Electron donor-acceptor complex of aryl sulfonium salt enabled hydrogen/halogen atom transfer: C(sp³)-H alkylation of glycine derivatives and late-stage modification of peptides

Xiaobo Dang,‡^a Chenyang Zhang,‡^a Jinlong Shang,^a Xinyu Song,^a Chunlin Wang,^b

Rupeng Qi,^a Zhaoqing Xu,*a Qiao Chen,^b Mengran Wang^a and Chao Wang*a

^a Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China.

^b School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China.

‡ These authors contributed equally to this work.

Table of contents

1. General information	S2
2. Synthesis of substrates	S2
3. General procedure	S4
4. Optimization of reaction conditions	S 6
5. Characterization of products	S11
6. Synthetic applications	S30
7. The mechanistic studies	S32
8. References	S38
9. NMR spectra of products	S39

1. General information

All commercially available reagents were used without further purification unless otherwise stated. All solvents were purified and dried according to standard methods prior to use. NMR spectra were recorded on Bruker 400 M and 600 M instrument spectrometer in CDCl₃ using tetramethylsilane (TMS) as internal standard unless otherwise stated. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, and brs = broad signal, coupling constant (s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). Reactions were monitored by thin layer chromatography (TLC). Column chromatography purifications were carried out using silica gel. Melting points were measured on a SCW X-4 and values are uncorrected. UV-Vis absorption spectra were recorded by using BIOMATE 3S UV-Visible Spectrophotometer. All new compounds were characterized by high resolution mass spectra (HRMS, ESI source).

2. Synthesis of substrates

2.1 Glycine derivatives and peptides

Esters of *N*-aryl-substituted glycine,¹ dipeptides² and tripeptides² were all prepared according to previous reports. Other peptides were synthesized via solid phase synthesis.

2.2 HAT reaction substrates

2a-2l were commercially available reagents.

2.3 Alkyl Iodides

4a-4d, **4f**, **4h**, **4j**, **4n** were commercially available, **4e**, **4g**, **4k-4m** were prepared according to previous reports,³ **4i** was prepared according to previous report.⁴

2.4 Aryl sulfonium salt

Aryl sulfonium salt (Tol)DBT·OTf was prepared according to previous report.⁵

3. General procedures

Procedure A: To an oven-dried 10 mL quartz test tube with a stirring bar was added derivative of glycine or peptide 1 (0.1 mmol), (Tol)DBT·OTf (0.2 mmol) and DABCO (0.3 mmol). Then, air was withdrawn and backfilled with Ar (three times), acetone (0.5 mL) and alkanes (0.5 ml) were added. The reaction mixture was irradiated with white LED (27 W) for 12 h under continuous cooling via a fan. Then, the reaction was quenched with water (4 mL), extracted with ethyl acetate, washed with brine, dried over anhydrous sodium sulfate, concentrated in vacuo, and purified by column chromatography (hexane/ethyl acetate) to afford the product **3aa-3ak**, **3ba-3ja**, **5aa**.

Procedure B: To an oven-dried 10 mL quartz test tube with a stirring bar was added derivative of glycine or peptide 1 (0.1 mmol), (Tol)DBT·OTf (0.2 mmol) and DABCO (0.3 mmol). Then, air was withdrawn and backfilled with Ar (three times), DMSO (0.5 mL) and alkanes (0.5 ml) were added. The reaction mixture was irradiated with white LED (27 W) for 12 h under continuous cooling via a fan. Then, the reaction was quenched with water (4 mL), extracted with CH₂Cl₂, washed with brine, dried over anhydrous sodium sulfate, concentrated in vacuo, and purified by column chromatography (CH₂Cl₂/MeOH) to afford the product **3ka**.

Procedure C: To an oven-dried 10 mL quartz test tube with a stirring bar was added derivative of glycine or peptide **1** (0.1 mmol), (Tol)DBT·OTf (0.2 mmol), alkyl iodides (0.3 mmol, if solid) and DABCO (0.3 mmol). Then, air was withdrawn and backfilled with Ar (three times), acetone (1.0 mL) and alkyl iodides (0.3 mmol, if liquid) were added. The reaction mixture was irradiated with blue LED (27 W) for 12 h under continuous cooling via a fan. Then, the reaction was quenched with water (4 mL), extracted with ethyl acetate, washed with brine, dried over anhydrous sodium sulfate, concentrated in vacuo, and purified by column chromatography (hexane/ethyl acetate) to afford the product **5aa-5am**, **5ba-5ia**, **5la-5ma**.

Procedure D: To an oven-dried 10 mL quartz test tube with a stirring bar was added derivative of glycine or peptide 1 (0.1 mmol), (Tol)DBT·OTf (0.2 mmol) and DABCO (0.3 mmol). Then, air was withdrawn and backfilled with Ar (three times), DMSO (1.0 mL) and alkyl iodide (0.3 mmol) were added. The reaction mixture was irradiated with blue LED (27 W) for 12 h under continuous cooling via a fan. Then, the reaction was quenched with water (4 mL), extracted with CH₂Cl₂, washed with brine, dried over anhydrous sodium sulfate, concentrated in vacuo, and purified by column chromatography (CH₂Cl₂/MeOH) to afford the product **5ka**.

The white LED (27 W) was purchased from Yihua Company. We measured the spectral profile of the white LED light by ourselves (recorded on an AVANTES®AvaSpec-ULS2048 spectrometer instrument). The result was shown as follows:

The blue LED (27 W) was purchased from Yihua Company. We measured the spectral profile of the blue LED light by ourselves (recorded on an AVANTES®AvaSpec-

ULS2048 spectrometer instrument). The result was shown as follows:

4. Optimization of reaction conditions

4.1 Optimization of reaction conditions of HAT reactions

 Table S1 Light source screening^a

PMPHN CO ₂ Me	+ CO (Tol)DBT·OTf (2. BTMG (3.0 e) acetone (0.	0 equiv) equiv)
1a (0.1 mmol)	2a (0.5 ml)	3aa
Entry	light source	yield (%)
1	Green LED	63
2	White LED	76
3	Blue LED	53
4	420-430 nm	48
5	410-420 nm	46
6	400-410 nm	39
7	395-400 nm	33
8	380-385 nm	33

^{*a*} Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

Table S2Solvent screening^a

PMPHN CO ₂ Me	+	(Tol)DBT·OTf (2.0 equiv) BTMG (3.0 equiv) solvent (0.1 M) Ar, 12 h	PMPHN CO ₂ Me
		White LED	3aa
Entry	solvent		yield (%)
1	MeCN		58
2	DMSO		60
3	DMF		62
4	THF		50
5	toluene		25
6	1,4-dioxane		25
7	Et ₂ O		30
8	acetone		76
9	EA		35
10	MeOH		41
11	DCM		47
12	DMPU		30
13	HFIP		20

14	DMAc	44
15	DME	30

^{*a*} Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

Table S3 Base screening^a

PMPHN 1a (CO ₂ Me +	2a (0.5 ml)	(Tol)DBT·OTf (2.0 equiv) Base (3.0 equiv) acetone (0.1 M) Ar, 12 h White LED	> CO 3aa	₂ Me
Entry	base	yield (%)	Entry	base	yield (%)
1	BTMG	76	12	NaOH	trace
2	Cs_2CO_3	37	13	KH ₂ PO ₄	trace
3	DABCO	84	14	KOMe	28
4	DMAP	45	15	piperazine	trace
5	K ₃ PO ₄	34	16	DBU	55
6	KO'Bu	20	17	PPh ₃	trace
7	NaHCO ₃	22	18	DIEA	10
8	NaOAc	25	19	TMG	46
9	CsF	26	20	Et ₃ N	30
10	K ₂ HPO ₄	25	21	Imidazole	25
11	KF	25	22	2,6-lutidine	trace

^{*a*} Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

Table S4 Screening the loading of (Tol)DBT \cdot OTf^a

PMPHN、 ∠CO₂Me	+ / 0	(Tol)DBT·OTf (X equiv) DABCO (3.0 equiv)	
1a (0.1 mmol)	2a (0.5 ml)	acetone (0.1 M) Ar, 12 h White LED	- O 3aa
Entry	Х		yield (%)
1	1.0		28
2	1.5		50
3	2.0		84

^{*a*} Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

Table S5 Reaction time screening^a

PMPHN、 ∠CO₂Me	+ / 0	(Tol)DBT·OTf (2.0 equiv) DABCO (3.0 equiv)	
1a (0.1 mmol)	2a (0.5 ml)	acetone (0.1 M) Ar, X h White LED	G Jaa
Entry	Х		yield (%)
1	9		70
2	12		84

^{*a*} Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

PMPHN 1a (0.1 m	∠CO ₂ Me + umol) 2a (0.5 ml)	(Tol)DBT·OTf (2.0 equiv) DABCO (3.0 equiv) acetone (0.1 M) Ar, 12 h, White LED "standard conditions"	PMPHN CO ₂ Me
Entry	deviation from the "sta	indard conditions"	NMR yield (%)
1	none		84 (80)
2	other bases instead of DABCO		< 76
5	other solvents instead of acetone		< 65
9	without base		0
10	without light		0
11	without light and h	eated to 80 °C	0

Table S6 Control experiments under standard reaction conditions^a

a 0.1 mmol scale. Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard. Isolated yield in parentheses.

4.2 Optimization of reaction conditions of XAT reactions

 Table S7 Light source screening^a

PMPHNCO ₂ Me 1a (0.1 mmol)	+ (Tol)DBT·OTf (2.0 eq DABCO (3.0 equiv) 4a (3.0 equiv) 4a (3.0 equiv)	uiv)) 5aa
Entry	light source	yield (%)
1	Green LED	N.R.
2	White LED	40
3	Blue LED	88
4	420-430 nm	68
5	410-420 nm	68
6	400-410 nm	64
7	395-400 nm	65
8	380-385 nm	65

^a Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

Table S8 Solvent screening^a

Entry	solvent	yield (%)
1	MeCN	70
2	DMSO	50
3	DMF	61
4	THF	66
5	DMAc	65
6	DCM	63
7	MeOH	50
8	acetone	88

^a Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

Table S9 Base screening^a

PMPHN CO ₂ Me	+	(Tol)DBT·OTf (2.0 equiv) Base (3.0 equiv)	PMPHN CO ₂ Me
1a (0.1 mmol)	4a (3.0 equiv)	acetone (0.1 M) Ar, 12 h Blue LED	5aa
Entry	solvent		yield (%)
1	BTMG		60
2	Cs_2CO_3		42
3	DABCO		88
4	DMAP		53
5	K ₃ PO ₄		20
6	KO'Bu		20
7	Et ₃ N		63
8	Imidazole		25
9	NaHCO ₃		18
10	K ₂ HPO ₄		25

 a 0.1 mmol scale. Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

Table S10 Screening the loading of alkyl iodide^a

PMPHN CO2Me	+	(Tol)DBT·OTf (2.0 equiv) DABCO (3.0 equiv)	PMPHN CO ₂ Me
1a (0.1 mmol)	4a (X equiv)	acetone (0.1 M) Ar, 12 h Blue LED	5aa
Entry	Х		yield (%)
1	2		72
2	3		88
3	4		88

^a 0.1 mmol scale. Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

Table S11 Screening the loading of base^a

^{*a*} 0.1 mmol scale. Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

Table S12 Reaction time screening^a

PMPHN CO ₂ Me	+	(Tol)DBT·OTf (2.0 equiv) DABCO (3.0 equiv)	PMPHN CO ₂ Me	
1a (0.1 mmol)	4a (3.0 equiv)	acetone (0.1 M) Ar, X h Blue LED	5aa	
Entry	Х		yield (%)	
1	9		76	
2	12		88	

 a 0.1 mmol scale. Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard.

PM	PHN_CO ₂ Me +	(Tol)DBT·OTf (2.0 equiv) DABCO (3.0 equiv) acetone (0.1 M) Ar, 12 h, Blue LED "standard conditions"	PMPHN CO ₂ Me
Entry	deviation from the "s	deviation from the "standard conditions"	
1	nor	ie	88 (83)
2	other bases inste	other bases instead of DABCO	
5	other solvents in	stead of acetone	< 70
9	without D	DABCO	0
10	without	light	0
11	without light and	without light and heated to 80 °C	

Table S13 Control experiments under standard reaction conditions^a

^{*a*} 0.1 mmol scale. Yield was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard. Isolated yield in parentheses.

5. Characterization of products

3aa

methyl 2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetate (3aa): 21.2 mg, yield: 80%, Yellow oil. d.r. = 1.5:1 (determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.81 – 6.71 (m, 2H), 6.65 (d, *J* = 8.9 Hz, 1.2H), 6.60 (d, *J* = 8.9 Hz, 0.8H), 4.41 – 4.02 (m, 2H), 4.02 – 3.96 (m, 1H), 3.96 – 3.85 (m, 1H), 3.83 – 3.68 (m, 7H), 2.07 – 1.88 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 173.35, 173.05, 152.97, 152.83, 141.41, 140.89, 115.46, 115.21, 114.90, 114.84, 79.82, 79.34, 69.30, 68.74, 61.89, 60.92, 55.72, 55.69, 52.31, 52.19, 28.38, 28.25, 26.05, 25.55. HRMS (ESI) C₁₄H₂₀NO₄⁺ [M+H]⁺ calcd: 266.1387, found: 266.1396.

3ab

methyl 2-(1,4-dioxan-2-yl)-2-((4-methoxyphenyl)amino)acetate (3ab): 22.8 mg, yield: 81%, Yellow oil. d.r. = 1:1 (determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.81 – 6.70 (m, 2H), 6.62 (d, J = 8.9 Hz, 1H), 6.57 (d, J = 8.9 Hz, 1H), 4.32 – 3.99 (m, 2H), 3.94 (dd, J = 11.5, 2.6 Hz, 1H), 3.89 – 3.75 (m, 3H), 3.73 (d, J = 1.1 Hz, 6H), 3.72 – 3.47 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.44, 172.39, 153.25, 152.94, 140.96, 140.23, 115.70, 115.12, 114.91, 76.04, 75.56, 68.73, 68.41,

67.19, 66.93, 66.49, 66.22, 59.33, 58.88, 55.69, 55.66, 52.49, 52.31. HRMS (ESI) $C_{14}H_{20}NO_5^+$ [M+H]⁺ calcd: 282.1336, found: 282.1343.

3ac

methyl 3-ethoxy-2-((4-methoxyphenyl)amino)butanoate (3ac): 21.4 mg, yield: 80%, Yellow oil. d.r. = 1:1 (determined by ¹H NMR). **3ac-1** ¹H **NMR** (600 MHz, CDCl₃) δ 6.76 (d, J = 8.9 Hz, 2H), 6.58 (d, J = 8.9 Hz, 2H), 4.26 – 4.16 (m, 1H), 3.97 (qd, J = 6.3, 3.2 Hz, 1H), 3.91 (d, J = 3.2 Hz, 1H), 3.73 (s, 3H), 3.71 (s, 3H), 3.59 (dq, J = 9.4, 7.0 Hz, 1H), 3.42 (dq, J = 9.4, 7.0 Hz, 1H), 1.29 (d, J = 6.3 Hz, 3H), 1.16 (t, J = 7.0 Hz, 3H).¹³C **NMR** (151 MHz, CDCl₃) δ 173.49, 152.58, 141.64, 114.87, 114.86, 75.54, 64.76, 62.36, 55.73, 52.12, 17.15, 15.42. **3ac-2** ¹H **NMR** (600 MHz, CDCl₃) δ 6.76 (d, J = 8.8 Hz, 2H), 6.62 (d, J = 8.9 Hz, 2H), 4.01 (d, J = 5.4 Hz, 2H), 3.90 – 3.68 (m, 7H), 3.62 (dq, J = 9.2, 7.0 Hz, 1H), 3.44 (dq, J = 9.3, 7.0 Hz, 1H), 1.28 (d, J = 6.3 Hz, 3H), 1.18 (t, J = 7.0 Hz, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 174.74, 152.92, 141.30, 137.99, 135.65, 129.47, 128.21, 126.62, 125.62, 115.47, 114.81, 62.37, 55.69, 51.85, 41.50, 29.24, 24.49, 20.24. HRMS (ESI) C₁₄H₂₂NO₄⁺ [M+H]⁺ calcd: 268.1543, found: 268.1546.

methyl (4-methoxyphenyl)phenylalaninate (3ad): 16.8 mg, yield: 59%, Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, J = 8.0, 6.2 Hz, 2H), 7.26 – 7.21 (m, 1H), 7.20 – 7.14 (m, 2H), 6.76 (d, J = 8.9 Hz, 2H), 6.57 (d, J = 8.9 Hz, 2H), 4.27 (t, J = 6.4 Hz, 1H), 3.87 (s, 1H), 3.73 (s, 3H), 3.65 (s, 3H), 3.16 – 3.05 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.96, 152.85, 140.49, 136.49, 129.24, 128.54, 126.99, 115.26, 114.92, 59.00, 55.71, 52.00, 38.91. HRMS (ESI) C₁₇H₂₀NO₃⁺ [M+H]⁺ calcd: 286.1438, found: 286.1442.

3ae

methyl 3-(4-bromophenyl)-2-((4-methoxyphenyl)amino)propanoate (3ae): 23.6 mg, yield: 65%, Yellow solid. M. p. 92.3 – 94.7 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, J = 8.3 Hz, 2H), 7.04 (d, J = 8.3 Hz, 2H), 6.76 (d, J = 8.9 Hz, 2H), 6.57 (d, J = 8.9 Hz, 2H), 4.28 – 4.23 (m, 1H), 3.88 (s, 1H), 3.73 (s, 3H), 3.66 (s, 3H), 3.08 (dd, J = 13.7, 6.2 Hz, 1H), 3.03 (dd, J = 13.7, 6.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 173.62, 152.92, 140.23, 135.52, 131.59, 131.00, 120.96, 115.29, 114.94, 58.72, 55.69, 52.12,

3af

methyl 3-(4-chlorophenyl)-2-((4-methoxyphenyl)amino)propanoate (3af): 20.1 mg, yield: 63%, Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.25 (m, 2H), 7.10 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 8.9 Hz, 2H), 6.57 (d, J = 8.9 Hz, 2H), 4.26 (t, J = 6.2 Hz, 1H), 3.91 (s, 1H), 3.73 (s, 3H), 3.66 (s, 3H), 3.10 (dd, J = 13.7, 6.1 Hz, 1H), 3.04 (dd, J = 13.7, 6.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 173.66, 152.92, 140.25, 135.00, 132.87, 130.62, 128.65, 115.29, 114.94, 58.81, 55.69, 52.11, 38.11. HRMS (ESI) C₁₇H₁₉CINO₃⁺ [M+H]⁺ calcd: 320.1048, found: 320.1044.

3ag

methyl 2-((4-methoxyphenyl)amino)-3-phenylbutanoate (3ag): 18.8 mg, yield: 63%, Colorless oil. d.r. = 1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 7.31 (q, J = 7.6 Hz, 2H), 7.26 – 7.19 (m, 3H), 6.72 (d, J = 8.9 Hz, 2H), 6.52 (dd, J = 17.4, 9.0 Hz, 2H), 4.12 – 4.04 (m, 1H), 3.92 (s, 0.5H), 3.71 (d, J = 2.4 Hz, 3H), 3.67 (s, 1.45H), 3.64 (s, 0.46H), 3.48 (s, 1.48H), 3.27 (p, J = 7.0 Hz, 0.52H), 3.18 (p, J = 7.0 Hz, 0.52H), 1.44 (d, J = 7.2 Hz, 1.5H), 1.39 (d, J = 7.3 Hz, 1.5H). ¹³C NMR (151 MHz, CDCl₃) δ 174.17, 173.82, 152.85, 152.81, 142.22, 141.80, 141.23, 141.15, 128.61, 128.41, 127.82, 127.63, 127.14, 127.03, 115.49, 115.35, 114.82, 114.79, 64.49, 63.90, 55.69, 51.92, 51.73, 43.09, 42.72, 18.47, 17.16. HRMS (ESI) C₁₈H₂₂NO₃⁺ [M+H]⁺ calcd: 300.1594, found: 300.1592.

methyl 2-((4-methoxyphenyl)amino)-3,3-diphenylpropanoate (3ah): 22.0 mg, yield: 61%, White solid. M. p. 81.2 – 83.4 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.18 (m, 10H), 6.74 (d, J = 8.9 Hz, 2H), 6.57 (d, J = 8.9 Hz, 2H), 4.67 (d, J = 8.9 Hz, 1H), 4.39 (d, J = 8.9 Hz, 1H), 3.72 (s, 3H), 3.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.98, 152.94, 140.83, 140.70, 139.85, 128.74, 128.56, 128.53, 128.42, 127.12, 115.19, 114.84, 61.98, 55.68, 54.30, 51.90. HRMS (ESI) C₂₃H₂₄NO₃⁺ [M+H]⁺ calcd: 362.1751, found: 362.1752.

methyl 2-((4-methoxyphenyl)amino)-2-(1,2,3,4-tetrahydronaphthalen-1yl)acetate (3ai): 19.5 mg, yield: 60%, White solid. M. p. 62.3 – 64.7 °C. d.r. = 2.2:1 (determined by ¹H NMR). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.16 – 7.04 (m, 4H), 6.75 - 6.69 (m, 2H), 6.56 - 6.52 (m, 2H), 4.29 (d, J = 6.8 Hz, 1H), 3.83 (s, 1H), 3.72(s, 3H), 3.58 (s, 3H), 3.28 (q, J = 6.2 Hz, 1H), 2.87 (t, J = 6.3 Hz, 0.34H), 2.84 (t, J =6.3 Hz, 0.75H), 2.79 (t, J = 6.3 Hz, 0.74H), 2.76 (t, J = 6.3 Hz, 0.35H), 2.13 - 2.07 (m, 1H), 1.97 (m, 1H), 1.83 - 1.72 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 174.74, 152.91, 141.30, 137.99, 135.65, 129.47, 128.21, 126.62, 125.62, 115.47, 114.81, 62.37, 55.69, 51.85, 41.50, 29.24, 24.49, 20.24. HRMS (ESI) C₂₀H₂₄NO₃⁺ [M+H]⁺ calcd: 326.1751, found: 326.1749.

methyl 2-cyclohexyl-2-((4-methoxyphenyl)amino)acetate (5aa): 22.7 mg, yield of HAT condition :82%, 23.0 mg, yield of XAT condition: 83%, Yellow solid. M. p. 36.9 – 37.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.75 (d, J = 8.9 Hz, 2H), 6.59 (d, J = 8.9 Hz, 2H), 3.78 (d, J = 6.2 Hz, 1H), 3.73 (s, 3H), 3.68 (s, 3H), 1.86 (d, J = 12.8 Hz, 1H), 1.80 – 1.62 (m, 5H), 1.31 (d, J = 3.1 Hz, 1H), 1.24 – 1.08 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 174.57, 152.69, 141.54, 115.18, 114.89, 63.41, 55.73, 51.76, 41.33, 29.72, 29.26, 26.20, 26.10, 26.08. HRMS (ESI) C₁₆H₂₄NO₃⁺ [M+H]⁺ calcd: 278.1751, found: 278.1755.

3aj

methyl 2-cyclopentyl-2-((4-methoxyphenyl)amino)acetate (3aj): 20.3 mg, yield of HAT condition: 77%, 22.9 mg, yield of XAT condition: 87%, Yellow solid. M. p. 51.2 – 53.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.76 (d, J = 7.6 Hz, 2H), 6.60 (d, J = 7.7 Hz, 2H), 3.91 (s, 1H), 3.79 (d, J = 8.0 Hz, 1H), 3.73 (s, 3H), 3.68 (s, 3H), 2.20 (h, J = 8.1 Hz, 1H), 1.83 (dp, J = 11.8, 3.6 Hz, 1H), 1.73 – 1.53 (m, 5H), 1.50 – 1.39 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.08, 152.67, 141.38, 115.01, 114.86, 62.05, 55.72, 51.88, 43.22, 29.51, 29.10, 25.33, 25.13. HRMS (ESI) C₁₅H₂₂NO₃⁺ [M+H]⁺ calcd: 264.1594, found: 264.1594.

3ak

methyl 2-cyclooctyl-2-((4-methoxyphenyl)amino)acetate (3ak): 24.4 mg, yield: 80%, Yellow solid. M. p. 52.1 – 53.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.75 (d, J = 8.9 Hz, 2H), 6.59 (d, J = 8.9 Hz, 2H), 3.77 (d, J = 6.3 Hz, 2H), 3.72 (s, 3H), 3.67 (s, 3H), 1.99 (dq, J = 8.6, 4.3 Hz, 1H), 1.82 – 1.67 (m, 3H), 1.65 – 1.40 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 174.77, 152.67, 141.50, 115.14, 114.89, 64.08, 55.72, 51.78, 40.75, 30.17, 28.44, 26.94, 26.46, 26.38, 25.14. HRMS (ESI) C₁₈H₂₈NO₃⁺ [M+H]⁺ calcd: 306.2064, found: 306.2065.

ethyl (2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetyl)glycinate (3ba): 27.2 mg, yield:81%, Yellow solid. M. p. 67.2 - 69.3 °C. d.r. = 1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 7.33 (t, J = 5.6 Hz, 1H), 6.77 (d, J = 8.9 Hz, 2H), 6.61 (d, J = 9.0 Hz, 2H), 4.28 - 4.24 (m, 1H), 4.23 - 4.10 (m, 4H), 3.99 - 3.94 (m, 1H), 3.88 (dd, J = 4.8, 2.4 Hz, 1.52H), 3.85 (d, J = 4.9 Hz, 0.49H), 3.81 (td, J = 7.9, 5.7 Hz, 1H), 3.73 (d, J = 4.2 Hz, 3H), 2.03 - 1.89 (m, 4H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.82, 169.52, 153.17, 141.02, 115.25, 114.80, 79.44, 68.84, 62.45, 61.36, 55.69, 41.06, 27.02, 25.67, 14.11. HRMS (ESI) C₁₇H₂₅N₂O₅⁺ [M+H]⁺ calcd: 337.1758, found: 337.1747.

methyl (2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetyl)-*L*-valinate (3ca): 30.2 mg, yield: 83%, Yellow oil. d.r. = 1.3:1 (determined by ¹H NMR). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.42 – 7.21 (m, 1H), 6.80 – 6.73 (m, 2H), 6.65 – 6.62 (m, 0.86H), 6.62 – 6.60 (m, 1.12H), 4.54 – 4.48 (m, 1H), 4.29 – 4.22 (m, 1H), 4.10 – 3.75 (m, 4H), 3.75 – 3.68 (m, 5H), 3.61 (d, *J* = 19.0 Hz, 1H), 2.19 – 2.07 (m, 1H), 2.04 – 1.89 (m, 4H), 0.91 (d, *J* = 6.8 Hz, 1.12H), 0.88 (dd, *J* = 6.9, 0.9 Hz, 1.12H), 0.80 (dd, *J* = 10.2, 6.9 Hz, 1.88H), 0.71 (dd, *J* = 18.7, 6.9 Hz, 1.88H). ¹³C NMR (151 MHz, CDCl₃) δ 172.14, 172.07, 171.77, 171.63, 171.38, 171.24, 153.21, 153.13, 153.07, 153.06, 141.35, 141.08, 141.04, 140.75, 115.60, 115.29, 115.25, 115.04, 114.82, 114.79, 114.71, 114.63, 79.54, 79.26, 79.16, 78.89, 68.77, 68.73, 68.54, 68.47, 63.11, 62.98, 62.96, 62.30, 57.18, 57.06, 56.81, 56.71, 55.67, 55.65, 55.63, 52.07, 52.02, 51.91,

31.07, 31.02, 30.96, 30.91, 28.46, 28.08, 27.18, 26.76, 25.71, 25.63, 25.56, 25.50, 19.01, 18.99, 18.94, 17.81, 17.73, 17.48, 17.33. HRMS (ESI) $C_{19}H_{29}N_2O_5^+$ [M+H]⁺ calcd: 365.2071, found: 365.2064.

methyl (2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetyl)-*L*-leucinate (3da): 29.1 mg, yield: 77%, Yellow oil. d.r. = 1.6:1 (determined by ¹H NMR). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.29 – 7.01 (m, 1H), 6.81 – 6.71 (m, 2H), 6.67 – 6.62 (m, 0.76H), 6.61 – 6.56 (m, 1.24H), 4.63 – 4.56 (m, 1H), 4.48 – 4.11 (m, 2H), 4.01 – 3.77 (m, 3H), 3.75 - 3.71 (m, 3H), 3.71 - 3.61 (m, 3H), 2.04 - 1.88 (m, 4H), 1.63 - 1.51 (m, 1.68H), 1.48 - 1.27 (m, 1.34H), 0.91 (td, *J* = 7.2, 6.2, 2.4 Hz, 2.4H), 0.84 (d, *J* = 6.5 Hz, 0.6H), 0.80 (dd, *J* = 6.6, 4.5 Hz, 1.82H), 0.76 (d, *J* = 6.6 Hz, 1.25H). ¹³C NMR (151 MHz, CDCl₃) δ 173.08, 173.03, 172.66, 171.75, 171.31, 171.18, 153.22, 153.11, 141.15, 141.06, 140.76, 115.61, 115.13, 115.03, 114.79, 114.69, 114.62, 79.57, 79.23, 78.93, 68.77, 68.74, 68.43, 63.19, 62.86, 62.31, 55.68, 55.62, 52.19, 52.11, 52.05, 50.48, 50.33, 50.16, 41.11, 41.00, 40.89, 28.43, 26.99, 26.75, 25.73, 25.64, 25.51, 24.73, 24.63, 24.45, 22.87, 22.84, 22.77, 21.51, 21.32. HRMS (ESI) C₂₀H₃₁N₂O₅⁺ [M+H]⁺ calcd: 379.2227, found: 379.2214.

methyl (2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetyl)-*L*-methioninate (3ea): 26.5 mg, yield: 67%, Yellow oil. d.r. = 1.5:1 (determined by ¹H NMR). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.55 – 7.29 (m, 1H), 6.77 (td, *J* = 8.1, 1.7 Hz, 2H), 6.66 – 6.61 (m, 0.8H), 6.59 (dd, *J* = 8.9, 1.6 Hz, 1.2H), 4.76 – 4.65 (m, 1H), 4.47 – 4.12 (m, 2H), 4.01 – 3.75 (m, 3H), 3.74 – 3.61 (m, 6H), 2.60 – 2.32 (m, 1H), 2.26 – 1.89 (m, 10H). ¹³C NMR (151 MHz, CDCl₃) δ 172.13, 172.06, 172.00, 171.85, 171.82, 171.73, 171.41, 171.26, 171.11, 153.21, 153.13, 141.26, 140.97, 140.91, 140.62, 115.49, 115.19, 115.02, 114.91, 114.89, 114.83, 114.80, 114.68, 79.63, 79.17, 78.87, 68.79, 68.57, 68.50, 63.08, 62.82, 62.28, 60.36, 55.69, 55.67, 55.65, 52.46, 52.39, 52.34, 52.32, 51.24, 51.04, 50.86, 31.31, 29.84, 29.67, 29.62, 28.44, 27.28, 26.90, 25.71, 25.63, 25.52, 21.02, 15.43, 15.31, 15.24, 15.18, 14.19. HRMS (ESI) C₁₉H₂₉N₂O₅S⁺ [M+H]⁺ calcd: 397.1792, found: 397.1784.

methyl (2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetyl)-*L*-phenylalaninate (3fa): 32.2 mg, yield: 78%, Yellow oil. d.r. = 1.1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.41 – 7.18 (m, 2.56H), 7.15 – 7.03 (m, 2.52H), 6.87 – 6.72 (m, 3H), 6.60 (d, *J* = 8.9 Hz, 1H), 6.51 (dd, *J* = 9.0, 3.7 Hz, 1H), 4.94 (dt, *J* = 8.6, 5.7 Hz, 0.48H), 4.89 – 4.82 (m, 0.52H), 4.44 – 3.97 (m, 2H), 3.92 – 3.56 (m, 9H), 3.17 (dd, *J* = 14.1, 5.4 Hz, 0.45H), 3.06 – 2.90 (m, 1.58H), 1.97 – 1.62 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 171.65, 171.56, 171.47, 171.41, 171.05, 153.18, 153.07, 153.04, 141.10, 141.05, 140.79, 136.17, 135.52, 135.40, 129.27, 129.14, 129.06, 128.51, 128.47, 128.46, 128.43, 126.93, 126.88, 115.62, 114.91, 114.86, 114.79, 114.73, 114.62, 79.34, 79.22, 78.84, 68.69, 68.60, 68.42, 62.90, 62.83, 62.11, 55.70, 55.68, 55.62, 53.04, 52.55, 52.29, 52.22, 52.15, 37.90, 37.84, 37.67, 28.37, 26.85, 26.75, 25.67, 25.52, 25.47.HRMS (ESI) C₂₃H₂₉N₂O₅⁺ [M+H]⁺ calcd: 413.2071, found: 413.2059.

methyl (2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetyl)-Ltryptophanate (3ga): 28.9 mg, yield: 64%, White solid. M. p. 62.9 - 63.8 °C. d.r. = 1.2:1 (determined by 1H NMR). ¹H NMR (600 MHz, CDCl₃) δ 8.47 (d, J = 17.6 Hz, (0.45H), (8.29 - 8.13) (m, (0.55H), (7.57 - 7.27) (m, (2.55H)), (7.23) (d, J = 4.6 Hz, (0.46H)), 7.17 - 6.98 (m, 2H), 6.88 (d, J = 11.5 Hz, 0.45H), 6.77 - 6.64 (m, 2H), 6.55 (d, J = 8.9Hz, 0.55H), 6.46 (dd, J = 16.3, 8.8 Hz, 1.6H), 6.36 (s, 0.37H), 4.97 – 4.84 (m, 1H), 4.32 -4.03 (m, 2H), 3.90 - 3.53 (m, 9H), 3.31 - 3.07 (m, 2H), 1.95 - 1.60 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 172.12, 172.09, 171.97, 171.92, 171.87, 171.54, 171.19, 153.10, 153.01, 152.95, 152.88, 141.22, 141.11, 140.92, 136.19, 136.11, 136.08, 127.56, 127.46, 127.27, 127.14, 123.25, 123.12, 123.03, 122.87, 122.05, 122.02, 121.95, 119.47, 119.44, 119.35, 118.66, 118.46, 118.42, 118.40, 115.60, 115.08, 114.97, 114.83, 114.75, 114.65, 111.29, 111.20, 109.87, 109.69, 109.26, 109.12, 109.10, 79.45, 79.19, 78.99, 78.86, 68.72, 68.61, 68.53, 68.44, 63.15, 62.75, 62.52, 62.28, 55.73, 55.71, 55.67, 52.90, 52.85, 52.32, 52.25, 52.22, 52.19, 51.88, 29.68, 28.37, 28.03, 27.69, 27.51, 26.92, 26.74, 25.67, 25.61, 25.53, 25.49. HRMS (ESI) $C_{25}H_{30}N_{3}O_{5}^{+}$ [M+H]⁺ calcd: 452.2180, found: 452.2171.

methyl (2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetyl)-*L*-alanyl-*L*-phenylalaninate (3ha): 30.9 mg, yield: 64%, Yellow solid. M. p. 45.2 – 46.8 °C. d.r. = 2.1:1 (determined by ¹H NMR). ¹H NMR (400 MHz, MeOD) δ 7.29 – 6.98 (m, 5H), 6.81 – 6.66 (m, 2H), 6.65 – 6.48 (m, 2H), 4.61 (dtd, J = 16.9, 8.8, 5.7 Hz, 1H), 4.42 – 4.34 (m, 0.68H), 4.31 (q, J = 7.2 Hz, 0.32H), 4.21 – 4.07 (m, 0.71H), 4.05 – 3.97 (m, 0.3H), 3.94 – 3.81 (m, 1H), 3.81 – 3.69 (m, 2H), 3.69 – 3.57 (m, 6H), 3.17 – 2.78 (m, 2H), 2.13 – 1.76 (m, 4H), 1.28 – 1.15 (m, 3H). ¹³C NMR (101 MHz, MeOD) δ 173.77, 173.61, 173.15, 173.07, 172.87, 172.85, 171.70, 171.62, 171.46, 152.76, 152.72, 141.61, 141.34, 141.28, 141.22, 136.65, 136.57, 136.54, 128.95, 128.92, 128.88, 128.16, 128.13, 126.52, 126.50, 114.89, 114.68, 114.56, 114.53, 114.44, 114.38, 114.33, 114.27, 79.95, 79.49, 79.39, 79.25, 68.39, 68.33, 68.26, 68.24, 62.69, 62.38, 62.25, 62.23, 54.68, 54.66, 53.82, 53.72, 53.48, 51.33, 51.30, 48.98, 48.76, 48.60, 37.12, 37.06, 37.01, 36.97, 28.96, 28.00, 27.84, 27.64, 25.38, 25.32, 25.00, 24.92, 23.09, 16.98, 16.74, 16.60, 16.42. HRMS (ESI) C₂₆H₃₄N₃O₆⁺ [M+H]⁺ calcd: 484.2442, found: 484.2427.

3ia

methyl (2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetyl)-*L*-isoleucyl-*L*-methioninate (3ia): 30.6 mg, yield: 60%, Yellow solid. M. p. 91.7 – 92.3 °C. d.r. = 1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 7.32 – 6.92 (m, 1H), 6.78 (d, *J* = 8.9 Hz, 1H), 6.76 (d, *J* = 8.9 Hz, 1H), 6.64 – 6.52 (m, 2H), 4.72 – 4.60 (m, 1H), 4.46 – 4.04 (m, 3H), 3.98 – 3.89 (m, 1.51H), 3.82 – 3.69 (m, 7.46H), 2.52 – 2.34 (m, 2H), 2.23 – 1.76 (m, 10H), 1.32 – 1.26 (m, 1H), 0.96 – 0.64 (m, 7H). ¹³C NMR (151 MHz, CDCl₃) δ 172.56, 172.49, 172.02, 172.00, 171.94, 171.92, 171.35, 171.28, 170.95, 170.87, 170.84, 170.77, 153.19, 153.14, 140.63, 140.53, 115.11, 114.98, 114.78, 79.78, 79.41, 79.06, 68.87, 68.69, 62.61, 62.59, 62.32, 62.30, 57.64, 57.61, 57.49, 55.75, 55.73, 52.47, 52.42, 51.44, 51.42, 51.34, 51.32, 36.50, 35.81, 35.79, 31.44, 31.41, 31.37, 31.35, 29.98, 29.68, 28.10, 27.28, 25.64, 25.59, 24.41, 24.37, 15.64, 15.47, 15.40, 15.38, 11.29, 11.00. HRMS (ESI) C₂₅H₄₀N₃O₆S⁺ [M+H]⁺ calcd: 510.2632, found: 510.2617.

methyl (2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetyl)-L-leucyl-Lseryl-L-phenylalaninate (3ja): 39.8 mg, yield: 65%, White solid. M. p. 68.2 - 70.5 $^{\circ}$ C, d.r. = 1.7:1 (determined by ¹H NMR). ¹H NMR (600 MHz, DMSO- d_6) δ 8.53 – 8.08 (m, 1H), 8.06 - 7.86 (m, 1H), 7.84 - 7.54 (m, 1H), 7.27 (q, J = 7.4 Hz, 2H), 7.23 - 7.14(m, 3H), 6.73 - 6.64 (m, 2H), 6.63 - 6.55 (m, 2H), 5.30 - 5.07 (m, 1H), 4.84 (q, J = 5.6)Hz, 0.63H), 4.80 (t, J = 5.6 Hz, 0.37H), 4.50 – 4.43 (m, 1H), 4.35 – 4.21 (m, 2H), 4.10 -3.96 (m, 1H), 3.89 - 3.70 (m, 2H), 3.62 (d, J = 2.8 Hz, 4H), 3.58 - 3.42 (m, 5H), 3.04-2.90 (m, 2H), 1.99 - 1.73 (m, 4H), 1.62 - 1.48 (m, 1H), 1.40 - 1.22 (m, 2H), 0.85(dd, J = 13.4, 6.6 Hz, 1.48 H), 0.72 (dq, J = 13.5, 5.9 Hz, 4.52 H).¹³C NMR (151 MHz, DMSO-*d*₆) δ 172.93, 172.19, 172.11, 172.02, 171.93, 171.83, 171.80, 171.72, 170.17, 170.12, 170.09, 170.02, 169.94, 151.75, 151.65, 151.61, 142.22, 142.16, 137.24, 137.21, 129.41, 129.37, 128.59, 126.91, 114.73, 114.68, 114.61, 114.55, 114.46, 79.77, 79.53, 79.40, 68.07, 68.05, 67.91, 62.09, 61.95, 61.83, 61.64, 61.38, 55.65, 55.61, 55.51, 55.14, 55.06, 55.02, 53.93, 53.89, 53.84, 53.80, 53.77, 53.67, 52.14, 51.39, 51.08, 41.20, 41.10, 37.11, 37.07, 29.06, 28.24, 28.02, 25.63, 25.29, 25.16, 24.39, 24.14, 24.04, 23.61, 23.60, 23.50, 21.74, 21.57, 21.50, 21.21. HRMS (ESI) $C_{32}H_{45}N_4O_8^+$ [M+H]⁺ calcd: 613.3232, found: 613.3215.

3ka

methyl N-((2*S*)-3-(4-(tert-butoxy)phenyl)-2-((2*S*)-2-(2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-2-yl)acetamido)-4-methylpentanamido)propanoyl)-*O*-(*tert*butyl)-*L*-seryl-*L*-phenylalanyl-*L*-alaninate (3ka): 67.1 mg, yield: 70%, White solid. M. p. 243 – 244 °C. d.r. = 1.5:1 (determined by ¹H NMR). ¹H NMR (400 MHz, DMSO d_6) δ 8.42 (qd, J = 4.9, 3.1 Hz, 1H), 8.28 – 7.63 (m, 4H), 7.57 – 6.91 (m, 8H), 6.89 – 6.72 (m, 2H), 6.72 – 6.58 (m, 3H), 5.36 – 5.00 (m, 1H), 4.69 – 4.44 (m, 2H), 4.27 (p, J= 7.3 Hz, 3H), 4.03 (tt, J = 12.0, 5.6 Hz, 1H), 3.88 – 3.52 (m, 8H), 3.45 – 3.37 (m, 1H), 3.31 (dd, J = 9.1, 5.2 Hz, 1H), 3.05 (d, J = 4.9 Hz, 0.43H), 3.01 (d, J = 4.9 Hz, 0.63H), 3.00 – 2.88 (m, 1H), 2.82 (dd, J = 14.0, 8.3 Hz, 1H), 2.65 (ddt, J = 18.2, 14.0, 8.7 Hz, 1H), 2.01 – 1.49 (m, 4H), 1.44 – 1.13 (m, 15H), 1.08 (dd, J = 4.9, 1.9 Hz, 9H), 0.90 – 0.62 (m, 6H). ¹³C NMR (151 MHz, DMSO- d_6) δ 173.19, 172.61, 172.19, 172.17, 172.06, 171.93, 171.67, 171.62, 171.43, 171.36, 171.33, 171.14, 170.88, 169.58, 169.56, 160.06, 158.05, 156.56, 153.83, 153.79, 151.94, 151.85, 151.81, 151.77, 151.72, 142.61, 142.40, 142.24, 142.22, 137.83, 132.84, 132.76, 132.71, 132.68, 130.25, 130.11, 130.08, 130.04, 130.01, 129.95, 129.71, 128.58, 128.42, 127.71, 126.67, 123.82, 123.74, 123.70, 122.29, 115.02, 114.84, 114.77, 114.74, 114.71, 114.63, 114.59, 114.24, 80.04, 79.68, 79.64, 79.46, 77.99, 77.93, 77.91, 73.42, 73.40, 73.38, 68.15, 68.09, 62.52, 62.22, 62.07, 61.61, 61.40, 55.73, 55.70, 55.67, 55.62, 53.94, 53.80, 53.73, 53.64, 53.62, 52.39, 52.33, 51.61, 51.44, 51.29, 51.09, 48.01, 41.56, 41.40, 41.22, 40.64, 38.18, 37.18, 37.08, 29.02, 28.99, 28.16, 28.12, 27.56, 27.54, 25.74, 25.71, 25.45, 25.33, 24.70, 24.50, 24.43, 24.24, 24.13, 23.63, 23.57, 23.51, 23.43, 22.58, 22.00, 21.90, 21.68, 21.64, 21.35, 17.38. HRMS (ESI) $C_{52}H_{75}N_6O_{11}^+$ [M+H]⁺ calcd: 959.5488, found: 959.5474.

5ab

methyl 2-((4-methoxyphenyl)amino)-2-(tetrahydrofuran-3-yl)acetate (5ab): 22.5 mg, yield: 85%, Yellow oil. d.r. = 1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 6.76 (dd, J = 8.9, 3.5 Hz, 2H), 6.60 (dd, J = 8.9, 3.8 Hz, 2H), 3.98 – 3.71 (m, 8H), 3.70 (d, J = 3.9 Hz, 3H), 2.66 – 2.54 (m, 1H), 2.13 – 2.05 (m, 0.52H), 2.00 (dtd, J = 12.7, 8.1, 4.8 Hz, 0.53H), 1.97 – 1.90 (m, 0.52H), 1.89 – 1.82 (m, 0.53H). ¹³C NMR (151 MHz, CDCl₃) δ 174.26, 174.17, 153.04, 152.99, 140.82, 140.77, 115.37, 115.25, 114.90, 114.88, 70.79, 69.90, 68.03, 67.91, 60.70, 59.97, 55.68, 55.67, 52.18, 52.09, 42.48, 42.37, 29.07, 28.83. HRMS (ESI) C₁₄H₂₀NO₄⁺ [M+H]⁺ calcd: 266.1387, found: 266.1384.

methyl2-(3-((tert-butoxycarbonyl)amino)cyclobutyl)-2-((4-methoxyphenyl)amino)acetate (5ac): 29.1 mg, yield: 80%, Yellow oil. d.r. = 1.1:1(determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 6.76 (d, J = 8.9 Hz, 2H), 6.60(d, J = 8.9 Hz, 1.05H), 6.57 (d, J = 8.9 Hz, 0.95H), 4.86 (s, 0.55H), 4.77 (s, 0.45H),4.38 - 3.91 (m, 2H), 3.87 (d, J = 7.0 Hz, 1H), 3.73 (d, J = 1.0 Hz, 3H), 3.67 (d, J = 6.0Hz, 3H), 2.55 - 2.29 (m, 3H), 2.03 (tt, J = 15.2, 7.0 Hz, 1H), 1.90 - 1.68 (m, 1H), 1.43(d, J = 7.4 Hz, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 174.30, 173.80, 154.96, 154.82,152.90, 152.84, 141.25, 141.10, 115.27, 115.13, 114.87, 79.36, 79.30, 61.45, 61.32,

55.68, 55.67, 52.06, 51.99, 43.82, 41.79, 33.90, 33.78, 32.98, 32.52, 32.44, 31.07, 28.38. HRMS (ESI) C₁₉H₂₉N₂O₅⁺ [M+H]⁺ calcd: 365.2071, found: 365.2060.

tert-butyl 4-(2-methoxy-1-((4-methoxyphenyl)amino)-2-oxoethyl)piperidine-1carboxylate (5ad): 31.0 mg, yield: 82%. Yellow oil. ¹H NMR (400 MHz, Chloroformd) δ 6.76 (d, J = 9.0 Hz, 2H), 6.60 (d, J = 8.9 Hz, 2H), 4.12 (s, 2H), 3.99 – 3.80 (m, 2H), 3.73 (s, 3H), 3.69 (s, 3H), 2.68 (s, 2H), 1.92 – 1.78 (m, 2H), 1.61 – 1.55 (m, 1H), 1.45 (s, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 174.06, 154.68, 152.83, 141.12, 115.29, 114.86, 79.49, 62.59, 55.66, 52.00, 43.36, 39.74, 28.68, 28.44. HRMS (ESI) C₂₀H₃₁N₂O₅⁺ [M+H]⁺ calcd: 379.2227, found: 379.2230.

methyl 2-((4-methoxyphenyl)amino)-2-(2-oxohexahydro-2*H*-3,5methanocyclopenta[*b*]furan-6-yl)acetate (5ae): 24.8 mg, yield: 75%, Yellow oil. d.r. = 1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 6.79 – 6.73 (m, 2H), 6.63 – 6.58 (m, 2H), 4.77 (s, 0.5H), 4.71 – 4.59 (m, 0.5H), 3.88 (s, 1H), 3.76 – 3.68 (m, 6H), 3.66 (d, *J* = 10.9 Hz, 0.5H), 3.60 (d, *J* = 11.5 Hz, 0.5H), 3.21 (s, 1H), 2.73 (s, 0.5H), 2.62 – 2.55 (m, 1H), 2.29 (s, 0.5H), 2.11 – 2.00 (m, 1H), 1.96 – 1.78 (m, 2H), 1.72 (t, *J* = 13.7 Hz, 1H), 1.68 – 1.57 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 180.57, 180.52, 173.62, 173.43, 153.19, 140.49, 140.40, 115.40, 114.94, 114.92, 83.22, 82.29, 59.02, 58.72, 55.67, 53.07, 52.98, 52.42, 52.22, 46.41, 46.30, 38.93, 38.80, 38.78, 38.74, 35.43, 35.07, 35.02, 34.79. HRMS (ESI) C₁₈H₂₁NNaO₅ + [M+Na]⁺ calcd: 354.1312, found: 354.1297.

methyl (4-methoxyphenyl)valinate (5af): 19.0 mg, yield: 80%, Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.76 (d, J = 8.9 Hz, 2H), 6.61 (d, J = 8.9 Hz, 2H), 3.86 (s, 1.09H), 3.76 (d, J = 6.0 Hz, 1H), 3.73 (s, 3H), 3.69 (s, 3H), 2.08 (dq, J = 13.3, 6.7 Hz, 1H), 1.03 (dd, J = 9.6, 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.58, 152.70, 141.48, 115.22, 114.88, 63.79, 55.73, 51.81, 31.61, 19.19, 18.73. HRMS (ESI) C₁₃H₂₀NO₃⁺ [M+H]⁺ calcd: 238.1438, found: 238.1435.

5ag

methyl 2-((4-methoxyphenyl)amino)-2-(1-tosyloctahydro-3aH-indol-3a-yl)acetate (**5ag):** 34.5 mg, yield: 73%, Yellow oil. d.r. = 1.4:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 0.83H), 7.67 (d, J = 8.3 Hz, 1.17H), 7.29 (d, J = 8.4 Hz, 0.84H), 7.17 (d, J = 8.4 Hz, 1.17H), 6.79 – 6.62 (m, 2H), 6.50 (d, J = 8.9 Hz, 1.17H), 6.29 (d, J = 8.9 Hz, 0.83H), 3.91 (dd, J = 7.4, 5.2 Hz, 0.43H), 3.73 (d, J = 1.3 Hz, 4.80H), 3.68 (s, 1.20H), 3.62 (s, 0.74H), 3.56 (s, 1.58H), 3.48 (dddt, J = 14.8, 11.7, 6.6, 2.7 Hz, 1.57H), 3.26 (ddd, J = 10.5, 8.5, 6.5 Hz, 0.42H), 2.44 (s, 1.25H), 2.37 (s, 1.75H), 2.03 – 1.58 (m, 6.59H), 1.56 – 1.51 (m, 1H), 1.49 – 1.36 (m, 2H), 1.32 – 1.22 (m, 0.41H). ¹³C NMR (151 MHz, CDCl₃) δ 173.37, 173.35, 153.31, 153.13, 143.18, 143.04, 141.02, 140.91, 135.82, 135.22, 129.60, 129.52, 127.70, 127.24, 116.36, 115.61, 114.78, 114.72, 61.43, 60.90, 60.50, 60.48, 55.67, 55.63, 51.97, 51.79, 47.68, 47.55, 45.11, 44.83, 29.35, 29.26, 28.88, 28.12, 27.48, 21.80, 21.77, 21.60, 21.56, 21.15, 21.01. HRMS (ESI) C₂₅H₃₃N₂O₅S⁺ [M+H]⁺ calcd: 473.2105, found: 473.2091.

methyl 2-((4-methoxyphenyl)amino)-3,3-dimethylbutanoate (5ah): 20.6 mg, yield: 82%, White solid. M. p. 42.6 – 44.3 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 6.76 (d, *J* = 8.9 Hz, 2H), 6.63 (d, *J* = 8.9 Hz, 2H), 3.90 (s, 1H), 3.73 (s, 3H), 3.68 (s, 1H), 3.66 (s, 3H), 1.05 (s, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 174.27, 152.80, 141.72, 115.53, 114.84, 67.01, 55.70, 51.43, 34.29, 26.74. HRMS (ESI) C₁₄H₂₂NO₃⁺ [M+H]⁺ calcd: 252.1594, found: 252.1592.

methyl 2-((4-methoxyphenyl)amino)-3,3-dimethyl-5-phenylpentanoate (5ai): 27.6 mg, yield: 81%, Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 2H), 7.17 (dd, J = 8.0, 4.8 Hz, 3H), 6.76 (d, J = 8.9 Hz, 2H), 6.64 (d, J = 8.9 Hz, 2H), 3.98 – 3.88 (m, 1H), 3.86 (s, 1H), 3.74 (s, 3H), 3.67 (s, 3H), 2.73 – 2.56 (m, 2H), 1.77 – 1.63 (m, 2H), 1.11 (s, 3H), 1.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.22, 152.91, 142.72, 141.59, 128.42, 128.40, 125.78, 115.71, 114.86, 65.54, 55.71, 51.61, 42.16, 37.00, 30.47, 24.13, 23.59. HRMS (ESI) C₂₁H₂₈NO₃⁺ [M+H]⁺ calcd: 342.2064, found: 342.2056.

methyl 2-((3r,5r,7r)-adamantan-1-yl)-2-((4-methoxyphenyl)amino)acetate (5aj): 28.0 mg, yield: 85%, White solid. M. p. 91.3 – 92.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.75 (d, J = 9.0 Hz, 2H), 6.62 (d, J = 10.0 Hz, 2H), 3.90 (s, 1H), 3.72 (s, 3H), 3.66 (s, 3H), 3.56 (s, 1H), 2.02 (s, 3H), 1.80 (d, J = 11.5 Hz, 3H), 1.69 (q, J = 12.2 Hz, 6H), 1.55 (d, J = 13.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.81, 152.70, 141.89, 115.48, 114.83, 67.99, 55.71, 51.43, 39.05, 36.88, 36.14, 28.39. HRMS (ESI) C₂₀H₂₈NO₃⁺[M+H]⁺ calcd: 330.2064, found: 330.2058.

5ak

methyl 4-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7*H*-purin-7-yl)-2-((4methoxyphenyl)amino)-3-methylbutanoate (5ak): 30.3 mg, yield: 73%, Yellow oil. d.r. = 1.2:1 (determined by ¹H NMR). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 0.45H), 7.50 (s, 0.55H), 6.75 (dd, *J* = 9.0, 3.4 Hz, 2H), 6.60 (dd, *J* = 13.1, 8.9 Hz, 2H), 4.81 – 4.37 (m, 1.5H), 4.28 – 3.97 (m, 1.5H), 3.83 (d, *J* = 7.6 Hz, 1H), 3.77 – 3.65 (m, 6H), 3.59 (d, *J* = 3.9 Hz, 3H), 3.42 (s, 3H), 2.80 (qd, *J* = 7.2, 3.4 Hz, 0.55H), 2.60 – 2.49 (m, 0.46H), 0.99 (t, *J* = 7.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.46, 173.19, 155.11, 155.09, 153.19, 152.73, 151.58, 151.55, 149.13, 149.01, 141.87, 141.75, 140.64, 140.55, 115.68, 114.92, 114.83, 114.78, 106.94, 106.80, 60.48, 58.23, 55.61, 55.56, 52.30, 52.19, 50.01, 49.82, 37.68, 36.54, 29.82, 29.79, 28.04, 28.01, 14.19, 12.34. HRMS (ESI) $C_{20}H_{26}N_5O_5^+$ [M+H]⁺ calcd: 416.1928, found: 416.1926.

methyl 2-((8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-

cyclopenta[*a*]phenanthren-3-yl)-2-((4-methoxyphenyl)amino)acetate (5al): 39.4 mg, yield: 70%, White solid. M. p. 155.2 – 157.4 °C. d.r. = 1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 6.76 (d, *J* = 8.9 Hz, 2H), 6.61 (d, *J* = 8.9 Hz, 2H), 5.33 (d, *J* = 5.3 Hz, 0.51H), 5.31 (d, *J* = 4.1 Hz, 0.51H), 3.99 – 3.86 (m, 1H), 3.80 (t, *J* = 5.6 Hz, 1H), 3.73 (s, 3H), 3.69 (d, *J* = 1.5 Hz, 3H), 2.36 – 1.69 (m, 8H), 1.58 – 1.25 (m, 12H), 1.17 – 0.95 (m, 12H), 0.91 (d, *J* = 6.5 Hz, 3H), 0.86 (dd, *J* = 6.6, 2.7 Hz, 6H), 0.67 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 174.43, 174.38, 152.74, 141.82, 141.78, 141.58, 141.50, 120.61, 115.33, 115.31, 114.87, 63.29, 63.16, 56.79, 56.15, 55.71, 51.82, 51.80, 50.34, 50.33, 42.66, 42.63, 42.31, 39.79, 39.52, 39.04, 37.12, 36.19, 35.95, 35.79, 35.41, 31.89, 31.83, 28.24, 28.02, 25.62, 24.86, 24.28, 23.83, 22.83, 22.57, 20.93, 19.44, 19.42, 18.72, 11.87.HRMS (ESI) C₃₇H₅₈NO₃⁺ [M+H]⁺ calcd: 564.4411, found: 564.4399.

5am

2-((8S,9S,10R,13S,14S,17S)-17-acetyl-10,13-dimethyl-

methyl

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*cyclopenta[a]phenanthren-3-yl)-2-((4-methoxyphenyl)amino)acetate (5am): 33.5 mg, yield: 68%, White solid. M. p. 86.2 – 88.4 °C. d.r. = 2:1(determined by ¹H NMR). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.75 (t, *J* = 7.3 Hz, 2H), 6.61 (dd, *J* = 8.3, 5.6 Hz, 2H), 5.31 (q, *J* = 6.0, 5.6 Hz, 1H), 4.07 – 3.74 (m, 2H), 3.73 (s, 3H), 3.70 – 3.62 (m, 3H), 2.57 - 2.17 (m, 3H), 2.14 (s, 1H), 2.12 (s, 2H), 2.06 - 1.88 (m, 3H), 1.86 - 1.32 (m, 10.74H), 1.29 - 0.94 (m, 7.37H), 0.63 (d, J = 3.3 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 209.69, 175.69, 175.49, 174.46, 174.40, 152.73, 152.71, 152.65, 141.78, 141.75, 141.58, 141.54, 141.45, 141.28, 139.44, 139.06, 122.67, 122.35, 120.34, 115.52, 115.33, 115.30, 115.04, 114.84, 114.76, 63.74, 63.72, 63.22, 63.09, 58.96, 57.62, 56.93, 55.70, 51.90, 51.88, 51.71, 51.63, 50.33, 50.26, 50.16, 44.02, 42.60, 42.56, 39.04, 38.84, 38.02, 37.31, 37.25, 37.13, 35.91, 35.38, 34.75, 34.25, 33.44, 31.88, 31.80, 31.78, 31.64, 25.59, 24.83, 24.50, 24.36, 22.80, 22.65, 20.95, 20.82, 20.76, 19.57, 19.55, 19.47, 19.45, 13.27. HRMS (ESI) C₃₁H₄₄NO₄⁺ [M+H]⁺ calcd: 494.3265, found: 494.3261.

ethyl (2-cyclohexyl-2-((4-methoxyphenyl)amino)acetyl)glycinate (5ba): 29.6 mg, yield: 85%, Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.41 (t, J = 5.7 Hz, 1H), 6.76 (d, J = 8.9 Hz, 2H), 6.59 (d, J = 8.9 Hz, 2H), 4.18 – 4.08 (m, 3H), 3.92 – 3.84 (m, 2H), 3.72 (s, 3H), 3.53 (d, J = 4.4 Hz, 1H), 2.00 (tdd, J = 11.7, 6.4, 3.6 Hz, 1H), 1.78 (td, J = 8.1, 3.4 Hz, 3H), 1.73 – 1.65 (m, 2H), 1.32 – 1.13 (m, 8H). ¹³C NMR (151 MHz, CDCl₃) δ 173.58, 169.65, 152.95, 141.63, 114.86, 114.83, 65.62, 61.28, 55.66, 41.28, 41.01, 30.16, 28.07, 26.28, 26.25, 26.12, 14.09. HRMS (ESI) C₁₉H₂₉N₂O₄⁺ [M+H]⁺ calcd:349.2122, found: 349.2105.

methyl (2-cyclohexyl-2-((4-methoxyphenyl)amino)acetyl)-*L*-alaninate (5la): 28.9 mg, yield: 83%, Yellow solid. M. p. 89.2 – 92.3 °C. d.r. = 1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.40 – 7.31 (m, 1H), 6.81 – 6.72 (m, 2H), 6.65 – 6.60 (m, 1H), 6.59 – 6.54 (m, 1H), 4.67 – 4.55 (m, 1H), 3.84 (s, 1H), 3.77 – 3.68 (m, 4.54H), 3.67 – 3.62 (m, 1.51H), 3.52 – 3.47 (m, 1H), 2.04 – 1.94 (m, 1H), 1.82 – 1.64 (m, 5H), 1.41 – 1.11 (m, 8H). ¹³C NMR (151 MHz, CDCl₃) δ 173.19, 172.92, 172.89, 172.69, 153.01, 152.92, 141.72, 141.55, 115.21, 114.80, 114.72, 65.84, 65.62, 55.65, 52.30, 52.23, 47.74, 47.54, 41.26, 41.24, 30.19, 30.16, 28.16, 28.02, 26.29, 26.26, 26.23, 26.13, 18.23, 18.11. HRMS (ESI) C₁₉H₂₉N₂O₄⁺ [M+H]⁺ calcd:349.2122, found: 349.2114.

5ca

methyl (2-cyclohexyl-2-((4-methoxyphenyl)amino)acetyl)-*L*-valinate (5ca): 30.9 mg, yield: 82%, White solid. M. p. 81.2 – 82.8 °C. d.r. = 1.1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 7.35 (t, J = 9.3 Hz, 1H), 6.76 (dd, J = 8.9, 2.4 Hz, 2H), 6.66 – 6.57 (m, 2H), 4.53 (ddd, J = 10.5, 9.0, 5.0 Hz, 1H), 3.93 (s, 1H), 3.72 (d, J = 1.3 Hz, 3H), 3.70 (s, 1.56H), 3.60 (s, 1.44H), 3.57 – 3.50 (m, 1H), 2.19 – 2.09 (m, 1H), 2.04 – 1.94 (m, 1H), 1.83 – 1.65 (m, 5H), 1.36 – 1.29 (m, 1H), 1.25 – 1.11 (m, 3H), 0.91 (d, J = 6.9 Hz, 1.45H), 0.87 (d, J = 6.9 Hz, 1.45H), 0.81 (d, J = 6.9 Hz, 1.55H). ¹³C NMR (151 MHz, CDCl₃) δ 173.28, 172.94, 172.23, 171.76, 153.04, 152.93, 141.73, 141.33, 115.39, 114.77, 114.66, 66.27, 65.42, 57.12, 56.63, 55.62, 55.59, 51.96, 51.84, 41.23, 41.14, 30.94, 30.83, 30.21, 28.34, 27.94, 26.31, 26.25, 26.23, 26.20, 26.12, 19.08, 19.01, 17.87, 17.43. HRMS (ESI) C₂₁H₃₃N₂O₄+ [M+H]⁺ calcd:377.2435, found: 377.2416.

5ea

methyl (2-cyclohexyl-2-((4-methoxyphenyl)amino)acetyl)-*L*-methioninate (5ea): 29.8 mg, yield: 73%, Yellow oil .d.r. = 1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 7.38 (dd, J = 12.4, 8.4 Hz, 1H), 6.77 (d, J = 8.6 Hz, 2H), 6.61 (d, J =8.9 Hz, 1H), 6.56 (d, J = 8.9 Hz, 1H), 4.75 (td, J = 8.2, 4.7 Hz, 0.5H), 4.69 (td, J = 8.0, 5.0 Hz, 0.52H), 3.83 – 3.63 (m, 7H), 3.53 (d, J = 4.2 Hz, 0.5H), 3.49 (d, J = 4.6 Hz, 0.52H), 2.44 (dd, J = 7.9, 7.1 Hz, 1H), 2.31 – 2.21 (m, 1H), 2.18 – 2.04 (m, 2.64H), 2.02 – 1.84 (m, 3.52H), 1.82 – 1.67 (m, 5H), 1.33 – 1.13 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 173.23, 172.90, 172.23, 171.87, 153.17, 153.07, 141.53, 141.14, 115.36, 114.89, 114.76, 114.63, 66.10, 65.31, 55.73, 55.69, 52.42, 52.34, 51.30, 50.85, 41.20, 41.17, 31.47, 31.37, 30.25, 30.23, 30.06, 29.75, 28.33, 28.04, 26.30, 26.25, 26.22, 26.18, 26.12, 15.41, 15.24. HRMS (ESI) C₂₁H₃₃N₂O₄S⁺ [M+H]⁺ calcd: 409.2156, found: 409.2143.

5fa

methyl (2-cyclohexyl-2-((4-methoxyphenyl)amino)acetyl)-*L*-phenylalaninate (5fa): 33.5 mg, yield: 79%, Yellow solid. M. p. 104.2 – 106.3 °C. d.r. = 1.2:1 (determined by ¹H NMR). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.28 – 7.11 (m, 3H), 7.10 – 7.02 (m, 2H), 6.88 – 6.63 (m, 3H), 6.59 – 6.55 (m, 1.1H), 6.51 – 6.43 (m, 0.88H), 4.96 (ddd, J = 8.9, 6.5, 5.3 Hz, 0.45H), 4.91 (td, J = 8.4, 5.3 Hz, 0.55H), 3.85 – 3.56 (m, 7H), 3.48 (d, J = 4.3 Hz, 0.46H), 3.40 (d, J = 4.6 Hz, 0.56H), 3.19 (dd, J = 14.1, 5.3 Hz, 0.58H), 3.03 (dd, J = 13.9, 6.5 Hz, 0.46H), 2.98 – 2.89 (m, 1H), 1.99 – 1.58 (m, 5H), 1.55 – 1.47 (m, 0.58H), 1.41 – 1.33 (m, 0.58H), 1.29 – 0.91 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 173.02, 172.78, 171.80, 171.70, 153.13, 152.98, 141.66, 141.37, 136.20, 135.54, 129.17, 129.11, 128.52, 126.96, 126.92, 115.41, 114.90, 114.72, 114.67, 66.16, 65.26, 55.76, 55.68, 52.82, 52.25, 52.19, 41.23, 41.13, 38.01, 37.88, 30.22, 30.01, 28.07, 27.94, 26.32, 26.27, 26.25, 26.22, 26.14, 26.08. HRMS (ESI) C₂₅H₃₃N₂O₄⁺ [M+H]⁺ calcd: 425.2435, found: 425.2419.

5ma

methyl (2-cyclohexyl-2-((4-methoxyphenyl)amino)acetyl)-*L*-tyrosinate (5ma): 29.9 mg, yield: 68%, White solid. M. p. 61.8 – 63.4 °C. d.r. = 1.2:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 7.66 (s, 1H), 7.41 (d, *J* = 8.1 Hz, 0.46H), 7.32 (d, *J* = 3.4 Hz, 0.57H), 6.92 (d, *J* = 8.4 Hz, 1H), 6.79 – 6.68 (m, 3H), 6.65 (d, *J* = 8.2 Hz, 1H), 6.57 (t, *J* = 8.3 Hz, 2H), 6.44 (d, *J* = 8.9 Hz, 1H), 5.00 – 4.92 (m, 0.45H), 4.92 – 4.87 (m, 0.55H), 3.71 (t, *J* = 12.8 Hz, 5H), 3.61 (s, 2H), 3.48 (d, *J* = 3.5 Hz, 0.45H), 3.43 (d, *J* = 4.6 Hz, 0.55H), 3.13 (dd, *J* = 14.2, 5.2 Hz, 0.54H), 2.98 – 2.82 (m, 1.47H), 1.95 (td, *J* = 12.0, 3.6 Hz, 0.46H), 1.85 – 1.78 (m, 0.60H), 1.78 – 1.53 (m, 4H), 1.51 (d, *J* = 12.0 Hz, 0.56H), 1.34 (d, *J* = 12.8 Hz, 0.5H), 1.27 – 0.85 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 173.85, 173.60, 172.12, 171.82, 155.80, 155.66, 153.12, 152.95, 141.47, 141.19, 130.16, 130.12, 126.96, 126.37, 115.69, 115.60, 115.42, 115.00, 114.80, 114.70, 66.14, 65.24, 55.82, 55.73, 53.13, 52.47, 52.38, 52.33, 41.21, 41.07, 37.21, 37.17, 30.21, 30.02, 28.04, 27.87, 26.26, 26.21, 26.15, 26.08, 26.03. HRMS (ESI) $C_{25}H_{33}N_2O_5^+$ [M+H]⁺ calcd: 441.2384, found: 441.2367.

5ga

methyl (2-cyclohexyl-2-((4-methoxyphenyl)amino)acetyl)-*L***-tryptophanate (5ga): 30.1 mg, yield: 65%, Yellow oil. d.r. = 1.2:1 (determined by ¹H NMR). ¹H NMR (600 MHz, Chloroform-***d***) δ 8.58 (s, 0.53H), 8.28 (s, 0.46H), 7.50 (d, J = 8.0 Hz, 0.57H), 7.38 (dd, J = 10.9, 8.2 Hz, 1H), 7.28 (d, J = 8.1 Hz, 0.59H), 7.24 – 7.21 (m, 1H), 7.17 – 7.04 (m, 1.64H), 6.97 (td, J = 7.5, 7.0, 1.0 Hz, 0.51H), 6.82 (d, J = 2.4 Hz, 0.59H), 6.73 – 6.67 (m, 2H), 6.54 – 6.35 (m, 2.59H), 4.94 (dtd, J = 27.9, 8.1, 5.5 Hz, 1H), 3.81 – 3.55 (m, 7H), 3.44 (dd, J = 27.7, 4.5 Hz, 1H), 3.30 – 3.10 (m, 2H), 1.86 (dddd, J = 73.6, 12.5, 7.9, 3.9 Hz, 1H), 1.74 – 1.58 (m, 4H), 1.50 (d, J = 12.5 Hz, 0.58H), 1.35 (d, J = 12.9 Hz, 0.59H), 1.26 – 0.85 (m, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 173.26, 173.07, 172.35, 172.17, 152.99, 152.89, 141.62, 141.52, 136.24, 136.19, 127.60, 127.26, 123.25, 122.91, 122.06, 121.98, 119.50, 119.42, 118.47, 118.43, 115.32, 114.88, 114.75, 114.70, 111.43, 111.28, 109.90, 109.22, 65.87, 65.49, 55.79, 55.73, 52.90, 52.30, 52.25, 51.96, 41.22, 41.08, 30.22, 30.03, 28.01, 27.96, 27.76, 27.64, 26.31, 26.25, 26.22, 26.21, 26.14, 26.10. HRMS (ESI) C₂₇H₃₄N₃O₄⁺ [M+H]⁺ calcd: 464.2544, found: 464.2534.**

methyl (2-cyclohexyl-2-((4-methoxyphenyl)amino)acetyl)-*L*-alanyl-*L*-phenylalaninate (5ha): 37.1 mg, yield: 75%, White solid. M. p. 146 – 155 °C. d.r. = 1.3:1 (determined by ¹H NMR). ¹H NMR (600 MHz, MeOD) δ 7.26 – 7.21 (m, 2H), 7.20 – 7.16 (m, 1H), 7.15 – 7.08 (m, 2H), 6.71 (dd, *J* = 8.9, 1.9 Hz, 2H), 6.59 (dd, *J* = 11.5, 8.9 Hz, 2H), 4.62 – 4.55 (m, 1H), 4.42 – 4.35 (m, 1H), 3.66 (d, *J* = 5.8 Hz, 3H), 3.64 (d, *J* = 9.2 Hz, 3H), 3.51 (d, *J* = 6.3 Hz, 0.55H), 3.48 (d, *J* = 6.2 Hz, 0.44H), 3.03 (ddd, *J* = 13.8, 6.1, 2.0 Hz, 1H), 2.92 (dd, *J* = 13.9, 7.9 Hz, 0.48H), 2.84 (dd, *J* = 13.9, 8.3 Hz, 0.55H), 1.89 – 1.82 (m, 1H), 1.80 – 1.71 (m, 3H), 1.70 – 1.61 (m, 2H), 1.32 – 1.15 (m, 8H). ¹³C NMR (151 MHz, MeOD) δ 174.57, 172.91, 171.67, 152.57, 152.50,

141.90, 136.49, 136.45, 128.88, 128.83, 128.10, 126.52, 126.50, 114.51, 114.44, 114.36, 114.27, 64.80, 64.77, 54.69, 53.76, 53.70, 51.27, 51.25, 48.37, 48.25, 41.11, 36.97, 29.56, 28.92, 26.05, 26.03, 26.01, 25.95, 17.15, 17.00. HRMS (ESI) $C_{28}H_{38}N_3O_5^+$ [M+H]⁺ calcd: 496.2806, found: 496.2797.

(2-cyclohexyl-2-((4-methoxyphenyl)amino)acetyl)-L-isoleucyl-Lmethyl methioninate (5ia): 33.9 mg, yield: 65%, White solid. M. p. 176 - 180 °C. d.r. = 1.3:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 7.30 (d, J = 8.8 Hz, 0.54H), 7.24 (d, J = 8.8 Hz, 0.4H), 6.77 (dd, J = 8.8, 5.5 Hz, 2H), 6.65 – 6.53 (m, 3H), 4.69 (td, J = 7.6, 5.1 Hz, 0.58H), 4.64 (td, J = 7.9, 5.1 Hz, 0.44H), 4.29 (dd, J = 8.8, 6.5 Hz, 0.45H), 4.23 (dd, J = 8.8, 7.5 Hz, 0.57H), 3.79 – 3.67 (m, 7H), 3.52 (dd, J = 12.4, 4.5 Hz, 1H), 2.49 (t, J = 7.4 Hz, 1.14H), 2.42 – 2.35 (m, 0.89H), 2.18 – 2.03 (m, 4H), 2.01 -1.93 (m, 2H), 1.84 - 1.63 (m, 6H), 1.41 (ddq, J = 15.0, 7.4, 3.8 Hz, 0.52H), 1.33 - 1.031.13 (m, 5.55H), 1.09 - 0.86 (m, 4H), 0.82 (d, J = 6.8 Hz, 1.58H), 0.75 (t, J = 7.4 Hz, 1.54H). ¹³C NMR (151 MHz, CDCl₃) δ 173.35, 173.22, 172.00, 171.96, 170.97, 170.65, 153.22, 153.05, 141.38, 141.09, 115.04, 114.84, 114.75, 66.02, 65.29, 57.78, 57.41, 55.76, 55.67, 52.53, 52.48, 51.43, 51.26, 41.31, 41.15, 36.42, 36.33, 31.52, 31.45, 30.32, 30.30, 29.92, 29.89, 28.44, 28.19, 26.25, 26.23, 26.20, 26.17, 26.11, 24.84, 24.62, 15.65, 15.43, 15.41, 15.38, 11.26, 10.82. HRMS (ESI) C₂₇H₄₄N₃O₅S⁺ [M+H]⁺ calcd: 522.2996, found: 522.2977.

5ka

methyl N-((2*S*)-3-(4-(*tert*-butoxy)phenyl)-2-((2*S*)-2-(2-cyclohexyl-2-((4methoxyphenyl)amino)acetamido)-4-methylpentanamido)propanoyl)-*O*-(*tert*butyl)-*L*-seryl-*L*-phenylalanyl-*L*-alaninate (5ka): 69.9 mg, yield: 72%, White solid. d.r. = 1.4:1. (determined by ¹H NMR). ¹H NMR (600 MHz, DMSO- d_6) δ 8.70 (d, *J* = 9.2 Hz, 0.47H), 8.52 - 8.38 (m, 1.12H), 8.21 (d, *J* = 8.7 Hz, 0.52H), 8.05 - 7.74 (m, 3H), 7.48 - 7.00 (m, 8H), 6.93 - 6.49 (m, 5H), 5.32 (t, *J* = 5.0 Hz, 1H), 5.20 (d, *J* = 7.8 Hz, 0.41H), 5.04 (d, *J* = 9.1 Hz, 0.57H), 4.67 - 4.47 (m, 2H), 4.38 - 4.12 (m, 3H), 3.88 - 3.42 (m, 6H), 3.39 (t, J = 7.4 Hz, 1H), 3.31 – 3.18 (m, 1H), 3.02 (dd, J = 15.0, 4.8 Hz, 1H), 2.92 (ddt, J = 24.3, 14.6, 4.3 Hz, 1H), 2.82 (ddd, J = 12.2, 8.5, 3.2 Hz, 1H), 2.68 (tt, J = 17.6, 9.4 Hz, 1H), 1.99 (dq, J = 12.7, 6.9, 6.5 Hz, 2H), 1.85 – 1.41 (m, 5H), 1.39 – 0.93 (m, 28H), 0.87 – 0.58 (m, 6H). ¹³**C NMR** (151 MHz, DMSO- d_6) δ 174.73, 173.20, 172.28, 171.50, 171.12, 170.90, 169.56, 156.55, 153.79, 137.82, 132.76, 131.13, 130.23, 130.12, 129.72, 129.70, 128.43, 127.58, 126.68, 125.98, 123.69, 122.30, 115.20, 114.70, 114.27, 77.93, 73.38, 62.08, 55.70, 55.65, 53.84, 53.61, 52.36, 47.99, 38.16, 35.58, 31.75, 29.74, 29.55, 29.49, 29.44, 29.34, 29.30, 29.21, 29.16, 29.04, 29.01, 28.99, 27.63, 27.57, 27.02, 25.58, 24.68, 24.37, 23.59, 23.44, 22.56, 21.91, 21.64, 17.38, 14.42. HRMS (ESI) C₅₄H₇₉N₆O₁₀⁺[M+H]⁺ calcd: 971.5852, found: 971.5804.

6. Synthetic applications

Preparation of 6:

A mixture of 3aa (0.1 mmol, 26.5 mg) and CAN (cerium ammonium, 0.6 mmol, 318.1 mg) in 5:2 solution of H₂O/CH₃CN (1.0 mL) were stirred at 0 °C for 2 h. The mixture was modulated to alkalescence with saturated aqueous sodium carbonate. Then, the mixture was extracted by DCM for three times, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was dissolved in 1.0 mL DCM, followed by the addition of EDCI (0.16 mmol, 30.7 mg), HOBT (0.16 mmol, 21.6 mg), Fmoc-Ala-OH (0.12 mmol, 37.4 mg), and DIPEA (0.4 mmol, 70 µL). The mixture was stirred under argon atmosphere for 12 h. After completion of the reaction monitored by TLC, the resulting mixture was washed by citric acid solution (three times), saturated sodium bicarbonate solution (three times) and brine (two times). The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The product 6 was purified by silica gel column chromatography using hexane-EtOAc as eluents. methyl 2-((S)-2-(((9Hfluoren-9-yl)methoxy)carbonyl)amino)propanamido)-2-(tetrahydrofuran-2yl)acetate: 31.7 mg, yield: 70%, Yellow solid. M. p. 135.7 - 138.2 °C. d.r. = 1:1 (determined by ¹H NMR). ¹H NMR (600 MHz, CDCl₃) δ 7.74 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 6.7 Hz, 2H), 7.32 - 7.27 (m, 2H), 7.11 - 7.04 (m, 0.25H),

(d, J = 7.5 Hz, 2H), 7.38 (t, J = 6.7 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.11 – 7.04 (m, 0.25H), 7.01 (d, J = 8.3 Hz, 0.25H), 6.96 – 6.89 (m, 0.25H), 6.87 – 6.76 (m, 0.25H), 5.70 – 5.60 (m, 1H), 4.78 – 4.72 (m, 0.53H), 4.71 – 4.61 (m, 0.52H), 4.39 (d, J = 15.8 Hz, 3.5H), 4.20 (t, J = 6.6 Hz, 1H), 4.12 – 4.04 (m, 0.5H), 3.83 – 3.64 (m, 5H), 2.01 – 1.63 (m, 4 H), 1.47 – 1.36 (m, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 173.07, 172.99, 172.31, 172.22, 170.89, 170.58, 170.46, 155.94, 143.83, 127.74, 127.09, 125.14, 125.11, 119.99, 79.46, 78.59, 78.53, 69.16, 69.11, 68.83, 68.81, 67.14, 55.39, 55.34, 54.56, 54.50, 52.64, 52.46, 52.44, 50.75, 50.49, 50.40, 47.09, 28.06, 28.05, 28.02, 27.99, 26.02, 25.91, 25.43, 19.04, 18.86. HRMS (ESI) $C_{25}H_{29}N_2O_6^+$ [M+H]⁺ calcd: 453.2020, found: 453.2018.

Preparation of 7:

A mixture of 5aa (0.1 mmol, 27.7 mg) and CAN (cerium ammonium, 0.6 mmol, 318.1 mg) in 5:2 solution of H₂O/CH₃CN (1.0 mL) were stirred at 0 °C for 2 h. The mixture was modulated to alkalescence with saturated aqueous sodium carbonate. Then, the mixture was extracted by DCM for three times, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was dissolved in 1.0 mL DCM. Benzyloxycarbonyl chloride (0.12 mmol, 16.9 µL) was added. The resulting solution was cooled to 0 °C and TEA (0.12 mmol, 16.6 µL) was then added dropwise. After 5 min, the ice bath was removed and the mixture was allowed to stir for 2 h at roomtemperature. 10 mL DCM was added and the mixture was washed with H₂O (10 mL) and brine (10mL). The resulting solution was dried over Na₂SO₄ and evaporated in vacuo. The product 7 was purified by silica gel column chromatography using hexane-EtOAc eluents. methyl 2-(((benzyloxy)carbonyl)amino)-2as cyclohexylacetate: 22.9 mg, yield: 75%, Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.38 - 7.30 (m, 5H), 5.28 (d, J = 8.9 Hz, 1H), 5.10 (s, 2H), 4.29 (dd, J = 9.1, 5.2 Hz, 1H), 3.73 (s, 3H), 1.81 – 1.56 (m, 7H), 1.23 – 1.19 (m, 1H), 1.13 – 1.02 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 172.56, 156.16, 136.27, 128.55, 128.21, 128.17, 67.05, 58.75, 52.15, 41.03, 29.42, 28.04, 25.95. HRMS (ESI) C₁₇H₂₄NO₄⁺ [M+H]⁺ calcd: 306.1700, found: 306.1702.

7. The mechanistic studies

7.1 Radical inhibition experiments and control experiments of HAT reaction

To an oven-dried 10 mL quartz test tube with a stirring bar was added derivative of glycine or peptide **1a** (0.1 mmol, 19.5 mg), (Tol)DBT·OTf (0.2 mmol, 84.8 mg), DABCO (0.3 mmol, 33.7 mg), TEMPO (0.3 mmol, 46.9 mg) or BHT (0.3 mmol, 66.1 mg). Then, air was withdrawn and backfilled with Ar (three times). acetone (0.5 mL) and THF (0.5 ml) were added. The reaction mixture was irradiated with white LED for 12 h under continuous cooling via fan. Then, the reaction was quenched with water (4 mL), extracted with ethyl acetate, washed with brine, dried over anhydrous sodium sulfate, concentrated in vacuo, and the yields of **3aa** were determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard. In the presence of TEMPO or BHT, the reaction was completely suppressed and the yield of **3aa** was 0%. But the alkyl or aryl radicals were not captured.

Imine did not give any desired product under standard reaction conditions, revealing that the two electron-oxidation pathway was unlikely happened and imine was not a potential intermediate.

The negative performance with 1a-N- CH_3 as the substrate indicated that the presence of hydrogen on the nitrogen atom is critical. The formation of glycine derivative secondary nitrogen radical is a key intermediate that promoted the formation of glycine *C*-centered radical via intermolecular hydrogen atom transfer. Furthermore, 1a-C- CH_3 failed to participate in coupling maybe attributed to the instability of tertiary radical in the presence of C_{α} -methyl influenced by unfavorable nonbonding interaction. Distinguished from C_{α} -substituted amino acids, glycine *C*-centered radical possesses a favorable conformation, which is relatively free of nonbonding interactions and allowing maximum delocalization of the unpaired electron.

When the protecting group on N atom of **1a** was replaced by -Ac (**1a-Ac**), no corresponding product was obtained. It indicated that aryl protection on N atom is crucial for this reaction.

7.2 Radical capture experiment

To further verify that the reaction occurs through the radical pathway, we used 1,1diphenylethylene as a radical capture reagent to capture the radicals generated during the reaction. In the presence of 1,1-diphenylethylene, the yield of **3aa** decreased to 35%. Furthermore, the glycinate radical-alkene-aryl radical adduct **8** was obtained in 25% yield, and the glycinate radical-alkene-alkyl radical adduct **9** was detected by HRMS.

To an oven-dried 10 mL quartz test tube with a stirring bar was added derivative of glycine or peptide **1a** (0.1 mmol, 19.5 mg), (Tol)DBT·OTf (0.2 mmol, 84.8 mg), DABCO (0.3 mmol, 33.7 mg). Then, air was withdrawn and backfilled with Ar (three times). acetone (0.5 mL), THF (0.5 ml) and 1,1-Diphenylethylene (0.4 mmol, 71 μ L) were added. The reaction mixture was irradiated with white LED for 12 h under continuous cooling via fan. Then, the reaction was quenched with water (4 mL), extracted with ethyl acetate, washed with brine, dried over anhydrous sodium sulfate, concentrated in vacuo and purified by column chromatography (hexane/ethyl acetate) to afford the **3aa** and **8**.

methyl 2-((4-methoxyphenyl)amino)-3,3-diphenyl-4-(*p*-tolyl)butanoate (8): Colorless oil. 11.6 mg, yield 25%. ¹H NMR (400 MHz, DMSO- d_6) δ 7.30 (d, J = 3.7 Hz, 5H), 7.22 – 7.16 (m, 3H), 6.95 (dd, J = 6.5, 3.1 Hz, 2H), 6.83 (d, J = 7.7 Hz, 2H),

6.73 (d, J = 8.7 Hz, 2H), 6.58 – 6.50 (m, 4H), 4.76 (d, J = 11.2 Hz, 1H), 4.26 (d, J = 11.3 Hz, 1H), 3.63 (s, 3H), 3.62 – 3.45 (m, 2H), 3.31 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 172.91, 152.47, 143.80, 143.61, 140.92, 135.50, 134.39, 131.05, 130.04, 129.78, 128.40, 127.97, 127.62, 127.15, 126.78, 115.17, 114.77, 60.58, 55.64, 55.55, 51.94, 44.10, 21.05. HRMS (ESI) C₃₁H₃₂NO₃⁺ [M+H]⁺ calcd: 466.2377, found: 466.2358.

7.3 Radical inhibition experiments and control experiments of XAT reaction

To an oven-dried 10 mL quartz test tube with a stirring bar was added derivative of glycine or peptide **1a** (0.1 mmol, 19.5 mg), (Tol)DBT·OTf (0.2 mmol, 84.8 mg) and

DABCO (0.3 mmol, 33.7 mg). Then, air was withdrawn and backfilled with Ar (three times). acetone (1.0 mL) and **4a** (0.3 mmol, 38.8 μ L) were added. The reaction mixture was irradiated with Blue LED for 12 h under continuous cooling via fan. Then, the reaction was quenched with water (4 mL), extracted with ethyl acetate, washed with brine, dried over anhydrous sodium sulfate, concentrated in vacuo, and the yields of **5aa** were determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard. The results of XAT reaction were similar to HAT reation.

7.4 Analysis of UV-Vis absorption spectra

The UV-Vis absorption spectrum was performed on UV visible spectrophotometer (recorded in acetone in 1 mm path quartz cuvettes using BIOMATE 3S UV-Visible Spectrophotometer). 1a $(2 \times 10^{-2} \text{ M})$, (Tol)DBT·OTf $(2 \times 10^{-2} \text{ M})$, DABCO $(2 \times 10^{-2} \text{ M})$ M), [1a + DABCO] (2 × 10⁻² M, 1a:DABCO = 1:1), $[(Tol)DBT \cdot OTf + DABCO]$ (2 × 10^{-2} M, (Tol)DBT·OTf:DABCO = 1:1), [1a + (Tol)DBT·OTf] (2 × 10^{-2} M, 1a: (Tol)DBT·OTf = 1:1), [1a + (Tol)DBT·OTf + DABCO] (2 × 10⁻² M, 1a: (Tol)DBT·OTf:DABCO = 1:1:1), 4a (2 × 10⁻² M), [4a + DABCO] (2 × 10⁻² M, 4a:DABCO = 1:1, $[1a + 4a] (2 \times 10^{-2} \text{ M}, 1a:4a = 1:1)$, $[1a + 4a + DABCO] (2 \times 10^{-2} \text{ M})$ M, 1a: 4a:DABCO = 1:1:1)in acetone were provided, respectively. We observed the $[1a + (Tol)DBT \cdot OTf]$ mixture displayed an obviously red-shift in absorbance, diagnostic of an EDA complex. Furthermore, we also collected the UV/Vis spectrum of DABCO and the mixture of $[1a + (Tol)DBT \cdot OTf + DABCO]$, respectively. DABCO showed almost no absorption. Combining 1a, (Tol)DBT·OTf, and DABCO, the absorption of mixture showed further red-shifted, which suggesting that the addition of DABCO enhanced the formation of EDA complex. An obvious color change of the mixture solution also explained the formation of EDA complex to some extent. Although the combination of 1a, 4a and DABCO showed an obvious red-shift in absorbance, compared with 1a and the mixture of 1a and 4a. When (Tol)DBT·OTf was absent, the product of 5aa could not be obtained.

7.5 Quantum yield determination

7.5.1 HAT reaction

To an oven-dried 20 mL round-bottom flask with a stirring bar was added derivative of glycine **1a** (1.5 mmol, 292.7 mg), (Tol)DBT·OTf (3.0 mmol, 1.2721 g), DABCO (4.5 mmol, 504.8 mg), Then, air was withdrawn and backfilled with Ar (three times). acetone (7.5 mL) and THF (7.5 mL) were added. The reaction mixture was irradiated with white LED for 6.38 h. After irradiation, the solution was measured the unit area photon flux (TBQ-5 photosynthetic active radiation meter, TRM-SCY). And the yield of product formed was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard. The quantum yield is calculated using the following equation:

$$\Phi = \frac{mol \ product}{flux \cdot S \cdot t}$$

Where, Φ is quantum yield, S (m²) is the irradiation area and t (s) is the photoreaction

time.

Experiment: the unit photon flux was $3058 \ \mu mol \cdot s^{-1} \cdot m^{-2}$ (average of three experiments), the irradiation area was $1.043 \times 10^{-3} m^2$, and the product yield was 41% after 383 min (22980 s).

Quantum yield calculation:

$$\Phi = \frac{mol \ product}{flux \cdot S \cdot t} = \frac{0.41 \times 1.5 \times 10^3}{3058 \times 1.043 \times 10^{-3} \times 22980} = 0.0084$$

7.5.2 XAT reaction

To an oven-dried 25 mL round-bottom flask with a stirring bar was added derivative of glycine **1a** (1.5 mmol, 292.7 mg), (Tol)DBT·OTf (3.0 mmol, 1.2721 g), DABCO (4.5 mmol, 504.8 mg), Then, air was withdrawn and backfilled with Ar (three times). acetone (15 mL) and **4a** (4.5 mmol, 582 μ L) were added. The reaction mixture was irradiated with white LED for 6.8 h. After irradiation, the solution was measured the unit area photon flux (TBQ-5 photosynthetic active radiation meter, TRM-SCY). And the yield of product formed was determined by ¹H NMR using 4-bromobenzaldehyde as an internal standard. The quantum yield is calculated using the following equation:

$$\Phi = \frac{mol \ product}{flux \cdot S \cdot t}$$
Where, Φ is quantum yield, $S(m^2)$ is the irradiation area and t(s) is the photoreaction

time.

Experiment: the unit photon flux was 453 μ mol·s⁻¹·m⁻² (average of three experiments), the irradiation area was 1.043×10^{-3} m², and the product yield was 68% after 408 min (24480s).

Quantum yield calculation:

 $\Phi = \frac{mol \, product}{flux \cdot S \cdot t} = \frac{0.68 \times 1.5 \times 10^3}{453 \times 1.043 \times 10^{-3} \times 24480} = 0.088$

7.6 Light/dark experiment

7.6.1 HAT reaction

To an oven-dried 25 mL round-bottom flask with a stirring bar was added derivative of glycine **1a** (0.5 mmol, 97.6 mg), (Tol)DBT·OTf (1.0 mmol, 424.1 mg), DABCO (1.5 mmol, 183.3 mg), Then, air was withdrawn and backfilled with Ar (three times). acetone (2.5 mL) and THF (2.5 mL) were added. The reaction mixture was irradiated with white LED and kept in the dark in one-hour intervals. The yield was determined by ¹H NMR.

7.6.2 XAT reaction

To an oven-dried 10 mL quartz test tube with a stirring bar was added derivative of glycine or peptide **1a** (0.5 mmol, 97.6 mg), (Tol)DBT·OTf (1.0 mmol, 424.1 mg) and DABCO (1.5 mmol, 183.3 mg). Then, air was withdrawn and backfilled with Ar (three times). acetone (5.0 mL) and **4a** (1.5 mmol, 194.0 μ L) were added. The reaction mixture was irradiated with blue LED and kept in the dark in one-hour intervals. The yield was determined by ¹H NMR.

8. References

- 1 Nithinchandra, B. Kalluraya, S. Aamir and A. R. Shabaraya, *Eur. J. Med. Chem.*, 2012, **54**, 597–604.
- 2 C. Wang, M. Guo, R. Qi, Q. Shang, Q. Liu, S. Wang, L. Zhao, R, Wang and Z. Xu, *Angew. Chem. Int. Ed.*, 2018, 57, 15841–15846.
- 3 H. Zhao, V. Cuomo, J. Rossi-Ashton and D. Procter, *Chem.*, 2024, **10**, 1240–1251.
- 4 P. Kong, Y. Ye, X. Zhang, X. Bao and C. Huo, Org. Lett., 2024, 26, 7507–7513.
- 5 X. Dang, Z. Li, J. Shang, C. Zhang, C. Wang and Z. Xu, *Angew. Chem. Int. Ed.*, 2024, **63**, e202400494.

9. NMR spectra of products

¹³C NMR of **3aa** (101 MHz, CDCl₃)

S40

S41

S47

¹³C NMR of 5aa (101 MHz, CDCl₃)

¹³C NMR of 3aj (101 MHz, CDCl₃)

S52

S57

¹³C NMR of 3ha (101 MHz, MeOD)

¹³C NMR of 3ka (151 MHz, DMSO-*d*₆)

¹³C NMR of 5ab (151 MHz, CDCl₃)

¹³C NMR of 5ad (101 MHz, CDCl₃)

¹³C NMR of 5ae (151 MHz, CDCl₃)

¹³C NMR of 5af (101 MHz, CDCl₃)

¹³C NMR of 5ag (151 MHz, CDCl₃)

¹³C NMR of 5ah (151 MHz, CDCl₃)

¹³C NMR of 5aj (101 MHz, CDCl₃)

¹³C NMR of 5ak (101 MHz, CDCl₃)

¹³C NMR of 5al (151 MHz, CDCl₃)

¹³C NMR of 5am (101 MHz, CDCl₃)

¹³C NMR of 5la (151 MHz, CDCl₃)

¹³C NMR of 5ca (151 MHz, CDCl₃)

¹³C NMR of 5ea (151 MHz, CDCl₃)

¹³C NMR of 5fa (151 MHz, CDCl₃)

¹³C NMR of 5ma (151 MHz, CDCl₃)

 ^{13}C NMR of 5ha (151 MHz, CDCl_3)

¹³C NMR of 5ia (151 MHz, CDCl₃)

