Supplementary Information

Probing Polarity Structure-Function Relationships in Amine-Water Mixtures

Elizabeth Dach^a, Elonne Pisacane^b, Devon Campbell^a, Lindsay Soh^{*,c}, and Ngai Yin Yip^{*,a,d}

^a Department of Earth and Environmental Engineering, Columbia University, New York, NY, United States

^b Integrative Engineering Program, Lafayette College, Easton, PA, United States

^c Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, PA, United States

^d Columbia Water Center, Columbia University, New York, NY, United States

* Corresponding author: Email: sohl@lafayette.edu, Phone: +1 610 3305447; Email: n.y.yip@columbia.edu, Phone: +1 212 8542984

Materials and Methods

Chemicals and Samples Preparation

99% dipropylamine (DPA). >99.5% diisopropylamine (DIPA). 99% N.Ndimethylcyclohexylamine (DMCHA), >99% N-ethylcyclohexylamine (ECHA), and ≥99% 4nitroaniline (4-NAi) were acquired from MilliporeSigma (Burlington, MA, United States). 95% N,N-dimethyl-4-nitroaniline (NND4) was procured from AstaTech (Bristol, PA, United States). All solvents were dried with 3 Å molecular sieves for at least 12 h before further sample preparations. Solvent-water mixtures were prepared by combining appropriate amounts of solvent and deionized (DI) water from a Milli-Q system (Millipore, Billerica, MA, United States) and stirring for at least 30 min. The water contents of the desiccated solvents and solvent-water mixtures were characterized by Karl Fischer titration with the volumetric method (870 Titrino plus, Metrohm, Herisau, Switzerland).¹ The weight percents of water in the desiccated solvents were determined to be 0.13% (DPA), 0.09% (DIPA), 0.17% (DMCHA), and 0.16% (ECHA).

Relative Permittivity Determination

Relative permittivity was characterized using an Epsilon+ dielectricity sensor with an Omega thermostat (Flucon, Barbis, Germany). The temperature was controlled within ± 0.01 °C between 25–60 °C in 5 °C increments using a ramp rate of 0.2 °C/min. 8.0 mL of solvent or solvent-water mixture was pipetted directly into the test cell for each measurement.

Kamlet-Taft Parameter Determination

Kamlet-Taft parameters were determined following the method outlined in our prior work.² Individual stock solutions of 4-NAi and NND4 probes were prepared in acetone. Probe-solvent solutions were produced by pipetting the acetone stock solutions into clean, dry glass vials and removing the acetone by gentle evaporation under ambient conditions. The dye was redissolved in 3.0 mL of the appropriate solvent or solvent-water solution and stirred for 30 min. 2.0 mL of this working solution was added to a capped 10 mm quartz cuvette. The dye concentrations were adjusted to maintain the maximum absorbance below 1 absorbance unit. Absorbance spectra for DIPA, DMCHA, and ECHA (and their solvent-water mixtures) were collected on a GENESYS 10S UV-visible spectrophotometer in conjunction with a Thermo Scientific air-cooled Peltier temperature controller; absorbance spectra for DPA were collected on a Cary 100 UV-visible spectrophotometer in conjunction with a Cary Temperature Controller. For both

spectrophotometers, the temperature was controlled within ± 0.1 °C between 25–60 °C in 5 °C increments with an equilibration time at each temperature of at least 5 min. Spectral data were collected in 0.1 nm steps. The SciPy Python package was used to analyze the spectral data; wavelength-absorbance curves were first smoothed with a Savitzky-Golay filter, and the find_peaks function was used to find the wavelength corresponding to maximum absorbance. In cases where more than one absorbance peak was observed, the lowest energy (highest wavelength) peak was used per the definition of the Kamlet-Taft parameters.^{3–5}

The Kamlet-Taft solvatochromic parameters, β and π^* , were determined as a function of temperature and water concentration from the frequency corresponding to the maximum absorbance for each probe according to the equations modified by Lagalante et al.⁶ The frequencies of maximum absorption for the reference solvents for β and π^* were taken from Lagalante et al. and fixed at the 25 °C values, which is recommended to maintain a consistent normalized scale. The π^* parameter measures the combined dipolarity and polarizability of the solution. The solvatochromic shift of the NND4 probe used to calculate π^* depends on probe-solvent dipole-dipole and dipole-induced dipole interactions. π^* is calculated from the maximum absorbance frequency in the NND4-solvent mixture ($v_{\text{NND4}}^{\text{solvent}}$) relative to cyclohexane ($v_{\text{NND4}}^{\text{cyclohexane}}$) and dimethyl sulfoxide ($v_{\text{NND4}}^{\text{DMSO}}$):

$$\pi^* = \frac{v_{\text{NND4}}^{\text{solvent}} - v_{\text{NND4}}^{\text{cyclohexane}}}{v_{\text{NND4}}^{\text{DMSO}} - v_{\text{NND4}}^{\text{cyclohexane}}} = \frac{v_{\text{NND4}}^{\text{solvent}} - 28.18}{-3.52}$$
(S1)

The β value measures the hydrogen bond accepting capabilities of the solution. β value of a solution is proportional to the displacement of its solvatochromic shift from that of the reference solvent (hexamethylphosphoramide) for a given solvatochromic probe pair. NND4 and 4NAi were used as the probe pair, as recommended by Lagalante et al. for N-H donor solvents.⁶

$$\beta = \frac{0.9841v_{\text{NND4}}^{\text{solvent}} + 3.49 - v_{4\text{NAi}}^{\text{solvent}}}{2.759}$$
(S2)

Results and Discussion

Figure S1. Chemical structures of the thermomorphic hydrophilicity amine solvents used in this study. The horizontal line separates the pairs of constitutional isomeric solvents. Throughout the study, A) *N*-ethylcyclohexylamine (ECHA), a secondary amine, is compared against B) *N*,*N*-dimethylcylohexylamine (DMCHA), a tertiary amine. C) Dipropylamine (DPA), a linear amine, is juxtaposed against D) diisopropylamine (DIPA), a branched amine. DMCHA and ECHA are constitutional isomers.

Figure S2. Temperature-dependent properties of dipropylamine, DPA, and diisopropylamine, DIPA (blue diamond and green triangle symbols, respectively): A) mole fraction solubility of water in amine ($x_{H_2O}^{amine}$), B) relative permittivity (ε_r), C) hydrogen bond basicity, i.e., hydrogen bond acceptor ability, (β), and D) dipolarity/polarizability (π^*). Note that the amines are desiccated in B–D. Data points and error bars in B–D are means and standard deviations, respectively, from duplicate samples. Dashed lines are ordinary least squares linear regressions, with slopes ($\partial/\partial T$) labeled.

T é	Water Content (volume fraction)						
(°C)		N,N-dimethylcyclohexylamine					
	0.0	0.01	0.03	0.04	0.07		
25	2.82	3.23	4.09	4.31	5.21		
30	2.81	3.20	4.05	4.28	5.14		
35	2.79	3.17	4.00	4.28	5.10		
40	2.77	3.14	3.99	4.30	5.08		
45	2.75	3.11	3.99	4.37	5.13		
50	2.74	3.08	4.00	4.50	5.38		
55	2.72	3.05	4.03	separates into biphasic mixtur			
60	2.71	3.03	4.00				
		N-o	ethylcyclohexylar	nine			
	0.0	0.01	0.03	0.04	0.06		
25	3.36	3.81	4.66	5.50	6.25		
30	3.32	3.76	4.62	5.41	6.15		
35	3.27	3.70	4.57	5.31	6.05		
40	3.23	3.65	4.53	5.23	5.95		
45	3.19	3.60	4.48	5.14	5.87		
50	3.16	3.55	4.44	5.06	5.80		
55	3.12	3.50	4.39	4.98	5.74		
60	3.09	3.45	4.34	4.91	5.70		
	Diisopropylamine						
	0.0	0.01	0.02	0.04	0.05		
25	3.06	3.43	4.18	4.80	5.54		
30	3.02	3.38	4.11	4.72	5.44		
35	2.98	3.33	4.04	4.64	5.38		
40	2.94	3.28	3.97	4.57	5.34		
45	2.90	3.23	3.91	4.51	5.33		
50	2.87	3.18	3.84	4.48	5.34		
55	2.83	3.13	3.78	4.46	5.42		
60	2.80	3.09	3.72	4.44	5.58		

Table S1. Compilation of polarity scale data: relative permittivity (ε_r).

	Dipropylamine				
	0.0	0.01	0.03	0.04	0.06
25	3.22	3.60	4.47	5.10	5.82
30	3.17	3.54	4.38	5.00	5.70
35	3.12	3.48	4.30	4.90	5.59
40	3.08	3.42	4.22	4.81	5.50
45	3.03	3.37	4.14	4.73	5.42
50	2.99	3.32	4.07	4.66	5.35
55	2.95	3.27	4.00	4.60	5.31
60	2.92	3.22	3.94	4.56	5.27

Tomporatura	Water Content (volume fraction)					
(°C)	N,N-dimethylcyclohexylamine					
	0.0	0.01	0.03	0.04		
25	0.801	0.991	0.960	0.892		
30	0.757	0.972	0.942	0.905		
35	0.731	0.942	0.949	0.904		
40	0.713	0.929	0.939	0.898		
45	0.701	0.911	0.919	0.897		
50	0.692	0.880	0.918	0.892		
55	0.671	0.838	0.898	0.887		
60	0.668	0.793	0.888	0.880		
	N-ethylcyclohexylamine					
	0.0	0.01	0.03	0.04	0.06	
25	0.887	0.939	1.06	1.05	0.959	
30	0.885	0.956	1.03	0.995	0.931	
35	0.880	0.947	1.03	0.981	0.919	
40	0.881	0.917	1.02	0.912	0.935	
45	0.878	0.907	1.03	0.921	0.918	
50	0.879	0.913	1.04	0.922	0.917	
55	0.884	0.915	1.03	0.914	0.945	
60	0.888	0.925	1.02	0.911	0.959	
	Diisopropylamine					
	0.0	0.01	0.03	0.05		
25	0.717	0.922	0.993	0.894		
30	0.703	0.889	0.975	0.910		
35	0.684	0.813	0.962	0.911		
40	0.677	0.760	0.942	0.900		
45	0.672	0.724	0.929	0.888		
50	0.662	0.690	0.907	0.885		
55	0.655	0.666	0.875	0.870		
60	0.666	0.649	0.855	0.844		

Table S2. Compilation of polarity scale data: hydrogen bond accepting ability or basicity (β).

	Dipropylamine				
	0.0	0.01	0.03	0.04	0.05
25	0.879	0.987	0.960	0.890	0.827
30	0.836	0.96	0.991	0.885	0.816
35	0.812	0.950	0.985	0.894	0.809
40	0.788	0.886	0.978	0.903	0.826
45	0.779	0.856	0.971	0.913	0.841
50	0.746	0.785	0.948	0.918	0.874
55	0.744	0.802	0.908	0.878	0.818
60	0.736	0.787	0.891	0.904	0.852

Tommonoturo	Water Content (volume fraction)					
(°C)	N,N-dimethylcyclohexylamine					
	0.0	0.01	0.03	0.04		
25	0.296	0.359	0.441	0.523		
30	0.290	0.349	0.433	0.493		
35	0.282	0.341	0.414	0.478		
40	0.279	0.330	0.404	0.463		
45	0.271	0.323	0.393	0.447		
50	0.261	0.314	0.380	0.435		
55	0.254	0.305	0.369	0.418		
60	0.248	0.296	0.355	0.397		
	N-ethylcyclohexylamine					
	0.0	0.01	0.03	0.04	0.06	
25	0.354	0.428	0.490	0.468	0.651	
30	0.347	0.410	0.466	0.443	0.651	
35	0.342	0.399	0.457	0.442	0.634	
40	0.336	0.394	0.436	0.437	0.609	
45	0.332	0.383	0.416	0.427	0.590	
50	0.325	0.373	0.408	0.424	0.578	
55	0.319	0.353	0.396	0.425	0.553	
60	0.314	0.354	0.388	0.425	0.539	
			Diisopropylamine	2		
	0.0	0.01	0.03	0.05		
25	0.284	0.331	0.418	0.551		
30	0.277	0.317	0.406	0.534		
35	0.271	0.314	0.389	0.509		
40	0.270	0.304	0.384	0.486		
45	0.261	0.292	0.372	0.466		
50	0.261	0.278	0.355	0.452		
55	0.260	0.272	0.346	0.430		
60	0.264	0.256	0.330	0.402		

Table S3. Compilation of polarity scale data: dipolarity/polarizability (π *).

	Dipropylamine				
	0.0	0.01	0.03	0.04	0.05
25	0.291	0.325	0.403	0.505	0.545
30	0.284	0.318	0.372	0.481	0.530
35	0.276	0.319	0.362	0.463	0.526
40	0.272	0.316	0.340	0.442	0.503
45	0.270	0.314	0.320	0.424	0.483
50	0.263	0.306	0.313	0.411	0.445
55	0.246	0.270	0.306	0.402	0.460
60	0.235	0.268	0.293	0.362	0.415

References

- ASTM International ASTM E203-23 Standard Test Method for Water Using Volumetric Karl Fischer Titration / GlobalSpec. https://standards.globalspec.com/std/14624106/astme203-23 (accessed 2025-01-24).
- (2) Berry, R. T.; Dach, E.; Melhorn, J. A.; Yip, N. Y.; Soh, L. Assessing the Temperature-Dependent Tunable Polarity of N,N-Dimethylcyclohexylamine (DMCHA) and Water Mixtures. ACS Sustainable Chem. Eng. 2022, 10 (11), 3726–3734. https://doi.org/10.1021/acssuschemeng.2c00293.
- (3) Kamlet, M. J.; Taft, R. W. The Solvatochromic Comparison Method. I. The .Beta.-Scale of Solvent Hydrogen-Bond Acceptor (HBA) Basicities. *J. Am. Chem. Soc.* 1976, 98 (2), 377– 383. https://doi.org/10.1021/ja00418a009.
- (4) Kamlet, M. J.; Abboud, J. L.; Taft, R. W. The Solvatochromic Comparison Method. 6. The .Pi.* Scale of Solvent Polarities. *J. Am. Chem. Soc.* 1977, 99 (18), 6027–6038. https://doi.org/10.1021/ja00460a031.
- (5) Taft, R. W.; Kamlet, M. J. The Solvatochromic Comparison Method. 2. The .Alpha.-Scale of Solvent Hydrogen-Bond Donor (HBD) Acidities. J. Am. Chem. Soc. 1976, 98 (10), 2886–2894. https://doi.org/10.1021/ja00426a036.
- (6) Lagalante, A. F.; Wood, C.; Clarke, A. M.; Bruno, T. J. Kamlet–Taft Solvatochromic Parameters for 25 Glycol Ether Solvents and Glycol Ether Aqueous Solutions. *Journal of Solution Chemistry* **1998**, 27 (10), 887–900. https://doi.org/10.1023/A:1022607127781.