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1. General Methods and Materials 

 

General Methods 

All reactions were carried out under a nitrogen atmosphere using flame-dried glassware. 

Photoreactions were carried out with blue LEDs (HepatoChem, EvoluChem 425 PF, HCK1012-

01-012, 18 W). Gas chromatography of gas phase was measured on SHIMADZU GAS 

CHROMATOGRAPH GC-2014s equipped with a TCD detector using argon as the carrier gas. 1H 

and 13C NMR spectra were recorded on a JEOL JNM-ECZ400S/L1 (1H at 400 MHz, 13C at 101 

MHz) spectrometer and JEOL JNM-ECZ500R/S1 (1H at 500 MHz). NMR data were obtained in 

CDCl3 or CD3CN. Chemical shifts are recorded in d ppm referenced to a residual CDCl3 (δ = 7.26 

for 1H, δ = 77.0 for 13C) or CD3CN (δ = 1.94 for 1H, δ = 1.32 for 13C), respectively. IR 

measurements were performed on FTIR SHIMADZU Affinity-1S spectrometer fitted with a Pike 

Technologies MIRacle Single Reflection ATR adapter. High-resolution mass spectra were 

recorded on Thermo Fisher Scientific Exactive Plus (ESI). Flash column chromatography was 

performed with Hi-Flash™ Column Silica gel 40 μm 60 Å (Yamazen), Hi-Flash™ Premium 

Column Silica gel 30 μm 60 Å (Yamazen) or diol-silica gel CHROMATOREX DIOL MB100-

40/75 (FUJISILYSIA). 

 

Materials 

N-Butylbenzamide (1a),1 N-butyl-4-methoxybenzamide (1b),1 N-butyl-4-

(trifluoromethyl)benzamide (1c),1 N-butyl-3-(trifluoromethyl)benzamide (1e),1 N-(5-

hydroxypentan-1-yl)acetamide2 and methyl 2,6-bis(benzamido)hexanoate (1o)1 were prepared 

according to the previously reported methods. Other chemicals were purchased from commercial 

suppliers and used as received unless described below. 
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2. C–H Methoxylation of N-Alkylamides 

2-1. A Typical Procedure 

 

To a Schlenk tube (internal volume: 9.4 mL) containing Ir[dF(CF3)ppy]2(dtbbpy)PF6 (4.7 

mg, 0.004 mmol, 2 mol%), rac-BINAP (7.8 mg, 0.013 mmol, 6 mol%) and N-butylbenzamide 

(1a) (35.7 mg, 0.20 mmol.) were added NiBr2(dme) (3.1 mg, 0.010 mmol, 5 mol%), dehydrated 

methanol (128.4 mg, 4.0 mmol, 20 equiv.) and dehydrated ethyl acetate (2.0 mL) under nitrogen 

atmosphere. The tube was capped with rubber septa, and the reaction mixture was stirred under 

blue light irradiation, with being cooled by a fan (Figure S1). After 24 hours, the reaction mixture 

was passed through a short column of Florisil® with ethyl acetate as an eluent. After removal of 

the solvent under reduced pressure, the crude residue was purified by flash column 

chromatography with silica gel (10% AcOEt/Hexane) to give N-acyl-N,O-acetal 2a (28.6 mg, 0.14 

mmol, 69%) as a white solid. 

 

 
 

Figure S1. Photos of the Reaction Vessel (left: light off, right: light on) 

 

Caution: The present reaction evolves gaseous hydrogen, increasing the internal pressure. The 

reaction must be performed using a vessel equipped with a pressure-relief mechanism or a 

pressure-resistant vessel. In our experiment, rubber septa were used to safely vent excess pressure 

in case of excessive pressure buildup. 
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2-2. Intramolecular Cyclization 

 
To a Schlenk tube (internal volume: 9.4 mL) containing Ir[dF(CF3)ppy]2(dtbbpy)PF6 (4.9 

mg, 0.004 mmol, 2 mol%), rac-BINAP (7.3 mg, 0.012 mmol, 6 mol%) and N-(5-hydroxypentan-

1-yl)-4-methoxybenzamide (1p) (47.2 mg, 0.20 mmol, 1.0 equiv.) were added NiBr2(dme) (3.2 

mg, 0.010 mmol, 5 mol%) and dehydrated ethyl acetate (2.0 mL) under nitrogen atmosphere. The 

tube was capped with rubber septa, and the reaction mixture was stirred under blue light irradiation, 

with being cooled by a fan. After 24 hours, the septum was removed, and the reaction mixture was 

passed through a short column of Florisil® with ethyl acetate as an eluent. After removal of the 

solvent under reduced pressure, the crude residue was purified by flash column chromatography 

with silica gel (gradient from 79 to 100% AcOEt/Hexane) to give 3p (24.3 mg, 0.103 mmol, 52%) 

as a white solid. 
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2-3. Quantification of Evolved Hydrogen Gas 

The amount of H2 was quantified using GC equipped with a TCD detector. GC conditions 

are as follows: [column temp.: 60 °C | injector temp.: 100 °C | detector temp.: 200 °C | GC column: 

SHINWA CHEMICAL INDUSTRIES LTD., Shincarbon-ST 50-80 (length: 6.0 m, inner diameter: 

3.00 mm) | Carrier gas: argon]. The calibration curve prepared using standard H2 gas (purity: 99.9%, 

purchased from Kyoto Teisan Co. Ltd.) is shown in Figure S2. 

 

 

Figure S2. Calibration Curve of H2 

The C–H methoxylation of N-butylbenzamide 1a was performed according to the typical 

procedure. After completion of the reaction, the gas phase in the headspace of the reaction vessel 

was analyzed. A gas-tight syringe was used to take a sample (0.20 mL) from the vessel, which 

was then injected into the GC. The uncorrected amount of H2 [x(H2)] was calculated according to 

the following equation, where A is an area of peak of detected H2 in the GC chromatogram, f is a 

factor determined by a calibration curve, and V is an internal volume of the gas phase of the 

reaction vessel. 

𝑥(𝐻!) 	= 	𝐴 × 𝑓 ×
𝑉
0.20 ×

1
22.4 

Subsequently, the calculated value is corrected to account for the increase in internal pressure. The 

relationship between x(H2) and actual value x’(H2) is represented by the following equation:  

	𝑥(𝐻!) = 	𝑥′(𝐻!) 	×	
𝑉

𝑉 + 22.4 × 𝑥′(𝐻!)
 

This can be rearranged to derive the following equation: 

y = 8E-08x
R² = 0.9999

0

0.1

0.2

0.3

0.4

0.5

1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000 5000000

V
ol

um
e 

of
 H
2

(m
L)

Area

Calibration curve of H2



S6 

𝑥"(𝐻!) 	= 	𝑥(𝐻!) 	×	
𝑉

𝑉 − 22.4 × 𝑥(𝐻!)
 

Considering the vessel’s internal volume of 9.4 mL and 2.0 mL of solvent used, we assumed 

internal volume of the gas phase (V) to be 7.4 mL. The factor (f) was 8 × 10#$ according to the 

calibration curve, and the area (A) was 888037. Upon substituting these values into the equation, 

the amount of H2 was determined to be 0.18 mmol, indicating the yield was almost quantitative. 

 

 

Figure S3. Gas Chromatogram 
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2-4. Reaction under Oxygen Atmosphere 

Reaction 1a was performed in an oxygen atmosphere, with all other conditions kept as 

described in Section 2-1. A 1H NMR analysis of the reaction mixture showed the formation of 2a 

(4%) and imide 8a (5%) along with recovery of 1a (89%). 1H NMR spectrum of 8a was confirmed 

in previous literature.3 
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2-5. Screening of Ligands 

 NMR yields of 2a 

Figure S4. Screening of Heteroaryl Ligands 
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NMR yields of 2a 

Figure S5. Screening of Phosphine Ligands 
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2-6. Screening of Photocatalysts 

    NMR yields of 2a 

Figure S6. Screening of Photocatalysts 
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2-7. Screening of the Methanol Amount 

 
 

Table S1. Screening of the Methanol Amount 

 
aReaction conditions: 1a (0.20 mmol), Ir[dF(CF3)ppy]2(dtbbpy)PF6 (0.004 mmol, 2 mol%), 

NiBr2(dme) (0.010 mmol, 5 mol%), rac-BINAP (0.012 mmol, 6 mol%), AcOEt (2.0 mL), 24 h, 

rt, blue LED irradiation (λ= 425 nm).  
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2-8. Radical Trapping Experiments 

 To a 5 mL Schlenk tube containing Ir[dF(CF3)ppy]2(dtbbpy)PF6 (4.8 mg, 0.004 mmol, 2 

mol%), rac-BINAP (7.5 mg, 0.012 mmol, 6 mol%), benzalmalononitrile (30.5 mg, 0.20 mmol, 

1.0 equiv.) and N-butylbenzamide (34.9 mg, 0.20 mmol, 1.0 equiv.) was added NiBr2(dme) (3.0 

mg, 0.010 mmol, 5 mol%) and dehydrated ethyl acetate (2.0 mL) under nitrogen atmosphere. The 

reaction mixture was stirred under blue light irradiation, with being cooled by a fan. After 24 hours, 

the septum was removed, and the reaction mixture was passed through a short column of Florisil® 

with ethyl acetate as an eluent. After removal of the solvent under reduced pressure, the crude 

residue was purified by flash column chromatography with silica gel (gradient from 0% to 30% 

AcOEt/Hexane) to give N-(1,1-dicyano-2-phenylhexan-3-yl)benzamide (7a) (49.3 mg, 0.15 mmol, 

74%) as a white solid. 

 

 To a 5 mL Schlenk tube containing Ir[dF(CF3)ppy]2(dtbbpy)PF6 (4.5 mg, 0.004 mmol, 2 

mol%), rac-BINAP (7.3 mg, 0.012 mmol, 6 mol%), benzalmalononitrile (31.1 mg, 0.20 mmol, 

1.0 equiv.) and N-butylbenzamide (35.0 mg, 0.20 mmol, 1.0 equiv.) was added NiBr2(dme) (3.2 

mg, 0.010 mmol, 5 mol%), dehydrated methanol (128.0 mg, 4.0 mmol, 20 equiv.) and dehydrated 

ethyl acetate (2.0 mL) under nitrogen atmosphere. The reaction mixture was stirred under blue 

light irradiation, with being cooled by a fan. After 24 hours, the septum was removed, and the 

reaction mixture was passed through a short column of Florisil® with ethyl acetate as an eluent. 

After removal of the solvent under reduced pressure, the NMR yields of 7a and 2a were 29% and 

8% yield, respectively, determined using 1,1,2,2-tetrachloroethane as an internal standard. 
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2-9. 2 mmol Scale Reaction 

 
Following the typical procedure (section 2-1), the reaction was performed with N-butyl-4-

methoxybenzamide (1b) (441.29 mg, 2.0 mmol). A large Schrenk tube (internal volume: 94 mL) 

equipped with an oil bubbler was employed as the reaction vessel. The crude mixture was purified 

by silica gel flash column chromatography (10% AcOEt/Hexane) to afford N-(1-methoxybutan-

1-yl)-4-methoxybenzamide (2b) (336.1 mg, 1.42 mmol, 71%) as a white solid. 
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2-10. Cyclic Voltammogram 

Oxidation potentials of n-Bu4NBr, rac-BINAP, and NiBr2(dme) were measured by cyclic 

voltammetry. Cyclic voltammetry was measured on an ALS electrochemical analyzer model 612E 

by using a glassy carbon working electrode, a Pt counter electrode, and Ag/Ag+ electrode. A 

sample (0.01 mmol) and n-Bu4NBF4 (1 mmol) were placed in 20 mL cell and dissolved in 10 mL 

AcOEt (rac-BINAP and NiBr2(dme) were not dissolved completely). The solution was degassed 

by purging N2 gas prior to the measurements. The voltammograms were taken at room temperature 

under an N2 atmosphere. 

 
Figure S7. Cyclic voltammogram of n-Bu4NBr in AcOEt. 

 

Scan rate: 0.1 V/s 

Ep = 0.23 V (vs. Fc/Fc+) 

Eox ≒ Eh = 0.11 V (vs. Fc/Fc+) 

Ferrocene was used as the internal standard. 

As an estimate of the oxidation potential, we used the half-peak potential Eh (the potential at half 

the current in Ep).4 

 
Figure S8. Cyclic voltammogram of rac-BINAP in AcOEt. 
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Scan rate: 0.1 V/s 

Ep = 0.76 V (vs. Fc/Fc+) 

Eox ≒ Eh = 0.58 V (vs. Fc/Fc+) 

Ferrocene was used as the internal standard. 

As an estimate of the oxidation potential, we used the half-peak potential Eh (the potential at half 

the current in Ep).4 

 

 
Figure S9. Cyclic voltammogram of NiBr2(dme) in AcOEt. 

 

Scan rate: 0.1 V/s 

Ep = 0.88 V (vs. Fc/Fc+) 

Eox ≒ Eh = 0.66 V (vs. Fc/Fc+) 

Ferrocene was used as the internal standard. 

As an estimate of the oxidation potential, we used the half-peak potential Eh (the potential at half 

the current in Ep).4  
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2-11. Spectral Data of Products 

N-(1-Methoxybutan-1-yl)benzamide (2a) 

 
1H NMR (400 MHz, CDCl3): δ = 7.82-7.79 (m, 2H), 7.52 (tt, J = 7.2, 1.6 Hz, 1H), 7.46-7.42 (m, 

2H), 6.39 (d, J = 9.2 Hz, 1H), 5.35 (dt, J = 9.6, 6.4 Hz, 1H), 3.40 (s, 3H), 1.80-1.71 (m, 1H), 1.66-

1.57 (m. 1H), 1.51-1.37 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ = 167.5, 

133.9, 131.8, 128.6, 126.9, 81.4, 55.9, 37.7, 18.2, 13.8; HRMS (ESI+) m/z: [M+Na]+ calcd for 

C12H17NNaO2, 230.1152; found, 230.1150. IR (neat): 3263, 2938, 1638, 1533, 698 cm-1. 

 

N-(1-Methoxybutan-1-yl)-4-methoxybenzamide (2b) 

 

Following the typical procedure, the reaction was performed using N-butyl-4-methoxybenzamide 

(1b) as a substrate. The crude mixture was purified by silica gel flash column chromatography 

(8% AcOEt/Hexane) to afford N-(1-methoxybutan-1-yl)-4-methoxybenzamide (2b) (36.8 mg, 

0.16 mmol, 78%) as a white solid. 
1H NMR (400 MHz, CDCl3): δ = 7.77 (d, J = 8.8Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 6.32 (d, J = 

9.2 Hz, 1H), 5.33 (dt, J = 9.6, 6.0 Hz, 1H), 3.84 (s, 3H), 3.38 (s, 3H), 1.78-1.69 (m, 1H), 1.64-

1.55 (m, 1H), 1.51-1.36 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ = 166.9, 

162.4, 128.8, 126.1, 113.7, 81.4, 55.9, 55.4, 37.7, 18.2, 13.7; HRMS (ESI+) m/z: [M+Na]+ calcd 

for C13H19NNaO3, 260.1257; found, 260.1252. IR (neat): 3254, 2959, 1634, 1504, 1250, 1182, 

851, 689 cm-1. 

 

N-(1-Methoxybutan-1-yl)-4-(trifluoromethyl)benzamide (2c) 

 

Following the typical procedure, the reaction was performed using N-butyl-4-

(trifluoromethyl)benzamide (1c) as a substrate. The crude mixture was purified by silica gel flash 

column chromatography (gradient from 0% to 13% AcOEt/Hexane) to afford N-(1-methoxybutan-

1-yl)-4-(trifluoromethyl)benzamide (2c) (31.9 mg, 0.12 mmol, 58%) as a white solid. 
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1H NMR (400 MHz, CDCl3): δ = 7.90 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 6.45 (d, J = 

9.2 Hz, 1H), 5.34 (dt, J = 9.6, 6.0 Hz, 1H), 3.40 (s, 3H), 1.80-1.71 (m, 1H), 1.67-1.58 (m, 1H), 

1.53-1.36 (m, 2H), 0.94 (t, J = 7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ = 166.3, 137.3, 133.5 

(q, J = 32.6 Hz), 127.5, 125.7 (q, J = 3.8 Hz), 123.5 (q, J = 271.2 Hz), 81.8, 56.1, 37.6, 18.2, 13.7; 

HRMS (ESI+) m/z: [M+Na]+ calcd for C13H16F3NNaO2, 298.1025; found, 298.1022. IR (neat): 

3283, 2986, 1645, 1506, 1327, 1123, 856, 683 cm-1. 

 

N-(1-Methoxybutan-1-yl)-2-methoxybenzamide (2d) 

 

Following the typical procedure, the reaction was performed using N-butyl-2-methoxybenzamide 

(1d) as a substrate. The crude mixture was purified by silica gel flash column chromatography 

(gradient from 0% to 32% AcOEt/Hexane) to afford N-(1-methoxybutan-1-yl)-2-

methoxybenzamide (2d) (30.2 mg, 0.13 mmol, 64%) as a pale yellow oil. 
1H NMR (400 MHz, CDCl3): δ = 8.19 (dd, J = 7.6, 1.6 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.46 

(dd, J = 8.4, 8.4 Hz, 1H), 7.09 (dd, J = 7.6, 7.6 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 5.40 (dt, J = 9.2, 

6.0 Hz, 1H), 3.96 (s, 3H), 3.40 (s, 3H), 1.79-1.58 (m, 2H), 1.52-1.39 (m, 2H), 0.95 (t, J = 7.2 Hz, 

3H); 13C NMR (100 MHz, CDCl3): δ = 165.4, 157.4, 132.9, 132.3, 121.2, 120.9, 111.2, 81.0, 55.8, 

55.7, 37.6, 17.9, 13.7; HRMS (ESI+) m/z: [M+Na]+ calcd for C13H19NNaO3, 260.1257; found, 

260.1255; IR (neat): 3387, 2959, 1651, 1520, 1236, 754 cm-1. 

 

N-(1-Methoxybutan-1-yl)-3-(trifluoromethyl)benzamide (2e) 

 
Following the typical procedure, the reaction was performed using N-butyl-3-

(trifluoromethyl)benzamide (1e) as a substrate. The crude mixture was purified by silica gel flash 

column chromatography (gradient from 0% to 10% AcOEt/Hexane) to afford N-(1-methoxybutan-

1-yl)- 3-(trifluoromethyl)benzamide (2e) (29.8 mg, 0.11 mmol, 54%) as a white solid. 
1H NMR (400 MHz, CDCl3): δ = 8.06 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 

7.59 (dd, J = 8.0, 8.0 Hz, 1H), 6.47 (d, J = 9.2 Hz, 1H), 5.35 (dt, J = 9.2, 6.4 Hz, 1H), 3.41 (s, 3H), 

1.81-1.72 (m, 1H), 1.67-1.59 (m, 1H), 1.53-1.36 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H); 13C NMR (100 

MHz, CDCl3): δ = 166.1, 134.8, 131.2 (q, J = 32.6 Hz), 130.2, 129.3, 128.4 (q, J = 3.9 Hz), 124.0 

(q, J = 2.9 Hz), 123.6 (q, J = 271.2 Hz), 81.8, 56.1, 37.7, 18.2, 13.7; HRMS (ESI+) m/z: [M+Na]+ 
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calcd for C13H16F3NNaO2, 298.1025; found, 298.1022; IR (neat): 3298, 2936, 1643, 1533, 1327, 

1123, 696 cm-1.  

 

N-(1-Methoxybutan-1-yl)-4-tert-butylbenzamide (2f) 

 

Following the typical procedure, the reaction was performed using N-butyl-4-tert-butylbenzamide 

(1f) as a substrate. The crude mixture was purified by silica gel flash column chromatography 

(10% AcOEt/Hexane) to afford N-(1-methoxybutan-1-yl)-4-tert-butylbenzamide (2f) (36.9 mg, 

0.14 mmol, 70%) as a colorless oil. 
1H NMR (400 MHz, CDCl3): δ = 7.75 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 6.35 (d, J = 

9.6 Hz, 1H), 5.35 (dt, J = 9.6, 6.4 Hz, 1H), 3.39 (s, 3H), 1.79-1.71 (m, 1H), 1.65-1.56 (m, 1H), 

1.51-1.39 (m, 2H), 1.33 (s, 9H), 0.94 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ = 167.3, 

155.4, 131.0, 126.8, 125.5, 81.3, 55.9, 37.7, 34.9, 31.1, 18.2, 13.8; HRMS (ESI+) m/z: [M+Na]+ 

calcd for C16H25NNaO2, 286.1778; found, 286.1777. IR (neat): 3306, 2959, 1641, 1499, 851 cm-

1. 

 

N-(1-Methoxybutan-1-yl)-3,5-dimethoxybenzamide (2g) 

 
Following the typical procedure, the reaction was performed using N-butyl-3,5-

dimethoxybenzamide (1g) as a substrate. The crude mixture was purified by silica gel flash 

column chromatography (gradient from 8% to 10% AcOEt/Hexane) to afford N-(1-methoxybutan-

1-yl)-3,5-dimethoxybenzamide (2g) (34.5 mg, 0.13 mmol, 65%) as a white solid. 
1H NMR (400 MHz, CDCl3): δ = 6.91 (d, J = 2.4 Hz, 2H), 6.58 (t, J =2.4 Hz, 1H), 6.32 (d, J = 9.6 

Hz, 1H), 5.32 (dt, J = 9.6, 6.4 Hz, 1H), 3.81 (s, 6H), 3.39 (s, 3H), 1.78-1.69 (m, 1H), 1.64-1.55 

(m, 1H), 1.53-1.34 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ = 167.3, 

160.9, 136.2, 104.9, 103.7, 81.5, 55.9, 55.5, 37.6, 18.2, 13.7; HRMS (ESI+) m/z: [M+Na]+ calcd 

for C14H21NNaO4, 290.1363; found, 290.1360. IR (neat): 3256, 2928, 1601, 1533, 1159, 856 cm-

1. 

 

N-(1-Methoxybutan-1-yl)-2-furamide (2h) 
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Following the typical procedure, the reaction was performed using N-butyl-2-furamide (1h) as a 

substrate. The crude mixture was purified by silica gel flash column chromatography (10% 

AcOEt/Hexane) to afford N-(1-Methoxybutan-1-yl)-2-furamide (2h) (13.9 mg, 0.070 mmol, 35%) 

as a colorless oil. 
1H NMR (400 MHz, CDCl3): δ = 7.46 (dd, J = 2.0, 0.8 Hz, 1H), 7.15 (dd, J = 3.6, 0.8 Hz, 1H), 

6.52 (dd, J = 3.6, 2.0 Hz, 1H), 6.46 (d, J = 9.6 Hz, 1H), 5.28 (dt, J = 10.0, 6.0 Hz, 1H), 3.38 (s, 

3H),1.79-1.70 (m, 1H), 1.65-1.56 (m, 1H), 1.50-1.37 (m, 2H), 0.94 (t, J = 7.6 Hz, 3H); 13C NMR 

(100 MHz, CDCl3): δ = 158.4, 147.4, 144.1, 115.0, 112.3, 80.6, 55.9, 37.7, 18.1, 13.7; HRMS 

(ESI+) m/z: [M+Na]+ calcd for C10H15NNaO3, 220.0944; found, 220.0946; IR (neat): 3298, 2959, 

1651, 1514, 1074, 752 cm-1. 

 

5-Acetamido-5-methoxypentan-1-yl benzoate (2i) 

 
Following the typical procedure, the reaction was performed using 5-acetamidopentan-1-yl 

benzoate (2i) as a substrate. The crude mixture was purified by silica gel flash column 

chromatography (gradient from 90% to 100% AcOEt/Hexane) to afford 5-acetamido-5-

methoxypentan-1-yl benzoate (2i) (24.7 mg, 0.088 mmol, 44%) as a yellow oil. 
1H NMR (400 MHz, CDCl3): δ = 8.04-8.01 (m, 2H), 7.55 (tt, J = 7.2, 1.6 Hz, 1H), 7.45-7.41 (m, 

2H), 5.76 (d, J = 9.6 Hz, 1H), 5.12 (dt, J = 9.6, 6.0 Hz, 1H), 4.36-4.26 (m, 2H), 3.33 (s, 3H), 2.01 

(s, 3H), 1.86-1.67 (m, 3H), 1.64-1.44 (m, 3H); 13C NMR (100 MHz, CDCl3): δ = 170.4, 166.6, 

132.9, 130.2, 129.5, 128.3, 80.8, 64.5, 55.8, 35.0, 28.3, 23.4, 21.4; HRMS (ESI+) m/z: [M+Na]+ 

calcd for C15H21NNaO4, 302.1363; found, 302.1360; IR (neat): 3321, 2953, 1717, 1653, 1271, 

708 cm-1. 

 

Methyl 6-methoxy-6-(4-methoxybenzamido)hexanoate (2j’) 

 

Following the typical procedure, the reaction was performed using 6-(4-

methoxybenzamido)hexanoic acid (1j) as a substrate. After irradiation of blue light, saturated 
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NH4Cl aq. (10 mL) was added to the reaction mixture. The mixture was then extracted with 

dichloromethane (3 × 10 mL) and the combined organic phase was dried over Na2SO4. The solvent 

was removed under reduced pressure, followed by addition of methanol (6.0 mL), diethyl ether 

(6.0 mL) and trimethylsilyldiazomethane (0.6 M in n-hexane) (0.66 mL, 0.40 mmol, 2.0 equiv. to 

1j). The mixture was stirred at room temperature for 10 min, followed by adding acetic acid (0.5 

mL). After removal solvent under reduced pressure, the crude mixture was purified by silica gel 

flash column chromatography (gradient from 30% to 40% AcOEt/Hexane) to afford methyl 6-

methoxy-6-(4-methoxybenzamido)hexanoate (2j’) (35.2 mg, 0.11 mmol, 57%) as a white solid. 
1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 9.2 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 6.33 (d, J = 

9.6 Hz, 1H), 5.31 (dt, J = 9.6, 6.4 Hz, 1H), 3.84 (s, 3H), 3.63 (s, 3H), 3.37 (s, 3H), 2.30 (t, J = 7.2 

Hz, 2H), 1.80-1.71 (m, 1H), 1.68-1.59 (m, 3H), 1.52-1.37 (m, 2H); 13C NMR (100 MHz, CDCl3): 

δ = 173.9, 166.9, 162.4, 128.8, 126.0, 113.7, 81.4, 55.9, 55.4, 51.5, 35.3, 33.8, 24.5, 24.4; HRMS 

(ESI+) m/z: [M+Na]+ calcd for C16H23NNaO5, 332.1468; found, 332.1465; IR (neat): 3308, 2949, 

1639, 1169, 837, 687 cm-1. 

 

N-(6-Hydroxy-1-methoxyhexan-1-yl)-4-methoxybenzamide (2k) 

 

Following the typical procedure, the reaction was performed using N-(6-hydroxyhexan-1-yl)-4-

methoxybenzamide (1k) as a substrate. The crude mixture was purified by flash column 

chromatography with diol silica gel (60% AcOEt/Hexane) to afford N-(6-hydroxy-1-

methoxyhexan-1-yl)-4-methoxybenzamide (2k) (21.7 mg, 0.077 mmol, 39%) as a pale yellow oil. 
1H NMR (400 MHz, CD3CN): δ = 7.80 (d, J = 9.2 Hz, 2H), 7.06 (d, J = 8.8 Hz, 1H), 6.97 (d, J = 

9.2 Hz, 2H), 5.22 (dt, J = 9.6, 6.4 Hz, 1H), 3.83 (s, 3H), 3.46 (dt, J = 6.4, 5.6 Hz, 2H), 3.27 (s, 

3H), 2.56 (t, J = 5.6 Hz, 1H), 1.80-1.70 (m, 1H), 1.68-1.59 (m, 1H), 1.50-1.29 (m, 6H); 13C NMR 

(100 MHz, CD3CN): δ = 167.8, 163.3, 130.1, 127.4, 114.5, 82.4, 62.4, 56.1, 55.5, 35.7, 33.4, 26.3, 

25.7; HRMS (ESI+) m/z: [M+Na]+ calcd for C15H23NNaO4, 304.1519; found, 304.1518; IR (neat): 

3300, 2934, 1638, 1605, 1501, 1252, 1028, 843 cm-1. 

 

6-Methoxy-6-(4-methoxybenzamido)hexan-1-yl acetate (2l) 
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Following the typical procedure, the reaction was performed using 6-(4-

methoxybenzamido)hexan-1-yl acetate (1l) as a substrate. The crude mixture was purified by 

silica gel flash column chromatography (gradient from 35% to 50% AcOEt/Hexane) to afford 6-

methoxy-6-(4-methoxybenzamido)hexan-1-yl acetate (2l) (40.8 mg, 0.13 mmol, 63%) as a white 

solid. 
1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 6.31 (d, J = 

9.6 Hz, 1H), 5.31 (dt, J = 9.6, 6.4 Hz, 1H), 4.02 (t, J = 6.4 Hz, 2H), 3.84 (s, 3H), 3.37 (s, 3H), 2.01 

(s, 3H), 1.80-1.71 (m, 1H), 1.67-1.57 (m, 3H), 1.52-1.32 (m, 4H); 13C NMR (100 MHz, CDCl3): 

δ = 171.2, 166.9, 162.4, 128.8, 126.0, 113.8, 81.4, 64.3, 55.9, 55.4, 35.6, 28.4, 25.6, 24.5, 20.9; 

HRMS (ESI+) m/z: [M+Na]+ calcd for C17H25NNaO5, 346.1625; found, 346.1621; IR (neat): 3335, 

2940, 1736, 1605, 1501, 1248, 845 cm-1.  

 

N-(Cyclohexyl(methoxy)methyl)-4-methoxybenzamide (2m) 

 

Following the typical procedure, the reaction was performed using N-(cyclohexylmethyl)-4-

methoxybenzamide (1m) as a substrate. The crude mixture was purified by silica gel flash column 

chromatography (gradient from 0% to 10% AcOEt/Hexane) to afford N-

(cyclohexyl(methoxy)methyl)-4-methoxybenzamide (2m) (19.4 mg, 0.070 mmol, 35%) as a 

white solid. 
1H NMR (400 MHz, CDCl3): δ = 7.77 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.21 (d, J = 

9.6 Hz, 1H), 5.09 (dd, J = 9.6, 6.4 Hz, 1H), 3.85 (s, 3H), 3.38 (s, 3H), 1.89 (d, J = 12.4 Hz, 1H), 

1.76-1.73 (m, 3H), 1.67-1.53 (m, 2H), 1.28-1.05 (m, 5H); 13C NMR (100 MHz, CDCl3): δ = 167.1, 

162.4, 128.8, 126.2, 113.8, 85.1, 56.1, 55.4, 42.9, 28.3, 27.9, 26.3, 25.8, 25.7; HRMS (ESI+) m/z: 

[M+Na]+ calcd for C16H23NNaO3, 300.1570; found, 300.1567; IR (neat): 3273, 2916, 2849, 1630, 

1252, 1032, 841 cm-1.  

 

4-Methoxy-N-(methoxy(phenyl)methyl)benzamide (2n) 

 

Following the typical procedure, the reaction was performed using N-benzyl-4-

methoxybenzamide (1n) as a substrate. After irradiation of blue light, saturated NaHCO3 aq. (10 
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mL) was added. The mixture was extracted with dichloromethane (3 × 10 mL), and the combined 

organic phase was dried over MgSO4. After removal of the solvent under reduced pressure, the 

crude mixture was purified by flash column chromatography with silica gel (gradient from 0% to 

25% AcOEt/Hexane) to afford methyl 4-methoxy-N-(methoxy(phenyl)methyl)benzamide (2n) 

(29.6 mg, 0.11 mmol, 55%) as a white solid. 
1H NMR (400 MHz, CD3CN): δ = 7.82 (d, J = 8.8 Hz, 2H), 7.50-7.47 (m, 2H), 7.43-7.31 (m, 4H), 

6.97 (d, J = 8.8 Hz, 2H), 6.29 (d, J = 9.2 Hz, 1H), 3.83 (s, 3H), 3.44 (s, 3H); 13C NMR (100 MHz, 

CD3CN): δ = 167.7, 163.5, 141.0, 130.3, 129.3, 129.1, 127.2, 127.1, 114.6, 82.9, 56.2, 56.1; 

HRMS (ESI+) m/z: [M+Na]+ calcd for C16H17NNaO3, 294.1101; found, 294.1091; IR (neat): 3262, 

2940, 1634, 1256, 1074, 845, 683 cm-1.  

 

Methyl 2,6-bis(benzamido)-6-methoxyhexanoate (2o) 

 
Following the typical procedure, the reaction was performed using methyl 2,6-

bis(benzamido)hexanoate (1o) as a substrate. The crude mixture was purified by silica gel flash 

column chromatography (gradient from 40% to 45% AcOEt/Hexane) to afford methyl 2,6-

bis(benzamido)-6-methoxyhexanoate (2o) (40.5 mg, 0.10 mmol, 51%) as a white solid. 
1H NMR (500 MHz, CD3CN): (diastereomer mixture, d.r. = 52 : 48) δ = 7.82-7.77 (m, major 4H, 

minor 4H), 7.56-7.51 (m, major 2H, minor 2H), 7.48-7.41 (m, major 4H, minor 4H), 7.24-7.21 

(m, major 1H, minor 1H), 7.14 (d, J = 9.5 Hz, major 1H, minor 1H), 5.28-5.23 (m, major 1H, 

minor 1H), 4.57-4.53 (m, major 1H, minor 1H), 3.674 (s, major 3H), 3.665 (s, minor, 3H), 3.30 

(s, major 3H), 3.29 (s, minor 3H), 1.98-1.64 (m, major 4H, minor 4H), 1.55-1.46 (m, major 2H, 

minor 2H); 13C NMR (100 MHz, CD3CN): δ = 173.8, 173.7, 168.6, 168.4, 168.2, 168.1, 135.25, 

135.18, 134.95, 134.89, 132.5, 129.41, 129.374, 129.368, 128.233, 128.228, 128.18, 128.17, 

82.33, 82.31, 55.69, 55.68, 53.8, 53.7, 52.73, 52.70, 35.1, 35.0, 31.7, 31.6, 22.22, 22.17, Four 

peaks of the phenyl carbons overlapped at 132.5 ppm and two peaks of the phenyl carbons 

overlapped at 129.4 ppm, determined by quantitative 13C NMR; HRMS (ESI+) m/z: [M+Na]+ 

calcd for C22H26N2NaO5, 421.1734; found, 421.1726; IR (neat): 3312, 2951, 1638, 1522, 712 cm-

1. 

 

4-Methoxy-N-(tetrahydropyran-2-yl)benzamide (3p) 
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1H NMR (400 MHz, CDCl3): δ = 7.75 (d, J = 9.2 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.55 (d, J = 

8.8 Hz, 1H), 5.29 (ddd, J = 9.8, 9.8, 2.0 Hz, 1H), 4.04-3.98 (m, 1H), 3.83 (s, 3H), 3.68-3.62 (m, 

1H), 1.95-1.85 (m, 2H), 1.71-1.44 (m, 4H); 13C NMR (100 MHz, CDCl3): δ = 166.2, 162.3, 128.9, 

126.2, 113.7, 78.3, 67.5, 55.3, 31.7, 25.1, 22.9; HRMS (ESI+) m/z: [M+Na]+ calcd for 

C13H17NNaO3, 258.1101; found, 258.1102; IR (neat): 3321, 2995, 1609 cm-1.  

 

N-(1,1-dicyano-2-phenylhexan-3-yl)benzamide (7a) 

 
1H NMR (400 MHz, CDCl3): (diastereomer mixture, d.r. = 44 : 56) δ = 7.84-7.82 (m, minor, 2H), 

7.71-7.68 (m, major, 2H), 7.57-7.53 (m, major 1H, minor 1H), 7.48-7.39 (m, major 5H, minor 

7H), 7.22-7.18 (m, major 2H), 6.46 (d, J = 8.4 Hz, minor 1H), 5.69 (d, J = 8.4 Hz, major 1H), 

4.77-4.70 (m, major 1H), 4.64-4.56 (m, minor 1H), 4.53 (d, J = 10.8 Hz, major 1H), 4.36 (d, J = 

6.0 Hz, minor 1H), 3.53 (dd, J = 10.8, 2.4 Hz, major 1H), 3.47 (dd, J = 10.4, 6.4 Hz, minor 1H), 

1.63-1.20 (m, major 4H, minor 4H), 0.94 (t, J = 7.2 Hz, major 3H), 0.80 (t, J = 7.2 Hz, minor 3H); 
13C NMR (100 MHz, CDCl3): (diastereomeric mixture, d.r. = 44 : 56) δ = 168.6, 168.3, 135.4, 

133.4, 133.2, 133.1, 132.2, 132.1, 129.5, 129.2, 128.84, 128.77, 128.7, 128.4, 127.1, 126.80, 113.0, 

112.8, 112.1, 111.9, 52.5, 51.7, 51.6, 50.4, 35.8, 34.5, 27.4, 26.8, 19.4, 19.1, 13.6, 13.5. Three 

peaks of the phenyl carbons overlapped at 129.2 ppm, determined by quantitative 13C NMR; 

HRMS (ESI+) m/z: [M+Na]+ calcd for C21H21N3NaO, 354.1577; found, 354.1573; IR (neat): 3250, 

2963, 2897, 1636, 698 cm-1. 
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3.  Synthetic Application of N-Acyl-N,O-Acetals5,6,7 

 

Calcium(II) bis(trifluoromethanesulfonyl)imide (3.2 mg, 0.005 mmol, 5 mol%), 

tetrabutylammonium hexafluorophosphate (2.1 mg, 0.005 mmol, 5 mol%) and 2b (23.9 mg, 0.10 

mmol, 1 equiv.) were placed in a 5 mL Schlenk tube. The tube was capped with a rubber septum 

and purged with argon. To the tube, N,N-dimethylaniline (18.9 µL, 0.15 mmol, 1.5 equiv.) and 

dehydrated 1,2-dichloroethane (1.0 mL) were added. The resulting mixture was stirred at room 

temperature for 2 hours. After removal of the solvent under reduced pressure, the crude residue 

was purified by flash column chromatography with silica gel (25% AcOEt/Hexane) to afford N-

(1-(4-(dimethylamino)phenyl)butan-1-yl)-4-methoxybenzamide (4b) (27.4 g, 0.084 mmol, 84%) 

as a white solid. 
1H NMR (400 MHz, CDCl3): δ = 7.72 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 

8.8 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 6.21 (d, J = 8.4 Hz, 1H), 5.09 (dt, J = 7.6, 7.6 Hz, 1H), 3.82 

(s, 3H), 2.93 (s, 6H), 1.98-1.78 (m, 2H), 1.44-1.26 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H); 13C NMR 

(100 MHz, CDCl3): δ = 166.0, 161.9, 149.8, 130.1, 128.6, 127.5, 127.1, 113.5, 112.6, 55.3, 53.0, 

40.6, 38.1, 19.6, 13.9; HRMS (ESI+) m/z: [M+Na]+ calcd for C20H26N2NaO2, 349.1886; found, 

349.1879; IR (neat): 3296, 2930, 2365, 1632, 1252, 843, 812 cm-1. 

 

 
Bismuth(III) trifluoromethanesulfonate (6.6 mg, 0.010 mmol, 10 mol%) and 2b (24.4 mg, 

0.10 mmol, 1 equiv.) were placed in a 5 mL Schlenk tube. The tube was capped with a rubber 

septum and purged with argon. To the tube, 2-methylfuran (36.1 µL, 0.40 mmol, 4.0 equiv.) and 

dehydrated dichloromethane (1.0 mL) were added. The resulting mixture was stirred at room 

temperature. After 2 hours, the septum was removed, and the reaction mixture was passed through 

a short column of Celite with dichloromethane as an eluent. After removal of the solvent under 

reduced pressure, the crude residue was purified by flash column chromatography with silica gel 

(gradient from 12% to 30% AcOEt/Hexane) to give 4-methoxy-N-(1-(5-methylfuran-2-yl)butan-
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1-yl)benzamide (5b) (21.6 mg, 0.075 mmol, 75%) as a white solid. 
1H NMR (400 MHz, CDCl3): δ = 7.75 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.25 (d, J = 

8.8 Hz, 1H), 6.09 (d, J = 2.8 Hz, 1H), 5.88 (dq, J = 3.2, 0.8 Hz, 1H), 5.23 (dt, J = 8.4, 8.4 Hz, 1H), 

3.84 (s, 3H), 2.27 (d, J = 0.8 Hz, 3H), 1.93-1.79 (m, 2H), 1.44-1.29 (m, 2H), 0.94 (t, J = 7.2 Hz, 

3H); 13C NMR (100 MHz, CDCl3): δ = 165.9, 162.1, 152.7, 151.4, 128.7, 126.8, 113.6, 107.0, 

106.0, 55.4, 47.4, 36.4, 19.3, 13.8, 13.6; HRMS (ESI+) m/z: [M+Na]+ calcd for C17H21NNaO3, 

310.1414; found, 310.1408; IR (neat): 3281, 2957, 2359, 1624, 1022, 845, 781 cm-1. 

 

 
Amide 2b (24.2 mg, 0.10 mmol, 1.0 equiv.) and p-toluenethiol (15.3 mg, 0.12 mmol, 1.2 

equiv.) were dissolved using dehydrated chloroform (1.5 mL) in a 4 mL vial under nitrogen 

atmosphere. Hydrogen chloride (4 M in 1,4-dioxane) (1 drop) was then added, and the mixture 

was stirred at room temperature for 1 hour. After removal of the solvent under reduced pressure, 

the crude residue was purified by flash column chromatography with silica gel (gradient from 8 

to 27% AcOEt/Hexane) to afford 4-methoxy-N-(1-(p-tolylthio)butan-1-yl)benzamide (6b) (26.0 

g, 0.079 mmol, 79%) as a white solid. 
1H NMR (400 MHz, CD3CN): δ = 7.66 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.13-7.08 

(m, 3H), 6.92 (d, J = 9.2 Hz, 2H), 5.50 (ddd, J = 9.6, 8.0, 6.4 Hz, 1H), 3.81 (s, 3H), 2.27 (s, 3H), 

1.86-1.76 (m, 2H), 1.45 (ddq, J = 7.6, 7.6, 7.6 Hz, 2H), 0.91 (t, J = 7.2 Hz, 3H); 13C NMR (100 

MHz, CD3CN): δ = 166.6, 163.2, 138.9, 134.8, 130.48, 130.47, 129.9, 127.4, 114.5, 58.4, 56.1, 

38.3, 21.1, 20.5, 13.8; HRMS (ESI+) m/z: [M+Na]+ calcd for C19H23NNaO2S, 352.1342; found, 

353.1335; IR (neat): 3292, 2957, 1628, 1501, 1256, 1179, 810 cm-1. 
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4. Preparation of Substrates 

N-Butyl-2-methoxybenzamide (1d) 

 

o-Anisic acid (1.51 g, 10 mmol, 1.0 equiv.) was placed in a 50 mL two-necked flask. The 

flask was capped with a rubber septum and purged with argon. To the flask dehydrated 

dichloromethane (20 mL), thionyl chloride (1.45 mL, 20 mmol, 2.0 equiv.), and 

dimethylformamide (5 drops) were added. The resulting mixture was stirred at room temperature. 

After 17 hours, the reaction mixture was concentrated under reduced pressure. To the residue was 

added dehydrated dichloromethane (20 mL), n-butylamine (713 mg, 10 mmol, 1.0 equiv.), and 

triethylamine (2.77 mL, 20 mmol, 2.0 equiv.) at 0 ℃ under argon atmosphere. The mixture was 

stirred and warmed to room temperature. After 24 hours, the reaction mixture was diluted with 

water (40 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic phase was 

washed with saturated NH4Cl aq. (3 × 40 mL) and brine (40 mL), and then dried over MgSO4. 

After removal of the solvent under reduced pressure, the crude residue was purified by flash 

column chromatography with silica gel (gradient from 10 to 31% AcOEt/Hexane) to afford N-

butyl-2-methoxybenzamide (1d) (1.87 g, 8.98 mmol, 90%) as a brown oil. Spectral data were 

matched with previous literature.8 

 

N-Butyl-4-tert-butylbenzamide (1f) (Procedure A) 

 
A 50 mL two-necked flask was capped with a rubber septum and purged with argon. To the 

flask n-butylamine (1.48 mL, 15 mmol, 1.5 equiv.), triethylamine (2.77 mL, 20 mmol, 2.0 equiv.) 

and dehydrated dichloromethane (20 mL) were added. Then, 4-tert-butylbenzoyl chloride (1.97 g, 

10 mmol, 1.0 equiv.) was slowly added to the reaction mixture at 0°C. The mixture was stirred 

and warmed to room temperature. After 15 hours, the reaction mixture was diluted with water (40 

mL) and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed 

with saturated NH4Cl aq. (3 × 40 mL) and brine (40 mL), and then dried over Na2SO4. After 

removal of the solvent under reduced pressure, the crude residue was purified by flash column 

chromatography with silica gel (gradient from 5 to 26% AcOEt/Hexane) to afford N-butyl-4-tert-
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butylbenzamide (1f) (2.07 g, 8.87 mmol, 89%) as a white solid. Spectral data were matched with 

previous literature.9 

 

N-Butyl-3,5-dimethoxybenzamide (1g) 

 
Following procedure A, 3,5-dimehoxybenzoyl chloride (2.03 g, 10 mmol, 1.0 equiv.) and n-

butylamine (1.48 mL, 15 mmol, 1.5 equiv.) were used. The resulting crude mixture was purified 

by flash column chromatography with silica gel (gradient from 13 to 34% AcOEt/Hexane) to 

afford N-butyl-3,5-dimethoxybenzamide (1g) (2.05 g, 8.64 mmol, 86%) as a white solid. Spectral 

data were matched with previous literature.10 

 

N-Butyl-2-furamide (1h) 

 
Following procedure A, 2-furoyl chloride (395 mg, 3.0 mmol, 1.0 equiv.) and n-butylamine 

(0.44 mL, 4.5 mmol, 1.5 equiv.) were used. The resulting crude mixture was purified by flash 

column chromatography with silica gel (17% AcOEt/Hexane) to afford N-butyl-2-furamide (1g) 

(392 mg, 2.34 mmol, 78%) as a pale yellow oil. Spectral data were matched with previous 

literature.11 

 

5-(Acetamido)pentan-1-yl benzoate (1i) 

 

N-(5-hydroxypentan-1-yl)acetamide (430 mg, 3.0 mmol, 1.0 equiv.) was placed in a 50 mL 

two-necked flask. The flask was capped with a rubber septum and purged with argon. To the flask 

dehydrated dichloromethane (20 mL) and triethylamine (0.83 mL, 6.0 mmol, 2.0 equiv.) were 

added at 0 ℃. Benzoyl chloride (0.38 mL, 3.3 mmol, 1.1 equiv.) was slowly added to the reaction 

mixture at 0°C. The mixture was stirred and warmed to room temperature. After 16 hours, the 

reaction mixture was diluted with water (40 mL) and extracted with dichloromethane (3 × 20 mL). 

The combined organic phase was washed with saturated NH4Cl aq. (3 × 40 mL) and brine (40 
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mL), and then dried over Na2SO4. After removal of the solvent under reduced pressure, the crude 

residue was purified by flash column chromatography with silica gel (gradient from 31 to 90% 

AcOEt/Hexane) to afford 5-(acetamido)pentan-1-yl benzoate (1i) (192 mg, 0.77 mmol, 26%) as a 

white solid. 

1H NMR (400 MHz, CDCl3): δ = 8.05-8.02 (m, 2H), 7.56 (tt, J = 7.2, 1.6 Hz, 1H), 7.44 (dd, J = 

8.0, 8.0Hz, 2H), 5.50 (brs, 1H), 4.33 (t, J = 6.4 Hz, 2H), 3.27 (dt, J = 6.4, 6.4 Hz, 2H), 1.97 (s, 

3H), 1.80 (tt, J = 7.0, 7.0 Hz, 2H), 1.62-1.54 (m, 2H), 1.52-1.42 (m, 2H); 13C NMR (100 MHz, 

CDCl3): δ = 170.1, 166.7, 132.9, 130.3, 129.5, 128.3, 64.6, 39.5, 29.2, 28.4, 23.4, 23.3; HRMS 

(ESI+) m/z: [M+Na]+ calcd for C14H19NNaO3, 272.1257; found, 272.1257; IR (neat): 3291, 2943, 

1709, 1265, 708 cm-1;  

 

6-(4-Methoxybenzamido)hexanoic acid (1j) 

 

6-Aminohexanoic acid (330 mg, 2.5 mmol, 1.0 equiv.) and sodium hydroxide (265 mg, 6.0 

mmol, 2.4 equiv.) were placed in a 50 mL two-necked flask. The flask was capped with a rubber 

septum and purged with argon. To the flask dehydrated 1,4-dioxane (5.0 mL) and water (5.0 mL) 

were added. 4-Methoxybenzoyl chloride (513 mg, 3.0 mmol, 1.2 equiv.) was slowly added, and 

the mixture was stirred at room temperature for 15 hours. Brine (50 mL) was then added, and the 

mixture was washed with diethyl ether (3 × 10 mL). Conc. HCl (1 mL) was added to the aqueous 

layer, and the resulting mixture was extracted with ethyl acetate (3 × 20 mL). The combined 

organic phase was washed with brine (40 mL), and then dried over Na2SO4. After removal of the 

solvent under reduced pressure, the crude residue was purified by flash column chromatography 

with silica gel (gradient from 70 to 100% AcOEt/CHCl3) to afford 6-(4-

methoxybenzamido)hexanoic acid (1j) (196 mg, 0.74 mmol, 30%) as a white solid. 

1H NMR (400 MHz, CDCl3): δ = 7.73 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.13 (t, J = 

4.6 Hz, 1H), 3.84 (s, 3H), 3.45 (dt, J = 6.0, 6.0 Hz, 2H), 2.38 (t, J = 7.2 Hz, 2H), 1.73-1.60 (m, 

4H), 1.48-1.40 (m, 2H); 13C NMR (100 MHz, CDCl3): δ = 178.3, 167.2, 162.1, 128.6, 126.8, 113.7, 

55.4, 39.7, 33.7, 29.3, 26.3, 24.2; HRMS (ESI+) m/z: [M+Na]+ calcd for C14H19NNaO4, 288.1206; 

found, 288.1204; IR (neat): 3348, 1695, 1634, 1504, 1250, 853 cm-1;  
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N-(6-Hydroxyhexan-1-yl)-4-methoxybenzamide (1k) 

 

A 50 mL two-necked flask was capped with a rubber septum and purged with argon. To the 

flask 6-amino-1-hexanol (1.74 g, 10 mmol, 1.5 equiv.), triethylamine (1.48 mL, 10.7 mmol, 1.1 

equiv.) and dehydrated dichloromethane (20 mL) were added. 4-Methoxybenzoyl chloride (1.77 

g, 10 mmol, 1.0 equiv.) was slowly added to the reaction mixture at 0 °C. The mixture was stirred 

and warmed to room temperature. After 15 hours, the reaction mixture was diluted with water (40 

mL) and extracted with dichloromethane (3 × 40 mL). The combined organic phase was washed 

with saturated NH4Cl aq. (3 × 40 mL) and brine (40 mL), and then dried over Na2SO4. After 

removal of the solvent under reduced pressure, the crude residue was purified by flash column 

chromatography with silica gel (97% AcOEt/Hexane) to afford N-(6-hydroxyhexan-1-yl)-4-

methoxybenzamide (1k) (1.61 g, 6.40 mmol, 64%) as a white solid. Spectral data were matched 

with previous literature.12 

 

6-(4-Methoxybenzamido)hexan-1-yl acetate (1l) 

 
N-(6-Hydroxyhexan-1-yl)-4-methoxybenzamide (751 mg, 3.0 mmol, 1.0 equiv.) was placed 

in a 50 mL two-necked flask. The flask was capped with a rubber septum and purged with argon. 

To the flask triethylamine (0.83 mL, 6.0 mmol, 2.0 equiv.) and dehydrated dichloromethane (6.0 

mL) were added. Acetyl chloride (0.32 mL, 4.5 mmol, 1.5 equiv.) was then slowly added to the 

reaction mixture at 0°C. The mixture was stirred and warmed o room temperature. After 16 hours, 

the reaction mixture was diluted with water (40 mL) and extracted with dichloromethane (3 × 20 

mL). The combined organic phase was washed with saturated NH4Cl aq. (3 × 40 mL) and brine 

(40 mL), and then dried over Na2SO4. After removal of the solvent under reduced pressure, the 

crude residue was purified by flash column chromatography with silica gel (54% AcOEt/Hexane) 

to afford 6-(4-methoxybenzamido)hexan-1-yl acetate (1l) (737 mg, 2.51 mmol, 84%) as a white 

solid. 
1H NMR (400 MHz, CDCl3): δ = 7.73 (d, J = 9.2 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 6.04 (brs, 1H), 

4.06 (t, J = 6.4 Hz, 2H), 3.85 (s, 3H), 3.44 (td, J = 6.8, 5.6 Hz, 2H), 2.04 (s, 3H), 1.68-1.60 (m, 

4H), 1.45-1.37 (m, 4H); 13C NMR (100 MHz, CDCl3): δ = 171.3, 167.0, 162.0, 128.6, 127.0, 113.7, 
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64.4, 55.4, 39.8, 29.6, 28.5, 26.5, 25.6, 21.0; HRMS (ESI+) m/z: [M+Na]+ calcd for C16H23NNaO4, 

316.1519; found, 316.1518; IR (neat): 3304, 2936, 1724, 1607, 1256, 768 cm-1.  

 

N-(Cyclohexylmethyl)-4-methoxybenzamide (1m) 

 

Following procedure A, 4-mehoxybenzoyl chloride (342 mg, 2.0 mmol, 1.0 equiv.) and 

cyclohexylmethylamine (0.39 mL, 3.0 mmol, 1.5 equiv.) were used. The resulting crude mixture 

was purified by flash column chromatography with silica gel (gradient from 12 to 36% 

AcOEt/Hexane) to afford N-(Cyclohexylmethyl)-4-methoxybenzamide (1m) (467 mg, 1.89 mmol, 

94%) as a white solid. Spectral data were matched with previous literature.13 

 

N-Benzyl-4-methoxybenzamide (1n) 

 

Following procedure A, 4-mehoxybenzoyl chloride (1.71 g, 10 mmol, 1.0 equiv.) and 

benzylamine (1.64 mL, 15 mmol, 1.5 equiv.) were used. The resulting crude mixture was purified 

by flash column chromatography with silica gel (gradient from 23 to 44% AcOEt/Hexane) to 

afford N-benzyl-4-methoxybenzamide (1n) (2.26 g, 9.39 mmol, 94%) as a white solid. Spectral 

data were matched with previous literature.14 

 

N-(5-Hydroxypentan-1-yl)-4-methoxybenzamide (1p) 

 

Following procedure A, 4-mehoxybenzoyl chloride (866 mg, 5 mmol, 1.0 equiv.) and 5-

amino-1-pentanol (772 mg, 7.5 mmol, 1.5 equiv.) were used. The resulting crude mixture was 

purified by flash column chromatography with silica gel (100% AcOEt) to afford N-(5-

Hydroxypentan-1-yl)-4-methoxybenzamide (1p) (1.01 g, 4.26 mmol, 85%) as a white solid. 
1H NMR (400 MHz, CDCl3): δ = 7.72 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 9.2 Hz, 2H), 6.12 (brs, 1H), 

3.84 (s, 3H), 3.67 (t, J = 6.0 Hz, 2H), 3.46 (td, J = 7.2, 6.0 Hz, 2H), 1.68-1.59 (m, 4H), 1.51-1.43 
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(m, 2H); 13C NMR (100 MHz, CDCl3): δ = 167.1, 162.0, 128.6, 126.9, 113.7, 62.7, 55.4, 39.8, 

32.2, 29.5, 23.1; HRMS (ESI+) m/z: [M+Na]+ calcd for C13H19NNaO3, 260.1257; found, 

260.1259; IR (neat): 3503, 3325, 1609, 1252, 839 cm-1. 
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