Decarboxylative sulfinamidation of *N*-sulfinylamines with carboxylic acids via photochemical iron-mediated ligand-to-metal charge transfer process

Dan Yang,^a Qiang Xiao,^{b*} Yan Zhou,^c Hui Zhang,^a Tingting Chen,^c Mingsong Shi^{c*} ^aPrecise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China ^bInstitute of Ecology, China West Normal University, Nanchong 637002, China ^cNHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621099, China

(A) Gen	eral Information		••••••	•••••••••••••••••••••••	S2
(B) Gen	eral procedure for t	he synthesis of sulfinyla	amines 1	•••••••••••••	
(C) Opt	imization of the reac	tion conditions	•••••	•••••	S4
(D) Gen	eral procedure for tl	he synthesis of sulfinam	nides 3		S6
(E) Scal	e-up reaction and Sy	nthetic applications	•••••	•••••	
(F) TEN	IPO trapping experi	ment			
(G) Rad	ical clock experimen	ıt			S17
(H) Ani	on trapping experim	ent		••••••	S18
(I) Com	putational details		•••••		S19
(J) Mec	hanistic Insights int	o the Role of FeCl ₃ in	Catalyzing	Nucleophilic	Attack: A DFT
Study					S20
(K)	Cartesian	Coordinates	of	the	Optimized
Structu	res	S22			
(L) NM	R spectra of new con	npounds	••••••	•••••	

(A) General Information

All reactions and manipulations which are sensitive to moisture or air were performed under inert atmosphere of argon. All chemicals were purchased from J&K, Acros and Aldrich, and were used as received. Anhydrous CH₂Cl₂, THF, DMSO, DMF and MeCN were freshly distilled from calcium hydride. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker AVANCE 400 and chemical shifts are reported in δ (ppm) referenced to residual undeuterated solvent signal for ¹H NMR (7.26 ppm) and ¹³C NMR (77.00 ppm). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. HRMS spectra were recorded on a Waters Acquity UPLC/Xevo TQD-MS-MS quadrupole mass spectrometer. The light source for the photocatalytic reaction is manufactured by GeAo chemistry with a power of 40 W, a broad band source (365–375 nm). A fan was used to maintain the reaction temperature at room temperature (about 25-30 °C). The reactions were carried out in a borosilicate glass vessel and the distance from the light source to the irradiation vessel is about 1 cm.

Photoreactor (GeAo)

(B) General procedure for the synthesis of sulfinylamines 1¹

$$R + NH_2 \qquad \underbrace{SOCl_2(1.5 \text{ equiv})}_{\text{benzene, 80 °C, 16 h}} \qquad R + \underbrace{N \otimes S^{-O}}_{N \otimes S^{-O}}$$

To a solution of amine (10 mmol, 1.0 equiv) in anhydrous benzene (10 mL) was added SOCl₂ (15 mmol, 1.1 mL, 1.5 equiv) dropwise at room temperature. The reaction mixture was heated to 80 °C in an oil-bath for 16 h. The reaction mixture was then cooled down to room temperature, evaporation the solvent under reduced pressure, the resulting solid was recrystallized in dry petroleum ether to give the sulfinylamines **1t-1aa**.

$$\begin{array}{c} & \text{SOCl}_2(1.5 \text{ equiv}) \\ \hline \text{Et}_3 \text{N} (2.1 \text{ equiv}) \\ \hline \text{Et}_2 \text{O}, 0 \text{ °C}, 2 \text{ h} \end{array}$$

To a solution of cyclic amine (10 mmol, 1.0 equiv) in anhydrous diethyl ether (20 mL) was added Et_3N (1.2 mL, 2.1 equiv) at 0 °C. Then freshly distilled $SOCl_2$ (0.3 mL, 1.1 equiv) was added dropwise to the reaction mixture. The solution was stirred at 0 °C for 2 h. filtered through Celite and washed with diethyl ether. Evaporation of the solvent under reduced pressure at room temperature gave **1ba** and **1ca**, which were used directly without further purification.

((2-bromophenyl)imino)- λ^4 -sulfanone (1aa)

Yellow oil, 1.9 g, 87% yield.

¹**H NMR (400 MHz, CDCl₃)** δ: 8.15-8.13 (m, 1H), 7.50-7.47 (m, 1H), 7.19-7.12 (m, 1H), 7.04-6.99(m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ: 140.4, 133.1, 130.6, 128.1, 127.8, 119.9.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₆H₅NBrSO: 217.9270; Found: 217.9270.

(cyclopentylimino)- λ^4 -sulfanone (1ba)

Brown solid, 1.1 g, 90% yield.

¹**H NMR (400 MHz, CDCl₃)** δ: 3.64 (s, 1H), 2.05-2.02 (m, 2H), 1.88-1.83 (m, 4H), 1.64-1.62 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ: 52.7, 31.3, 23.7.

HRMS (ESI) m/z: [M+H]⁺ calcd for C₅H₁₀NSO: 132.0478; Found: 132.0487.

(C) Optimization of the reaction conditions.

Table S1. Iron salt screening^a

N \$5 ⁻⁰ +	Fe salt (10 mol%) base (1.5 equiv)			
1a	2a	solvent, Ar, rt, 24 h 40 W 365-375 nm LED	- Ö 3a	
entry	Fe sal	t (10 mol%)	yield $(\%)^b$	
1		FeCl ₃	22	
2		FeBr ₃	18	
3	Fe	$e_2(SO_4)_3$	0	
4	Fe	e(OTf) ₃	0	
5	Fe	e(acac) ₃	0	
6	Fe(N	O ₃) ₃ •9H ₂ O	0	
7]	FeSO ₄	0	

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Fe salt (10 mol%), K₂CO₃ (1.5 equiv), MeCN (2 mL), 40 W 365-375 nm LED, Ar, rt, 24 h. ^{*b*} isolated yield.

Table S2. Solvent screening^{*a*}

N _S =0	+	^t BuCO₂H 2a	FeCl ₃ (10 mol% K ₂ CO ₃ (1.5 equiv solvent, Ar, rt, 2 ⁴ 40 W 365-375 nm	$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	`Ś ^t Bu ⊓ O Ba
entry		so	lvent	yield $(\%)^b$	_
1		М	leCN	22	
2		CI	H_2Cl_2	0	
3		1	THF	0	
4			EA	0	
5		Γ	OMF	0	
6		D	MSO	0	

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), FeCl₃ (10 mol%), K₂CO₃ (1.5 equiv), solvent (2 mL), 40 W 365-375 nm LED, Ar, rt, 24 h. ^{*b*}isolated yield.

N≥s ^{≤0} +	^t BuCO ₂ H -	FeCl ₃ (10 mol%) base (1.5 equiv) MeCN, Ar, rt, 24 h	► H N s ^{-t} Bu O
1a	2a	40 W 365-375 nm LED	3a
entry	base (1.5 e	equiv)	yield $(\%)^b$
1	K ₂ CO	3	22
2	Na ₂ CC	D ₃	0
3	Cs_2CC	D ₃	0
4	NaHCO	O ₃	0
5	Na ₃ PC	D_4	61
6	K ₂ HPC	D_4	0
7	Et ₃ N		69
8	Pyridir	ne	13
9 ^c	Et ₃ N		81
10^d	Et ₃ N		58
11^{e}	Et ₃ N		63

Table S3. Base screening^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), FeCl₃ (10 mol%), base (1.5 equiv), MeCN (2 mL), 40 W 365-375 nm LED, Ar, rt, 24 h. ^{*b*}isolated yield. ^{*c*}Et₃N (0.5 equiv). ^{*d*}Et₃N (1.5 equiv). ^{*e*}Et₃N (2 equiv).

Table S4. Screening of light sources^a

N _{≥s} ^{⊆0}		+		FeCl ₃ (10 mol%) Et ₃ N (0.5 equiv)	
1a		2a	MeCN, Ar, rt, 24 h light source	- Ö 3a	
-	entry		light souce		yield $(\%)^b$
-	1		24 W violet	81	
	2		24 W	74	
	3		40 W green	0	
	4		24 W blue I	18	

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), FeCl₃ (10 mol%), Et₃N (1.5 equiv), MeCN (2 mL), light, Ar, rt, 24 h. ^{*b*} isolated yield.

Table S5. Control experiments^a

entry	control experiments	yield $(\%)^b$
1	Without Et ₃ N	15
2	Without Fe ₃ Cl	0
3	air	13
4	Without light	0

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), FeCl₃ (10 mol%), Et₃N (1.5 equiv), MeCN (2 mL), 40 W 365-375 nm LED, Ar, rt, 24 h. ^{*b*} isolated yield.

(D) General Procedure for Synthesis of sulfonamides 3

To an 8 mL vial equipped with a magnetic stir bar was added 1 (0.2 mmol), carboxylic acids 2 (0.3 mmol), FeCl₃ (0.02 mmol), freshly distilled Et₃N (0.1 mmol) and anhydrous MeCN (2 mL) under argon atmosphere and sealed with PTFE cap. Then the reaction mixture was stirred upon irradiation with 40 W 365–375 nm LED at room temperature for 24 h. The solvent was concentrated in vacuo and the residue was purified by a column chromatography on silica gel with petroleum ether/ethyl acetate as eluent to provide the desired product **3**.

2-Methyl-N-phenylpropane-2-sulfinamide (3a)²

White solid, MP. 93-94 °C, 32mg, 81% yield. R_f = 0.3 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.24 (t, *J* = 7.6 Hz, 2H), 7.02-6.98 (m, 3H), 5.78 (s, 1H), 1.32 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ: 142.1, 129.3, 122.7, 118.1, 56.5, 22.4.

2-Methyl-N-phenylbutane-2-sulfinamide (3b)

White solid, MP. 68-69 °C, 38 mg, 90% yield. R_f = 0.3 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.21 (t, *J* = 7.6 Hz, 2H), 7.01-6.94 (m, 3H), 6.11 (s, 1H), 1.80-1.71 (m, 1H), 1.67-1.58 (m, 1H), 1.27 (s, 3H), 1.23 (s, 3H), 1.00 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 142.3, 129.2, 122.4, 117.9, 59.9, 28.6, 18.9, 18.7, 7.9. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₁H₁₇NNaSO: 234.0923; Found: 234.0921.

1-Methyl-N-phenylcyclohexane-1-sulfinamide (3c)

White solid, MP. 116-117 °C, 36 mg, 90% yield. $R_f = 0.3$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.25 (t, J = 7.6 Hz, 2H), 7.02-6.98 (m, 3H), 5.59 (s, 1H), 1.89-1.37 (m, 10H), 1.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ: 142.2, 129.3, 122.7, 118.2, 60.0, 32.1, 30.6, 25.5, 21.8, 21.5, 15.6.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₃H₁₉NNaSO: 260.1080; Found: 260.1076.

(3s,5s,7s)-N-phenyladamantane-1-sulfinamide (3d)

White solid, MP. 163-164 °C, 52 mg, 94% yield. $R_f = 0.4$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.22 (t, J = 7.6 Hz, 2H), 7.02-6.95 (m, 3H), 6.16 (s, 1H), 2.16-2.15 (m, 3H), 1.95-1.88 (m, 6H), 1.77-1.67 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ : 142.4, 129.2, 122.4, 117.9, 58.2, 36.2, 34.6, 28.4. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₁NNaSO: 298.1236; Found: 298.1233.

3-Methyl-N-phenyloxetane-3-sulfinamide (3e)

White solid, MP. 124-125 °C, 26mg, 62% yield. R_f = 0.3 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.19 (t, J = 7.6 Hz, 2H), 6.99-6.96 (m, 3H), 6.11 (s, 1H), 4.99 (d, J = 7.2 Hz, 1H), 4.84 (d, J = 7.6 Hz, 1H), 4.51-4.89 (m, 2H), 1.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 141.1, 129.5, 123.5, 118.6, 76.8, 76.5, 60.7, 16.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₀H₁₄NSO₂: 212.0740; Found: 212.0752. *N*-phenylpropane-2-sulfinamide (3f)³

White solid, MP. 75-76 °C, 29.6 mg, 81% yield. R_f = 0.2 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.19 (t, J = 7.6 Hz, 2H), 7.14 (s, 1H), 7.01 (d, J = 8.0 Hz, 2H), 6.96 (t, J = 7.2 Hz, 1H), 3.14-3.03 (m, 1H), 1.32 (d, J = 6.8 Hz, 3H), 1.27 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 141.9, 129.2, 122.5, 117.8, 54.4, 16.1, 15.6.

N-phenylcyclobutanesulfinamide (3g)³

White solid, MP. 126-127 °C, 27mg, 69% yield. R_f = 0.2 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.24 (t, *J* = 7.6 Hz, 2H), 7.05-6.97 (m, 3H), 6.76 (s, 1H), 3.79-3.71 (m, 1H), 2.62-2.53 (m, 1H), 2.31-2.16 (m, 3H), 2.04-1.96 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 141.5, 129.3, 122.7, 118.0, 56.3, 22.8, 21.4, 17.5.

N-phenylcyclopentanesulfinamide (3h)²

Yellow solid, MP. 76-77 °C, 24 mg, 56% yield. $R_f = 0.2$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.37 (s, 1H), 7.21 (t, J = 8.0 Hz, 2H), 7.02 (d, J = 7.6 Hz, 2H),

6.96 (t, *J* = 7.6 Hz, 1H), 3.52-3.44 (m, 1H), 2.14-2.07 (m, 1H), 1.96-1.85 (m, 2H), 1.76-1.55 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ: 141.9, 129.2, 122.4, 117.7, 63.9, 27.4, 27.2, 25.8, 25.7.

N-phenylcyclohexanesulfinamide (3i)³

Yellow solid, MP. 113-114 °C, 30 mg, 68% yield. R_f = 0.2 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.20 (t, *J* = 8.4 Hz, 2H), 7.02-6.95 (m, 4H), 2.92-2.85 (m, 1H), 2.16-2.13 (m, 1H), 2.05-2.02 (m, 1H), 1.88-1.81 (m, 2H), 1.67-1.65 (m, 1H), 1.56-1.22 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ: 142.0, 129.3, 122.6, 117.9, 62.7, 26.5, 26.2, 25.4, 25.1, 25.0.

N-phenyltetrahydro-2H-pyran-4-sulfinamide (3j)

Yellow solid, MP. 140-141 °C, 36 mg, 80% yield. R_f = 0.2 (petroleum ether/ethyl acetate = 1:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.39 (s, 1H), 7.23 (t, *J* = 7.6 Hz, 2H), 7.04-6.98 (m, 3H), 4.04-3.98 (m, 2H), 3.34 (td, *J* = 11.2, 2.4 Hz, 1H), 3.20 (td, *J* = 11.6, 2.4 Hz, 1H), 3.14-3.06 (m, 1H), 2.01-1.97 (m, 1H), 1.91-1.87 (m, 1H), 1.85-1.64 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ: 141.6, 129.4, 122.9, 117.9, 66.6, 66.5, 59.6, 27.0, 26.3.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₁H₁₅NNaSO: 248.0716; Found: 248.0723.

2-Methyl-N-phenylpropane-1-sulfinamide (3k)²

Yellow oil, 26 mg, 67% yield. $R_f = 0.3$ (petroleum ether/ethyl acetate = 2:1).

¹**H NMR (400 MHz, CDCl₃)** δ: 7.65 (s, 1H), 7.20 (t, *J* = 8.0 Hz, 2H), 7.03-7.01(m, 2H), 6.97 (t, *J* = 7.6 Hz, 2H), 2.95 (dd, *J* = 13.2, 6.0 Hz, 1H), 2.83 (dd, *J* = 13.2, 8.0 Hz, 1H), 2.15-2.08 (m, 1H), 1.05 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ: 141.5, 129.3, 122.6, 117.8, 64.3, 24.5, 22.1, 21.7.

2,2-dimethyl-N-phenylpropane-1-sulfinamide (3l)³

Brown solid, MP. 80-81 °C, 24 mg, 56% yield. $R_f = 0.3$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.50 (s, 1H), 7.20 (t, J = 8.0 Hz, 2H), 7.02-6.94 (m, 3H), 3.08 (d,

J = 12.8 Hz, 1H), 2.90 (d, J = 13.2 Hz, 1H), 1.11 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ: 141.3, 129.3, 122.6, 117.8, 70.1, 30.9, 29.7.

3-Methyl-N-phenylbutane-1-sulfinamide (3m)

White solid, MP. 86-87 °C, 17 mg, 41% yield. R_f = 0.3 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.32 (s, 1H), 7.23 (t, J = 7.6 Hz, 2H), 7.03-6.97 (m, 3H), 3.07-2.95 (m, 2H), 1.68-1.53 (m, 3H), 0.91 (t, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ: 141.4, 129.4, 122.8, 118.1, 53.9, 31.8, 27.4, 22.2.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₁H₁₇NNaSO: 234.0923; Found: 234.0935.

1-cyclohexyl-N-phenylmethanesulfinamide (3n)³

White solid, MP. 85-86 °C, 32 mg, 68% yield. R_f = 0.3 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.55 (s, 1H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.03-6.95 (m, 3H), 2.96 (dd, *J* = 13.2, 6.0 Hz, 1H), 2.82 (dd, *J* = 12.8, 8.4 Hz, 1H), 1.94-1.60 (m, 6H), 1.32-0.99 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ: 141.5, 129.3, 122.6, 117.8, 63.0, 33.3, 32.8, 32.2, 25.9, 25.8, 29.6.

N-phenylbut-3-ene-1-sulfinamide (30)³

Yellow oil, 30 mg, 77% yield. $R_f = 0.2$ (petroleum ether/ethyl acetate = 3:1).

¹H NMR (400 MHz, CDCl₃) δ : 7.62 (s, 1H), 7.20 (t, J = 7.6 Hz, 2H), 7.01-6.96 (m, 3H), 5.84-

5.74 (m, 1H), 5.13-5.06 (m, 2H), 3.09 (t, *J* = 7.6 Hz, 2H), 2.49-2.43 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ: 141.4, 134.6, 129.3, 122.7, 118.0, 117.0, 54.5, 27.5.

N,1-diphenylmethanesulfinamide (3p)³

White solid, MP. 111-112 °C, 35 mg, 76% yield. $R_f = 0.2$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.40-7.34 (m, 5H), 7.21 (t, J = 7.6 Hz, 2H), 6.99 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 2H), 6.59 (s, 1H), 4.31 (d, J = 12.8 Hz, 1H), 4.15 (d, J = 13.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ : 141.0, 130.7, 129.4, 129.0, 128.9, 128.6, 123.3, 118.8, 61.3.

N-phenyl-1-(3-(trifluoromethoxy)phenyl)methanesulfinamide (3q)

White solid, MP. 130-131 °C, 35 mg, 56% yield. $R_f = 0.2$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.32-7.28 (m, 1H), 7.19-7.11 (m, 5H), 6.92 (t, J = 7.6 Hz, 1H), 6.87-6.77 (m, 3H), 4.24 (d, J = 12.8 Hz, 1H), 4.08 (d, J = 12.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ: 149.4, 140.7, 131.4, 130.3, 129.5, 128.9, 123.5, 122.9, 120.9, 118.7, 60.8.

¹⁹F NMR (376 MHz, CDCl₃) δ: -57.8 (s, 3F).

HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₃NF₃SO₂: 316.0614; Found: 316.0619.

1-(4-isobutylphenyl)-*N*-phenylethane-1-sulfinamide (3r)

White solid, MP. 112-113 °C, 38 mg, 63% yield. $R_f = 0.2$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.32-7.19 (m, 6H), 6.98 (t, J = 7.6 Hz, 1H), 6.87 (d, J = 7.6 Hz,

2H), 5.47 (s, 1H), 3.96 (q, *J* = 7.2 Hz, 1H), 2.51 (d, *J* = 7.2 Hz, 2H), 1.95-1.85 (m, 1H), 1.76 (d, *J* = 7.2 Hz, 3H), 0.93 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ: 142.5, 141.0, 130.5, 129.5, 129.3, 129.2, 123.0, 118.6, 62.9, 45.1, 30.1, 22.4, 22.3, 15.3.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₈H₂₃NNaSO: 324.1393; Found: 324.1392.

5-(2,5-dimethylphenoxy)-2-methyl-N-phenylpentane-2-sulfinamide (3s)

Colorless oil, 59 mg, 86% yield. $R_f = 0.4$ (petroleum ether/ethyl acetate = 2:1).

¹**H NMR (400 MHz, CDCl₃)** δ: 7.22 (t, *J* = 7.6 Hz, 2H), 7.01-6.96 (m, 4H), 6.66 (d, *J* = 7.6 Hz, 1H), 6.59 (s, 1H), 5.89 (s, 1H), 3.93 (t, *J* = 5.6 Hz, 2H), 2.30 (s, 3H), 2.15 (s, 3H), 1.95-1.76 (m, 4H), 1.32 (d, *J* = 10.0 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ: 156.7, 142.1, 136.4, 130.3, 129.3, 123.4, 122.7, 120.8, 118.1, 111.9, 67.5, 59.4, 32.5, 23.8, 21.3, 19.6, 19.3, 15.7.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₂₇NNaSO: 368.1655; Found: 368.1660.

(3s,5s,7s)-N-(4-(tert-butyl)phenyl)adamantane-1-sulfinamide (3t)

White solid, MP. 168-169 °C, 51 mg, 77% yield. $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1).

¹H NMR (400 MHz, CDCl₃) δ : 7.28 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 5.61 (s, 1H),

2.20-2.19 (m, 3H), 1.97-1.89 (m, 6H), 1.80-1.71 (m, 6H), 1.29 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ: 145.8, 139.5, 126.2, 118.2, 58.1, 38.7, 36.5, 36.3, 34.6, 34.2, 34.4, 28.5, 27.9.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₀H₂₉NNaSO: 354.1862; Found: 354.1869.

(3s,5s,7s)-N-(4-chlorophenyl)adamantane-1-sulfinamide (3u)

White solid, MP. 150-151 °C, 37 mg, 60% yield. R_f = 0.5 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.18 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.35 (s, 1H), 2.18-2.16 (m, 3H), 1.91-1.90 (m, 6H), 1.79-1.68 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ: 141.2, 129.1, 127.5, 119.1, 58.5, 38.7, 36.4, 36.2, 34.6, 28.5, 27.9.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₀NNaSOCI: 332.0846; Found: 332.0844.

(3s,5s,7s)-N-(m-tolyl)adamantane-1-sulfinamide (3v)

White solid, MP. 149-150 °C, 39 mg, 68% yield. $R_f = 0.4$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.12 (t, J = 7.6 Hz, 1H), 6.84-6.79 (m, 3H), 6.05 (s, 1H), 2.29 (s, 3H), 2.18-2.17 (m, 3H), 1.96-1.93 (m, 6H), 1.78-1.69 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ: 142.2, 139.2, 129.1, 123.4, 118.7, 115.2, 58.1, 38.7, 36.5, 36.3, 34.6, 28.5, 27.9, 21.4.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₂₃NNaSO: 312.1393; Found: 312.1398.

(3s,5s,7s)-N-(3-chlorophenyl)adamantane-1-sulfinamide (3w)

White solid, MP. 153-154 °C, 42 mg, 68% yield. $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1).

¹**H NMR (400 MHz, CDCl₃)** δ: 7.13 (t, *J* = 8.0 Hz, 1H), 7.05 (s, 1H), 6.94-6.88 (m, 2H), 6.49 (s,

1H), 2.17-2.15 (m, 3H), 1.91-1.90 (m, 6H), 1.77-1.67 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ: 144.0, 134.9, 130.2, 122.3, 177.7, 115.7, 58.6, 38.7, 36.5, 36.2, 34.6, 28.5, 27.9.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₀NNaSOC1: 332.0846; Found: 332.0846.

(3s,5s,7s)-N-(3-bromophenyl)adamantane-1-sulfinamide (3x)

White solid, MP. 172-173 °C, 49.5 mg, 70% yield. $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.20 (s, 1H), 7.08 (d, J = 4.8 Hz, 2H), 6.95-6.93 (m, 1H), 6.48 (s,

1H), 2.17-2.15 (m, 3H), 1.91-1.90 (m, 6H), 1.77-1.68 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ: 144.1, 130.5, 125.2, 123.0, 120.6, 116.1, 58.6, 38.7, 36.4, 36.2, 34.6, 28.5, 27.9.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₀NNaSOBr: 376.0341; Found: 376.0345.

(3s,5s,7s)-*N*-(*o*-tolyl)adamantane-1-sulfinamide (3y)

White solid, MP. 147-148 °C, 46 mg, 80% yield. R_f = 0.4 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.15-7.13 (m, 3H), 6.98-6.94 (m, 1H), 5.47 (s, 1H), 2.78 (s, 3H), 2.21-2.20 (m, 3H), 2.00-1.88 (m, 6H), 1.81-1.72 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ: 140.0, 130.7, 127.5, 127.0, 123.3, 119.0, 58.3, 38.6, 36.4, 36.3, 34.7, 28.5, 27.8, 17.7.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₂₃NNaSO: 312.1393; Found: 312.1400.

(3s,5s,7s)-N-(2-chlorophenyl)adamantane-1-sulfinamide (3z)

White solid, MP. 126-127 °C, 56 mg, 91% yield. $R_f = 0.5$ (petroleum ether/ethyl acetate = 3:1).

¹**H NMR (400 MHz, CDCl₃)** δ : 7.34-7.27 (m, 2H), 7.19 (td, J = 7.6, 1.6 Hz, 1H), 6.92 (td, J = 7.6,

1.6 Hz, 1H), 6.23 (s, 1H), 2.24-2.21 (m, 3H), 2.00-1.90 (m, 6H), 1.82-1.70 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ: 138.7, 129.5, 127.8, 122.8, 122.6, 117.3, 58.7, 38.6, 36.4, 36.2, 34.5, 28.5, 27.8.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₀NNaSOC1: 332.0846; Found: 332.0854.

(3s,5s,7s)-N-(2-bromophenyl)adamantane-1-sulfinamide (3aa)

White solid, MP. 128-129 °C, 61 mg, 86% yield. $R_f = 0.4$ (petroleum ether/ethyl acetate = 3:1).

¹**H NMR (400 MHz, CDCl₃)** δ: 7.49 (d, *J* = 8.0 Hz, 1H), 7.29-7.22 (m, 2H), 6.86 (t, *J* = 7.6, 1H), 6.28 (s, 1H), 2.24-2.22 (m, 3H), 2.01-1.90 (m, 6H), 1.83-1.71 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ: 139.9, 132.7, 128.6, 123.3, 117.4, 113.1, 58.8, 38.6, 36.4, 36.2, 34.6, 28.5, 27.8.

HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₀NNaSOBr: 376.0341; Found: 376.0346.

(3s,5s,7s)-N-cyclopentyladamantane-1-sulfinamide (3ba)

Brown solid, MP. 87-88 °C, 27 mg, 51% yield. R_f = 0.3 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ: 3.73 (q, J = 5.2 Hz, 1H), 3.28 (d, J = 4.4 Hz, 1H), 2.12-2.10 (m, 3H), 1.95-1.44 (m, 20H).

¹³C NMR (100 MHz, CDCl₃) δ: 56.8, 56.3, 38.7, 36.5, 36.3, 34.6, 33.2, 28.5, 27.9, 23.4, 23.1.
 HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₅H₂₅NNaSO: 290.1549; Found: 290.1555.

(3s,5s,7s)-N-cyclohexyladamantane-1-sulfinamide (3ca)

Brown solid, MP. 105-106 °C, 23 mg, 41% yield. R_f = 0.3 (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ: 3.15-3.09 (m, 2H), 2.09-2.07 (m, 3H), 1.91-1.88 (m, 2H), 1.79-1.61 (m, 14H), 1.55-1.51 (m, 1H), 1.28-1.09 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ: 56.8, 53.9, 36.4, 35.2, 34.7, 34.0, 28.5, 25.5, 24.7, 24.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₈NSO: 282.1886; Found: 282.1891.

(E) Scale-up reaction and synthetic transformations

(a) Scale-up reaction

To a 50 mL over-dried schleck tube with a magnetic stir bar was added **1a** (695 mg, 5 mmol), 'BuCO₂H **2a** (765 mg, 7.5 mmol), FeCl₃ (81 mg, 0.5 mmol), freshly distilled Et₃N (0.35 mL, 2.5 mmol) and anhydrous MeCN (10 mL) under argon atmosphere. Then the reaction mixture was stirred upon irradiation with 40 W 365–375 nm LED at room temperature for 24 h. The solvent was concentrated in vacuo and the residue was purified by a column chromatography (petroleum ether/ethyl acetate = 2:1) affording the desired sulfonamide **3a** (719 mg, 73%) as a white solid.

(b) Synthetic transformations

To a solution of **3i** (110 mg, 0.49 mmol) in anhydrous methanol (5 mL) was added iodosylbenzene (163 mg, 0.74 mmol) at room temperature. The reaction mixture was stirred for 1 h. After the starting materials consumed, the solvent was concentrated in vacuo and the residue was purified by a column chromatography (petroleum ether/ethyl acetate = 50:1 to 40:1), delivering the corresponding product **4** (98 mg, 78%) as a colorless oil.¹

¹**H NMR (400 MHz, CDCl₃)** δ: 7.13 (t, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.88 (t, *J* = 7.2 Hz, 1H), 3.72 (s, 3H), 3.11-3.05 (m, 1H), 2.24-2.14 (m, 2H), 1.84-1.81 (m, 2H), 1.63-1.56 (m, 3H), 1.26-1.11 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ: 142.9, 128.9, 123.1, 122.0, 60.8, 55.4, 26.6, 26.0, 25.0, 24.9 (2).

To a solution of **3i** (100 mg, 0.45 mmol) in anhydrous CH_2Cl_2 (5 mL) was added *meta*chloroperbenzoic acid (*mCPBA*) (155 mg, 0.9 mmol) at room temperature. The reaction mixture was stirred for 12 h. After the starting materials consumed, 40% sodium bisulfite (5 mL) was added to the reaction mixture and stirred for 5 min. The mixture was extracted with CH_2Cl_2 (3 x 10 mL), the organic phase was washed with saturated NaHCO₃ (3 x 10 mL), dried with Na₂SO₄ and concentrated in vacuo. The crude mixture was purified by a column chromatography (petroleum ether/ethyl acetate = 30:1 to 20:1), delivering the corresponding product **5** (56 mg, 52%) as a white solid.¹

¹H NMR (400 MHz, CDCl₃) δ: 7.26-7.17 (m, 5H), 7.05 (t, J = 7.2 Hz, 1H), 2.97-2.91 (m, 1H), 2.11-2.08 (m, 2H), 1.78-1.76 (m, 2H), 1.59-1.45 (m, 3H), 1.18-1.04 (m, 3H).
¹³C NMR (101 MHz, CDCl₃) δ: 137.3, 129.5, 124.5, 119.8, 60.2, 26.2, 25.0, 24.9.

(F) TEMPO trapping experiment

To an 8 mL vial equipped with a magnetic stir bar was added **1a** (28 mg, 0.2 mmol), carboxylic acids **2i** (38.4 mg, 0.3 mmol), FeCl₃ (0.02 mmol), TEMPO (124.8 mg, 0.8 mmol),

freshly distilled Et₃N (0.1 mmol) and anhydrous MeCN (2 mL) under argon atmosphere and sealed with PTFE cap. Then the reaction mixture was stirred upon irradiation with 40 W 365–375 nm LED at room temperature for 24 h. the analysis of the crude reaction mixture by high resolution mass spectrometry (HRMS) identified 1-(cyclohexyloxy)-2,2,6,6-tetramethylpiperidine adduct **6**. HRMS (ESI) m/z: compound **6**, $[6+H]^+$ calcd for C₁₅H₃₀NO: 240.2322; found: 240.2319.

(G) Radical clock experiment

To an 8 mL vial equipped with a magnetic stir bar was added **1a** (28 mg, 0.2 mmol), carboxylic acid **2t** (30 mg, 0.3 mmol), FeCl₃ (3.3 mg, 0.02 mmol), freshly distilled Et₃N (13.9 uL, 0.1 mmol) and anhydrous MeCN (2 mL) under argon atmosphere and sealed with PTFE cap. Then the reaction mixture was stirred upon irradiation with 40 W 365–375 nm LED at room temperature for 24 h. The solvent was concentrated in vacuo and the residue was purified by a column chromatography on silica gel with petroleum ether/ethyl acetate as eluent to provide the inseparable mixture of product **3t** and **3t'** (12 mg, 30% yield) as a colorless liquid.

3t: ¹**H NMR (400 MHz, CDCl₃)** δ: 7.28 (s, 0.55H), 7.24-7.20 (m, 3H), 3.00 (dd, *J* = 13.6, 7.2 Hz,

0.5H), 2.88 (dd, *J* = 13.6, 7.2 Hz, 0.5H), 1.12-1.04 (m, 0.6H), 0.72-0.62 (m, 1H), 0.41-0.31 (m, 1H).

3t': ¹**H NMR (400 MHz, CDCl₃)** δ: 7.34 (s, 1H), 7.05-6.98 (m, 4.5H), 5.86-5.76 (m, 1H), 5.15-5.08 (m, 2H), 3.09 (t, *J* = 7.6 Hz, 2H), 2.51-2.46 (m, 2H).

The spectral date are consistent with the literature.[4]

To an 8 mL vial equipped with a magnetic stir bar was added **1a** (28 mg, 0.2 mmol), 4bromobutyric acid **2u** (49.8 mg, 0.3 mmol), FeCl₃ (3.3 mg, 0.02 mmol), freshly distilled Et₃N (13.9 uL, 0.1 mmol) and anhydrous MeCN (2 mL) under argon atmosphere and sealed with PTFE cap. Then the reaction mixture was stirred upon irradiation with 40 W 365–375 nm LED at room temperature for 24 h. the analysis of the crude reaction mixture by high resolution mass spectrometry (HRMS) identified cyclic sulfinamide 7. HRMS (ESI) m/z: compound 7, $[7+H]^+$ calcd for C₉H₁₂NOS: 182.0634; found: 182.0643.

(I) Computational details

DFT calculations were performed with Gaussian 16 program.^[5] All molecular geometries were optimized in gas phase at the PBE0-D3BJ^[6]/def2SVP^[7] level of theory at 298.15 K and 1 atm. Optimized minima were verified by harmonic vibrational analysis that have no imaginary frequency. To refine calculated energies, single point calculations with larger basis set def2TZVP^[7] were then performed based on these optimized structures by using the same PBE0-D3BJ functional using SMD model^[8] to account for solvation energies in MeCN

(J) Mechanistic Insights into the Role of FeCl₃ in Catalyzing Nucleophilic Attack: A DFT Study

Figure S1. Free energy profile of mechanism.

Density functional theory (DFT) computations have elucidated the catalytic influence of FeCl₃ as a Lewis acid in facilitating nucleophilic attack processes. Specifically, in path b, the interaction between intermediate **INT4** and FeCl₃ yields intermediate **INT5** with a minimal energy increment of 2.5 kcal/mol. Subsequent attack by the 'Bu• on the sulfur atom generates intermediate **INT6**, accompanied by an exothermic release of 11.3 kcal/mol. This is followed by an outer-sphere electron transfer from Fe(II) to Fe(III), resulting in an additional exothermic release of 34.4 kcal/mol. Collectively, path b is characterized by a lower overall energy barrier and a more pronounced exothermic profile.

Conversely, in the absence of FeCl₃ (path a), the combination of intermediate **INT4** with the 'Bu• forms intermediate **INT2**, with an energy stabilization at 6.1 kcal/mol. The subsequent outersphere electron transfer from Fe(II) to Fe(III) stabilizes the system to -7.3 kcal/mol. This comparative analysis underscores the pivotal role of FeCl₃ in enhancing the thermodynamic and kinetic feasibility of the nucleophilic attack pathway.

References:

[1] Xia, G. D.; Li, R.; Zhang, L.; Wei, Y.; Hu, X. Q. Iron-Catalyzed Photochemical Synthesis of Sulfinamides from Aliphatic Hydrocarbons and Sulfinylamines. *Org. Lett.* **2024**, *26*, 3703-3708.

[2] Das, S.; Mondal, P. P.; Dhibar, A.; Ruth, A.; Sahoo, B. Unifying N-Sulfinylamines with Alkyltrifluoroborates by Organophotoredox Catalysis: Access to Functionalized Alkylsulfinamides and High-Valent S(VI) Analogues. *Org. Lett.* **2024**, *26*, 3679-3684.

[3] Yan, M.; Wang, S. f.; Zhang, Y. p.; Zhao, J. z.; Tang, Z.; Li, G. x. Synthesis of sulfonamides *via* photocatalytic alkylation or arylation of sulfinylamine. *Org. Biomol. Chem.* 2024, *22*, 348-352.
[4] Dang, H. T.; Porey, A.; Nand, S.; Trevino, R.; Manning-Lorino, P.; Hughes, W. B.; Fremin, S. O.; Thomphson, W. T.; Dhakal, S. K.; Arman, H. D. Larionov, O. V. Kinetically-driven reactivity of sulfinylamines enables direct conversion of carboxylic acids to sulfonamides. *Chem. Sci.* 2023, *14*, 13384-13391.

[5] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2019**.

[6] (a) Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* 1999, *110*, 6158–6170. (b) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phy.* 2010, *132*, 154104

[7] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.

[8] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396.

FeCl ₃ -Fe(III)Doublet	t			INT1 Doublet			
0 2				0 2			
Fe	0.00001700	-0.00016100	0.06697500	С	0.00000700	0.00000600	-0.14343500
CI	-1.76873200	-1.14229600	-0.03414800	С	1.47784200	0.10877200	0.01385900
CI	1.87391000	-0.96013500	-0.03414900	Н	2.00301600	-0.74750400	-0.43963900
CI	-0.10520400	2.10267600	-0.03413600	н	1.87196900	1.03282600	-0.43941500
				Н	1.78185800	0.13099900	1.08276800
FeCl ₃ -Fe(III)Quartet	t			С	-0.83311900	1.22544900	0.01386000
04				н	-0.35398500	2.10848800	-0.43929200
Fe	0.12793500	-0.00043300	0.00000000	Н	-1.83029600	1.10487400	-0.43975900
CI	-1.22665300	-1.62866300	0.00000000	Н	-1.00472600	1.47735900	1.08277300
Cl	2.25407300	-0.00141400	0.00000000	С	-0.64472300	-1.33421700	0.01385600
CI	-1.22308600	1.63073800	0.00000000	н	-1.64899700	-1.36078000	-0.43935500
				Н	-0.04170800	-2.13754800	-0.43969300
FeCl ₃ -Fe(III)Sextet				Н	-0.77717300	-1.60876700	1.08276600
06							
Fe	0.00000200	0.00000200	-0.00000300	INT2 Doublet			
Cl	-2.03399000	-0.66767200	0.00000100	0 2			
Cl	1.59522000	-1.42763200	0.00000100	Ν	-0.08825300	0.56037300	-0.46986600
Cl	0.43876700	2.09530100	0.00000100	S	1.10379300	-0.53052100	-0.73542600
				0	0.96223600	-1.88400700	-0.10051600
FeCl ₃ -Fe(II)Singlet				С	2.47156300	0.34388700	0.22979900
-11				С	2.67916500	1.72101900	-0.37547300
Fe	-0.00001000	-0.00000400	-0.00001500	С	2.03551000	0.38213100	1.68462600
Cl	0.87723000	1.92912000	0.00000800	С	3.68223300	-0.55990600	0.03023200
CI	-2.10930700	-0.20487300	0.00000800	С	-1.38484000	0.26707000	-0.22637500
CI	1.23209200	-1.72424000	0.00000800	С	-1.91784200	-1.03387600	0.02051000
				С	-3.27135500	-1.19053100	0.27310300
FeCl ₃ -Fe(II)Triplet				С	-4.13369700	-0.08822100	0.29486800
-1 3				С	-3.62787600	1.19633100	0.05448400
Fe	0.00135500	0.02295900	0.00000000	С	-2.28175800	1.37536600	-0.20595500
CI	-0.04654400	-2.21050800	0.00000000	Н	3.52517700	2.21299700	0.13192100
CI	1.98145000	1.04908300	0.00000000	Н	2.92270800	1.65810700	-1.44766100
CI	-1.93697900	1.12631000	0.00000000	Н	1.78553400	2.34806000	-0.25875000
				Н	2.87030800	0.73437500	2.31209400
FeCl ₃ -Fe(II)Quintet				Н	1.74866800	-0.62445900	2.02431600
-1 5				Н	1.18346400	1.06237800	1.82772600
Fe	-0.00000600	0.00000000	0.00000100	Н	3.47348800	-1.57986600	0.38314400
CI	-1.03178600	1.99335700	0.00000000	Н	3.98005100	-0.61026400	-1.02894700
CI	-1.21042400	-1.89022300	0.00000000	Н	4.53273900	-0.15762200	0.60269600
CI	2.24222000	-0.10313500	0.00000000	Н	-1.24086100	-1.88866800	0.01210300
				Н	-3.66714400	-2.19212100	0.45937800
				н	-5.19812800	-0.22902600	0.49689800

(K) Cartesian Coordinates of the Optimized Structures

н	-4.29847100	2.05904400	0.06831400	Н	-0.82502500	-2.33277900	-0.04895200	
н	-1.86494000	2.36523100	-0.40213500	Н	-3.26145500	-1.86766100	0.25093200	
				Н	-4.08654000	0.48447700	0.24974200	
INT3				Н	-2.47580600	2.35842500	-0.06509500	
-11				Н	-0.06279900	1.89152200	-0.37316000	
Ν	-0.07074400	0.52816500	0.18981000					
S	0.96097200	-0.64038400	-0.34566300					
0	1.13788700	-1.81775200	0.60676600	INT5 Sextet				
С	2.53265500	0.35230700	-0.06399700	0 6				
С	2.47638300	1.60263200	-0.92428700	Ν	1.71072700	-0.58815100	0.53805400	
С	2.60135300	0.66253700	1.42080800	8	0.57527300	0.42195100	0.73757500	
С	3.65838600	-0.58390000	-0.48489600	0	-0.69074800	-0.35268300	1.05511500	
С	-1.39674900	0.26938700	0.08892100	С	3.02766200	-0.27692600	0.24565600	
С	-1.99178400	-1.01415800	-0.11081500	С	3.96119800	-1.31119400	0.43978700	
С	-3.36915800	-1.16819800	-0.22456900	С	5.30939600	-1.08843000	0.18818800	
С	-4.24111500	-0.08043600	-0.12630400	С	5.73483400	0.15392500	-0.28248500	
С	-3.68340300	1.18467900	0.10279700	С	4.80831800	1.17874900	-0.50435800	
С	-2.31192200	1.35774700	0.20944000	С	3.46240800	0.97321700	-0.24358700	
н	3.40068300	2.19772100	-0.80936300	Fe	-2.34781700	-0.06465100	-0.06470500	
н	2.37145000	1.34256300	-1.99158200	CI	-1.26839600	1.23041800	-1.52626400	
н	1.60787900	2.21145300	-0.63567800	CI	-3.79567200	0.98400200	1.15398300	
н	3.56392100	1.13868300	1.68070500	CI	-2.97913900	-1.97769400	-0.84530400	
н	2.49241400	-0.27622900	1.98686800	Н	3.59572100	-2.27487300	0.79889800	
н	1.76990300	1.32507000	1.70145300	Н	6.03194100	-1.89122500	0.34983500	
н	3.57754400	-1.53006400	0.07120400	Н	6.79321300	0.32482100	-0.49241100	
н	3.60121700	-0.81498300	-1.56216800	Н	5.14220900	2.14277300	-0.89436200	
н	4.64272700	-0.12664800	-0.28367200	Н	2.73830600	1.76635500	-0.44839700	
н	-1.33864500	-1.89048600	-0.12379100					
н	-3.77478700	-2.17499300	-0.37862700	INT6 Septet				
н	-5.32327700	-0.21398600	-0.20908900	07				
н	-4.33908700	2.05825600	0.19655700	Fe	2.42877100	-0.62826100	-0.02073300	
н	-1.88327200	2.34906100	0.38241400	Cl	2.01844800	-0.56415700	2.14731200	
				CI	3.73791600	1.00684500	-0.68524700	
INT4				Cl	2.94786500	-2.58968100	-0.79066400	
01				Ν	-1.81838200	-0.02082100	-0.92292600	
Ν	1.05761800	-0.59780900	-0.33212100	8	-0.55750100	0.33063200	0.13694700	
s	2.17505100	0.2898000	0.25887300	0	0.65390400	-0.11822700	-0.70307600	
0	3.52344900	-0.17256000	-0.08835100	С	-2.98929700	-0.43810300	-0.41909900	
С	-0.28544800	-0.25622700	-0.17810600	С	-4.01862800	-0.68374300	-1.38446300	
с	-1.20476800	-1.30951900	-0.03599900	С	-5.27418500	-1.09863400	-0.98908100	
С	-2.55789200	-1.04031800	0.13094700	С	-5.55304000	-1.30121200	0.37109900	
с	-3.02056000	0.27681900	0.13257700	С	-4.55544700	-1.08772300	1.33582800	
с	-2.11780200	1.32635200	-0.03948700	С	-3.29500900	-0.66497900	0.96319300	
С	-0.76021500	1.06860600	-0.19722900	Н	-3.76624400	-0.52398200	-2.43437200	

н	-6.04991500	-1.27637400	-1.73719800	0	0.46056000	0.16390300	-0.55323700
н	-6.54507300	-1.63755700	0.68091300	С	-2.90513700	0.02785400	-0.21150200
Н	-4.77408500	-1.26772400	2.39092700	С	-4.28214000	0.30333000	-0.37993400
н	-2.51682800	-0.52993600	1.71732700	С	-5.24437200	-0.68283400	-0.20704000
С	-0.53336000	2.20423300	-0.01620600	С	-4.87787400	-1.98791700	0.13564700
С	-1.88369700	2.70675100	0.47391000	С	-3.52256600	-2.28262600	0.28368600
н	-1.85029600	3.80663600	0.51369200	С	-2.54783700	-1.30441500	0.10371800
Н	-2.70431300	2.42239200	-0.20026000	н	-4.56474900	1.32530000	-0.64484300
Н	-2.11429400	2.35190700	1.49124400	н	-6.30113300	-0.42941600	-0.33946700
С	-0.25010400	2.55413600	-1.46665100	н	-5.63594100	-2.76385200	0.26991200
н	-1.04200900	2.19044900	-2.13596400	н	-3.20724700	-3.30151800	0.52790600
Н	-0.18994100	3.65070400	-1.55419100	н	-1.49181700	-1.58065400	0.16630300
Н	0.71175500	2.13134600	-1.78894100	С	0.00940600	2.70516300	0.00381200
С	0.59933800	2.64166300	0.90846000	С	-0.94890800	3.64208500	0.72892500
н	0.44127500	2.31160600	1.94594200	н	-0.61630400	4.68435400	0.59135700
н	1.57657300	2.26881400	0.56842900	н	-1.96806000	3.53314800	0.33301900
н	0.64149100	3.74250000	0.89969000	н	-0.96996000	3.43444700	1.81128900
				С	0.01057100	2.93477500	-1.49872700
INT7 Sextet				н	-1.00080900	2.79622600	-1.90670600
-1 6				н	0.35414900	3.96090300	-1.71256000
Fe	1.94698100	-0.86666100	-0.06358900	н	0.69072200	2.22497200	-1.99114800
CI	2.22439700	-0.54041900	2.11946000	С	1.41526800	2.78363400	0.58970900
CI	3.67799200	-0.05946300	-1.20819900	н	1.43753600	2.47272300	1.64571600
CI	1.52779200	-2.99562300	-0.50432100	н	2.12377600	2.14940000	0.03737100
Ν	-2.01615700	1.06541300	-0.40548300	н	1.77143600	3.82515000	0.52698400
S	-0.61037600	0.98263700	0.33716800				

(L) NMR spectra of new compounds

((2-bromophenyl)imino)- λ^4 -sulfanone (1aa)

(cyclopentylimino)- λ^4 -sulfanone (1ba)

YD-5YH-H.10.fid

- 3.636 3.636 2.052 2.043 2.018 7.1.879 1.856 1.642 1.642 1.620

N_{≈s}∽0 1ba

¹H NMR (400 Hz, CDCl₃)

2-Methyl-N-phenylbutane-2-sulfinamide (3b)

80 170

90 80 f1 (ppm)

(3s,5s,7s)-N-phenyladamantane-1-sulfinamide (3d)

N-phenylcyclobutanesulfinamide (3g)

3g ¹H NMR (400 Hz, CDCl₃)

N-phenylcyclopentanesulfinamide (3h)

7.034 7.015 6.978 6.960 6.941	3.515 3.501 3.494 3.488 3.488 3.486 3.456	2.135 2.115 2.100 2.100 2.100 2.100 1.925 1.925 1.872 1.882 1.745 1.728 1.669 1.669 1.662 1.662 1.662 1.662 1.578 1.578

¹³C NMR (100 Hz, CDCl₃)

80

_

N-phenyltetrahydro-2H-pyran-4-sulfinamide (3j)

2-Methyl-N-phenylpropane-1-sulfinamide (3k)

3-Methyl-N-phenylbutane-1-sulfinamide (3m)

1-cyclohexyl-N-phenylmethanesulfinamide (3n)

.980 .965 .947 .933 .933 .846 .814 .814	943 943 943 943 943 943 943 943 943 943
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~

3n ¹H NMR (400 Hz, CDCl₃)

N-phenylbut-3-ene-1-sulfinamide (30)

N,1-diphenylmethanesulfinamide (3p)

80 170

160

150

140

130

120

110

100

5.014 2.004 1.004 1.98/ 1.02<u>∓</u> 1.02∃ . 0 8.5 8.0 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 7.5 7.0 6.5 141.00 130.65 129.44 128.96 128.88 128.55 123.28 123.28 yd-5-78-3.11.fid -61.34 ì H `S` || 0 3р ¹³C NMR (100 Hz, CDCl₃)

90 80 f1 (ppm) 70

60

50

40

30

20

10

0 -

N-phenyl-1-(3-(trifluoromethoxy)phenyl)methanesulfinamide (3q)

. 0

-0.5 -1

. 0

8.5 8.0

7.5

6.5

7.0

6.0 5.5

5.0

4.0 f1 (ppm)

4.5

3.0

2.5

2.0

1.5

1.0

3.5

0.5

0.0

After density functional theory (DFT) calculations, we found that in mechanism I, FeCl₃ as a Lewis acid can more effectively promote the nucleophilic attack process. Specifically, in mechanism I, intermediate INT4 combines with Fe(III)Cl₃ to form intermediate INT5, with an energy increase of only 2.5 kcal/mol. Subsequently, the tert-butyl radical attacks the sulfur atom to form intermediate INT6, releasing 11.3 kcal/mol of heat. Then, an outer-sphere electron transfer from Fe(II) to Fe(III) occurs, further releasing 34.4 kcal/mol of heat. Overall, mechanism I has a lower energy barrier and releases more heat.

In contrast, in mechanism II without the participation of $Fe(III)Cl_3$, intermediate INT4 combines with the tert-butyl radical to form intermediate INT2, with an energy stabilization at 6.1 kcal/mol. Subsequently, an outer-sphere electron transfer from Fe(II) to Fe(III) occurs, stabilizing the system to -7.3 kcal/mol.