% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). Mixture of *E*- and *Z*- isomers (E/Z = 3:1);

¹**H NMR (400 MHz, CDCl₃)** δ 5.43 – 5.37 (m, 0.69H), 5.38 – 5.37 (m, 0.23H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.15 (q, *J* = 7.5 Hz, 1.51H), 2.05 (q, *J* = 7.8 Hz, 0.54H), 1.84 (d, *J* = 1.4 Hz, 0.75H), 1.67 (s, 2H), 1.29 (t, *J* = 7.1 Hz, 3H), 1.05 (t, *J* = 7.5 Hz, 2.25H), 1.00 (t, *J* = 7.6 Hz, 0.75H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 140.8, 140.3, 105.8, 105.2, 61.0, 32.8, 26.0, 23.3, 17.4, 14.5, 12.6, 12.1.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₉H₁₅N₂O₂ 183.1128; Found 183.1127.

ethyl-2-diazo-4-ethyloct-3-enoate (1f)^[5]

Red oil. (1.712 g, 76% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). Mixture of *E*- and *Z*- isomers (E/Z = 2:1)

¹**H NMR (400 MHz, CDCl₃)** δ 5.36 (s, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.18 – 2.10 (m, 2H), 2.08 – 1.98 (m, 2H), 1.47 – 1.37 (m, 1H), 1.36 – 1.25 (m, 6H), 1.05 (t, *J* = 7.4 Hz, 1H), 0.99 (t, *J* = 7.6 Hz, 2H), 0.91 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 144.4, 144.3, 105.3, 104.8, 61.1, 36.8, 31.0, 30.4, 30.3, 30.3, 24.1, 23.0, 22.5, 14.5, 14.0, 14.0, 12.8, 12.5.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{12}H_{21}N_2O_2$ 225.1598; Found 225.1598.

ethyl 3-cyclopentylidene-2-diazopropanoate (1g)

Red oil. (1.368 g, 70% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 5.50 – 5.46 (m, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.45 – 2.38 (m, 2H), 2.18 – 2.10 (m, 2H), 1.73 (p, *J* = 6.8 Hz, 2H), 1.62 (p, *J* = 6.2 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 144.2, 101.7, 61.1, 35.0, 29.2, 26.6, 26.1, 14.5. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₀H₁₅N₂O₂ 195.1128; Found 195.1126.

ethyl 3-cyclohexylidene-2-diazopropanoate (1h)

Red oil. (1.526 g, 73% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 5.36 (s, 1H), 4.23 (q, J = 7.1 Hz, 2H), 2.23 – 2.19 (m, 2H), 2.13 –

2.05 (m, 2H), 1.60 – 1.50 (m, 6H), 1.28 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 143.4, 103.4, 61.0, 36.9, 29.7, 28.0, 27.0, 26.1, 14.5.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{11}H_{17}N_2O_2$ 209.1285; Found 209.1282.

ethyl-3-(cyclohex-3-en-1-ylidene)-2-diazopropanoate (1i)

Red oil. (1.278 g, 62% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). Mixture of *E*- and *Z*- isomers (E/Z = 3:1);

¹**H NMR (400 MHz, CDCl₃)** δ 5.82 – 5.57 (m, 2H), 5.53 (s, 0.22H), 5.46 (s, 0.68H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.89 – 2.84 (m, 0.50H), 2.72 – 2.65 (m, 1.52H), 2.39 (t, *J* = 6.4 Hz, 1.52H), 2.30 (t, *J* = 6.4 Hz, 0.50H), 2.21 – 2.11 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ166.8, 139.3, 138.1, 127.4, 126.6, 126.1, 124.4, 104.9, 104.4, 61.1, 35.1, 32.6, 29.1, 26.4, 26.33, 26.28, 14.5.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{11}H_{15}N_2O_2$ 207.1128; Found 207.1123.

ethyl-2-diazo-3-(4-(4-methylpent-3-en-1-yl)cyclohex-3-en-1-ylidene)propanoate (1j)

Red oil. (2.372 g, 82% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). Mixture of *E*- and *Z*- isomers (E/Z = 2:1)

¹**H** NMR (600 MHz, CDCl₃) δ 5.51 (s, 0.51H), 5.48 – 5.43 (m, 0.80H), 5.40 – 5.35 (m, 0.19H), 5.34 – 5.29 (m, 0.46H), 5.15 – 5.03 (m, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.88 – 2.83 (m, 0.32H), 2.81 – 2.76 (m, 0.30H), 2.72 – 2.63 (m, 1H), 2.62 – 2.55 (m, 0.43fH), 2.39 (t, *J* = 6.4 Hz, 1H), 2.36 – 2.21 (m, 1H), 2.18 – 2.02 (m, 4H), 2.01 – 1.91 (m, 2H), 1.68 (s, 3H), 1.59 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 166.7, 139.8, 139.6, 138.9, 138.3, 138.2, 137.5, 137.0, 135.2,

131.6, 131.4, 124.13, 124.05, 121.2, 120.2, 119.5, 117.9, 104.44, 104.36, 104.0, 61.0, 38.4, 37.6,
37.2, 37.1, 35.0, 32.9, 32.7, 32.2, 29.6, 29.4, 28.9, 26.4, 26.3, 26.2, 26.0, 25.6, 17.6, 14.5.
HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₇H₂₅N₂O₂ 289.1911; Found 289.1905.

ethyl-5-(4-(tert-butyl)phenyl)-2-diazo-4-methylpent-3-enoate (1k)

Red oil. (2.426 g, 81% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). Mixture of *E*- and *Z*- isomers (E/Z = 7:1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 – 7.28 (m, 2H), 7.15 – 7.09 (m, 1.75H), 7.08 – 7.04 (m, 0.25H), 5.62 (s, 0.13H), 5.55 (s, 0.87H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.41 (s, 1.75H), 3.36 (s, 0.25H), 1.78 (s, 0.40H), 1.63 (s, 2.60H), 1.31 (s, 9H), 1.29 (t, 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9, 149.2, 137.8, 137.2, 136.0, 135.2, 128.5, 128.1, 125.4, 125.3, 108.0, 61.1, 45.9, 38.3, 34.4, 31.4, 24.1, 17.2, 14.5.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{17}H_{25}N_2O_2$ 301.1911; Found 301.1904.

ethyl-5-(benzo[d][1,3]dioxol-5-yl)-2-diazo-4-methylpent-3-enoate (11)

Red oil. (2.379 g, 82% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v).

Mixture of *E*- and *Z*- isomers (E/Z = 7:1)

¹**H NMR (400 MHz, CDCl₃)** δ 6.76 – 6.71 (m, 1H), 6.68 – 6.56 (m, 2H), 5.93 (s, 2H), 5.62 – 5.59 (m, 0.13H), 5.55 – 5.50 (m, 0.85H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.34 (s, 1.73H), 3.30 (s, 0.26H), 1.76 (d, *J* = 1.4 Hz, 0.40H), 1.60 (d, *J* = 1.3 Hz, 2.60H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 147.7, 146.1, 137.5, 136.9, 132.9, 132.0, 121.8, 121.3, 109.2, 108.8, 108.2, 100.9, 61.1, 46.1, 38.4, 23.9, 17.0, 14.5.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₅H₁₇N₂O₄ 289.1183; Found 289.1176.

2.3 Preparation of vinyldiazo compounds 1m-1u.4

Synthesis of S5: To a solution of ethyl diazoacetate (12 mmol, 1.2 equiv.) and ketone (10 mmol, 1.0 equiv.) in anhydrous THF (10.0 mL) was added LDA (12.5 mmol, 1.0 M in THF) over 20 min at - 78 °C. After stirring at -78 °C for 2.5 h, the reaction was quenched by the addition of saturated NH₄Cl (15 mL). The solution was extracted with Et₂O (3×25 mL), and the combined organic layers were washed with brine (25 mL) and dried over anhydrous Na₂SO₄. The solvent was removed in *vacuo* and the crude product was purified by column chromatography using ethyl acetate/hexanes (20:80, v/v) as the eluent to give the β-hydroxy-α-diazo ester **S5** as yellow oil.

Synthesis of 1m-1u: To a solution of S5 and Et₃N (4.0 equiv.) in CH₂Cl₂ (0.33 M) at 0 °C was slowly added a solution of POCl₃ (1.5 equiv.) in CH₂Cl₂ over 20 minutes. The resulting solution was warmed to room temperature and stirred for 2 h. The solution was washed with water and dried over anhydrous Na₂SO₄. The crude product was purified by flash chromatography to afford desired β -substituted vinyldiazoacetates 1m-1u as red oil.

ethyl 2-diazo-3-methylbut-3-enoate (1m)

Red oil. (0.826 g, 45% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 5.51 – 5.20 (m, 1H), 5.06 – 4.83 (m, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 1.99 – 1.86 (m, 1H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.2, 127.1, 110.0, 60.7, 21.3, 14.5.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₇H₁₁N₂O₂ 155.0815; Found 155.0813.

ethyl 2-diazo-4-methyl-3-methylenepentanoate (1n)

Red oil. (1.123 g, 62% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 5.44 (s, 1H), 5.02 (d, *J* = 1.2 Hz, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 2.52

- 2.42 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.14 (s, 3H), 1.12 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.7, 138.4, 107.8, 60.7, 30.7, 21.8, 14.5.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₉H₁₅N₂O₂ 183.1128; Found 183.1124.

ethyl 2-diazo-5-methyl-3-methylenehexanoate (10)

Red oil. (1.498 g, 76% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 5.43 (s, 1H), 4.90 (s, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 2.11 (d, *J* = 7.1

Hz, 2H), 1.75 – 1.61 (m, 1H), 1.31 (t, *J* = 7.1 Hz, 3H), 0.94 (s, 3H), 0.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.4, 130.7, 111.3, 60.7, 44.1, 27.1, 22.2, 14.4.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{10}H_{17}N_2O_2$ 197.1285; Found 197.1279.

ethyl 2-diazo-3-methyleneoctanoate (1p)

Red oil. (0.962 g, 69% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 5.38 (s, 1H), 4.92 (s, 1H), 4.25 (q, J = 7.1 Hz, 2H), 2.20 (t, 2H), 1.50 – 1.39 (m, 2H), 1.34 – 1.27 (m, 7H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 131.9, 109.9, 60.8, 34.6, 31.3, 28.3, 22.5, 14.5, 14.1.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{11}H_{19}N_2O_2$ 211.1441; Found 211.1440.

ethyl 3-cyclopentyl-2-diazobut-3-enoate (1q)

Red oil. (1.387 g, 67% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 5.46 (s, 1H), 5.00 (d, *J* = 1.4 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.55 (p, *J* = 8.0 Hz, 1H), 1.91 – 1.79 (m, 2H), 1.76 – 1.67 (m, 2H), 1.67 – 1.55 (m, 2H), 1.55 – 1.44 (m, 2H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.7, 135.6, 107.6, 60.8, 42.9, 31.6, 24.8, 14.5.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₁H₁₇N₂O₂ 209.1285; Found 209.1282.

ethyl 3-cyclohexyl-2-diazobut-3-enoate (1r)

Red oil. (1.693 g, 76% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 5.38 (s, 1H), 4.97 (s, 1H), 4.24 (d, *J* = 7.1 Hz, 2H), 2.11 – 1.99 (m, 1H), 1.88 – 1.74 (m, 4H), 1.75 – 1.65 (m, 1H), 1.34 – 1.14 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 137.6, 108.3, 60.7, 40.8, 32.6, 26.7, 26.3, 14.5.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{12}H_{19}N_2O_2$ 223.1441; Found 223.1436.

ethyl 2-diazo-7-methyl-3-methyleneoct-6-enoate (1s)

Red oil. (1.643 g, 74% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 5.37 (s, 1H), 5.15 – 5.07 (m, 1H), 4.94 (s, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.27 – 2.19 (m, 2H), 2.18 – 2.09 (m, 2H), 1.69 (s, 3H), 1.60 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 132.5, 131.7, 123.0, 110.1, 60.8, 34.5, 27.3, 25.7, 17.7, 14.5. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₂H₁₉N₂O₂ 223.1441; Found 223.1438.

ethyl 2-diazo-3-methylene-5-phenylpentanoate (1t)

Red oil. (1.606 g, 66% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.23 – 7.12 (m, 3H), 5.31 (s, 1H), 4.95 (s, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 2.82 – 2.73 (m, 2H), 2.59 – 2.49 (m, 2H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 141.2, 131.7, 128.5, 126.1, 110.3, 60.9, 36.5, 35.4, 14.5. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₄H₁₇N₂O₂ 245.1285; Found 245.1281.

ethyl 2-diazo-5-(4-methoxyphenyl)-3-methylenepentanoate (1u)

Red oil. (1.930 g, 70% yield over two steps, eluent: petroleum ether/ethyl acetate = 100/1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.07 (m, 2H), 6.91 – 6.77 (m, 2H), 5.34 (s, 1H), 4.96 (s,

1H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 2.88 – 2.69 (m, 2H), 2.61 – 2.43 (m, 2H), 1.33 (t, *J* =

7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃)) δ 165.2, 158.0, 133.2, 131.7, 129.3, 113.8, 110.3, 60.8, 55.3, 36.8, 34.5, 14.5.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{15}H_{19}N_2O_2$ 275.1390; Found 275.1383.

3. Experimental procedure for the denitrogenative cyclization

3.1 General experimental procedure for the cyclization of vinyl diazoacetates 1

A dry reaction tube equipped with a magnetic stirring bar was charged with vinyldiazo compound **1** (0.10 mmol), CHCl₃ 0.5 mL under ambient atmosphere. The tube was irradiated with a 5 W blue LED at room temperature with fan cooling (about 25 °C) for 15-30 min. The reaction can be monitored according to the color fading, usually from orange to colorless or light yellow. Upon completion, the solvent was removed under reduced pressure (< 30° C).

The reactions of β -substituted vinyldiazoacetates **1p**, **1q**, **1s** and **1u** contains minor amounts of pyrazoles as the by-products, which can be removed by the rapid silica gel (3–5 cm) filtration using dichloromethane as the eluent. For other reactions, the yields were quotative and the resulting cyclopropenes were characterized directly without further purification.

3.2 Experimental procedure for the synthesis of cyclopropene on gram scale

A dry reaction tube equipped with a magnetic stirring bar was charged with **1a** (2.3 g, 10 mmol) and CHCl₃ (50 mL) under ambient atmosphere, seal the tube and use a balloon to balance the pressure. The mixture was irradiated with a 5 W blue LED with fan cooling at room temperature for 2-4 h. The reaction progress was monitored by the fading of the characteristic diazo coloration. Upon completion, the solvent was removed under reduced pressure (<30 °C, to reduce the loss of volatile products), and the crude residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 40:1, v/v) to afford **2a** as a pale-yellow oil (86% yield, 1.74 g).

The gram synthesis of cyclopropenes **2b**, **2k** and **2m** used the same experimental procedure as described above.

3.3 Unsuccessful examples

The current method is limited to the conversion of γ , γ -dialkyl vinyldiazoacetates and β -alkyl vinyldiazoacetates to the corresponding cyclopropene-1-carboxylates. Vinyldiazoacetates bearing γ -aryl, β , γ -dialkyl and γ -ester group were unsuccessful. These substrates led to complex mixtures and it's hard for us to isolate and identify the resultant side-products. The results on the basis of GC-MS analysis were briefly discussed below.

 γ -Aryl vinyldiazoacetates do not generate cyclopropenes but provide pyrazole and carbene dimerization as the major side products. For β , γ -dialkyl vinyldiazoacetates, the situation is more complicated. Except for the above-mentioned side-products, they might form unstable cyclopropenes, which further undergo Alder-Ene reaction, 1,3-dipolar addition with another molecule of β , γ -dialkyl vinyldiazoacetates, reversible ring-opening et al. We also examined the vinyldiazoacetate bearing an ester group on the γ -position, no cyclopropene was formed either.

4. Experimental procedure for transformations of 2a

4.1 Radical 1,2-addition of TsSePh to 2a

Into an oven-dried reaction vial flushed with N₂, **2a** (0.20 mmol, 1.0 equiv.) and selenosulfonates (0.20 mmol, 1.0 equiv.) in EtOAc (1.0 mL) was stirred at room temperature under the irradiation of a 5 W blue LED for 2 h. After the removal of solvent in vacuo, the residue was purified by column chromatography (petroleum ether /ethyl acetate = 5:1) to afford product **3** in 70% yield (72.2 mg) as a pale-yellow solid.

4.2 Michael addition of salicylaldehyde to 2a

The solution of **2a** (0.20 mmol, 1.0 equiv.), salicylaldehyde (0.20 mmol, 1.0 equiv.) and DBU (0.03 mmol, 15 mol%) in MeCN (2.0 mL) was stirred at room temperature under ambient atmosphere for 24 h. Filter to remove insoluble substances then remove solvent in vacuo, the residue was purified by column chromatography (petroleum ether /ethyl acetate = 5:1) to afford product **4** in 72% yield (46.8 mg) as a pale-yellow oil.

5. Decay plots from the kinetic experiments

5.1 General procedure for the kinetic measurements

Compounds **2a** and **2m** were synthesized according to the procedure described above. For kinetic analysis, each compound was dissolved in deuterated solvent (0.5 mL) at a defined concentration. 1,3,5-trimethoxybenzene was added as an internal standard. The time-dependent ratio of remain-to-initial concentration $(1/C_t-1/C_0)$ was monitored by ¹H NMR spectroscopy at predetermined intervals (400 MHz). NMR integration values were normalized against the internal standard to quantify reaction progress.

For compound **2a**, the olefinic proton resonance ($\delta = 7.98$) served as the characteristic resonance for quantification. In the case of compound 2b, the allylic methyl protons ($\delta = 2.34$) were selected as the characteristic resonance.

Half-life was calculated from straight lines obtained by $(1/C_t-1/C_0)$ or $\ln(C_t/C_0)$ plots.

Table S1. The d	Table S1. The decay of 2a ($C_0 = 0.1M$) in CDCl ₃ at 25 °C over time.										
Time (h)	Ct 1	Ct 2	Ct mean	Error	$1/C_{t}-1/C_{0}$						
0	0.100	0.100	0.100	0.000	0.000						
12	0.090	0.090	0.090	0.000	1.127						
24	0.083	0.086	0.084	0.002	1.848						
36	0.078	0.080	0.079	0.001	2.635						
48	0.075	0.075	0.075	0.000	3.374						

5.2 Decay of compound 2a

Table S2. The decay of 2a ($C_0 = 0.3M$) in CDCl₃ at 25 °C over time.

Time (h)	C _t 1	C _t 2	C _t mean	Error	$1/C_t-1/C_0$
0	0.300	0.300	0.300	0.000	0.000
12	0.266	0.260	0.263	0.005	0.466
24	0.250	0.245	0.248	0.003	0.702
36	0.229	0.223	0.226	0.004	1.094
48	0.207	0.198	0.203	0.006	1.599

Time (h)	C _t 1	C _t 2	C _t mean	Error	$1/C_t-1/C_0$
0	0.500	0.500	0.500	0.000	0.000
12	0.425	0.428	0.426	0.002	0.345
24	0.361	0.363	0.362	0.001	0.763
36	0.310	0.324	0.317	0.010	1.156
48	0.276	0.265	0.271	0.008	1.694

Table S3. The decay of 2a ($C_0 = 0.5M$) in CDCl₃ at 25 °C over time.

Table S4. Rate constants and half-lives for 2a in CDCl₃ at 25 °C at different concentrations.

Entry	Concentration (mol/L)	$k_{\rm obs}({\rm h}^{-1})$	Half-life
1	0.1	0.0627	159h 29min
2	0.3	0.0316	105h 29min
3	0.5	0.0370	54h 3min

Figure S1. The C_t of **2a** in CDCl₃ at 25 °C over time at different concentration (left) and the linear plot of $(1/C_t-1/C_0)$ vs time (right).

Time (h)				1/C 1/C	C_t/C_0	Ct/C0	Ct/C0	Emor	$\ln(C_t/C_0)$	
111111111111111111111111111111111111	Ct 2	Ct Illeall	LIIOI			2	mean	LIIOI	mean	
0	0.300	0.300	0.300	0.000	0.000	1.000	1.000	1.000	0.000	0.000
12	0.151	0.145	0.148	0.004	3.406	0.505	0.485	0.495	0.014	-0.704
24	0.089	0.084	0.087	0.003	8.217	0.296	0.281	0.289	0.010	-1.243
36	0.052	0.053	0.053	0.000	15.671	0.175	0.176	0.175	0.001	-1.741
48	0.034	0.035	0.034	0.001	25.678	0.112	0.118	0.115	0.004	-2.164

Table S5. The decay of 2a ($C_0 = 0.3M$) in CD₃OD at 25 °C over time.

Time (h)	C. 1	C^{1}	C. maan	Error	1/C 1/C	C_t/C_0	C_t/C_0	C_t/C_0	Error	$\ln(C_t/C_0)$
Time (h) $C_t I = C_t 2$	Ct illeali	LIIOI	E1101 1/Ct-1/C0		2	mean	LIIOI	mean		
0	0.300	0.300	0.300	0.000	0.000	1.000	1.000	1.000	0.000	0.000
12	0.138	0.137	0.137	0.001	3.944	0.459	0.457	0.458	0.002	-0.781
24	0.059	0.060	0.059	0.001	13.521	0.196	0.200	0.198	0.003	-1.621
36	0.028	0.029	0.028	0.001	31.792	0.093	0.097	0.095	0.003	-2.355
48	0.015	0.015	0.015	0.000	62.637	0.050	0.051	0.051	0.001	-2.985

Table S6. The decay of 2a ($C_0 = 0.3M$) in DMSO at 25 °C over time.

Table S7. Rate constants and half-lives for 2a ($C_0 = 0.3M$) in CD₃OD and DMSO at 25 °C

Entry	Solvent	Model	$k_{\rm obs}({\rm h}^{-1})$	Half-life
1	CD ₃ OD	second-order kinetics	0.6189	5h 23min
2	DMSO	second-order kinetics	1.6196	2h 3min
3	CD ₃ OD	first-order kinetics	0.0447	13h 19min
4	DMSO	first-order kinetics	0.0629	10h 23min

Figure S2. The C_t of **2a** (C₀ = 0.3M) in DMSO and CD₃OD at 25 °C over time (top-left) and the linear plot of $(1/C_t-1/C_0)$ vs time (top-right). The C_t/C₀ of **2a** (0.3M) in DMSO and CD₃OD at 25 °C over time (lower-left) and the linear plot of $\ln(C_t/C_0)$ vs time (lower-right).

Time (min)	C _t 1	C _t 2	C _t mean	Error	$1/C_t - 1/C_0$
0	0.300	0.300	0.000	0.300	0.000
3	0.294	0.293	0.001	0.294	0.071
8	0.284	0.289	0.004	0.286	0.157
18	0.280	0.279	0.001	0.280	0.243
30	0.275	0.266	0.006	0.270	0.367
50	0.248	0.237	0.008	0.242	0.791
70	0.237	0.233	0.003	0.235	0.916
90	0.221	0.225	0.003	0.223	1.157
120	0.212	0.206	0.005	0.209	1.458
150	0.179	0.172	0.005	0.175	2.373
180	0.163	0.163	0.001	0.163	2.802
210	0.161	0.152	0.007	0.157	3.056
240	0.156	0.130	0.018	0.143	3.666
270	0.139	0.115	0.017	0.127	4.557

Table S8. The decay of 2a ($C_0 = 0.3M$) in CDCl₃ at 50 °C over time.

Table S9. Rate constants and half-lives for 2a ($C_0 = 0.3M$) in CDCl₃ at 50 °C.

Entry	Temperature (°C)	$k_{\rm obs}({\rm min}^{-1})$	Half-life
1	T=50 °C	0.0160	3h 28min

Figure S3. The decay of 2a ($C_0 = 0.3M$) in CDCl₃ at 50 °C over time (left) and the linear plot of $(1/C_t-1/C_0)$ vs time (right).

5.3 Decay of compound 2m

Time (h)	C _t 1	C _t 2	Ct mean	Error	$1/C_t - 1/C_0$
0	0.100	0.100	0.100	0.000	0.000
12	0.088	0.089	0.089	0.000	1.285
24	0.079	0.081	0.080	0.001	2.510
36	0.072	0.076	0.074	0.003	3.584
48	0.064	0.069	0.066	0.003	5.042

Table S10. The decay of 2m (C₀ = 0.1M) in CDCl₃ at 25 °C over time.

Table S11. The decay of 2m (C₀ = 0.3M) in CDCl₃ at 25 °C over time.

Time (h)	C _t 1	C _t 2	Ct mean	Error	$1/C_t-1/C_0$
0	0.300	0.300	0.300	0.000	0.000
12	0.210	0.211	0.211	0.001	1.416
24	0.178	0.172	0.175	0.004	2.381
36	0.150	0.145	0.148	0.004	3.434
48	0.127	0.124	0.125	0.002	4.637

Table S12. The decay of $2m (C_0 = 0.5M)$ in CDCl₃ at 25 °C over time.

Time (h)	C _t 1	C _t 2	Ct mean	Error	$1/C_{t}-1/C_{0}$
0	0.500	0.500	0.500	0.000	0.000
12	0.331	0.337	0.334	0.004	0.992
24	0.257	0.263	0.260	0.005	1.843
36	0.207	0.210	0.209	0.002	2.796
48	0.175	0.181	0.178	0.004	3.618

Table S13. Rate constants and half-lives for 2m in CDCl₃ at 25 °C at different concentrations.

Entry	Concentration (mmol/mL)	$K_{obs}(h^{-1})$	Half-life
1	0.1	0.1029	97h 11min
2	0.3	0.0893	37h 20min
3	0.5	0.0736	27h 10min

Figure S4. The C_t of **2m** in CDCl₃ at 25 °C over time at different concentration (left) and the linear plot of $(1/C_t-1/C_0)$ vs time (right).

Time (h)	C _t 1	C _t 2	Ct mean	Error	$1/C_{t}-1/C_{0}$
0	0.300	0.300	0.300	0.000	0.000
12	0.158	0.153	0.155	0.004	0.258
24	0.105	0.106	0.106	0.001	0.255
36	0.080	0.081	0.080	0.001	0.253
48	0.065	0.065	0.065	0.000	0.249

Table S14. The decay of 2m (C₀ = 0.3M) in CD₃OD at 25 °C over time.

Table S15. The decay of 2m (C₀ = 0.3M) in DMSO at 25 °C over time.

Time (h)	C _t 1	C _t 2	Ct mean	Error	$1/C_t - 1/C_0$
0	0.300	0.300	0.300	0.000	0.000
12	0.163	0.144	0.154	0.013	0.264
24	0.105	0.101	0.103	0.003	0.266
36	0.084	0.075	0.079	0.006	0.258
48	0.065	0.064	0.064	0.001	0.254

Table S16. Rate constants and half-lives for 2m ($C_0 = 0.3M$) in CDCl₃ at 25 °C in CD₃OD and DMSO.

Entry	Solvent	$K_{obs}(h^{-1})$	Half-life
1	CD ₃ OD	0.2468	13h 30min
2	DMSO	0.2503	13h 19min

Figure S5. The decay of **2m** ($C_0 = 0.3M$) in DMSO and CD₃OD at 25 °C over time (left) and the linear plot of $(1/C_t-1/C_0)$ vs time (right).

Time (min)	C _t 1	C _t 2	C _t mean	Error	$1/C_t - 1/C_0$
0	0.300	0.300	0.300	0.000	0.000
30	0.264	0.265	0.265	0.000	0.015
60	0.237	0.229	0.233	0.005	0.016
90	0.216	0.205	0.210	0.008	0.016
120	0.191	0.190	0.191	0.001	0.016
150	0.176	0.173	0.174	0.002	0.016
180	0.163	0.159	0.161	0.003	0.016
210	0.148	0.147	0.148	0.000	0.016
240	0.143	0.141	0.142	0.001	0.016
270	0.137	0.131	0.134	0.005	0.015

Table S17. The decay of 2a ($C_0 = 0.3M$) in CDCl₃ at 50 °C over time.

Table S18. Rate constants and half-lives for 2a (0.3M) in CDCl₃ at 50 $^\circ$ C .

Entry	Temperature (°C)	K _{obs} (min ⁻¹)	Half-life
1	T=50 °C	0.0156	3h 34min

Figure S6. The decay of **2m** (0.3M) in CDCl₃ at 50 °C over time (left) and the linear plot of $(1/C_t-1/C_0)$ vs time (right).

6. Mechanism studies

6.1 Radical inhibition experiment

A dry reaction tube equipped with a magnetic stirring bar was charged with vinyldiazo compound **1a** (0.10 mmol, 23 mg), TEMPO (0.20 mmol, 31.3 mg), CHCl₃ 0.5 mL under ambient atmosphere, obtain a clear red liquid. The tube was irradiated with a 5 W blue LED at room temperature with fan cooling (about 25 °C) for about 15 min. The reaction was monitored by TLC, due to the red color of TEMPO. After complete conversion of substance **1a**, the resulting organic solution was supplemented with 1,3,5-trimethoxybenzene as an internal standard, resulting in a 25% yield of **2a** as determined by ¹H-NMR spectroscopy.

6.2 UV-Vis absorption spectra of 1a and emission wavelength of LEDs

The UV–Vis spectra were recorded in CHCl₃, using 0.10 M concentration solutions, in a 1 cm Hellma Quartz cuvette with a cap provided with a Teflon septum.

Vinyldiazo compound 1a present a wide absorbance spectrum in the visible region.

Figure S7. UV-Vis absorption spectrm of 1a

Figure S8. Emission wavelength of LEDs

7. Characterization data

benzyl 3,3-dimethylcycloprop-1-ene-1-carboxylate (2a)

Pale-yellow oil; Yield: >99% (20.2 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.41 – 7.33 (m, 5H), 5.26 (s, 2H), 1.30 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 161.6, 135.7, 134.3, 128.6, 128.4, 128.3, 127.8, 66.7, 26.9, 24.5.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₃H₁₅O₂ 203.1067; Found 203.1063.

allyl 3,3-dimethylcycloprop-1-ene-1-carboxylate (2b)

Pale-yellow oil; Yield: >99% (15.2 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 6.09 – 5.89 (m, 1H), 5.36 (d, *J* = 17.1 Hz, 1H), 5.27

(d, *J* = 10.4 Hz, 1H), 4.71 (d, *J* = 5.5 Hz, 2H), 1.29 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 161.4, 134.1, 131.9, 127.8, 118.6, 65.6, 26.9, 24.4.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₉H₁₃O₂ 153.0910; Found 153.0910.

prop-2-yn-1-yl 3,3-dimethylcycloprop-1-ene-1-carboxylate (2c)

Pale-yellow oil; Yield: >99% (15.0 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.05 (s, 1H), 4.81 (d, *J* = 2.5 Hz, 2H), 2.51 (t, *J* = 2.5 Hz, 1H), 1.30 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 160.7, 135.5, 127.2, 77.2, 75.3, 52.4, 26.8, 24.7.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₉H₁₁O₂ 151.0754; Found 151.0752.

ethyl 3,3-dimethylcycloprop-1-ene-1-carboxylate (2d)

Pale-yellow oil; Yield: >99% (14.0 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.96 (s, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.31

(s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 161.8, 133.2, 128.0, 61.0, 26.8, 24.2, 14.2.

HRMS (ESI) calcd for $C_8H_{13}O_2 [M+H]^+$: 141.0910; found: 141.0915.

ethyl 3-ethyl-3-methylcycloprop-1-ene-1-carboxylate (2e)

Pale-yellow oil; Yield: >99% (15.4 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.92 (s, 1H), 4.27 (qd, *J* = 7.1, 2.2 Hz, 2H), 1.70 – 1.53 (m, 2H),

1.33 (t, *J* = 7.1 Hz, 3H), 1.26 (s, 3H), 0.74 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.0, 131.9, 126.5, 61.0, 31.4, 29.7, 25.2, 14.2, 11.4.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₉H₁₅O₂ 155.1067; Found 155.1064.

ethyl 3-butyl-3-ethylcycloprop-1-ene-1-carboxylate (2f)

Pale-yellow oil; Yield: >99% (19.6 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (s, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 1.74 – 1.44 (m, 4H), 1.33 (t, *J* = 7.2 Hz, 3H), 1.25 (q, 2H), 1.17 – 0.96 (m, 2H), 0.85 (t, *J* = 7.3 Hz, 3H), 0.70 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.1, 130.3, 124.7, 61.0, 36.9, 34.4, 29.8, 29.4, 22.7, 14.2, 14.1, 11.4.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{12}H_{21}O_2$ 197.1536; Found 197.1537.

ethyl spiro[2.4]hept-1-ene-1-carboxylate (2g)

Pale-yellow oil; Yield: >99% (16.6 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.83 – 1.63 (m, 6H), 1.55 –

1.43 (m, 2H), 1.35 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.5, 128.5, 122.9, 61.0, 35.8, 33.9, 26.4, 14.2.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₀H₁₅O₂ 167.1067; Found 167.1061.

ethyl spiro[2.5]oct-1-ene-1-carboxylate (2h)

Pale-yellow oil; Yield: >99% (18.0 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 8.02 (s, 1H), 4.27 (q, *J* = 7.1 Hz, 2H), 1.69 – 1.42 (m, 10H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.8, 132.6, 127.7, 60.0, 37.2, 30.8, 25.5, 25.4, 13.2.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{11}H_{17}O_2$ 181.1223; Found 181.1217.

ethyl spiro[2.5]octa-1,5-diene-1-carboxylate (2i)

Pale-yellow oil; Yield: >99% (17.8 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (600 MHz, CDCl₃)** δ 7.92 (s, 1H), 5.80 – 5.67 (m, 1H), 5.66 – 5.53 (m, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 2.26 – 2.03 (m, 3H), 2.02 – 1.89 (m, 1H), 1.73 – 1.61 (m, 3H), 1.60 – 1.47 (m, 1H), 1.26 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 161.6, 131.7, 127.4, 127.2, 127.0, 61.1, 37.2, 33.9, 28.7, 25.5, 14.2. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₁H₁₅O₂ 179.1067; Found 179.1067. ethyl 6-(4-methylpent-3-en-1-yl)spiro[2.5]octa-1,5-diene-1-carboxylate (2j)

Pale-yellow oil; Yield: >99% (26.0 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1). Mixture of E- and Z- isomers (E/Z = 2:1)

¹**H NMR (600 MHz, CDCl₃)** δ 8.00 (s, 1H), 5.56 – 5.31 (m, 1H), 5.17 – 5.02 (m, 1H), 4.32 – 4.19 (m, 2H), 2.26 – 1.88 (m, 8H), 1.77 – 1.69 (m, 1H), 1.72 – 1.65 (m, 3H), 1.63 – 1.56 (m, 3H), 1.58 – 1.46 (m, 1H), 1.36 – 1.28 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.65, 161.61, 138.2, 137.8, 132.0, 131.9, 131.4, 127.22, 127.17, 124.4, 124.3, 121.0, 120.5, 61.1, 40.2, 38.0, 37.6, 37.0, 34.1, 33.7, 29.1, 28.8, 28.7, 26.6, 26.5, 25.74, 25.71, 25.2, 17.7, 14.2.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₇H₂₅O₂ 261.1849; Found 261.1847.

ethyl 3-(4-(tert-butyl)benzyl)-3-methylcycloprop-1-ene-1-carboxylate (2k)

Pale-yellow oil; Yield: >99% (27.2 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (s, 1H), 7.34 – 7.26 (m, 2H), 7.13 – 7.04 (m, 2H), 4.37 – 4.21 (m, 2H), 2.97 – 2.85 (m, 2H), 1.36 (d, *J* = 7.1 Hz, 3H), 1.34 – 1.33 (m, 3H), 1.33 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 161.5, 148.7, 136.6, 131.5, 129.0, 126.3, 125.1, 61.1, 45.6, 34.4, 31.4, 29.4, 25.2, 14.2.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₈H₂₅O₂ 273.1849; Found 273.1844.

ethyl 3-(benzo[d][1,3]dioxol-5-ylmethyl)-3-methylcycloprop-1-ene-1-carboxylate (2l)

Pale-yellow oil; Yield: >99% (26.0 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.81 (s, 1H), 6.73 – 6.66 (m, 1H), 6.65 – 6.59 (m, 1H), 6.56 – 6.50 (m, 1H), 5.91 (s, 2H), 4.36 – 4.16 (m, 2H), 2.84 (d, *J* = 3.5 Hz, 2H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.29 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.4, 147.5, 145.7, 133.5, 131.1, 125.8, 122.2, 109.7, 108.0, 100.7, 61.1, 45.5, 29.6, 25.2, 14.2.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{15}H_{17}O_4$ 261.1121; Found 261.1120.

ethyl 2-methylcycloprop-1-ene-1-carboxylate (2m)

Pale-yellow oil; Yield: >99%, determined by ¹H NMR; $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 4.29 (q, *J* = 7.1 Hz, 2H), 2.37 (s, 3H), 1.39 (s, 2H), 1.36 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.7, 131.0, 103.7, 60.9, 14.3, 13.2, 11.0.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₇H₁₁O₂ 127.0754; Found 127.0755.

ethyl 2-isopropylcycloprop-1-ene-1-carboxylate (2n)

Pale-yellow oil; Yield: >99% (15.4 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹H NMR (400 MHz, CDCl₃) δ 4.26 (q, J = 7.1 Hz, 2H), 2.91 (hept, J = 6.9 Hz, 1H), 1.36 (s, 2H),

1.32 (t, *J* = 7.1 Hz, 3H), 1.24 (d, *J* = 6.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 161.8, 139.0, 101.6, 60.9, 27.7, 19.8, 14.3, 9.8.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₉H₁₅O₂ 155.1067; Found 155.1062.

ethyl 2-isobutylcycloprop-1-ene-1-carboxylate (20)

Pale-yellow oil; Yield: >99% (16.8 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 4.29 (q, *J* = 7.1 Hz, 2H), 2.58 (d, *J* = 6.7 Hz, 2H), 2.14 – 2.05 (m, 1H), 1.38 (s, 2H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.02 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.4, 130.7, 111.3, 60.7, 44.1, 27.1, 22.2, 14.4.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₀H₁₇O₂ 169.1223; Found 169.1221.

ethyl 2-pentylcycloprop-1-ene-1-carboxylate (2p)

Pale-yellow oil; Yield: 92% (10.2 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 4.26 (q, *J* = 7.1 Hz, 2H), 2.65 (t, *J* = 7.2 Hz, 2H), 1.75 – 1.62 (m, 2H), 1.52 – 1.18 (m, 9H), 0.99 – 0.73 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.8, 134.8, 102.8, 60.9, 31.4, 27.7, 26.4, 22.4, 14.3, 14.0, 10.4.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{11}H_{19}O_2$ 183.1380; Found 183.1378.

ethyl 2-cyclopentylcycloprop-1-ene-1-carboxylate (2q)

Pale-yellow oil; Yield: 93% (16.7 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 4.26 (q, *J* = 7.1 Hz, 2H), 3.21 – 3.10 (m, 1H), 2.03 – 1.86 (m, 2H), 1.78 – 1.62 (m, 6H), 1.35 (s, 2H), 1.32 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.8, 138.2, 101.2, 60.9, 37.5, 30.6, 25.5, 14.3, 9.9.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{11}H_{17}O_2$ 181.1223; Found 181.1220.

ethyl 2-cyclohexylcycloprop-1-ene-1-carboxylate (2r)

Pale-yellow oil; Yield: >99% (19.4 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 4.26 (q, *J* = 7.1 Hz, 2H), 2.78 – 2.62 (m, 1H), 2.01 – 1.84 (m, 2H), 1.75 – 1.64 (m, 2H), 1.54 – 1.41 (m, 3H), 1.40 – 1.29 (m,8H).

¹³C NMR (100 MHz, CDCl₃) δ 161.9, 138.0, 101.9, 60.9, 36.4, 29.9, 26.0, 25.2, 14.3, 9.5.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{12}H_{19}O_2$ 195.1380; Found 195.1375.

ethyl 2-(4-methylpent-3-en-1-yl)cycloprop-1-ene-1-carboxylate (2s)

Pale-yellow oil; Yield: 93% (18.0 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹H NMR (400 MHz, CDCl₃) δ 5.20 – 5.10 (m, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.67 (t, J = 7.4 Hz,

2H), 2.37 (q, *J* = 7.4 Hz, 2H), 1.68 (s, 3H), 1.62 (s, 3H), 1.36 (s, 2H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.8, 134.5, 132.9, 122.9, 103.2, 60.9, 28.0, 25.7, 25.4, 17.7, 14.3, 10.6.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₂H₁₉O₂ 195.1380; Found 195.1376.

ethyl 2-phenethylcycloprop-1-ene-1-carboxylate (2t)

Pale-yellow oil; Yield: 90% (19.4 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.34 – 7.25 (m, 2H), 7.24 – 7.18 (m, 3H), 4.27 (q, *J* = 7.1 Hz, 2H), 3.14 – 3.01 (m, 2H), 3.00 – 2.93 (m, 2H), 1.39 (s, 2H), 1.33 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.6, 140.8, 133.7, 128.5, 128.3, 126.3, 103.8, 61.0, 32.9, 29.5, 14.3, 10.8.

HRMS (APCI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{17}O_2$ 217.1223; Found 217.1218.

ethyl 2-(4-methoxyphenethyl)cycloprop-1-ene-1-carboxylate (2u)

Pale-yellow oil; Yield: 92% (22.5 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.20 – 7.08 (m, 2H), 6.90 – 6.81 (m, 2H), 4.29 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 3.10 – 2.91 (m, 4H), 1.40 (s, 2H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 158.1, 133.9, 132.9, 129.2, 113.9, 103.7, 61.0, 55.3, 32.1, 29.8, 14.3, 10.8.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₅H₁₉O₃ 247.1329; Found 247.1324.

benzyl-2,2-dimethyl-1-(phenylselanyl)-3-tosylcyclopropane-1-carboxylate (3)

Pale-yellow solid; Yield: 70% (72.2 mg); $R_f = 0.4$ (petroleum ether: ethyl acetate = 5:1).

¹**H NMR (400 MHz, CDCl₃)** 7.82 – 7.55 (m, 2H), 7.46 – 7.36 (m, 5H), 7.35 – 7.29 (m, 2H), 7.25 – 7.17 (m, 1H), 7.11 (d, *J* = 7.9 Hz, 2H), 7.07 – 6.98 (m, 2H), 5.29 (d, *J* = 12.1 Hz, 1H), 5.17 (d, *J* = 12.1 Hz, 1H), 2.59 (s, 1H), 2.45 (s, 3H), 1.79 (s, 3H), 1.55 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1, 144.1, 138.4, 135.3, 134.5, 129.6, 129.0, 129.0, 128.5, 128.4, 128.3, 127.9, 127.8, 67.8, 55.4, 39.8, 32.2, 26.7, 21.7, 18.0.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₆H₂₇O₄SSe 515.0790; Found 515.0778.

benzyl (1SR,3RS)-3-(2-formylphenoxy)-2,2-dimethylcyclopropane-1-carboxylate (4)

Pale-yellow oil; Yield: 72% (46.8 mg); $R_f = 0.3$ (petroleum ether: ethyl acetate = 30:1).

¹**H NMR (400 MHz, CDCl₃)** δ 10.42 (s, 1H), 7.87 – 7.80 (m, 1H), 7.57 – 7.46 (m, 1H), 7.43 – 7.34 (m, 5H), 7.12 – 7.05 (m, 1H), 7.03 – 6.96 (m, 1H), 5.19 (q, *J* = 12.2 Hz, 2H), 4.14 (s, 1H), 1.86 (d, *J* = 2.8 Hz, 1H), 1.35 (s, 3H), 1.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 189.2, 170.4, 160.6, 136.1, 128.7, 128.5, 128.4, 128.3, 124.8, 121.6, 113.3, 66.7, 66.3, 33.1, 29.9, 20.0, 18.2.

HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₀H₂₃O₄ 325.1434; Found 325.1427.

8. References

- Li, W.; Li, S.; Empel, C.; Koenigs, R. M.; Zhou, L., Photoredox-Enabled Self-(3+2) Cyclization of Vinyldiazo Reagents: Synthesis of Cyclopentenyl alpha-Diazo Compounds. *Angew. Chem. Int. Ed.* 2023, *62* (42), e202309947.
- Narode, A. S.; Ho, Y.-S.; Cheng, M.-J.; Liu, R.-S., Gold-Catalyzed Addition of β-Oxo Enols at Tethered Alkynes via a Non-Conia-ene Pathway: Observation of a Formal 1,3-Hydroxymethylidene Migration. *Org. Lett.* 2023, *25* (9), 1589-1594.
- Li, S.; Zhou, L., Photocatalytic (3 + 3) Annnulation of Vinyldiazo Compounds and Aminocyclopropanes. Org. Lett. 2024, 26 (15), 3294-3298.
- 4. Chen, X.; Gao, Y.; Yu, S.; Liang, J.; Zhou, L., Lewis-Acid-Catalyzed Diastereoselective [4
 + 2] Cycloaddition of Vinyldiazo Compounds with N-Acyliminium Cations. Org. Lett. 2025, 27 (10), 2515-2520.
- Qin, C.; Davies, H. M. L., Silver-Catalyzed Vinylogous Fluorination of Vinyl Diazoacetates. Org. Lett. 2013, 15 (24), 6152-6154.

9. Copies of ¹H NMR and ¹³C NMR spectra of substances and products

S37

¹³C NMR of **1d** (100 Hz, CDCl₃)

¹³C NMR of **1e** (100 Hz, CDCl₃)

¹³C NMR of **1g** (100 Hz, CDCl₃)

¹³C NMR of **1h** (100 Hz, CDCl₃)

¹³C NMR of **1***j*(100 Hz, CDCl₃)

¹³C NMR of **1k** (100 Hz, CDCl₃)

¹³C NMR of **11** (100 Hz, CDCl₃)

¹³C NMR of **1m** (100 Hz, CDCl₃)

¹³C NMR of **1n** (100 Hz, CDCl₃)

¹³C NMR of **10** (100 Hz, CDCl₃)

¹³C NMR of **1p** (100 Hz, CDCl₃)

¹³C NMR of **1q** (100 Hz, CDCl₃)

¹³C NMR of **1r**(100 Hz, CDCl₃)

¹³C NMR of **1s** (100 Hz, CDCl₃)

¹³C NMR of **1t** (100 Hz, CDCl₃)

¹³C NMR of **1u** (100 Hz, CDCl₃)

¹³C NMR of **2a** (100 Hz, CDCl₃)

¹³C NMR of **2b** (100 Hz, CDCl₃)

¹³C NMR of **2c** (100 Hz, CDCl₃)

¹³C NMR of **2d** (100 Hz, CDCl₃)

¹³C NMR of **2f** (100 Hz, CDCl₃)

¹³C NMR of **2g** (100 Hz, CDCl₃)

¹³C NMR of **2h** (100 Hz, CDCl₃)

 7.92

 5.73

 5.73

 5.73

 5.73

 5.73

 5.73

 5.73

 5.73

 5.74

 5.73

 5.74

 5.75

 5.75

 5.75

 5.75

 5.75

 5.75

 5.55

 5.56

 5.55

 5.56

 5.55

 5.56

 5.55

 5.55

 5.56

 5.55

 5.55

 5.55

 5.55

 5.56

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

 5.55

<t

¹³C NMR of **2i** (100 Hz, CDCl₃)

¹³C NMR of **2j** (100 Hz, CDCl₃)

¹³C NMR of **2k** (100 Hz, CDCl₃)

¹³C NMR of **2l** (100 Hz, CDCl₃)

¹³C NMR of **2m** (100 Hz, CDCl₃)

¹³C NMR of **2n** (100 Hz, CDCl₃)

¹³C NMR of **20** (100 Hz, CDCl₃)

¹³C NMR of **2p** (100 Hz, CDCl₃)

¹³C NMR of **2r** (100 Hz, CDCl₃)

¹³C NMR of **2s** (100 Hz, CDCl₃)

¹³C NMR of **2t** (100 Hz, CDCl₃)

¹³C NMR of **2u** (100 Hz, CDCl₃)

¹³C NMR of **3** (100 Hz, CDCl₃)

¹³C NMR of **4** (100 Hz, CDCl₃)

