Supplementary Information

Nickel-Catalyzed Barbier-Type Reaction of Carbonyl Derivatives with Unactivated Alkyl Halides

Lin-Xin Ruan, Shi-Liang Shi*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

1. General Information

All reactions were carried out under nitrogen atmosphere in oven-dried (100 °C) glassware with magnetic stirring. All commercial reagents were used without additional purification, unless otherwise stated. Anhydrous solvents including DMF, DCM, MeCN, toluene, etc. were commercially available and used directly. Starting compounds (1 and 2) were purchased from Bide Chemical Co. Ltd., J&K Chemical Co. Ltd., Energy Chemical Co. Ltd., Adamas Chemical Co. Ltd. or Aladdin Chemical Co. Ltd. unless otherwise indicated. All new compounds were characterized by NMR spectroscopy, IR spectroscopy, high-resolution mass spectroscopy, and melting point (if solids). NMR spectra were recorded on an Agilent 400 MHz, Varian 400 MHz or Bruker 400 MHz spectrometers and were calibrated using residual solvent as an internal reference (CDCl3: 7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR). Melting points were measured on a SGW X-4 apparatus. All IR spectra were taken on a BRUKER TENSOR 27 FT-IR spectrometer. ESI-HRMS spectra were obtained on a Thermo Fisher Scientific LTQ FT Ultra or an Agilent Technologies 6224 TOF LC/MS.

2. Reaction Optimization

		0 CO ₂ Et 1a (0.2 mmol)	+ ⁿ C ₁	cata ₀ H ₂₁ I <u>I</u> sc 2a 0 eq.)	alyst (10 mol%) Mn (2.0 eq.) blvent (1.0 M) N ₂ , T, 12 h	H	C ₈ H ₁₇		
entry	catalyst	T (°C)	solvent	yield ^a (%)	entry	catalyst	T (°C)	solvent	yield ^a (%)
1	NiBr ₂	70	DMF	76	14	NiBr ₂	70	NMP	45
2	Ni(cod) ₂	70	DMF	56	15	NiBr ₂	70	MeCN	11
3	Ni(acac)₂	70	DMF	37	16	NiBr ₂	70	DCM	<5
4	Ni(OAc)₂·4H₂O	70	DMF	35	17	NiBr ₂	70	toluene	<5
5	NiBr₂∙bpy	70	DMF	30	18	NiBr ₂	60	DMF	64
6	CuCl	70	DMF	59	19	NiBr ₂	50	DMF	58
7	CoCl ₂	70	DMF	63	20	NiBr ₂	40	DMF	<5
8	Fe(OAc) ₂	70	DMF	65	21	NiBr ₂	30	DMF	<5
9 ^b	NiBr ₂	70	DMF	60	22 ^e	NiBr ₂	70	DMF	56
10	-	70	DMF	38	23 ^f	NiBr ₂	70	DMF	60
11 ^c	NiBr ₂	70	DMF	62	24 ^g	NiBr ₂	70	DMF	64
12 ^d	NiBr ₂	70	DMF	<20	25 ^h	NiBr ₂	70	DMF	64
13	NiBr ₂	70	DMA	62					
^a lsolated yield; ^b Using Zn instead of Mn; ^c 6 h; ^d 1 h; ^e 0.67 M in DMF; ^f 0.4 M in DMF; ⁹ 0.2 M in DMF; ^h 4.0 eq. of 2a and Mn, 0.25 M in DMF									

3. General Procedure

General Procedure (GP): In a nitrogen-filled glove box, NiBr₂ (8.7 mg, 0.04 mmol), ketone or imine (if solid) (0.4 mmol), manganese powder (43.9 mg, 0.8 mmol) and DMF (0.4 mL) were added to a 4 mL vial equipped with a magnetic stirrer bar. Ketone or imine (if liquid) (0.4 mmol) and alkyl halide (0.8 mmol) were then charged to the vial. The sealed reaction vial was then removed from the glove box, and the reaction mixture was stirred at 70 °C for 12 h. The resulting mixture was quenched with saturated NH₄Cl, extracted three times with diethyl ether and filtered through a short pad of silica gel, eluted with ethyl acetate, and concentrated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc) on silica gel to give the corresponding product.

EtO₂C OH

ethyl 2-hydroxy-2-phenyldodecanoate (3a)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 76%. Colorless oil (97.3 mg). The product was obtained in 58% yield (74.2 mg) when using 1-bromodecane as substrate. **IR (neat, cm⁻¹)** 3514, 2922, 2855, 1724, 1455, 1238, 657. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 2H), 7.43 – 7.34 (m, 2H), 7.33 – 7.27 (m, 1H), 4.37 – 4.18 (m, 2H), 3.83 (s, 1H), 2.30 – 2.15 (m, 1H), 2.10 – 1.95 (m, 1H), 1.55 – 1.40 (m, 1H), 1.38 – 1.22 (m, 18H), 0.91 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 142.2, 128.2, 127.6, 125.6, 78.4, 62.4, 39.8, 32.0, 29.7, 29.7, 29.6, 29.5, 29.4, 23.7, 22.8, 14.2, 14.1. HRMS (ESI) calculated for C₂₀H₃₂O₃Na [M+Na]⁺ *m/z* 343.2244, found 343.2237.

ethyl 2-hydroxy-2-(naphthalen-2-yl)dodecanoate (3b)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 82%. Yellow oil (121.3 mg). **IR (neat, cm⁻¹)** 3510, 2921, 2854, 1723, 1458, 1232, 748. ¹H **NMR (400 MHz, CDCl₃)** δ 8.12 (d, *J* = 1.9 Hz, 1H), 7.91 – 7.80 (m, 3H), 7.72 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.52 – 7.45 (m, 2H), 4.37 – 4.18 (m, 2H), 3.94 (s, 1H), 2.38 – 2.23 (m, 1H), 2.19 – 2.07 (m, 1H), 1.52 – 1.41 (m, 1H), 1.39 – 1.21 (m, 18H), 0.89 (t, *J* = 6.8 Hz, 3H). ¹³C **NMR (101 MHz, CDCl₃)** δ 175.5, 139.5, 133.1, 132.8, 128.4, 127.9, 127.5, 126.2, 124.6, 123.9, 78.5, 62.6, 39.7, 32.0, 29.8, 29.7, 29.6, 29.5, 29.4, 23.7, 22.8, 14.2. **HRMS (ESI)** calculated for C₂₄H₃₄O₃Na [M+Na]⁺ *m/z* 393.2400, found 393.2407.

ethyl 2-hydroxy-2-(4-methoxyphenyl)dodecanoate (3c)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 72%. Light yellow oil (100.8 mg). **IR (neat, cm⁻¹)** 3513, 2922, 2853, 1723, 1508, 1241, 1029, 830. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.45 (m, 2H), 6.97 – 6.81 (m, 2H), 4.36 – 4.12 (m, 2H), 3.79 (s, 3H), 3.76 (s, 1H), 2.22 – 2.08 (m, 1H), 2.03 – 1.87 (m, 1H), 1.51 – 1.37 (m, 1H), 1.34 – 1.19 (m, 18H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 159.1, 134.3, 126.8, 113.5, 78.0, 62.3, 55.3, 39.8, 32.0, 29.7, 29.6, 29.6, 29.5, 29.4, 23.7, 22.7, 14.2, 14.2. HRMS (ESI) calculated for C₂₁H₃₄O₄Na [M+Na]⁺ *m/z* 373.2349, found 373.2345.

ethyl 2-([1,1'-biphenyl]-4-yl)-2-hydroxydodecanoate (3d)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 67%. White solid (53.3 mg). **IR (neat, cm⁻¹)** 3539, 2915, 2851, 1716, 1478, 1241, 1014, 689, 646. **Melting point**: 35-37 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.73 – 7.68 (m, 2H), 7.65 – 7.57 (m, 4H), 7.49 – 7.42 (m, 2H), 7.39 – 7.33 (m, 1H), 4.39 – 4.18 (m, 2H), 3.86 (s, 1H), 2.31 – 2.16 (m, 1H), 2.12 – 1.98 (m, 1H), 1.56 – 1.43 (m, 1H), 1.40 – 1.23 (m, 18H), 0.90 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 175.5, 141.3, 140.7, 140.5, 128.8, 127.4, 127.1, 127.0, 126.1, 78.3, 62.5, 39.9, 32.0, 29.8, 29.7, 29.6, 29.5, 29.4, 23.7, 22.8, 14.2. **HRMS (ESI)** calculated for C₂₆H₃₆O₃Na [M+Na]⁺ *m/z* 419.2557, found 419.2554.

ethyl 2-hydroxy-2-(m-tolyl)dodecanoate (3e)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 73%. Colorless oil (94 mg). **IR (neat, cm⁻¹)** 3515, 2922, 2855, 1723, 1457, 1227, 1091, 699. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.41 (m, 2H), 7.27 (t, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 7.5 Hz, 1H), 4.40 – 4.17 (m, 2H), 3.84 (s, 1H), 2.40 (s, 3H), 2.28 – 2.15 (m, 1H), 2.09 – 1.96 (m, 1H), 1.58 – 1.43 (m, 1H), 1.41 – 1.26 (m, 18H), 0.93 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 142.2, 137.8, 128.3, 128.1, 126.1, 122.6, 78.3, 62.3, 39.8, 32.0, 29.7, 29.6, 29.6, 29.5, 29.4, 23.7, 22.7, 21.6, 14.1, 14.1. HRMS (ESI) calculated for C₂₁H₃₄O₃Na [M+Na]⁺ *m/z* 357.2400, found 357.2394.

ethyl 2-hydroxy-2-(3-methoxyphenyl)dodecanoate (3f)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 68%. Light yellow oil (95.2 mg). **IR (neat, cm⁻¹)** 3511, 2922, 2854, 1724, 1595, 1459, 1246, 1039, 694. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 1H), 7.24 – 7.19 (m, 2H), 6.88 – 6.81 (m, 1H), 4.37 – 4.17 (m, 2H), 3.83 (s, 4H), 2.27 – 2.11 (m, 1H), 2.07 – 1.92 (m, 1H), 1.54 – 1.39 (m, 1H), 1.39 – 1.20 (m, 18H), 0.90 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 159.6, 143.9, 129.2, 117.9, 113.0, 111.4, 78.3, 62.4, 55.2, 39.9, 32.0, 29.7, 29.6, 29.6, 29.5, 29.4, 23.7, 22.7, 14.2, 14.1. HRMS (ESI) calculated for C₂₁H₃₄O₄Na [M+Na]⁺ *m/z* 373.2349, found 373.2354.

ethyl 2-(4-fluorophenyl)-2-hydroxydodecanoate (3g)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 64%. Colorless oil (86 mg). **IR (neat, cm⁻¹)** 3512, 2923, 2856, 1725, 1506, 1229, 833. ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.52 (m, 2H), 7.12 – 6.88 (m, 2H), 4.33 – 4.11 (m, 2H), 3.85 (s, 1H), 2.22 – 2.08 (m, 1H), 2.03 – 1.89 (m, 1H), 1.51 – 1.36 (m, 1H), 1.32 – 1.19 (m, 18H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.38, 162.37 (d, *J* = 246.4 Hz), 137.95 (d, *J* = 3.0 Hz), 127.50 (d, *J* = 8.1 Hz), 114.99 (d, *J* = 22.2 Hz), 78.02, 62.60, 40.05, 32.01, 29.73, 29.69, 29.65, 29.55, 29.43, 23.67, 22.78, 14.20, 14.16. ¹⁹F NMR (377 MHz, CDCl₃) δ -115.47. HRMS (ESI) calculated for C₂₀H₃₁O₃FNa [M+Na]⁺ *m*/z 361.2149, found 361.2157.

ethyl 2-(4-cyanophenyl)-2-hydroxydodecanoate (3h)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 10/1) on silica gel to give the title compound. Yield: 62%. Colorless oil (85.3 mg). **IR (neat, cm⁻¹)** 3502, 2922, 2855, 1726, 1459, 1240, 843. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.1 Hz, 2H), 7.62 (d, *J* = 8.1 Hz, 2H), 4.39 – 4.15 (m, 2H), 3.91 (s, 1H), 2.18 – 2.07 (m, 1H), 2.02 – 1.86 (m, 1H), 1.39 – 1.14 (m, 19H), 0.85 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 147.2, 132.0, 126.6, 118.7, 111.56, 78.1, 63.0, 40.0, 31.9, 29.6, 29.5, 29.4, 29.3, 23.5, 22.7, 14.1, 14.1. HRMS (ESI) calculated for C₂₁H₃₀NO₂ [M-OH]⁺ *m/z* 328.2271, found 328.2270.

MeO₂C OH

methyl 2-cyclohexyl-2-hydroxy-2-phenylacetate (3i)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 67%. Colorless oil (66.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 2H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.30 – 7.22 (m, 1H), 3.77 (d, *J* = 0.9 Hz, 3H), 3.67 (s,

1H), 2.29 – 2.17 (m, 1H), 1.87 – 1.74 (m, 1H), 1.70 – 1.60 (m, 2H), 1.48 – 1.39 (m, 2H), 1.37 – 1.24 (m, 1H), 1.22 – 1.03 (m, 4H). The analytical data are in accordance with the literature¹.

ethyl 2-cyclohexyl-2-hydroxydodecanoate (3j)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 50%. Colorless oil (65.2 mg). **IR (neat, cm⁻¹)** 3530, 2922, 2854, 1723, 1455, 1223, 713. ¹H NMR (400 MHz, CDCl₃) δ 4.30 – 4.16 (m, 2H), 3.14 (s, 1H), 1.88 – 1.51 (m, 7H), 1.47 – 1.37 (m, 1H), 1.35 – 1.05 (m, 24H), 0.86 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.0, 79.8, 61.5, 45.2, 36.1, 31.8, 29.7, 29.5, 29.5, 29.5, 29.4, 29.3, 27.4, 26.3, 26.2, 25.8, 23.6, 22.6, 14.2, 14.0. HRMS (ESI) calculated for C₂₀H₃₈O₃Na [M+Na]⁺ *m/z* 349.2713, found 349.2713.

N-(cyclohexyl(phenyl)methyl)-4-methoxyaniline (3k)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 53%. Yellow oil (34.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 4H), 7.24 – 7.18 (m, 1H), 6.71 – 6.64 (m, 2H), 6.51 – 6.43 (m, 2H), 4.05 (d, J = 6.2 Hz, 1H), 3.91 (s, 1H), 3.68 (s, 3H), 1.96 – 1.86 (m, 1H), 1.81 – 1.49 (m, 5H), 1.25 – 0.94 (m, 5H). The analytical data are in accordance with the literature².

N-(cyclohexyl(4-methoxyphenyl)methyl)-4-methoxyaniline (31)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 45%. Yellow oil (29.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.12 (m, 2H), 6.90 – 6.80 (m, 2H), 6.75

-6.62 (m, 2H), 6.51 - 6.39 (m, 2H), 4.00 (d, J = 6.1 Hz, 1H), 3.78 (s, 3H), 3.68 (s, 3H), 1.95 - 1.85 (m, 1H), 1.81 - 1.55 (m, 5H), 1.31 - 0.95 (m, 5H). The analytical data are in accordance with the literature³.

4-methoxy-N-(4-phenyl-1-(4-(trifluoromethyl)phenyl)butyl)aniline (3m)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 58%. Yellow oil (92.6 mg). **IR (neat, cm⁻¹)** 3404, 2935, 1508, 1319, 1236, 1113, 821. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.41 – 7.34 (m, 2H), 7.32 – 7.26 (m, 1H), 7.25 – 7.17 (m, 2H), 6.82 – 6.68 (m, 2H), 6.58 – 6.45 (m, 2H), 4.38 (t, J = 6.3 Hz, 1H), 3.90 (s, 1H), 3.76 (s, 3H), 2.87 – 2.64 (m, 2H), 2.00 – 1.67 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 148.74 (q, J = 1.5 Hz), 141.8, 141.2, 129.2 (q, J = 32.2 Hz), 128.5, 128.5, 126.8, 126.0, 125.6 (q, J = 3.8 Hz), 124.3 (q, J = 272.7 Hz), 114.8, 114.5, 58.7, 55.7, 38.3, 35.6, 27.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.15. HRMS (ESI) calculated for C₂₄H₂₅NOF₃ [M+H]⁺ *m/z* 400.1883, found 400.1881.

N-(cyclohexyl(pyridin-4-yl)methyl)-4-methoxyaniline (3n)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 2/1) on silica gel to give the title compound. Yield: 51%. Yellow oil (30.1 mg). **IR (neat, cm⁻¹)** 2920, 2847, 1507, 1232, 1096, 1030, 807. ¹H NMR (400 MHz, **CDCl₃)** δ 8.53 (s, 2H), 7.26 – 7.09 (m, 2H), 6.85 – 6.56 (m, 2H), 6.51 – 6.21 (m, 2H), 4.05 (d, *J* = 5.7 Hz, 1H), 3.68 (s, 3H), 1.94 – 1.51 (m, 6H), 1.34 – 0.98 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 152.7, 152.1, 149.7, 141.4, 122.8, 114.9, 114.4, 63.5, 55.8, 44.5, 30.2, 29.1, 26.3, 26.3. HRMS (ESI) calculated for C₁₉H₂₅N₂O [M+H]⁺ *m/z* 297.1961, found 397.1955.

ethyl 2-((4-methoxyphenyl)amino)-2-phenyldodecanoate (30)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 56%. Yellow oil (95.6 mg). **IR (neat, cm⁻¹)** 3405, 2922, 2854, 1727, 1509, 1238, 1177, 1033, 819, 697. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.6 Hz, 2H), 7.36 – 7.30 (m, 2H), 7.29 – 7.23 (m, 1H), 6.70 – 6.53 (m, 2H), 6.43 – 6.22 (m, 2H), 4.97 (s, 1H), 4.24 – 4.14 (m, 1H), 4.10 – 4.00 (m, 1H), 3.66 (s, 3H), 2.56 – 2.34 (m, 2H), 1.32 – 1.16 (m, 16H), 1.13 (t, *J* = 7.1, 1.3 Hz, 3H), 0.87 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 152.0, 141.5, 138.5, 128.5, 127.4, 127.2, 116.5, 114.4, 66.6, 61.8, 55.6, 33.3, 32.0, 29.6, 29.5, 29.5, 29.4, 29.4, 23.8, 22.7, 14.2, 14.0. HRMS (ESI) calculated for C₂₇H₄₀NO₃ [M+H]⁺ *m/z* 426.3002, found 426.2998.

1-cyclohexyl-2,2,2-trifluoro-1-(4-methoxyphenyl)ethan-1-ol (3p)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 41%. Yellow oil (47.2 mg). **IR (neat, cm⁻¹)** 2928, 2853, 1609, 1512, 1250, 1147, 833. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.8 Hz, 2H), 6.95 – 6.83 (m, 2H), 3.82 (s, 3H), 2.61 – 2.36 (m, 1H), 2.19 – 1.97 (m, 2H), 1.90 – 1.77 (m, 1H), 1.75 – 1.58 (m, 2H), 1.37 – 1.25 (m, 2H), 1.20 – 0.96 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 159.35, 129.9, 127.0 (q, *J* = 1.7 Hz), 126.2 (q, *J* = 288.8 Hz), 113.6, 80.2, 79.9, 79.6, 79.4, 55.3, 44.0, 26.7 (q, *J* = 2.2 Hz), 26.5, 26.4, 26.3, 26.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -73.28. HRMS (ESI) calculated for C₁₅H₁₉O₂F₃ [M]⁺ *m/z* 288.1332, found 288.1331.

1-phenyl-1-(pyridin-2-yl)undecan-1-ol (3q)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 58%. Yellow oil (75.4 mg). **IR (neat, cm⁻¹)** 3361, 2921, 2853,

1584, 1458, 1387, 998, 698. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 4.9 Hz, 1H), 7.69 – 7.59 (m, 1H), 7.58 – 7.52 (m, 2H), 7.37 – 7.29 (m, 3H), 7.25 – 7.18 (m, 1H), 7.18 – 7.12 (m, 1H), 5.99 (s, 1H), 2.40 – 2.16 (m, 2H), 1.53 – 1.40 (m, 1H), 1.37 – 1.21 (m, 14H), 1.20 – 1.09 (m, 1H), 0.89 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 147.2, 146.7, 137.0, 128.2, 126.8, 126.0, 121.9, 120.5, 77.2, 41.4, 32.0, 30.1, 29.7, 29.6, 29.6, 29.4, 23.6, 22.7, 14.22. HRMS (ESI) calculated for C₂₂H₃₁NONa [M+Na]⁺ *m/z* 348.2298, found 348.2290.

1-(4-bromophenyl)-1-(pyridin-2-yl)undecan-1-ol (3r)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 55%. Light yellow oil (44.3 mg). **IR (neat, cm⁻¹)** 3353, 2920, 2853, 1583, 1469, 1388, 1074, 1003, 744. ¹**H NMR (400 MHz, CDCl₃)** δ 8.51 (d, *J* = 4.9 Hz, 1H), 7.72 – 7.63 (m, 1H), 7.46 – 7.36 (m, 4H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.23 – 7.16 (m, 1H), 5.91 (s, 1H), 2.43 – 2.01 (m, 2H), 1.45 – 1.34 (m, 1H), 1.33 – 1.17 (m, 14H), 1.17 – 1.10 (m, 1H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 163.1, 147.1, 145.5, 137.3, 131.2, 127.8, 122.1, 120.8, 120.3, 76.9, 41.1, 31.8, 29.9, 29.5, 29.5, 29.3, 23.4, 22.6, 14.1. **HRMS (ESI)** calculated for C₂₂H₃₁NOBr [M+H]⁺ *m/z* 404.1583, found 404.1582.

1-(4-chlorophenyl)-1-(pyridin-2-yl)undecan-1-ol (3s)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 58%. Light yellow oil (41.6 mg). **IR (neat, cm⁻¹)** 3356, 2921, 2853, 1574, 1390, 1085, 1006, 824, 747. ¹H NMR **(400 MHz, CDCl₃)** δ 8.48 (d, *J* = 4.8 Hz, 1H), 7.82 – 7.56 (m, 1H), 7.50 – 7.39 (m, 2H), 7.31 – 7.23 (m, 3H), 7.21 – 7.10 (m, 1H), 5.94 (s, 1H), 2.38 – 2.00 (m, 2H), 1.47 – 1.04 (m, 17H), 0.85 (t, *J* = 6.8 Hz, 3H). ¹³C NMR **(101 MHz, CDCl₃)** δ 163.4, 147.4, 145.3, 137.2, 132.7, 128.4, 127.6, 122.2,

120.4, 76.9, 41.3, 32.0, 30.0, 29.7, 29.6, 29.4, 23.6, 22.8, 14.2. **HRMS (ESI)** calculated for $C_{22}H_{31}NOC1 [M+H]^+ m/z$ 360.2088, found 360.2081.

1-(4-fluorophenyl)-1-(pyridin-2-yl)undecan-1-ol (3t)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 56%. Light yellow oil (38.6 mg). **IR (neat, cm⁻¹)** 3362, 2922, 2854, 1595, 1505, 1389, 1225, 1077, 827. ¹**H NMR (400 MHz, CDCl₃)** δ 8.50 (d, J = 4.9 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.57 – 7.44 (m, 2H), 7.35 – 7.26 (m, 1H), 7.22 – 7.11 (m, 1H), 6.98 (t, J = 8.5 Hz, 2H), 5.96 (s, 1H), 2.37 – 2.08 (m, 2H), 1.47 – 1.34 (m, 1H), 1.32 – 1.17 (m, 14H), 1.16 – 1.07 (m, 1H), 0.87 (t, J = 6.7 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 163.6, 161.8 (d, J = 245.4 Hz), 147.3, 142.5 (d, J = 3.0 Hz), 137.2, 127.8 (d, J = 8.0 Hz), 122.1, 120.4, 115.0 (d, J = 21.0 Hz), 76.9, 41.5, 32.2, 30.1, 29.7, 29.6, 29.4, 23.6, 22.8, 14.2. **HRMS (ESI)** calculated for C₂₂H₃₁NOF [M+H]⁺ m/z 344.2384, found 344.2377.

1-phenyl-1-(pyrimidin-2-yl)undecan-1-ol (3u)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 1/1) on silica gel to give the title compound. Yield: 55%. Colorless oil (77.7 mg). **IR (neat, cm⁻¹)** 3440, 2921, 2853, 1565, 1372, 1064, 807, 698. ¹H NMR (400 MHz, CDCl₃) δ 9.04 – 8.60 (m, 2H), 7.96 – 7.64 (m, 2H), 7.31 (t, *J* = 7.7 Hz, 2H), 7.24 – 7.18 (m, 1H), 7.16 – 7.10 (m, 1H), 5.49 (s, 1H), 2.56 – 2.30 (m, 2H), 1.52 – 1.05 (m, 16H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 156.7, 145.7, 128.0, 126.8, 125.9, 119.0, 78.5, 41.6, 31.9, 29.9, 29.6, 29.6, 29.4, 23.7, 22.7, 14.2. HRMS (ESI) calculated for C₂₁H₃₀N₂ONa [M+Na]⁺ *m/z* 349.2250, found 349.2248.

1-(isoquinolin-3-yl)-1-phenylundecan-1-ol (3v)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 75%. Yellow oil (56.2 mg). **IR (neat, cm⁻¹)** 3354, 2920, 2853, 1603, 1387, 1025, 823, 756, 700. ¹H NMR **(400 MHz, CDCl₃)** δ 8.21 – 7.98 (m, 2H), 7.83 – 7.68 (m, 2H), 7.66 – 7.60 (m, 2H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.39 (d, *J* = 8.6 Hz, 1H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.28 – 7.19 (m, 1H), 6.73 (s, 1H), 2.59 – 2.26 (m, 2H), 1.64 – 1.50 (m, 1H), 1.44 – 1.19 (m, 16H), 1.17 – 1.04 (m, 1H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.4, 146.2, 145.5, 137.3, 129.9, 128.9, 128.3, 127.5, 127.1, 127.0, 126.6, 126.4, 118.5, 77.3, 40.5, 31.9, 30.1, 29.7, 29.6, 29.6, 29.4, 23.6, 22.7, 14.2. HRMS (ESI) calculated for C₂₆H₃₄NO [M+H]⁺ *m/z* 376.2635, found 376.2627.

1,1-di(pyridin-2-yl)undecan-1-ol (3w)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 10/1) on silica gel to give the title compound. Yield: 41%. Colorless oil (26.7 mg). **IR (neat, cm⁻¹)** 3349, 2920, 2853, 1582, 1431, 1390, 1144, 798, 619. ¹**H NMR (400 MHz, CDCl₃)** δ 8.55 – 8.41 (m, 2H), 7.94 – 7.76 (m, 2H), 7.74 – 7.53 (m, 2H), 7.18 – 7.01 (m, 2H), 6.49 (s, 1H), 2.44 – 2.25 (m, 2H), 1.31 – 1.12 (m, 16H), 0.85 (t, *J* = 6.8 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 163.8, 147.5, 136.8, 121.9, 121.1, 78.3, 41.9, 32.0, 30.0, 29.7, 29.6, 29.4, 23.6, 22.8, 14.2. **HRMS (ESI)** calculated for C₂₁H₃₁N₂O [M+H]⁺ *m/z* 327.2431, found 327.2428.

EtO₂C OH

ethyl 2-hydroxy-2,5-diphenylpentanoate (4a)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 71%. Colorless oil (87.0 mg). The product was obtained in 47% yield (56.0 mg) when using (3-bromopropyl)benzene as substrate. **IR (neat, cm⁻¹)** 3507, 1721, 1449, 1239, 1018, 737, 695. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.51 (m, 2H), 7.45 – 7.24 (m, 5H), 7.25 – 7.12 (m, 3H), 4.42 – 4.11 (m, 2H), 3.85 (s, 1H), 2.67 (t, *J* = 7.6 Hz, 2H), 2.34 – 2.02 (m,

2H), 1.89 – 1.58 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 142.1, 142.0, 128.4, 128.3, 128.2, 127.7, 125.8, 125.5, 78.2, 62.5, 39.3, 35.8, 25.5, 14.1. HRMS (ESI) calculated for C₁₉H₂₂O₃Na [M+Na]⁺ m/z 342.1461, found 342.1462.

EtO₂C OH

ethyl 2-hydroxy-5-(4-methoxyphenyl)-2-phenylpentanoate (4b)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 10/1) on silica gel to give the title compound. Yield: 62%. Colorless oil (81.3 mg). **IR (neat, cm⁻¹)** 3505, 2926, 1722, 1507, 1239, 1026, 697. ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.50 (m, 2H), 7.44 – 7.33 (m, 2H), 7.33 – 7.27 (m, 1H), 7.17 – 7.00 (m, 2H), 6.90 – 6.70 (m, 2H), 4.40 – 4.15 (m, 2H), 3.84 (s, 1H), 3.79 (s, 3H), 2.60 (t, *J* = 7.6 Hz, 2H), 2.31 – 2.17 (m, 1H), 2.13 – 1.99 (m, 1H), 1.88 – 1.72 (m, 1H), 1.66 – 1.53 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 157.8, 142.0, 134.2, 129.3, 128.2, 127.6, 125.5, 113.8, 78.3, 62.5, 55.3, 39.2, 34.9, 25.7, 14.1. HRMS (ESI) calculated for C₂₀H₂₄O₄Na [M+Na]⁺ *m/z* 351.1567, found 351.1564.

ethyl 3-cyclohexyl-2-hydroxy-2-phenylpropanoate (4c)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 10/1) on silica gel to give the title compound. Yield: 71%. Colorless oil (78.1 mg). **IR (neat, cm⁻¹)** 3509, 2919, 2849, 1720, 1446, 1240, 1024, 696. ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.57 (m, 2H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.33 – 7.26 (m, 1H), 4.36 – 4.13 (m, 2H), 3.85 (s, 1H), 2.18 (dd, *J* = 14.3, 6.6 Hz, 1H), 1.97 (dd, *J* = 14.3, 5.2 Hz, 1H), 1.84 – 1.51 (m, 6H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.28 – 1.12 (m, 2H), 1.07 – 0.94 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 143.0, 128.2, 127.5, 125.5, 78.1, 62.4, 46.8, 34.9, 33.9, 33.8, 26.4, 26.4, 14.1. HRMS (ESI) calculated for C₁₇H₂₄O₃Na [M+Na]⁺ *m/z* 299.1618, found 299.1612.

ethyl 3-cyclopentyl-2-hydroxy-2-phenylpropanoate (4d)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 10/1) on silica gel to give the title compound. Yield: 68%. Colorless oil (71.3 mg). **IR (neat, cm⁻¹)** 3509, 2947, 2864, 1720, 1447, 1231, 1025, 697. ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.55 (m, 2H), 7.38 – 7.30 (m, 2H), 7.29 – 7.23 (m, 1H), 4.29 – 4.08 (m, 2H), 3.83 (s, 1H), 2.35 – 2.23 (m, 1H), 2.13 (dd, *J* = 14.1, 5.8 Hz, 1H), 1.96 – 1.84 (m, 1H), 1.82 – 1.64 (m, 2H), 1.63 – 1.39 (m, 4H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.19 – 1.03 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 142.7, 128.1, 127.5, 125.6, 78.3, 62.4, 45.5, 36.3, 34.1, 33.2, 25.0, 24.7, 14.0. HRMS (ESI) calculated for C₁₆H₂₂O₃Na [M+Na]⁺ *m/z* 285.1461 found 285.1456.

ethyl 2-hydroxy-2-phenyl-3-(trimethylsilyl)propanoate (4e)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 53%. Light yellow oil (56.4 mg). **IR (neat, cm⁻¹)** 3509, 2954, 1719, 1243, 1098, 1024, 844, 728. ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.59 (m, 2H), 7.43 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 4.28 – 4.18 (m, 2H), 3.87 (d, *J* = 1.0 Hz, 1H), 1.73 – 1.56 (m, 1H), 1.29 (t, *J* = 7.1 Hz, 3H), -0.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 144.4, 128.1, 127.4, 125.4, 77.8, 62.4, 29.3, 14.1, -0.1. HRMS (ESI) calculated for C₁₄H₂₂O₃NaSi [M+Na]⁺ *m/z* 289.1230, found 289.1222.

3-((tert-butyldimethylsilyl)oxy)-1-phenyl-1-(pyridin-2-yl)propan-1-ol (4f)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 3/1) on silica gel to give the title compound. Yield: 49%. Yellow oil (33.3 mg). **IR (neat, cm⁻¹)** 3445, 2937, 1581, 1461, 1251, 1072, 833, 659. ¹H NMR (400 MHz, **CDCl₃)** δ 8.51 (d, J = 4.8 Hz, 1H), 7.80 – 7.55 (m, 4H), 7.34 – 7.23 (m, 2H), 7.21 – 7.14 (m, 1H), 7.13 – 7.06 (m, 1H), 5.82 (s, 1H), 3.86 – 3.57 (m, 2H), 3.01 – 2.53 (m, 2H), 0.85 (s, 9H), -0.01 – 0.11 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 147.8, 146.4, 136.8, 128.1, 126.7, 125.7, 121.7,

120.9, 78.7, 61.1, 41.8, 25.9, 18.1, -5.6, -5.6. **HRMS (ESI)** calculated for C₂₀H₃₀NO₂Si [M+H]⁺ *m/z* 344.2040, found 344.2038.

ethyl 6-hydroxy-6-phenyl-6-(pyridin-2-yl)hexanoate (4g)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 3/1) on silica gel to give the title compound. Yield: 46%. Yellow solid (28.5 mg). Melting point: 38-40 °C. IR (neat, cm⁻¹) 3329, 2942, 1716, 1391, 1166, 696. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 4.9 Hz, 1H), 7.71 – 7.58 (m, 1H), 7.51 (d, *J* = 7.7 Hz, 2H), 7.34 – 7.26 (m, 3H), 7.22 – 7.10 (m, 2H), 5.97 (s, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 2.68 – 2.10 (m, 4H), 1.86 – 1.56 (m, 2H), 1.51 – 1.34 (m, 1H), 1.19 (t, *J* = 7.1 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 163.6, 147.2, 146.3, 137.1, 128.3, 126.9, 125.9, 122.0, 120.4, 77.0, 60.2, 40.9, 34.3, 25.4, 23.3, 14.2. HRMS (ESI) calculated for C₁₉H₂₄NO₃ [M+H]⁺ *m/z* 314.1751, found 314.1747.

ethyl 2-hydroxy-2-phenyl-2-(tetrahydro-2H-pyran-4-yl)acetate (4h)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 3/1) on silica gel to give the title compound. Yield: 73%. Colorless oil (76.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.64 (m, 2H), 7.42 – 7.34 (m, 2H), 7.34 – 7.27 (m, 1H), 4.40 – 4.19 (m, 2H), 4.10 – 3.89 (m, 2H), 3.75 (s, 1H), 3.50 – 3.25 (m, 2H), 2.56 – 2.42 (m, 1H), 2.01 – 1.79 (m, 1H), 1.62 – 1.45 (m, 1H), 1.42 – 1.28 (m, 4H), 1.10 – 0.98 (m, 1H). The analytical data are in accordance with the literature⁴.

EtO₂C OH

ethyl 2-cyclohexyl-2-hydroxy-2-phenylacetate (4i)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 82%. Colorless oil (85.9 mg). ¹H NMR (400 MHz, CDCl₃) δ

7.76 - 7.66 (m, 2H), 7.41 - 7.33 (m, 2H), 7.33 - 7.26 (m, 1H), 4.36 - 4.15 (m, 2H), 3.75 (s, 1H),
2.34 - 2.16 (m, 1H), 1.90 - 1.80 (m, 1H), 1.72 - 1.63 (m, 2H), 1.53 - 1.42 (m, 2H), 1.38 - 1.28 (m,
4H), 1.26 - 1.10 (m, 4H). The analytical data are in accordance with the literature⁴.

tert-butyl 4-(hydroxy(phenyl)(pyridin-2-yl)methyl)piperidine-1-carboxylate (4j)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 5/1) on silica gel to give the title compound. Yield: 60%. White solid (88.3 mg). **Melting point**: 144-146 °C. **IR (neat, cm⁻¹)** 3472, 2840, 1661, 1458, 1150, 976, 761, 532. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 4.9 Hz, 1H), 7.71 – 7.58 (m, 3H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.24 – 7.08 (m, 2H), 6.13 (s, 1H), 4.11 (s, 2H), 3.03 – 2.42 (m, 3H), 1.57 – 1.47 (m, 3H), 1.42 (s, 9H), 0.97 (d, *J* = 13.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 154.7, 147.0, 145.1, 137.2, 128.3, 126.8, 125.9, 122.1, 120.3, 79.2, 78.6, 44.8, 43.7, 28.4, 26.2, 25.8. HRMS (ESI) calculated for C₂₂H₂₉N₂O₃ [M+H]⁺ *m/z* 369.2173 found 369.2164.

Ph OH

cyclohexyl(phenyl)(pyridin-2-yl)methanol (4k)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 75%. White solid (80.7 mg). **Melting point**: 51-53 °C. **IR** (neat, cm⁻¹) 3339, 2922, 2852, 1583, 1385, 937, 750, 703. ¹H NMR (400 MHz, CDCl₃) δ 8.53 – 8.35 (m, 1H), 7.70 – 7.58 (m, 3H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.15 – 7.08 (m, 1H), 6.15 (s, 1H), 2.50 – 2.35 (m, 1H), 1.80 – 1.56 (m, 4H), 1.41 – 1.15 (m, 5H), 1.11 – 1.02 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.3, 146.9, 146.0, 137.1, 128.2, 126.5, 126.0, 121.8, 120.5, 79.5, 46.3, 26.9, 26.8, 26.7, 26.5. HRMS (ESI) calculated for C₁₈H₂₂NO [M+H]⁺ *m/z* 268.1596, found 268.1695.

EtO₂C OH

ethyl 2-cyclopentyl-2-hydroxy-2-phenylacetate (4l)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 71%. Colorless oil (70.2 mg). The product was obtained in 50% yield (49.6 mg) when using bromocyclopentane as substrate. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.66 (m, 2H), 7.40 – 7.34 (m, 2H), 7.32 – 7.26 (m, 1H), 4.38 – 4.14 (m, 2H), 3.81 (s, 1H), 3.03 – 2.88 (m, 1H), 1.75 – 1.55 (m, 5H), 1.53 – 1.44 (m, 1H), 1.41 – 1.34 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H). The analytical data are in accordance with the literature⁴.

cyclobutyl(phenyl)(pyridin-2-yl)methanol (4m)

The Reaction was run on a 0.2 mmol scale. The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 68%. Yellow oil (32.5 mg). **IR (neat, cm⁻¹)** 3345, 2936, 1584, 1434, 1384, 999, 756, 693. ¹H NMR (400 MHz, CDCl₃) δ 8.66 – 8.34 (m, 1H), 7.64 – 7.55 (m, 1H), 7.53 – 7.45 (m, 2H), 7.35 – 7.08 (m, 5H), 6.12 (s, 1H), 3.53 – 3.40 (m, 1H), 2.31 – 2.17 (m, 1H), 2.07 – 1.91 (m, 2H), 1.88 – 1.69 (m, 2H), 1.62 – 1.49 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 147.0, 145.5, 136.9, 128.2, 126.9, 126.5, 122.0, 120.7, 77.4, 43.7, 23.0, 21.5, 17.4. HRMS (ESI) calculated for C₁₆H₁₈NO [M+H]⁺ *m/z* 240.1383, found 240.1380.

ethyl 2-hydroxy-3-methyl-2-phenylbutanoate (4n)

Following the **GP** using 2-bromopropane and the crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 42%. Colorless oil (37.5 mg). **IR (neat, cm⁻¹)** 3509, 2972, 1720, 1455, 1243, 1158, 1026, 756, 697. ¹H **NMR (400 MHz, CDCl₃)** δ 7.73 – 7.64 (m, 2H), 7.45 – 7.34 (m, 2H), 7.33 – 7.25 (m, 1H), 4.38 –

4.18 (m, 2H), 3.72 (s, 1H), 2.79 – 2.49 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.02 (d, J = 6.6 Hz, 3H), 0.73 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 141.4, 128.1, 127.4, 126.0, 80.9, 62.5, 35.9, 17.2, 15.9, 14.1. HRMS (ESI) calculated for C₁₃H₁₈O₃ [M]⁺ *m/z* 222.1250, found 222.1247.

EtO₂C OH

ethyl 2-hydroxy-3,3-dimethyl-2-phenylbutanoate (40)

The crude product was purified by flash column chromatography (hexanes/EtOAc= 20/1) on silica gel to give the title compound. Yield: 42%. Colorless oil (39.6 mg). The product was obtained in 36% yield (33.9 mg) when using 2-bromo-2-methylpropane as substrate. ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.54 (m, 2H), 7.46 – 7.15 (m, 3H), 4.34 (q, *J* = 7.2 Hz, 2H), 3.77 (s, 1H), 1.50 – 1.25 (m, 3H), 1.15 – 0.95 (m, 9H). The analytical data are in accordance with the literature⁴.

Reactions using common ketone, aldehydes and 1-bromodecane as substrates

25% yield

7% yield

5

5% yield

4. Gram-scale Synthesis

In a nitrogen-filled glove box, NiBr₂ (87.2 mg, 0.4 mmol), ethyl 2-oxo-2-phenylacetate (1.42 g, 8.0 mmol), manganese powder (864 mg, 16 mmol), 1-iododecane (4.28 g, 16 mmol) and DMF (8 mL) were charged to Schlenk tube equipped with a magnetic stirring bar. The reaction mixture was stirred at 70 °C for 24 h. The resulting mixture was filtered through a short pad of silica gel, eluted with ethyl acetate, and concentrated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc) on silica gel to give the corresponding product as a colorless oil in 57% yield (1.46 g).

5. Synthetic Applications

5.1 Synthesis of vicinal diol

To a solution of **3a** (0.1 mmol, 1.0 equiv.) in dried THF (2.0 mL) was added LiAlH₄ (0.2 mmol, 2.0 eq.) at 0 °C, then the mixture was slowly warmed to room temperature. The reaction mixture was stirred at room temperature overnight. Then the mixture was quenched with H₂O, filtered through a pad of diatomite and the filter cake was washed with EtOAc. The organic layer was separated, and the aqueous phase was washed with EtOAc three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo to afford **5** as a white solid (23.6 mg, 85%). **Melting point**: 51-53 °C. **IR (neat, cm⁻¹)** 3385, 2914, 2849, 1456, 1303, 1041, 599. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.35 (m, 4H), 7.33 – 7.26 (m, 1H), 3.95 – 3.64 (m, 2H), 2.72 (s, 1H), 2.02 – 1.67 (m, 4H), 1.41 – 1.16 (m, 16H), 1.12 – 0.99 (m, 1H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.70 128.5, 127.0, 125.6, 77.4, 70.7, 38.6, 32.0,

30.1, 29.6, 29.5, 29.4, 23.1, 22.8, 14.2. **HRMS (ESI)** calculated for C₁₈H₃₀O₂ [M]⁺ *m/z* 278.2240, found 278.2245.

5.2 Construction of heterocycles

In a nitrogen-filled glove box, NiBr₂ (8.72 mg, 0.04 mmol), phenyl(pyridin-2-yl)methanone (73.2 mg, 0.4 mmol), manganese powder (43.2 mg, 0.8 mmol), 1,4-diiodobutane (247 mg, 0.8 mmol) and DMF (0.8 mL) were charged to a 4 mL vial equipped with a magnetic stirring bar. The reaction mixture was stirred at 70 °C for 12 h. The resulting mixture was filtered through a short pad of silica gel, eluting with ethyl acetate and concentrated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc = 3:1) on silica gel to give the corresponding product as a yellow oil in 65% yield (62.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.61 – 8.55 (m, 1H), 7.64 – 7.55 (m, 2H), 7.53 – 7.45 (m, 2H), 7.35 – 7.25 (m, 2H), 7.22 – 7.14 (m, 1H), 7.12 – 7.04 (m, 1H), 4.01 – 3.81 (m, 1H), 3.80 – 3.63 (m, 1H), 2.85 – 2.66 (m, 1H), 2.42 – 2.19 (m, 1H), 1.87 – 1.48 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 164.2, 148.6, 145.8, 136.6, 128.2, 126.5, 125.8, 121.5, 121.2, 80.8, 63.4, 34.3, 25.9, 20.5. The analytical data are in accordance with the literature⁵.

In a nitrogen-filled glove box, NiBr₂ (8.72 mg, 0.04 mmol), phenyl(pyridin-2-yl)methanone (73.2 mg, 0.4 mmol), manganese powder (43.2 mg, 0.8 mmol), 1,3-diiodopropane (236 mg, 0.8 mmol) and DMF (0.8 mL) were charged to a 4 mL vial equipped with a magnetic stirring bar. The reaction mixture was stirred at 70 °C for 12 h. The resulting mixture was filtered through a short pad of silica gel, eluting with ethyl acetate and concentrated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc = 10:1) on silica gel to give the corresponding product as a yellow oil in 63% yield (56.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 4.8 Hz, 1H), 7.61 – 7.48 (m, 4H), 7.27 (t, *J* = 7.6 Hz, 2H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.11 – 7.04 (m, 1H), 4.23 – 3.94

(m, 2H), 3.35 - 2.92 (m, 1H), 2.54 - 2.24 (m, 1H), 2.09 - 1.75 (m, 2H). The analytical data are in accordance with the literature⁵.

5.3 Synthesis of bioactive compounds

In a nitrogen-filled glove box, NiBr₂ (8.72 mg, 0.04 mmol), phenyl(pyridin-2-yl)methanone (73.2 mg, 0.4 mmol), manganese powder (43.2 mg, 0.8 mmol), iodocyclopentane (156 mg, 0.8 mmol) and DMF (0.4 mL) were charged to a 4 mL vial equipped with a magnetic stirring bar. The reaction mixture was stirred at 70 °C for 12 h. The resulting mixture was filtered through a short pad of silica gel, eluted with ethyl acetate, and concentrated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel to give the corresponding product as a colorless oil in 71% yield (70.2 mg).

To a solution of **41** (24.8 mg, 0.1mmol) in methanol (0.56 mL) was added 1 N NaOH (0.18 mL). The reaction mixture was allowed to warm to 70 °C and stirred for 6.0 hours. After cooling to room temperature, the mixture was extracted with ethyl ether. The combined organic solution was washed with brine, dried over sodium sulfate, and concentrated in vacuo. The reaction mixture was purified by PTLC (silica gel, PE/EtOAc = 3/1) to afford **8** as a white solid (18.7 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.51 (m, 2H), 7.45 – 7.16 (m, 3H), 3.18 – 2.76 (m, 1H), 1.75 – 1.50 (m, 4H), 1.48 – 1.25 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 180.5, 141.0, 128.3, 127.9, 126.0, 79.3, 47.3, 27.0, 26.5, 26.4, 26.0. The analytical data are in accordance with the literature⁵.

$$CI + CO_{2}Et + CT_{7}H_{15}I = \frac{NiBr_{2} (10 \text{ mol}\%)}{Mn (2.0 \text{ eq.}),} CI + CI + CT_{7}H_{15} + CI + CT_{7}H_{15} + CI + CT_{7}H_{15} + CT_{7}H_{15}$$

In a nitrogen-filled glove box, NiBr₂ (8.72 mg, 0.04 mmol), phenyl(pyridin-2-yl)methanone (73.2 mg, 0.4 mmol), manganese powder (43.2 mg, 0.8 mmol), 1-iodoheptane (180.8 mg, 0.8 mmol) and DMF (0.4 mL) were charged to a 4 mL vial equipped with a magnetic stirring bar. The reaction mixture was stirred at 70 °C for 12 h. The resulting mixture was filtered through a short pad of silica gel, eluted with ethyl acetate, and concentrated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel to give the corresponding product as

a colorless oil in 57% yield (71.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.50 – 7.41 (m, 1H), 7.29 – 7.18 (m, 2H), 4.34 – 4.09 (m, 2H), 3.83 (s, 1H), 2.19 – 2.05 (m, 1H), 2.02 – 1.87 (m, 1H), 1.46 – 1.33 (m, 1H), 1.33 – 1.16 (m, 12H), 0.85 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 144.2, 134.3, 129.5, 127.8, 126.0, 123.9, 78.0, 62.8, 39.9, 31.8, 29.6, 29.2, 23.6, 22.7, 14.1. The analytical data are in accordance with the literature⁵.

To a flame-dried round bottom flask was added 9a (9.0 mg, 0.03 mmol) and was added 0.5 mL of 7 N NH₃ in MeOH dropwise. This was allowed to stir over 12 hours while monitoring by TLC. Then the reaction mixture was quenched with H₂O, and washed with EtOAc. The organic layer was separated, and the aqueous phase was washed with EtOAc three times. The combined organic solution was washed with brine, dried over sodium sulfate, and concentrated in vacuo. The reaction mixture was purified by flash column chromatography (silica gel, PE/EtOAc = 3/1) to afford **9** as a yellow oil in 85% yield (38.6 mg). The analytical data are in accordance with the literature⁵.

In a nitrogen-filled glove box, NiBr₂ (8.72 mg, 0.04 mmol), phenyl(pyridin-2-yl)methanone (73.2 mg, 0.4 mmol), manganese powder (43.2 mg, 0.8 mmol), iodocyclohexane (167.2 mg, 0.8 mmol) and DMF (0.4 mL) were charged to a 4 mL vial equipped with a magnetic stirring bar. The reaction mixture was stirred at 70 °C for 12 h. The resulting mixture was filtered through a short pad of silica gel, eluted with ethyl acetate, and concentrated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel to give the corresponding product **4i** as a colorless oil in 82% yield (85.9 mg).

To a solution of **4i** (52.4 mg, 0.2 mmol) in methanol (1.2 mL) was added 1 N NaOH (0.2 mL). The reaction mixture was allowed to warm to 70 °C and stirred for 12.0 hours. After cooling to room temperature, the mixture was extracted with ethyl ether. The combined organic solution was washed with brine, dried over sodium sulfate, and concentrated in vacuo to give a crude product as a white

solid. Then the 1-hydroxybenzotriazole hydrate (HOBT) (27 mg, 0.2 mmol, 1.0 equiv) and Nmethylmorpholine (66 uL, 0.6 mmol, 3.0 equiv) were added sequentially to a mixture of 2cyclohexyl-2-hydroxy-2-phenylacetic acid, 4-(diethylamino)but-2-yn-1-ol (28.2 mg, 0.2 mmol, 1.0 equiv) and DCM (1.2 mL) at 0° C. After 1 h, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI•HCl) (68.7 mg, 0.36 mmol, 1.8 equiv) was added and the reaction mixture was stirred at room temperature for 12 hours. Then the reaction mixture was quenched with H₂O, and washed with EtOAc. The organic layer was separated, and the aqueous phase was washed with EtOAc three times. The combined organic layer was washed with brine and dried over Na₂SO₄. The reaction mixture was purified by flash column chromatography (silica gel, PE/EtOAc = 3/1) to afford **10** as a yellow oil in 65% yield (46.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.50 (m, 2H), 7.41 – 7.20 (m, 3H), 4.90 – 4.56 (m, 2H), 3.64 (s, 1H), 3.41 (d, *J* = 2.1 Hz, 2H), 2.45 (q, *J* = 7.2 Hz, 4H), 2.31 – 2.19 (m, 1H), 1.84 – 1.71 (m, 1H), 1.68 – 1.59 (m, 2H), 1.57 – 1.49 (m, 1H), 1.47 – 1.36 (m, 1H), 1.35 – 1.23 (m, 1H), 1.21 – 1.06 (m, 4H), 1.02 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (**101 MHz, CDCl₃**) δ 174.9, 140.3, 128.0, 127.4, 126.0, 82.4, 80.9, 77.8, 54.0, 47.1, 45.7, 40.6, 27.1, 26.3, 26.3, 26.1, 25.4, 12.5. The analytical data are in accordance with the literature⁵.

6. Mechanistic experiments

In a nitrogen-filled glove box, NiBr₂ (8.72 mg, 0.04 mmol), phenyl(pyridin-2-yl)methanone (73.2 mg, 0.4 mmol), manganese powder (43.2 mg, 0.8 mmol), (iodomethyl)cyclopropane (144 mg, 0.8 mmol) and DMF (0.4 mL) were charged to a 4 mL vial equipped with a magnetic stirring bar. The reaction mixture was stirred at 70 °C for 12 h. The resulting mixture was filtered through a short pad of silica gel, eluted with ethyl acetate, and concentrated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc = 10:1) on silica gel to give the corresponding product as a yellow oil in 45% yield (43.2 mg). **IR (neat, cm⁻¹)** 3351, 2851, 1584, 1387, 1060, 909, 751, 696. ¹H NMR (400 MHz, CDCl₃) δ 8.64 – 8.39 (m, 1H), 7.70 – 7.61 (m,

1H), 7.59 – 7.50 (m, 2H), 7.38 – 7.29 (m, 3H), 7.27 – 7.19 (m, 1H), 7.19 – 7.14 (m, 1H), 6.04 (s, 1H), 5.94 – 5.77 (m, 1H), 5.06 – 4.86 (m, 2H), 2.58 – 2.28 (m, 2H), 2.27 – 2.15 (m, 1H), 2.01 – 1.87 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.5, 147.3, 146.3, 138.8, 137.1, 128.3, 126.9, 126.1, 126.0, 122.1, 120.5, 114.4, 77.0, 40.5, 28.1. HRMS (ESI) calculated for C₁₆H₁₇NONa [M+Na]⁺ *m/z* 262.1202, found 262.1208.

In a nitrogen-filled glove box, NiBr₂ (4.36 mg, 0.02 mmol), ethyl 2-oxo-2-phenylacetate (35.6 mg, 0.2 mmol), manganese powder (21.6 mg, 0.4 mmol), 6-bromohex-1-ene (65.2 mg, 0.4 mmol) and DMF (0.4 mL) were charged to a 4 mL vial equipped with a magnetic stirring bar. The reaction mixture was stirred at 70 °C for 12 h. The resulting mixture was filtered through a short pad of silica gel, eluted with ethyl acetate, and concentrated in vacuo. The crude product was purified by flash column chromatography (hexanes/EtOAc = 20:1) on silica gel to give the corresponding product as a yellow oil in 45% yield (43.2 mg, **12:12'** = 1.25:1).

In a nitrogen-filled glove box, NiBr₂ (4.36 mg, 0.02 mmol), ethyl 2-oxo-2-phenylacetate (35.6mg, 0.2 mmol), manganese powder (21.6 mg, 0.4 mmol), 1-iododecane (107 mg, 0.4 mmol), 2,2,6,6 - tetramethylpiperidinyl-1-oxide (TEMPO, 62.4 mg, 0.4 mmol) and DMF (0.4 mL) were charged to a 4 mL vial equipped with a magnetic stirring bar. The reaction mixture was stirred at 70 °C for 12 h. The resulting mixture was filtered through a short pad of silica gel and the filter cake was washed with EtOAc. The TEMPO adduct was detected by GC-MS analysis (calculated 282.5, found 282.3).

7. Proposed Mechanism

8. NMR Spectra

S29

230 220 210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 f1 (ppm)

90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

S43

90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 fl (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 r1 (ppm)

230 220 210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 F1 (ppm)

9. References

- 1. S. Xie, D. Li, H. Huang, F. Zhang and Y. Chen, J. Am. Chem. Soc., 2019, 141, 16237-16242.
- 2. Z. M. Rubanov, V. V. Levin and A. D. Dilman, Org. Lett., 2024, 26, 3174-3178.
- X. Wang, B. Zhu, J. Dong, H. Tian, Y. Liu, H. Song and Q. Wang, *Chem. Commun.*, 2021, 57, 5028-5031.
- 4. K. Ota, K. Nagao and H. Ohmiya, Org. Lett., 2021, 23, 4420-4425.
- H. Xia, X. Jiang, D. Lin, S. Zhang, Z. Yu, X. Wu, J. Qu and Y. Chen, J. Am. Chem. Soc., 2024, 146, 28468-28481.