Supplementary Material

Amorphous Niobium pentoxide with carbon composite as structurally stable high performance anode material for sodium-ion batteries

Yuanshan Zhang¹, Jing Yu¹, Shikai Gu¹, Lijun Gao^{1*}

¹College of Energy, Soochow Institute for Energy and Materials Innovation, Soochow University, Suzhou 215006, China

*E-mails: gaolijun@suda.edu.cn (L. Gao)

Experimental Methods

1.Synthesis of α -Nb₂O₅@C and α -Nb₂O₅

We prepared a solution by homogeneously blending 10 mL of ethanol (anhydrous) with 30 mL of isopropanol, then 130 mg of niobium pentachloride was added. The resulting mixture was stirred on a magnetic blender for 20 minutes and then subjected to ultrasonication for 20 minutes, after which 2 mL of glycerol was incrementally introduced. The mixture is then sonicated for 5 minutes and stirred for 20 minutes. Following preparation, the mixture was poured into a 100-mL Teflon-coated stainless-steel pressure reactor, and heated to 190°C in an oven and maintained at this temperature for 12 hours. After cooling down, the precipitate was centrifuged using deionized water and anhydrous ethanol. Then it was put in a vacuum drying oven at 80°C for a period of 8 hours. After cooling down, the precipitate was synthesized. Meanwhile, the α -Nb₂O₅ was produced by subjecting the white precipitate to the same calcination process, but in an air atmosphere.

2. Material characterization

The crystalline phase of α -Nb₂O₅@C and α -Nb₂O₅ were measured by XRD on a Bruker-D8. The morphology was measured by SEM using a Hitachi SU-8010. TEM were conducted on an HT7700 instrument. To investigate the valence states, XPS were provided by an equipment from Thermo Fisher Scientific, EDAX was measured on a FEI Titan Themis Cubed G2 300.

3. Electrochemical measurements

We fabricated the materials into pole pieces and assembled 2032 button cells to test their electrochemical properties. The electrode formulation comprised 70% α -Nb₂O₅, 20% superfine conductive carbon, and 10% PVDF. Some NMP was added to this mixture, which was then thoroughly mixed on a magnetic stirrer for 12 hours to create a homogeneous slurry. Then we coated the slurry

onto copper foil and put it in a vacuum at 80°C for 12 hours. Once cooled to ambient temperature, the coated foil was cut into 12 mm diameter circles, with an average mass loading of about 1.2 mg cm⁻² per anode. Then in a confined, argon-filled glove box, we assembled 2032 button cells. We used sodium metal foils as the counter electrode and glass microfiber separators (Whatman GF/A). The electrolyte solution was formulated by incorporating 1.0 M NaClO₄ in EC/DEC (1:1) with 5%FEC. For electrochemical testing, charge and discharge processes were carried out at the voltage of 0.01 to 3 V, utilizing a Land battery testing system. Furthermore, EIS was measured on an AUTOLAB PGSTAT302N electrochemical workstation and CVs were measured on the same instrument over 0.01 to 3 V at scan rates ranging from 0.1 to 5 mV s⁻¹.

Fig. S1 XPS analysis of (a) O 1s spectra; and (b) C 1s spectra of the α -Nb₂O₅@C.

Fig. S2 TGA profile of α -Nb₂O₅@C. The initial weight loss at below 100°C is due to the loss of water in the sample.

Fig. S3 (a) EIS results of α -Nb₂O₅ and α -Nb₂O₅@C in coin cell; (b) EIS of α -Nb₂O₅@C at fresh and after 300 cycles in coin cell.

Fig. S4 CV curves of α -Nb₂O₅@C electrode in a 3-electrode cell for the first 3 cycles at a scanning rate of 0.1 mV s⁻¹.

Fig. S5 EIS tests of α -Nb₂O₅ and α -Nb₂O₅@C in a 3-electrode cell.

Fig. S6 XRD patterns of α -Nb₂O₅@C at different potentials.

Fig. S7 High-resolution XPS spectra of Nb 3d of α-Nb₂O₅@C at 1.1 V.

Fig. S8 Post-cycling SEM images of (a) $\alpha\text{-Nb}_2O_5$ and (b) $\alpha\text{-Nb}_2O_5@C$