Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Cost-effective green antisolvent towards reproducible fabrication of high-efficiency perovskite solar cells

Hui Li, *a Zhe Wu, a,b Junhui Han, Meiqiu Xie *a and Jizheng Wangb

^a New Energy Technology Engineering Laboratory of Jiangsu Province, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China

^b Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

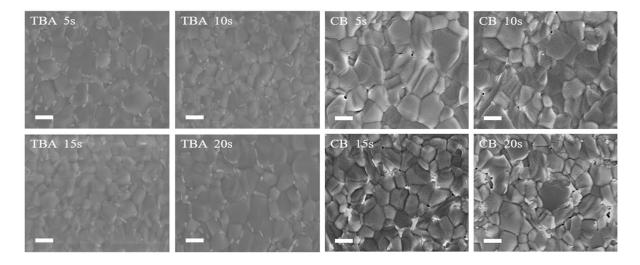
*Corresponding author: lihui1986@njupt.edu.cn, mqxie@njupt.edu.cn

Experimental Section

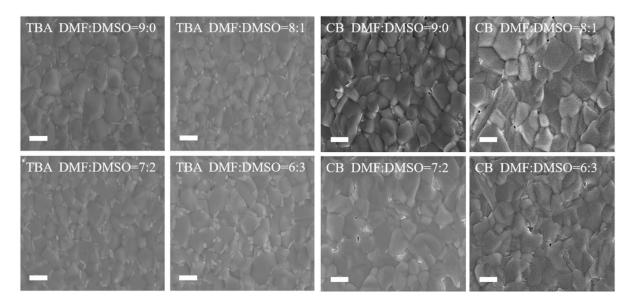
Materials:

The SnO₂ colloid precursor was purchased from Alfa Aesar. N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), Tert-butanol (TBA), and chlorobenzene (CB) were purchased from Sigma-Aldrich. PbI₂, FAI, MACl, CsI, bis(trifluoromethane) sulfonimide lithium salt (Li-TFSI), 4-tert-butylpyridine (TBP) and Spiro-OMeTAD were purchased from Xi an Yuri Solar Co., Ltd.

Solar cells Fabrication:


The ITO glass substrate (1.5×1.5 cm) was cleaned with deionized water, acetone and isopropanol respectively for 15 minutes. Then the clean substrate was dried by a nitrogen stream, and treated with oxygen plasma for 5 minutes. The SnO₂ colloidal precursor was diluted with ultrapure water (volume ratio 9:40) to prepare the SnO₂ precursor. The SnO₂ precursor was spin-coated on the ITO substrate at a speed of 3500 rpm for 30 s, and then

annealed at 150°C for 30 minutes in the air (relative humidity RH=40%). Then the substrate was transferred to a nitrogen glove box to prepare the perovskite film. The perovskite precursor solution was prepared by dissolving corresponding amounts of CsI (30 mg), FAI (377.3 mg), PbI₂ (1102.4 mg), and MACI (51.8 mg) in DMF: DMSO (8:2, 5:5, 2:8 and 0:10 v/v) mixed solvent (1567 μL). The perovskite film was prepared by one-step solution deposition method. 60 μL perovskite precursor solution was deposited onto ITO/SnO₂ substrates and a two-step spin coating procedure with 1000 rpm for 10 s and 5000 rpm for 30 s was adopted. During the second spin-coating step, antisolvent (TBA or CB) was dripped on the rotating substrate at 1th, 5th, 10th, 15th, 20th, or 25th s. After that, the sample was annealed at 120°C for 60 min in a box (relative humidity RH=20-30%). The Spiro-OMeTAD solution was prepared by dissolving 72.3 mg Spiro-OMeTAD with 28.8 μL TBP and 35 μL LiTFSI (260 mg mL⁻¹ in ACN) in 1 mL chlorobenzene. Spiro-OMeTAD solution was then spin-coated on the perovskite layer with 4000 rpm for 30 s. Finally, about 120 nm Au was deposited on the spiro-OMeTAD layer.


Characterization:

FTIR spectra were measured by using VERTEX 70v (BRUKER, Germany). The wavenumber range was 400-4000 cm⁻¹, the resolution was 4 cm⁻¹, the scanning mode was a reflection mode, and the scan number was 64. XPS was measured by XPS machine (ESCALAB250XI, Thermo Fisher Scientific). The X-ray diffraction patterns were measured by using a Rigaku-2500 X-ray diffractometer with an X-ray tube (Cu K α , λ =1.5406 Å). The UV light source is He I, and the energy of He I is 21.22 eV. The basic vacuum of the analytical chamber is 3.0×10^{-8} Torr, and the bias voltage is -9 V. Scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) images were observed by using a JEOL JSM-8020 field-emission scanning electron microscope (JEOL, Japan) at 5-10 kV. EQE was recorded using a Newport Oriel QE-200 (Newport 300 W xenon lamp). All J-V curves were measured using a source meter (Keithley 2420, USA) under AM 1.5 sunlight at an irradiance of 100 mW cm⁻² provided by a solar simulator (Newport, Oriel Sol3A Class AAA, 94043A). The device area was 0.04 cm². Light intensity was calibrated using a monocrystalline silicon

reference cell with a KG5 window (Newport, Oriel 91150). Electrochemical impedance spectroscopy (EIS) was measured by Zennium (Zahner).

Figure S1 SEM images of perovskite films prepared with different antisolvent dripping time (DMF:DMSO ratio is 8:1, dripping volume is 300 μ L), all scale bars are 1.5 μ m.

Figure S2 SEM images of perovskite films prepared with different DMF:DMSO ratio (dripping time is 10^{th} s, dripping volume is $300 \mu L$), all scale bars are $1.5 \mu m$.

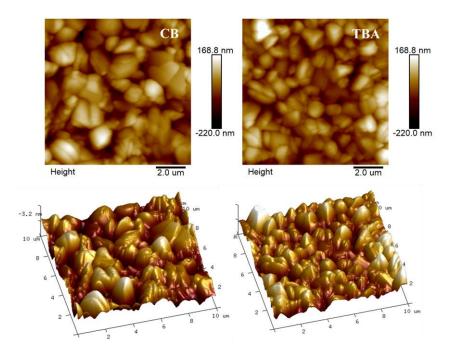


Figure S3 AFM images of perovskite films treated with CB or TBA antisolvent.



Figure S4 Absolute photoluminescence quantum yield (PLQY) measurements.

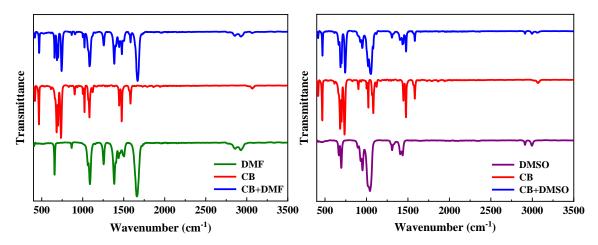


Figure S5 FTIR spectroscopy of solvent.

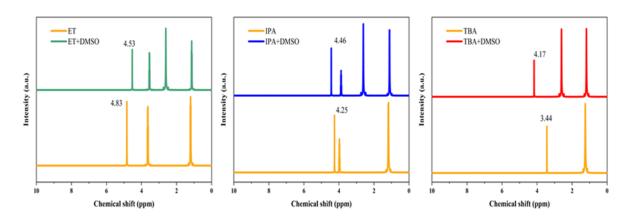


Figure S6 ¹H NMR spectra of solvent.

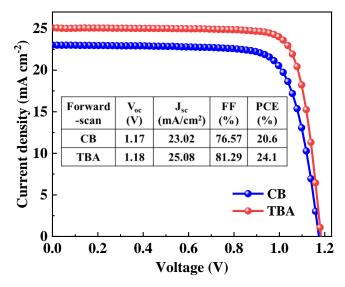


Figure S7 J-V curves of devices (Forward-scan).

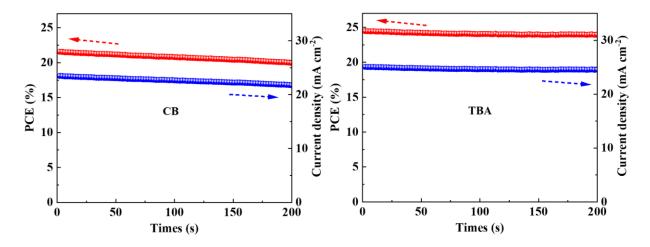
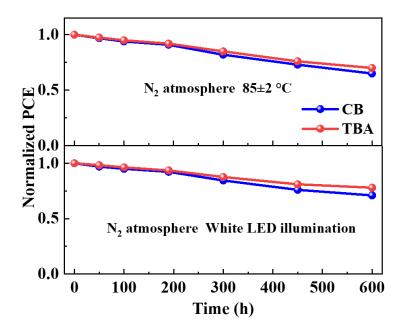
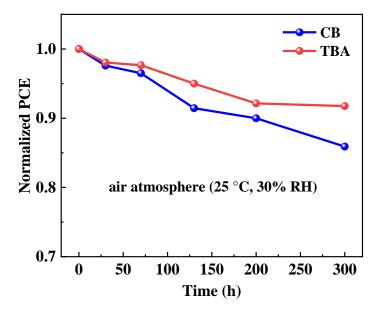




Figure S8 Steady-state output of devices at MPP under 1-sun illumination.

Figure S9 Thermal stability at 85 °C and light stability in simulated one sun illumination achieved by a white-light LED array.

Figure S10 Long-term stability of devices in ambient air at 25 °C and 30% relative humidity without encapsulation.

The average recombination lifetime was estimated from the TRPL spectra fitted by a bi-exponential decay function, the equation is as follows:¹

$$\tau_{ave} = \frac{\sum A_i \tau_i^2}{\sum A_i \tau_i}$$
 S1

where τ_i is decay times and A_i is amplitudes.

Table S1 Parameters of the TRPL spectra of perovskite films prepared with CB or TBA antisolvent.

Sample	τ ₁ [ns]	A_1	τ ₂ [ns]	A ₂	$\tau_{ave}[ns]$
СВ	223.38	16.15	1852.27	173.99	1834.24
TBA	342.55	31.63	3382.88	304.64	3351.25

The trap density (N_t) can be determined from the curves via the following relation:²

$$N_t = \frac{2\varepsilon_0 \varepsilon_r V_{\text{TFL}}}{eL^2}$$
 S2

where ε_0 is the vacuum permittivity, ε_r is the relative dielectric constant of the perovskite, V_{TFL} is the trap-filled limit voltage, e is the electron charge, and L is the perovskite film thickness.

Table S2 Calculated trap density (N_t) of perovskite films prepared with CB or TBA antisolvent.

Sample	L [nm]	ε	V _{TFL} [V]	$N_{\rm t} [\times 10^{15} {\rm cm}^{-3}]$
СВ	620	42	0.30	3.6
TBA	620	42	0.24	2.9

Table S3 EIS parameters of PSCs prepared with CB or TBA antisolvent.

Sample	$R_s[\Omega]$	$R_{tr}[k\Omega]$	C _{tr} [F]	$R_{rec}[k\Omega]$	C _{rec} [F]
СВ	1.48	0.777	1.083E-7	12.69	5.576E-7
TBA	0.92	0.443	9.709E-8	15.64	2.234E-7

References

- J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu, Y. Zhang, Y. Yi, Y. Wei, N. Chen, T. Lin, F. Wang,
 C. Li, and J. Wang, *ACS Energy Lett.*, 2019, 4, 2913.
- 2 L. Zhang, H. Li, J. Zhuang, Y. Luan, S. Wu, G. Niu, L. Chu, X. Cao, X. Li, and J. Wang, *J. Mater. Chem. C*, 2021, **9**, 15428-15434.