Supplementary Information (SI) for ChemComm.
This journal is © The Royal Society of Chemistry 2025

Supporting Information

Cu?*-Activatable Fluorescence and Chemiluminescence Dual-Mode

Sensing Platform for Visual Detection of Thiram

Pan Zhu?, Yuanyu Tang?, Yu Tang®, Yating Xu?, Shaojing Zhao?, Chaoyi Yao? Benhua Wang?,
Xiangzhi Song?, Minhuan Lan® *

3College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P.
R. China

"Department of Gastroenterology, The Third Xiangya Hospital of Central South University,
Changsha, 410013, P. R. China

1. Experimental General

Instruments and materials. Unless otherwise stated, all solvents and chemicals were
purchased from commercial suppliers in analytical grade and used without further
purification. Ultrapure water was used in all spectroscopic studies. The 'H and '3C
NMR spectra were recorded on a Bruker AVANCE III 400 or 500 spectrometer, using
TMS as an internal standard. High resolution mass spectrometry data was obtained from
the Bruker compact instrument. Absorption spectra were collected on a Shimadzu UV-
2600 spectrophotometer, fluorescence and chemiluminescence spectra were performed
on a Hitachi F-7000 fluorescence spectrophotometer. Chemiluminescence images were

collected by virtue of Aniview 100 IVIS system.

Theoretical calculation. The optimized molecular geometry of Ac-Do-Py were
performed via the Gaussian 16, Revision C.01!, at a B3LYP/6-311G(d) level. The
electrostatic potential (ESP) was calculated based on the optimized molecular geometry
and analyzed with Multiwfn?3. The Visual Molecular Dynamics program was used to

plot the color-filled iso-surface graphs to visualize the maps of ESP surfaces®*.
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Spectrum test. The UV-Vis absorption, fluorescence (A = 400 nm), and
chemiluminescence spectra of Ac-Do-Py were recorded using UV-2600 and F-7000

spectrometers, respectively.

Fluorescence Kinetics. 5 uM Ac-Do-Py in HEPES (pH = 7.4) with Cu?* (30 uM) was
placed in the F-7000 spectrometer. Fluorescence spectra were acquired at an interval of

5 min.

Chemiluminescence Kinetics. 5 uM Ac-Do-Py in HEPES (pH = 7.4) with Cu?* (30
uM) was placed in the AniView 100 imaging device. Chemiluminescence signals were
recorded for 40 min. Unless otherwise stated, chemiluminescence imaging parameters
were as follows: bioluminescence mode, open channel, automatic exposure, and field
of view: D. Regions of interest (ROI) for image analysis were defined using AniView

software.

Detection of thiram in solution. First, Cu?>* (30 uM) was added to HEPES solutions
(pH = 7.4) containing thiram at different concentrations (0, 10, 20, 40, and 60 uM). The
mixture was incubated for 60 min. Then, Ac-Do-Py (5 uM) was added to the
thiram/Cu?* solution. Fluorescence spectra (Ax = 420 nm) were recorded 3 min after
the addition of the probe. Chemiluminescence images were captured after 10 min using

the AniView 100 device.

In situ detection of thiram on actual fruits. Thiram (60 pM) was sprayed onto the
surfaces of orange peel, strawberry leaves, and cherry leaves. Then, Cu?* (30 uM) was
sprayed onto the fruit samples and incubated for 30 min followed by Ac-Do-Py (5 uM).
Immediately after completing these steps, the samples were subjected to

chemiluminescence imaging using the IVIS system.
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2. Synthetic Methods.
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Scheme S1 Synthesis routes of Ac-Do-Py and Ac-OMe.

Synthesis of Ac-Py

Ac-Ad was synthesized according to the literature®.

Ac-Ad (50 mg, 0.13 mmol), 2-pyridinecarboxylic acid (24 mg, 0.195 mmol), 4-
Dimethylaminopyridine (4.8 mg, 0.04 mmol), and 1-(3-Dimethylaminopropyl)-3-
ethylcarbodiimide hydrochloride (37 mg, 0.195 mmol) were dissolved in 8 mL of dry
dichloromethane (DCM). The above mixture was stirred at room temperature for 5 h
under nitrogen atmosphere, and then diluted with DCM and washed with brine. The
organic phase was dried over anhydrous Na,SO,, and then the crude product was
purified by silica gel column chromatography with petroleum ether/ethyl acetate
(PE/EA) = 10/3 as the eluent to obtain an off-white solid (45 mg, 74% yield). 'H NMR
(400 MHz, CDCl;, ppm) 6 = 8.91 (d, J = 3.9 Hz, 1H), 8.34 (dt, ] = 7.8, 1.1 Hz, 1H),
7.98 (td, J=7.8, 1.7 Hz, 1H), 7.76 (d, J = 16.0 Hz, 1H), 7.63 (ddd, J = 7.7, 4.7, 1.2 Hz,
1H), 7.58 (d, J = 8.1 Hz, 1H), 7.27 (s, 1H), 7.25 (s, 1H), 6.53 (d, J = 16.0 Hz, 1H), 3.74
(s, 3H), 3.34 (s, 3H), 3.28 (s, 1H), 2.13 (s, 1H), 1.88 (dt, J = 40.9, 24.8 Hz, 12H). 13C
NMR (101 MHz, CDCl;, ppm) & = 166.68, 162.44, 146.39, 146.33, 138.94, 137.98,
137.40, 137.34, 132.96, 129.69, 129.06, 128.99, 127.86, 126.28, 125.15, 121.41, 57.26,
51.79, 39.26, 39.04, 38.59, 37.04, 32.91, 29.77, 28.28. HRMS (ESI) m/z: [M + H]J*
calcd for C,3H,3CINOs, 494.1729; found, 494.1981

Synthesis of Ac-Do-Py

Ac-Py (15 mg, 0.03 mmol) and methylene blue (1 mg, 0.003 mmol) were dissolved in
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10 mL of dry DCM. The mixture was allowed to cool to 0 °C and oxygen was bubbled
into the solution under yellow light (50 W/cm?) irradiation for 60 min. The Ac-Do-Py
was obtained by silica gel column chromatography with PE/EA = 3/1 as the eluent (11
mg, 68% yield). 'H NMR (500 MHz, CDCl;, ppm) 6 =8.91 (ddd, /=4.7, 1.7, 0.8 Hz,
1H), 8.33 (dt, /= 7.8, 1.1 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.98 (td, J= 7.7, 1.8 Hz,
1H), 7.79 - 7.70 (m, 2H), 7.64 (ddd, /= 7.7,4.8, 1.2 Hz, 1H), 6.59 (d, /= 16.0 Hz, 1H),
3.75 (s, 3H), 3.24 (s, 3H), 3.01 (d, J = 4.5 Hz, 1H), 2.23 (d, J = 12.8 Hz, 1H), 2.05 (d,
J=4.2Hz, 1H), 1.97 - 1.37 (m, 11H). 3C NMR (126 MHz, CDCl;, ppm) 8 = 166.43,
150.35, 147.08, 146.00, 137.53, 136.86, 135.12, 130.90, 130.84, 128.06, 126.85,
126.39, 125.33, 122.65, 111.61, 96.43, 51.91, 49.80, 36.56, 33.90, 33.60, 32.21, 31.58,
31.51, 26.17, 25.73. HRMS (ESI) m/z: [M + H]* calcd for C,3H,3CINO~, 526.1628;
found, 526.1899.

Synthesis of Ac-OMe

Ac-Ad (20 mg, 0.05 mmol) and methylene blue (2 mg, 0.006 mmol) were dissolved in
10 mL of dry DCM. The mixture solution was cooled to 0 °C and then oxygen was
bubbled under yellow light (50 W/cm?) irradiation. After the reaction is completed, Ac-
Do (15 mg, 0.03 mmol) was directly obtained by silica gel column chromatography
with PE/EA = 4/1 as the eluent. After that, Ac-Do was dissolved in 2 mL of methanol
followed by addition of 10 mg of K,COj3. After completion, the solvent was removed
under reduced pressure. the crude product was purified by silica gel column
chromatography with PE/EA = 4/1 as the eluent to afford Ac-OMe as a white solid (6
mg, 62% yield). '"H NMR (400 MHz, CDCl3, ppm) & = 7.93 (d, /= 16.2 Hz, 1H), 7.50
- 7.42 (m, 2H), 6.66 (d, J=16.2 Hz, 1H), 3.94 (s, 3H), 3.82 (s, 3H).
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3. Supplementary Figures
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Fig. S1 Schematic illustration of the response mechanism of Ac-Do-Py towards Cu?" and a

photograph showing the generation of chemiluminescence under strong basic conditions.
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Fig. S2 Absorption and fluorescence spectra of Ac-OMe in HEPES (pH = 7.4, containing 10%

DMSO).
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Fig. S3 ESP distribution of Ac-Do-Py.
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Fig. S4 (a) Fluorescence kinetics of Ac-Do-Py (5 uM) in HEPES buffer in the presence or absence
of Cu?*. Time-dependent fluorescence spectra of Ac-Do-Py (5 uM) in the presence (b) and absence
(c) of Cu?" (30 uM). (d) The fitting curve of the fluorescence kinetic data, which is in accord with
a first-order equation with a rate constant (k) of 0.05 min’! for the reaction between Ac-Do-Py (5

uM) and Cu?* (30 uM).

0 min 40 min

©00000

@)
..
.®
@ -
@
‘@

-Cuz+

Fig. S5 Time-dependent chemiluminescence images of Ac-Do-Py (5 pM) in the presence of and
absence of Cu?* (30 uM)
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Fig. S6 (a) Fluorescence of Ac-Do-Py (5 uM) in the presence or absence of Cu?* (30 uM) in HEPES
buffers at different pH values. Fluorescence spectra of Ac-Do-Py (5 uM) in HEPES with different

pH values in the presence (b) and absence (c) of Cu?* (30 uM). Fluorescence spectra were collected

after incubation with Cu?* for 3 min.
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Fig. S7 Chemiluminescence images of Ac-Do-Py (5 uM) in HEPES with different pH values in the

absence (a) and presence (b) of Cu?* (30 uM). Chemiluminescence images were acquired after 10

min in the absence or the presence of Cu?".
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Fig. S8 Chemiluminescence images of Ac-Do-Py (5 uM) treated with different concentration of

Cu2+
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Fig. S9 (a) Fluorescence intensity and (b) spectra of Ac-Do-Py (5 uM) treated with different

concentration of Cu?*.
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Fig. S10 Chemiluminescence images of Ac-Do-Py (5 pM) treated with various interferents in the
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absence or presence of Cu?* for 10 min (Cu®*: 30 uM, interferents: 100 uM).
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Fig. S11 Chemiluminescence images of Ac-Do-Py (5 uM)/Cu?* (30 uM) and different concentration

of thiram. (Chemiluminescence signal was acquired 10 min after addition of Cu?").
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Fig. S12 (a) Fluorescence intensity and (b) spectra of Ac-Do-Py (5 uM)/Cu?" (30 uM) and different

concentration of thiram. (Fluorescence was collected 3 min after incubation with Cu?*).
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Fig. S13 Linear relationship between fluorescence quenching efficiency, (FL, - FL)/FL,, and thiram
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concentration. FL and FL, represent the fluorescence intensity in the presence and absence of

thiram, respectively.
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Fig. S14 (a) Structures of eight pesticides and the corresponding quantification of
chemiluminescence intensity. (b) Chemiluminescence images of Ac-Do-Py (5 uM) incubated with
Cu?* (30 uM) and different pesticides (40 uM) for 10 min, in the absence (top) and the presence
(bottom) of thiram (40 uM). Abbreviations: Pea = pentachlorophenol acetate, Ace = acetamiprid,

Div = dichlorvos, Thi = thiacloprid, Imi = imidacloprid, Atr = atrazine, Acm = carbaryl, and Nic =

niclosamide.

Table S1. Comparison of the methods for detection of thiram

Materials Methods LOD (uM) Ref.
CDs-Ag*-based SA Fluorescence 0.017 (6)
hydrogel
Ag-AuNDs SERS 0.358 @)
Ag@CDS SERS 0.1 8)
B-QDs/G-QDs/R-QDs Fluorescence/Colorimetry 0.073/0.142 )
N-CQDs/CuNCs Ratiometric fluorescence 0.0075 (10)
GSH-Fe nanozyme Colorimetry 0.125 (11)
Schaap’s dioxetane-based Fluorescence/Chemiluminescence 3.5/0.1 This
organic probe work
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4. 'TH NMR and 3C NMR Spectra
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Figure S15 '"H NMR spectrum of Ac-Py in CDCl;.
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Figure S16 3°C NMR spectrum of Ac-Py in CDCl;.
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Figure S17 '"H NMR spectrum of Ac-Do-Py in CDCls.
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