Supporting Information

Synthesis and transport properties of [Ni₃Sn][Ni₄₋ _xS₂], a *n*-type metal-rich sulfide with an intergrowth structure

Laura Agnarelli, *a Denis Pelloquin a, Antoine Maignan a and Sylvie Hébert a

Fig. 1S. Rietveld refinement of the X-ray diffraction patterns of the sample with nominal composition Ni₆SnS₂ at different stages of the synthesis. Step 1 (a, after the first annealing): the refined phase composition is 78.5 wt% Ni₆SnS₂, 10.0 wt% Ni₉Sn₂S₂, 4.4 wt% Ni metal, and 7.25 wt% Ni₃S₂. Step 2 (b, after cold pressing into a pellet and second annealing): the refined phase composition is 98.5 wt% Ni₆SnS₂ and 1.5 wt% Ni₉Sn₂S₂. Step 3 (after spark plasma sintering, SPS): the refined phase composition is 97.5 wt% Ni₆SnS₂ and 2.5 wt% Ni₉Sn₂S₂. X-ray diffraction data were collected using Co $\kappa\alpha_{1,2}$ radiation.

Fig. 25. (left) Rietveld refinement of the X-ray diffraction pattern collected from the surface of the SPS pellet with nominal composition Ni₆SnS₂, revealing strong texturation with the crystallite *c*-axes preferentially oriented perpendicular to the pellet surface (i.e., parallel to the uniaxial pressure applied during SPS). X-ray diffraction data were collected using Co $K\alpha_{1,2}$ radiation. (right) Reconstructed pole figure derived from the spherical harmonics model used in the refinement, indicating a high density of crystallites with their *c*-axes aligned along the diffraction vector.

Composition	Ni _{6.34} SnS ₂
Space group	I4/mmm (no. 139)
Lattice parameters	<i>a</i> = 3.6534(1) Å
	<i>c</i> = 18.170(2) Å
	<i>V</i> = 242.521(4) Å ³
Radiation, wavelength	Co radiation (λ_1 = 1.78897 Å, λ_2 = 1.79285 Å)
Profile fitting	Pseudo-Voigt ^[a]
χ^2	1.60

Table 1S. Crystallographic data for $Ni_{7-\delta}SnS_2$ from XRPD refinement after SPS treatment.

^[a] Rietveld method

Table 25. Atomic coordinates and isotropic displacement parameters for Ni₇₋₆SnS₂ determined from XRPD Rietveld refinement.

Atom	site	Occupancy	x/a	y/b	z/c	B _{iso}
Sn	2a		0	0	0	0.3623(1)
Ni1	8g		0	0.5	0.1064(1)	0.7596(1)
Ni2	2 <i>b</i>		0.5	0.5	0	0.1131(1)
Ni3	4 <i>e</i>	0.3690(1)	0	0	0.2114(1)	0.5645(1)*

Ni4	4 <i>d</i>	0.3041(1)	0	0.5	0.25	0.5645(1)*
S	4 <i>e</i>		0.5	0.5	0.1843(1)	0.3686(1)

* B_{iso} fixed for the refinement

Fig. 3S. Electron diffraction patterns along [001] and [010] directions, revealing weak satellite reflections indicative of potential structural modulation.

Fig. 4S. Temperature-dependent electrical resistivity (ρ) of Ni₆SnS₂ measured parallel to the SPS pressing direction (pink curve) and perpendicular to it (red curve). The data reveal significant resistivity anisotropy.

Fig. 55. Temperature dependence of the total thermal conductivity (κ_{tot} , black squares), electronic thermal conductivity (κ_{ele} , red circles) and lattice thermal conductivity (κ_{latt} , blue triangles) of Ni₆SnS₂ measured from 250 K to 2 K along the direction perpendicular to the SPS pressing axis. The electronic contribution was estimated using the Wiedemann–Franz law with a Lorenz number L = $2.44 \times 10^{-8} \text{ W}\Omega \text{K}^{-2}$.

Fig. 6S. T dependence of magnetic susceptibility (χ) for Ni₆SnS₂ (red) and Ni₉Sn₂S₂ (blue) ¹². The data correspond to the zero-field-cooling measurements in 0.1T.