# **Supporting Information**

# Table of Contents

| 1. | Materials and Methods          | S2   |
|----|--------------------------------|------|
| 2. | Synthetic Procedures           | S3   |
| 3. | Spectroscopic Characterization | S5   |
| 4. | Selected NMR Spectra           | S9   |
| 5. | Crystallographic Data          | .S15 |
| 6. | Computational Details          | .S20 |
| 7. | References                     | .S43 |

### 1. Materials and Methods

All experiments were conducted in dry glassware under an inert nitrogen or argon atmosphere by applying standard Schlenk techniques or gloveboxes (MBraun) using freshly dried and degassed solvents. Hexanes and pentanes were degassed with nitrogen, dried over a column with activated aluminum oxide (Innovative Technology, Pure Solv 400-4-MD, Solvent Purification System) and then stored under inert atmosphere over molecular sieves (3 Å). Tetrahydropyran (THP) was dried over freshly grounded CaH<sub>2</sub>, distilled and stored over molecular sieves (3 Å) under inert atmosphere. Deuterated benzene (C<sub>6</sub>D<sub>6</sub>) and deuterated methylcyclohexane (C<sub>7</sub>D<sub>14</sub>) were purchased either from Deutero GmbH or Sigma Aldrich, degassed and dried over molecular sieves (3 Å) and stored under an inert atmosphere. N<sub>2</sub>O was purchased from Messer N25. The following compounds were prepared according to literature procedures:  $[(BDI*)Ca]_2(N_2);^{S1}$   $[(BDI*)Ca(THP)]_2(N_2);^{S1}$  BDI\* =  $HC[C(Me)N(DIPPP)]_2$ , DIPeP = 2,6-(Et<sub>2</sub>CH)-phenyl.

Infrared spectra were acquired on a Bruker Alpha II FT-IR spectrometer equipped with a Platinum ATR diamond from the neat compounds under inert conditions inside a glovebox. All spectra were recorded at room temperature in the range of 400–4000 cm<sup>-1</sup> with a resolution of 4 cm<sup>-1</sup> and baseline corrected. Wavenumbers  $\tilde{\nu}$  are given in cm<sup>-1</sup> and intensities of IR bands are described using the following terms: s = strong, m = medium and w = weak. NMR spectra were measured on Bruker Avance III H 400 MHz and Bruker Avance III HD 600 MHz NMR spectrometers. Chemical shifts ( $\delta$ ) are denoted in ppm (parts per million) and coupling constants in Hz (Hertz). <sup>1</sup>H and <sup>13</sup>C NMR spectra were referenced to the solvent residual signal (SiMe<sub>4</sub> = 0 ppm). Signal multiplicities are described using common abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet) and br (broad). Elemental analysis was performed with a Hekatech Eurovector EA3000 analyzer. All crystal structures have been measured on a SuperNova (Agilent) diffractometer with dual Cu and Mo microfocus sources and an Atlas S2 detector.

## 2. Synthetic Procedures

Synthesis of  $[(BDI*)Ca(THP)]_2(\mu_2-O_2)$  (1). Method A:  $[(BDI*)Ca](N_2)$  (98 mg, 83.9 µmol) was suspended in precooled hexanes (-25 °C, 4 mL) The suspension was degassed *via* one freeze-pump-thaw cycle and cooled to -85 °C. At this temperature pre-dried pressurized air was added under vigorous stirring. Upon



warming to -20 °C, a yellow solution was obtained. The hexanes solution was concentrated to approximately ¼ of its prior volume, filtered, 3 drops of THP were added and cooled to -25 °C. Overnight, [(BDI\*)Ca(THP)]<sub>2</sub>( $\mu_2$ -O<sub>2</sub>) was obtained as colorless crystals suitable for X-ray diffraction analysis. The supernatant was decanted and the crystals were washed with cold pentane (-25 °C, 2 x 1 mL) and dried *in vacuo* (crystalline yield: 60 mg, 44.6 µmol, 53%).

*Method B:* [(BDI\*)Ca(THP)]<sub>2</sub>(N<sub>2</sub>) (96 mg, 71.6 µmol) was suspended in precooled hexanes (-25 °C, 4 mL) The suspension was degassed *via* two freeze-pump-thaw cycles and cooled to -85 °C. At this temperature pre-dried pressurized air was added under vigorous stirring. Upon warming to 0 °C, a yellow solution was obtained. The hexanes solution was concentrated to approximately ¼ of its prior volume, filtered and cooled to -25 °C. Overnight, [(BDI\*)Ca(THP)]<sub>2</sub>( $\mu_2$ -O<sub>2</sub>) was obtained as colorless crystals suitable for X-ray diffraction analysis. The supernatant was decanted and the crystals were washed with cold pentane (-25 °C, 2 x 1 mL) and dried *in vacuo* (crystalline yield: 35 mg, 26.0 µmol, 13%).

<sup>1</sup>**H NMR** (600.13 MHz, C<sub>6</sub>D<sub>6</sub>, 298K):  $\delta$  = 0.76 (t, <sup>3</sup>J = 7.5 Hz, 12H, CH<sub>3</sub>), 0.88 (t, <sup>3</sup>J = 7.5 Hz, 12H, CH<sub>3</sub>), 1.32 (m, 12H, THP β-,γ-CH<sub>2</sub>), 1.45 (m, 10H, CH<sub>2</sub>), 1.53–1.68 (m, 24H, CH<sub>2</sub>), 1.71 (s, 12H, CH<sub>3</sub>-backbone), 2.71–2.76 (m, CH), 3.52 (m, 8H, THP α-CH<sub>2</sub>), 4.78 (s, 2H, CH-backbone), 7.02–7.04 (m, 8H, *meta*-CH-arom.), 7.09–7.12 (m, 4H, *para*-CH-arom.) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (150.92 MHz, C<sub>6</sub>D<sub>6</sub>, 298K):  $\delta$  = 12.6 (CH<sub>3</sub>), 13.1 (CH<sub>3</sub>), 23.8 (THP γ-CH<sub>2</sub>), 24.7 (CH<sub>3</sub>backbone), 26.9 (THP β-CH<sub>2</sub>), 27.7 (CH<sub>2</sub>), 29.4 (CH<sub>2</sub>), 42.4 (CH), 68.7 (THP α-CH<sub>2</sub>), 93.1 (CH-backbone), 123.8 (*para*-C-arom.), 124.8 (*meta*-C-arom.), 139.4 (*ortho*-C-arom.), 148.5 (N-C-arom.), 165.3 (CNbackbone) ppm.

**FT-IR** (ATR, pure):  $\tilde{\nu}$  = 2960 (m), 2928 (m), 2870 (w), 1532 (w), 1514 (w),1456 (m), 1402 (s), 1172 (m), 1040 (m), 923 (m), 871 (m), 782 (m), 751 (m), 645 (m) cm<sup>-1</sup>.

**Elemental analysis** Calculated for C<sub>84</sub>H<sub>134</sub>Ca<sub>2</sub>N<sub>4</sub>O<sub>4</sub> (M = 1344.18 g/mol): C 75.06, H 10.05, N 4.17; Found: C 75.10, H 9.96, N 4.52. **Synthesis of [(BDI\*)Ca(THP)]**<sub>2</sub>( $\mu$ -O) (2). A J-Young NMR tube was charged with crystals of [(BDI\*)Ca(THP)]<sub>2</sub>(N<sub>2</sub>) (62.0 mg, 46.3 µmol), evacuated and cooled to -70 °C. At this temperature, the atmosphere was backfilled with 1 atm of N<sub>2</sub>O. Upon warming to 0 °C, a color change from dark brown to off-white was visible. The atmosphere of N<sub>2</sub>O was removed *in vacuo*. The off-white solid was dissolved in



pentane (500 µL), filtered and the clear yellow solution was cooled to -25 °C. Overnight, [(BDI\*)Ca(THP)]<sub>2</sub>(µ-O) was obtained as colorless crystals suitable for X-ray diffraction analysis. The supernatant was decanted and the crystals were washed with cold pentane (-25 °C, 2 x 1 mL) and dried *in vacuo* (crystalline yield: 16.6 mg, 12.5 µmol, 27%).

**FT-IR** (ATR, pure):  $\tilde{\nu}$  = 2960 (m), 2928 (m), 2870 (m), 1500 (s), 1461 (m),1435 (m), 1388 (s), 1336 (m), 1160 (m), 1032 (m), 959 (w), 824 (m), 775 (m), 570 (w) cm<sup>-1</sup>.

Melting point: 105–109 °C (decomp.)

**Elemental analysis** Calculated for C<sub>84</sub>H<sub>134</sub>Ca<sub>2</sub>N<sub>4</sub>O<sub>3</sub> (M = 1328.18 g/mol): C 75.96, H 10.17, N 4.22; Found: C 76.20, H 9.96, N 4.13.

Note: Conversion of  $[(BDI*)Ca(THP)]_2(N_2)$  in a hexanes solution led to formation of reported dianionic Ca complex  $[(^{DIPeP}BDI^{2-})Ca^{2+}(THP)]_2$  (see **Figure S11/S12**).

# 3. Spectroscopic Characterization



**Figure S1.** <sup>1</sup>H NMR spectrum (600.13 MHz, C<sub>6</sub>D<sub>6</sub>, 298K) of [(BDI\*)Ca(THP)]<sub>2</sub>(μ<sub>2</sub>-O<sub>2</sub>) (**1**).



**Figure S2.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (150.92 MHz, C<sub>6</sub>D<sub>6</sub>, 298K) of [(BDI\*)Ca(THP)]<sub>2</sub>(μ<sub>2</sub>-O<sub>2</sub>) (**1**).



**Figure S3.** <sup>13</sup>C(DEPT 135){<sup>1</sup>H} NMR spectrum (150.92 MHz, C<sub>6</sub>D<sub>6</sub>, 298K) of  $[(BDI^*)Ca(THP)]_2(\mu_2-O_2)$  (1).



**Figure S4.** <sup>1</sup>H-<sup>1</sup>H COSY NMR spectrum (600.13 MHz, C<sub>6</sub>D<sub>6</sub>, 298K) of [(BDI\*)Ca(THP)]<sub>2</sub>(μ<sub>2</sub>-O<sub>2</sub>) (1).



**Figure S5.** <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectrum (600.13/150.92 MHz, C<sub>6</sub>D<sub>6</sub>, 298K) of [(BDI\*)Ca(THP)]<sub>2</sub>(μ<sub>2</sub>-O<sub>2</sub>) (**1**).



**Figure S6.** <sup>1</sup>H-<sup>13</sup>C HMBC NMR spectrum (600.13/150.92 MHz, C<sub>6</sub>D<sub>6</sub>, 298K) of [(BDI\*)Ca(THP)]<sub>2</sub>( $\mu_2$ -O<sub>2</sub>) (1).



**Figure S7.** FT-IR ATR spectrum of  $[(BDI*)Ca(THP)]_2(\mu_2-O_2)$  (1).



**Figure S8.** FT-IR ATR spectrum of  $[(BDI^*)Ca(THP)]_2(\mu$ -O) (2).

# 4. Selected NMR Spectra



**Figure S9.** <sup>1</sup>H NMR spectrum (600.13 MHz,  $C_7D_{14}$ , 298K) of the crude reaction product for conversion of a methylcyclohexane solution of  $[(BDI^*)Ca(THP)]_2(N_2)$  with dry air showing selective formation of  $[(BDI^*)Ca(THP)]_2(\mu_2-O_2)$  (1). Residual methylcyclohexane signals are marked with asterisks.



**Figure S10.** Thermal stability of a  $C_6D_6$  solution of  $[(BDI^*)Ca(THP)]_2(\mu_2-O_2)$  (**1**) at various temperatures compared to a <sup>1</sup>H NMR spectrum of  $[(BDI^*)Ca(THP)]_2(O_2)$  in  $C_6D_6$ . At 65 °C high-field shifted signals appear around –0.5 ppm. This indicates decomposition by alkyl chain deprotonation.



**Figure S11.** No-D NMR spectrum of the reaction between  $[(BDI^*)Ca(THP)]_2(N_2)$  and  $N_2O$  in hexanes at -70 °C recorded after 5 minutes. Signals in the typical area for the backbone CH moiety between 4.30 to 4.80 ppm show formation of several species. Precipitation of off-white powder was observed. From the mother liquor we isolated a batch of crystals of  $[(BDI^*)^2-Ca^{2+}(THP)]_2$  as identified by X-ray diffraction and <sup>1</sup>H NMR analysis (see **Figure S12**).



**Figure S12.** <sup>1</sup>H NMR spectrum (600.13 MHz,  $C_6D_6$ , 298K) of  $[(BDI^*)^2-Ca^{2+}(THP)]_2$  obtained from the reaction mixture of the reaction of  $[(BDI^*)Ca(THP)]_2(N_2)$  in hexanes with  $N_2O$  at -70 °C. The <sup>1</sup>H NMR spectrum is in agreement with previous reported NMR data.<sup>S1</sup>



**Figure S13.** <sup>1</sup>H NMR spectrum (600.13 MHz, C<sub>6</sub>D<sub>6</sub>, 298K) of crystalline [(BDI\*)Ca(THP)]<sub>2</sub>( $\mu$ -O) (**2**) dissolved in C<sub>6</sub>D<sub>6</sub> showing that this complex is very reactive and not stable in solution. Decomposition is not selective and several signals in the typical area for the backbone methane signals between 4.60 to 4.85 ppm are visible. Signals at negative ppm values indicate C–H activation and deprotonation in the CHEt<sub>2</sub> arm. High-field shifted signals at –0.14 and –1.27 ppm in a ratio of 1:2 are present. The singlet may arise from a hydroxide unit and the triplet at –1.27 ppm from a deprotonated CH<sub>3</sub>-group of the Et<sub>2</sub>CH-arm bound to a calcium center.



**Figure S14.** Variable temperature <sup>1</sup>H NMR spectra (600.13 MHz,  $C_7D_{14}$ ) of crystalline [(BDI\*)Ca(THP)]<sub>2</sub>( $\mu$ -O) (**2**) which has been dissolved in  $C_7D_{14}$  and was kept at -80 °C. It proves that the bridging oxide is very reactive and not stable in solution. It is likely that immediate C–H activation of the DIPeP arm occurs.

## 5. Crystallographic Data

Suitable single crystals of compounds **1-2** were embedded in protective perfluoropolyalkylether oil (viscosity 1800 cSt; ABCR GmbH) on a microscope slide and a single specimen was selected and subsequently transferred to the cold nitrogen gas stream of the diffractometer.

The intensity data was collected at 100 K using Cu $K_{\alpha}$  radiation ( $\lambda = 1.54184$  Å) on an Agilent SuperNova dual radiation diffractometer with microfocus X-ray sources and mirror optics. The measured data were processed with the CrysAlisPro software package.<sup>52</sup> Data were corrected for Lorentz and polarization effects, and an empirical absorption correction using spherical harmonics as well as a numerical absorption correction based on gaussian integration over a multifaceted crystal model were applied. Using Olex2,<sup>53</sup> the structures were solved by dual-space methods (SHELXT)<sup>54</sup> and refined by full-matrix least-squares procedures on  $F^2$  using SHELXL.<sup>55</sup> All non-hydrogen atoms were refined with anisotropic displacement parameters. Most H-atoms were placed in geometrically calculated positions and refined by using a riding model where each H-atom was assigned a fixed isotropic displacement parameters atoms the ligand backbone of both compounds deviated significantly from the calculated position. Therefore, these H atoms were placed in the positions indicated by a difference electron density map and their positions were refined together with an isotropic displacement parameter.

In case of  $[(BDI^*)Ca(THP)]_2(\mu_2-O_2)$  (1), a similar situation was observed. The asymmetric unit contained only half of the molecule and the co-crystalized hexane was disordered. Both half-molecules of the solvent were disordered about inversion centers. One of the moieties was modeled as disordered *n*-hexane, using similarity restraints (SADI, SIMU). The second moiety seemed to be a mixture of different hexane isomers with *n*-hexane as the dominant species (an isomeric mixture of hexanes was used for crystallization). However, attempts to build a suitable disorder model failed in this case. Therefore, a solvent mask<sup>57</sup> was calculated for this solvent moiety using Olex2<sup>53</sup> and 50.9 electrons were found in a volume of 228.5 A<sup>3</sup> (10.1% of the unit cell) in one void. This is consistent with the presence of one hexane per formula unit which accounts for 50 electrons per unit cell.

The asymmetric unit of compound  $[(BDI^*)Ca(THP)]_2(\mu-O)$  (2) contained half of the molecule and two half-molecules of *n*-pentane, which were disordered about inversion centers. This disorder was modeled with the help of similarity restraints (SADI) and rigid bond restraints (RIGU).<sup>S6</sup>

The crystal structure data has been deposited with the Cambridge Crystallographic Data Centre. CCDC 2427514-2427515 contain the supplementary crystallographic data for the complexes. This data

can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data\_request/cif</u>.

Crystallographic and refinement data are summarized in Table S1.

 Table S1. Crystal data and structure refinement for compounds 1-2.

| Compound                                    | [(BDI*)Ca(THP)] <sub>2</sub> ( $\mu_2$ -O <sub>2</sub> )·2hexane ( <b>1</b> ) | [(BDI*)Ca(THP)]₂(µ-O)·2( <i>n</i> -pentane) ( <b>2</b> )      |
|---------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|
| Identification code                         | hasj211028b                                                                   | hasj220112b                                                   |
| Empirical formula                           | $C_{96}H_{162}Ca_2N_4O_4$                                                     | $C_{94}H_{158}Ca_2N_4O_3$                                     |
| Formula weight                              | 1516.45                                                                       | 1472.39                                                       |
| Temperature/K                               | 100.0(4)                                                                      | 100.0(6)                                                      |
| Crystal system                              | triclinic                                                                     | triclinic                                                     |
| Space group                                 | P-1                                                                           | P-1                                                           |
| a/Å                                         | 12.8220(3)                                                                    | 12.7723(3)                                                    |
| b/Å                                         | 12.8590(2)                                                                    | 12.8615(3)                                                    |
| c/Å                                         | 16.6221(3)                                                                    | 16.5534(3)                                                    |
| α/°                                         | 71.9328(16)                                                                   | 71.5478(17)                                                   |
| β/°                                         | 71.5933(19)                                                                   | 72.2458(17)                                                   |
| γ/°                                         | 62.498(2)                                                                     | 62.332(2)                                                     |
| Volume/ų                                    | 2262.16(10)                                                                   | 2243.75(9)                                                    |
| Z                                           | 1                                                                             | 1                                                             |
| ρ <sub>calc</sub> g/cm <sup>3</sup>         | 1.113                                                                         | 1.090                                                         |
| µ/mm <sup>-1</sup>                          | 1.470                                                                         | 1.460                                                         |
| F(000)                                      | 838.0                                                                         | 814.0                                                         |
| Crystal size/mm <sup>3</sup>                | $0.308 \times 0.193 \times 0.161$                                             | 0.263 × 0.22 × 0.13                                           |
| Radiation                                   | Cu Kα (λ = 1.54184)                                                           | Cu Kα (λ = 1.54184)                                           |
| 20 range for data collection/°              | 5.714 to 145.368                                                              | 5.73 to 148.788                                               |
| Index ranges                                | -13 ≤ h ≤ 15, -15 ≤ k ≤ 15, -20 ≤ l ≤ 20                                      | -15 ≤ h ≤ 15, -16 ≤ k ≤ 15, -20 ≤ l ≤ 20                      |
| Reflections collected                       | 34013                                                                         | 32978                                                         |
| Independent reflections                     | 8804 [R <sub>int</sub> = 0.0233, R <sub>sigma</sub> = 0.0199]                 | 8939 [R <sub>int</sub> = 0.0267, R <sub>sigma</sub> = 0.0230] |
| Data/restraints/parameters                  | 8804/75/485                                                                   | 8939/49/529                                                   |
| Goodness-of-fit on F <sup>2</sup>           | 1.061                                                                         | 1.034                                                         |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0320$ , $wR_2 = 0.0819$                                              | $R_1 = 0.0419$ , $wR_2 = 0.1129$                              |
| Final R indexes [all data]                  | $R_1 = 0.0335$ , $wR_2 = 0.0833$                                              | $R_1 = 0.0479$ , w $R_2 = 0.1177$                             |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.52/-0.54                                                                    | 0.71/-0.33                                                    |
| CCDC number                                 | 2427515                                                                       | 2427514                                                       |



**Figure S15.** Solid state structure of  $[(BDI)Ca(THP)]_2(\mu_2-O_2)$  (1). Ellipsoids represent 50% probability. Hydrogen atoms have been omitted for clarity.



**Figure S16.** Solid state structure of  $[(BDI^*)Ca(THP)]_2(\mu-O)$  (2). Ellipsoids represent 50% probability. Hydrogen atoms have been omitted for clarity.

# 6. Computational Details

All calculations were carried out using Gaussian 16A.<sup>S8</sup> All methods were used as implemented. All structures were fully optimized at a B3PW91-GD3BJ/def2svp level of theory which includes Grimme D3 dispersion correction using Becke–Johnson dampening (GD3BJ).<sup>S9–S13</sup> All structures were characterized as true minima (Nimag = 0) or as transition states (Nimag = 1) by frequency calculations on the same level of theory. Energies were determined at a B3PW91-GD3BJ/def2tzvp level of theory. The same level of theory was used for the NPA charge calculations with NBO.<sup>S14</sup> All structures were evaluated using Molecule 2.3.<sup>S15</sup> QTAIM analysis was carried out using AIMAII (v17) with the wave functions obtained at the B3PW91-GD3BJ/def2tzvp level of theory.



bond distance calculated bond distance

**Figure S17.** Comparison of calculated bond distances (in italic) with those in the crystal structure given in Å for complex  $[(BDI^*)Ca(THP)]_2(\mu_2-O_2)$  (1).



bond distance calculated bond distance

**Figure S18.** Comparison of calculated bond distances (in italic) with those in the crystal structure given in Å for complex [(BDI\*)Ca(THP)]<sub>2</sub>( $\mu$ -O) (**2**).



WBI O-O: 0.99

**Figure S19.** NPA charges for selected atoms or groups and Wiberg Bond Index (WBI) in the peroxide dianion  $O_2^{2^-}$  for complex [(BDI\*)Ca(THP)]<sub>2</sub>( $\mu_2$ -O<sub>2</sub>) (1).



**Figure S20.** NPA charges for selected atoms or groups for complex  $[(BDI^*)Ca(THP)]_2(\mu-O)$  (2).



**Figure S21.** Contour plots of the Laplacian of  $[(BDI^*)Ca(THP)]_2(\mu_2-O_2)$  (**1**) showing areas of electron density concentration (dashed lines) and depletion (solid lines). The BCP's are shown in blue. The electron density  $\rho(\mathbf{r})$  in  $e \cdot B^{-3}$  (orange box) and the Laplacian  $\nabla^2 \rho(\mathbf{r})$  in  $e \cdot B^{-5}$  (green box) in the BCPs (blue) are given. NPA charges are given in red boxes. In addition, weak O···H–C bonding interactions of the  $O_2^{2^-}$  dianion with organic fragments of the BDI\* ligand are displayed.



**Figure S22.** Contour plots of the Laplacian of  $[(BDI^*)Ca(THP)]_2(\mu-O)$  (**2**) showing areas of electron density concentration (dashed lines) and depletion (solid lines). The BCP's are shown in blue. The electron density  $\rho(\mathbf{r})$  in  $e \cdot B^{-3}$  (yellow box) and the Laplacian  $\nabla^2 \rho(\mathbf{r})$  in  $e \cdot B^{-5}$  (green box) in the BCPs (blue) are given. NPA charges are given in red boxes. In addition, weak O···H–C bonding interactions of the O<sup>2-</sup> dianion with organic fragments of the BDI\* ligand are displayed.



**Figure S23.** Molecular Orbital Diagram of  $[(BDI^*)Ca(THP)]_2(\mu_2-O_2)$  (1) calculated at the B3PW91-GD3BJ/def2tzvp//B3PW91-GD3BJ/def2svp level of theory.

**Table S2.** Selected MO's for  $[(BDI^*)Ca(THP)]_2(\mu_2-O_2)$  (1) with most prominent contributions, computed at the B3PW91-GD3BJ/def2tzvp//B3PW91-GD3BJ/def2svp level of theory.

| LUMO+4                                                    | C175-p=0.0635, C61-p=0.0631, C179-p=0.0614, C181-p=0.0612, C65-<br>p=0.0610, C67-p=0.0607, C174-p=0.0579, C60-p=0.0575, C20-p=0.0549,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                           | C134-p=0.0548, $C26-p=0.0514$ , $C140-p=0.0513$ , $C24-p=0.0242$ , $C138-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| p=0.0241, C19-p=0.0229, C133-p=0.0228                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                           | C134-p=0.0691, C140-p=0.0668, C20-p=0.0668, C26-p=0.0646, C138-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| LUMO+3                                                    | p=0.0561, C24-p=0.0537, C133-p=0.0531, C19-p=0.0509, C61-p=0.0455,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                           | C175-p=0.0437, C67-p=0.0414, C181-p=0.0397, C65-p=0.0393, C179-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| p=0.0379, C60-p=0.0373, C174-p=0.0360                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                           | C24-p=0.0732, C138-p=0.0706, C19-p=0.0689, C133-p=0.0665, C26-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                           | p=0.0579, C20-p=0.0578, C140-p=0.0554, C134-p=0.0553, C175-p=0.0452,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| LOWO+2                                                    | C61-p=0.0436, C181-p=0.0410, C67-p=0.0395, C179-p=0.0302, C65-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                           | p=0.0289, C174-p=0.0286, C60-p=0.0274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                           | C127-p=0.1270, C13-p=0.1265, C124-p=0.1147, C10-p=0.1143, N119-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| LUMO+1                                                    | p=0.0677, N5-p=0.0675, N118-p=0.0630, N4-p=0.0628, Ca2-d=0.0127, Ca1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                           | d=0.0126. H131-s=0.0118. H17-s=0.0118. C125-d=0.0112. C11-d=0.0111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| C13-p=0.1257. C127-p=0.1252. C10-p=0.1148. C124-p=0.1144. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                           | p=0.0674, N119-p=0.0672, N4-p=0.0622, N118-p=0.0620, Ca1-d=0.0136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| LUMO                                                      | Ca2-d=0.0136 H17-s=0.0117 H131-s=0.0117 C11-d=0.0111 C125-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| номо                                                      | O2-p=0.4563, O1-p=0.4563, Ca2-d=0.0125, Ca1-d=0.0125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                           | C125-p=0.1972. C11-p=0.1960. N119-p=0.1076. N5-p=0.1069. N118-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| HOMO-1                                                    | p=0.1068, N4-p=0.1061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                                                           | C11-p=0.1905, C125-p=0.1892, N5-p=0.1050, N119-p=0.1043, N4-p=0.1021,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| HOMO-2                                                    | N118-p=0.1014, O1-p=0.0139 O2-p=0.0139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                           | O2-p=0.0984, O1-p=0.0984, N5-p=0.0588, N119-p=0.0587. C63-p=0.0579.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                           | С177-р=0.0579. С59-р=0.0537. С173-р=0.0536. С67-р=0.0294. С181-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| HOMO-3                                                    | p=0.0293, C60-p=0.0289, C174-p=0.0289, N4-p=0.0185, N118-p=0.0185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                           | (18-p=0.0162 (132-p=0.0162 (22-p=0.0151 (136-p=0.0151 N5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                           | s=0.0141 N119-s=0.0141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                           | $N_{110} = 0.0545$ $N_{5-n} = 0.0565$ $C_{177-n} = 0.0531$ $C_{63-n} = 0.0531$ $C_{173-n} = $                                                                                                                                                                               |  |  |  |
|                                                           | n=0.0509 (50 $n=0.0503$ , $n=0.0272$ (18 $n=0.0272$ (126 $n=0.0271$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                           | $p = 0.0303$ , $C = 3^{-}p = 0.0303$ , $C = 3^{-}p = 0.0372$ , $C = 0.0372$ , $C = 3^{-}p = 0.0371$ ,<br>$C = 2^{-}p = 0.0370$ N118 $p = 0.0260$ N4 $p = 0.0260$ C181 $p = 0.0289$ C67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                           | $(222 - \mu - 0.0570, 1110 - \mu - 0.0503, 114 - \mu = 0.0503, 0.161 - \mu = 0.0288, 0.07 - \mu = 0.07 - \mu = 0.0288, 0.07 - \mu = 0.0288, 0.07 - \mu = 0.078, 0.07 - \mu = 0.0288, 0.07 - \mu = 0.078, 0.07 - \mu = 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.078, 0.0$ |  |  |  |
|                                                           | p=0.0288, $C1/4-p=0.0272$ , $C60-p=0.0272$ , $C140-p=0.0199$ , $C26-p=0.0199$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                           | C133-p=0.0191, C19-p=0.0191, N119-s=0.0142, N5-s=0.0142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |



**Figure S24.** Molecular Orbital Diagram of  $[(BDI^*)Ca(THP)]_2(\mu$ -O) (2) calculated at the B3PW91-GD3BJ/def2tzvp//B3PW91-GD3BJ/def2svp level of theory.

**Table S3.** Selected MO's for  $[(BDI^*)Ca(THP)]_2(\mu-O)$  (2) with most prominent contributions, computed at the B3PW91-GD3BJ/def2tzvp//B3PW91-GD3BJ/def2svp level of theory.

|        | C176-p=0.1312, C63-p=0.1311, C172-p=0.1295, C59-p=0.1294, C61-        |  |  |
|--------|-----------------------------------------------------------------------|--|--|
| LUMO+4 | p=0.0425, C174-p=0.0425, C67-p=0.0334, C180-p=0.0334, C178-p=0.0269,  |  |  |
|        | C65-p=0.0269, C173-p=0.0163, C60-p=0.0162                             |  |  |
|        | C61-p=0.1057, C174-p=0.1056, C67-p=0.0954, C180-p=0.0954, C60-        |  |  |
| LUMO+3 | p=0.0938, C173-p=0.0936, C65-p=0.0913, C178-p=0.0911, C59-d=0.0102,   |  |  |
|        | C172-d=0.0102                                                         |  |  |
|        | C178-p=0.1106, C65-p=0.1106, C173-p=0.0975, C60-p=0.0974, C180-       |  |  |
| LUMO+2 | p=0.0810, C67-p=0.0809, C174-p=0.0786, C61-p=0.0785, C123-p=0.0113,   |  |  |
|        | C10-p=0.0112                                                          |  |  |
|        | C126-p=0.1236, C13-p=0.1232, C123-p=0.1108, C10-p=0.1104, N118-       |  |  |
| LUMO+1 | p=0.0680, N5-p=0.0678, N117-p=0.0620, N4-p=0.0618, C124-d=0.0109,     |  |  |
|        | C11-d=0.0109, H128-s=0.0103, H15-s=0.0103                             |  |  |
|        | C13-p=0.1202, C126-p=0.1198, C10-p=0.1058, C123-p=0.1054, N5-         |  |  |
| LUMO   | p=0.0660, N118-p=0.0658, N4-p=0.0599, N117-p=0.0597, C11-d=0.0104,    |  |  |
|        | C124-d=0.0104                                                         |  |  |
|        | O2-p=0.4797, C124-p=0.0784, C11-p=0.0769, N117-p=0.0483, N4-          |  |  |
| HOMO   | p=0.0475, N118-p=0.0410, N5-p=0.0403, Ca115-d=0.0200, Ca1-d=0.0200    |  |  |
|        | C11-p=0.1926, C124-p=0.1921, N4-p=0.1087, N117-p=0.1084, N5-p=0.0992, |  |  |
| HOMO-1 | N118-p=0.0989, O2-p=0.0193                                            |  |  |
|        | O2-p=0.3418, C11-p=0.1191, C124-p=0.1181, N4-p=0.0670, N117-          |  |  |
| HOMO-2 | p=0.0664, N5-p=0.0612, N118-p=0.0607, Ca1-d=0.0203, Ca115-d=0.0203    |  |  |
| HOMO–3 | O2-p=0.8480, Ca1-d=0.0394, Ca2-d=0.0394                               |  |  |
| HOMO-4 | O2-p=0.7788. Ca2-d=0.0562. Ca1-d=0.0562. N5-p=0.0108. N118-p=0.0108   |  |  |

#### NLMO analysis for the Ca–(O<sub>2</sub>)–Ca and Ca–O–Ca moieties in complexes 1 and 2

Using the Natural-Localized-Molecular-Orbital (NLMO) method (**Table S4** and **Table S5**) shows that the bonding orbital O–O in Ca peroxide **1** is predominately comprised of O orbitals. For Ca peroxide **1** as well as for Ca oxide **2**, all lone-pairs are predominately located on the O orbitals.

| <b>Table S4.</b> NLMOs for $[(BDI^*)Ca(THP)]_2(\mu_2-O_2)$ (1) including the O valence electrons. Contributions of no | on- |
|-----------------------------------------------------------------------------------------------------------------------|-----|
| metals are neglectable.                                                                                               |     |

| (2.00000)                | 98.979% O1 s (90.34%), p 0.11 (9.65%), d 0.00 (0.01%) f 0.00 ( 0.00%)         |
|--------------------------|-------------------------------------------------------------------------------|
| (2.0000) 8               | 0.015% O2 s (16.16%), p 4.26 (68.87%), d 0.88 (14.19%), f 0.05 (0.78%)        |
| 90.9781/0                | 0.429% Ca1 s (89.13%), p 0.01 (0.85%), d 0.11 (10.02%)                        |
|                          | 0.428% Ca2 s (88.63%), p 0.01 (0.79%), d 0.12 (10.58%)                        |
| (2.00000) e <sup>-</sup> | 98.355% O1 s (0.76%), p 99.99 (99.21%), d 0.03 (0.03%), f 0.00 (0.00%)        |
| (2.0000) e               | 0.061% O2 s (0.05%), p 99.99 (58.06%), d 99.99 (40.75%), f 21.77 (1.14%)      |
| 98.3554%                 | 0.326% Ca1 s (1.38%), p 1.38 (1.90%), d 70.24 (96.72%)                        |
|                          | 0.263% Ca2 s (1.26%), p 2.35 (2.96%), d 76.18 (95.78%)                        |
| (2.00000) e <sup>-</sup> | 97.178% O1 s (0.03%), p 99.99 (99.93%), d 1.44 (0.04%), f 0.03 (0.00%)        |
| (2.00000) e              | 0.124% O2 s (0.07%), p 99.99 (81.56%), d 99.99 (17.78%), f 8.58 (0.59%)       |
| Jonenair O1              | 1.179% Ca1 s (0.46%), p 15.11 (6.94%), d 99.99 (92.60%)                       |
|                          | 1.012% Ca2 s (5.87%), p 0.68 (3.98%), d 15.37 (90.15%)                        |
| (2.00000) e <sup>-</sup> | 0.015% O1 s (16.17%), p 4.26 (68.86%), d 0.88 (14.19%), f 0.05 (0.78%)        |
| (2.00000) e              | 98.979% O2 s (90.34%), p 0.11 (9.65%), d 0.00 (0.01%), f 0.00 (0.00%)         |
| lonenair O2              | 0.428% Ca1 s (88.63%), p 0.01 (0.79%), d 0.12 (10.58%)                        |
|                          | 0.429% Ca2 s (89.12%), p 0.01 (0.85%), d 0.11 (10.02%)                        |
| (2 00000) <i>e</i> ⁻     | 0.061% O1 s (0.05%), p 99.99 (58.05%), d 99.99 (40.75%), f 21.83 (1.14%)      |
| 98 3554%                 | 98.355% O2 s (0.76%), p 99.99 (99.21%), d 0.03 (0.03%), f 0.00 (0.00%)        |
| lonenair O2              | 0.263% Ca1 s (1.25%), p 2.36 (2.96%), d 76.34 (95.79%)                        |
|                          | 0.326% Ca2 s (1.38%), p 1.38 (1.90%), d 70.28 (96.72%)                        |
| (2.00000) <i>e</i> ⁻     | 0.124% O1 s (0.07%), p 99.99 (81.56%), d 99.99 (17.78%), f 8.55 (0.59%)       |
| 97 1774%                 | 97.177% O2 s (0.03%), p 99.99 (99.93%), d 1.44 (0.04%), f 0.03 (0.00%)        |
| lonenair O2              | 1.012% Ca1 s (5.87%), p 0.68 (3.98%), d 15.37 (90.15%)                        |
|                          | 1.180% Ca2 s (0.46%), p 15.12 (6.94%), d 99.99 (92.60%)                       |
| (2.00000) <i>e</i> ⁻     | <b>49.417% O1 s (9.26%), p 9.78 (90.56%)</b> , d 0.02 (0.17%), f 0.00 (0.01%) |
| 98.8294%                 | <b>49.417% O2 s (9.26%), p 9.78 (90.56%)</b> , d 0.02 (0.17%), f 0.00 (0.01%) |
| Bonding                  | 0.430% Ca1 s (37.59%), p 0.49 (18.50%), d 1.17 (43.91%)                       |
| orbital O1–O2            | 0.430% Ca2 s (37.59%), p 0.49 (18.50%), d 1.17 (43.91%)                       |

**Table S5.** NLMOs for  $[(BDI^*)Ca(THP)]_2(\mu-O)$  (2) including the O valence electrons. Contributions of nonmetals are neglectable.

| (2.00000) <i>e</i> <sup>-</sup> | <b>99.186% O2 s (99.77%)</b> , p 0.00 (0.22%), d 0.00 (0.01%), f 0.00 (0.00%) |
|---------------------------------|-------------------------------------------------------------------------------|
| 99.1862%                        | 0.365% Ca1 s (60.42%), p 0.03 (1.88%), d 0.62 (37.70%)                        |
| lonepair O2                     | 0.365% Ca2 s (60.42%), p 0.03 (1.88%), d 0.62 (37.70%)                        |
| (2.00000) <i>e</i> <sup>-</sup> | 96.782% O2 s (0.00%), p 1.00 (100.00%), d 0.00 (0.00%), f 0.00 (0.00%)        |
| 96.7813%                        | 0.969% Ca1 s (0.75%), p 6.38 (4.79%), d 99.99 (94.45%)                        |
| lonepair O2                     | 0.969% Ca2 s (0.75%), p 6.38 (4.79%), d 99.99 (94.45%)                        |
| (2.00000) <i>e</i> ⁻            | 96.274% O2 s (0.22%), p 99.99 (99.78%), d 0.02 (0.00%), f 0.00 (0.00%)        |
| 96.2735%                        | 0.937% Ca1 s (0.98%), p 0.90 (0.88%), d 99.99 (98.15%)                        |
| lonepair O2                     | 0.937% Ca2 s (0.98%), p 0.90 (0.88%), d 99.99 (98.14%)                        |
| (2.00000) <i>e</i> ⁻            | 94.501% O2 s (0.00%), p 1.00 (100.00%), d 0.00 (0.00%), f 0.00 (0.00%)        |
| 94.5008%                        | 2.318% Ca1 s (0.24%), p 31.49 (7.58%), d 99.99 (92.18%)                       |
| lonepair O2                     | 2.318% Ca2 s (0.24%), p 31.51 (7.58%), d 99.99 (92.18%)                       |



**Figure S25.** Energy profile (B3PW91/def2tzvp//def2svp) for the reaction of ether-free [(BDI\*)Ca]<sub>2</sub>(N<sub>2</sub>) with O<sub>2</sub> (red), 0.5 O<sub>2</sub> (black), and N<sub>2</sub>O (blue) which shows extremely exothermic conversions to the ether-free Ca peroxide complex [(BDI\*)Ca]<sub>2</sub>( $\mu_2$ -O<sub>2</sub>) and to the ether-free Ca oxide complex [(BDI\*)Ca]<sub>2</sub>( $\mu_2$ -O<sub>2</sub>), respectively.  $\Delta$ H and  $\Delta$ G(298 K) (between brackets) are given in kcal mol<sup>-1</sup>.

#### **XYZ** Coordinates

## 228

| [(BDI*)Ca(THP)] <sub>2</sub> (µ <sub>2</sub> -O <sub>2</sub> ) ( <b>1</b> ) |           |                      |           |
|-----------------------------------------------------------------------------|-----------|----------------------|-----------|
| Са                                                                          | 1.940832  | -0.285437            | -0.648594 |
| 0                                                                           | 0.207470  | -0.236416            | 0.683849  |
| 0                                                                           | 1.933491  | -0.449351            | -3.038589 |
| Ν                                                                           | 3.924277  | 1.057063             | -0.504751 |
| Ν                                                                           | 3.533123  | -2.063314            | -0.392937 |
| С                                                                           | 6.232015  | 1.586952             | -1.125273 |
| н                                                                           | 5.911845  | 2.430039             | -1.751286 |
| н                                                                           | 7.109492  | 1.110091             | -1.578277 |
| н                                                                           | 6.529518  | 2.019134             | -0.159558 |
| С                                                                           | 5.100833  | 0.604906             | -0.926420 |
| C                                                                           | 5.415677  | -0.746466            | -1.207856 |
| Н                                                                           | 6.409934  | -0.885721            | -1.633606 |
| C                                                                           | 4.753148  | -1.959320            | -0.905121 |
| C                                                                           | 5.536470  | -3.209211            | -1.254167 |
| н                                                                           | 5 237087  | -4 071314            | -0 645477 |
| н                                                                           | 6 618261  | -3 051582            | -1 154722 |
| н                                                                           | 5 333897  | -3 467549            | -2 307125 |
| Ċ                                                                           | 3 830471  | 2 425371             | -0 138670 |
| c                                                                           | 3 361603  | 2 285562             | -1 067646 |
| c                                                                           | 2 2105/6  | 1 720681             | -0.670226 |
| с<br>ц                                                                      | 2 020502  | 5 / 01001            | -0.079230 |
| C II                                                                        | 2.300332  | 5 1282/6             | 0 601805  |
| с<br>ц                                                                      | 2 622404  | 5.120540<br>6.102006 | 0.001033  |
| п<br>С                                                                      | 3.032494  | 0.102000             | 0.004205  |
|                                                                             | 4.095597  | 4.1/1051             | 1.525755  |
| н                                                                           | 4.369308  | 4.484244             | 2.532/39  |
| C                                                                           | 4.1//844  | 2.819819             | 1.1//322  |
| C<br>                                                                       | 2.853541  | 2.962249             | -2.431065 |
| н                                                                           | 3.264/23  | 1.959851             | -2.624595 |
| C                                                                           | 1.319890  | 2.802639             | -2.409168 |
| н                                                                           | 1.019186  | 2.30/980             | -3.345/00 |
| Н                                                                           | 1.026542  | 2.102104             | -1.610513 |
| C                                                                           | 0.513015  | 4.0/905/             | -2.239011 |
| Н                                                                           | 0.615368  | 4.758316             | -3.099774 |
| Н                                                                           | 0.804205  | 4.632769             | -1.336181 |
| Н                                                                           | -0.554283 | 3.847375             | -2.130102 |
| С                                                                           | 3.306762  | 3.863840             | -3.583517 |
| Н                                                                           | 2.822916  | 3.496743             | -4.506115 |
| Н                                                                           | 2.919383  | 4.886217             | -3.444534 |
| С                                                                           | 4.813396  | 3.915466             | -3.781517 |
| Н                                                                           | 5.087014  | 4.553711             | -4.635803 |
| Н                                                                           | 5.225340  | 2.911007             | -3.970317 |
| Н                                                                           | 5.316384  | 4.319684             | -2.889270 |
| С                                                                           | 4.556686  | 1.776892             | 2.208663  |
| Н                                                                           | 4.936062  | 0.903040             | 1.660099  |
| С                                                                           | 3.301875  | 1.282508             | 2.954411  |
| Н                                                                           | 2.568238  | 0.930493             | 2.209786  |
| Н                                                                           | 3.589291  | 0.397661             | 3.542107  |
| С                                                                           | 2.635498  | 2.297132             | 3.871217  |
| Н                                                                           | 3.311418  | 2.631899             | 4.672879  |

| Н      | 1.751798  | 1.860079              | 4.357378  |
|--------|-----------|-----------------------|-----------|
| Н      | 2.302463  | 3.186739              | 3.318066  |
| С      | 5.658937  | 2.211524              | 3.178752  |
| Н      | 5.333813  | 3.085546              | 3.766674  |
| Н      | 5.794650  | 1.400889              | 3.915134  |
| С      | 6.990670  | 2.519402              | 2.511403  |
| Н      | 7.750571  | 2.819401              | 3.249300  |
| н      | 6 891075  | 3 339471              | 1 783175  |
| н      | 7 378737  | 1 639140              | 1 975564  |
| c      | 3 132679  | -3 292006             | 0 186837  |
| c      | 2 379962  | -1 250296             | -0 5269/6 |
| c      | 2.575502  | -4.230230<br>E 462126 | 0.000162  |
| с<br>ц | 2.000021  | -3.403120             | 0.099102  |
|        | 1.491540  | -0.212708             | -0.450429 |
|        | 2.468161  | -5./33446             | 1.402177  |
| н      | 2.221276  | -6.690571             | 1.86/385  |
| C      | 3.15//88  | -4.759501             | 2.120821  |
| Н      | 3.443448  | -4.954682             | 3.157236  |
| С      | 3.480173  | -3.529710             | 1.542625  |
| С      | 1.908696  | -4.010773             | -1.948628 |
| Н      | 2.230194  | -2.994470             | -2.231470 |
| С      | 0.374833  | -4.063999             | -2.028765 |
| Н      | 0.057713  | -3.920696             | -3.074584 |
| Н      | 0.040723  | -5.080442             | -1.757302 |
| С      | -0.314569 | -3.044529             | -1.140621 |
| Н      | -0.187739 | -2.012402             | -1.497670 |
| Н      | 0.081081  | -3.082196             | -0.118495 |
| Н      | -1.396703 | -3.225085             | -1.077660 |
| С      | 2.577060  | -4.999536             | -2.918676 |
| н      | 3.662698  | -4.987454             | -2.732342 |
| н      | 2 246266  | -6 021957             | -2 666581 |
| c      | 2 314872  | -4 734352             | -4 395306 |
| н      | 2 860360  | -5 450659             | -5 028738 |
| н      | 2.6603500 | -3 723552             | -4 686544 |
| ц      | 1 247804  | -// 818071            | -4 650335 |
| C II   | 1.247804  | 2 471650              | -4.050555 |
|        | 4.220409  | 1 515245              | 2.527462  |
| П      | 4.038740  | -1.515245             | 1.812179  |
| C      | 3./368//  | -2.326158             | 3.//204/  |
| н      | 4.006766  | -3.226370             | 4.352116  |
| Н      | 4.305030  | -1.505339             | 4.240389  |
| С      | 2.244973  | -2.056635             | 3.907612  |
| Н      | 1.923217  | -1.234323             | 3.251063  |
| Н      | 1.980591  | -1.788919             | 4.941739  |
| Н      | 1.652001  | -2.936950             | 3.627693  |
| С      | 5.748253  | -2.718627             | 2.275946  |
| Н      | 5.998781  | -3.518668             | 2.995590  |
| Н      | 6.013572  | -3.119741             | 1.288035  |
| С      | 6.589049  | -1.477951             | 2.537842  |
| Н      | 7.664284  | -1.714463             | 2.540511  |
| Н      | 6.353340  | -1.009589             | 3.505688  |
| Н      | 6.414976  | -0.729242             | 1.749634  |
| С      | 3.119185  | -0.734324             | -3.775822 |
| Н      | 3.155394  | -1.821211             | -3.977567 |
| н      | 3.962915  | -0.493774             | -3.114421 |
|        |           |                       |           |

| С      | 3.165464  | 0.044111   | -5.076500     |
|--------|-----------|------------|---------------|
| Н      | 4.083883  | -0.226090  | -5.621898     |
| Н      | 3.231379  | 1.120586   | -4.848024     |
| С      | 1.918254  | -0.237599  | -5.909191     |
| Н      | 1.925929  | -1.294638  | -6.231761     |
| Н      | 1.910916  | 0.371533   | -6.826733     |
| С      | 0.671014  | 0.030492   | -5.072677     |
| н      | 0.581215  | 1.109403   | -4.871129     |
| н      | -0.244210 | -0.268173  | -5.607632     |
| С      | 0.728346  | -0.717884  | -3.753755     |
| Н      | -0.084631 | -0.426971  | -3.075075     |
| н      | 0.662897  | -1 807750  | -3 928067     |
| Ca     | -1 940839 | 0 285413   | 0.648616      |
| 0      | -0 207518 | 0.205415   | -0 683892     |
| 0      | -0.207518 | 0.230201   | 2 028620      |
| N      | 2 02/212  | 1 057040   | 0 504720      |
| N      | -3.924313 | 2 062250   | 0.304730      |
| 0      | -3.333077 | 2.005555   | 1 1 2 5 1 2 0 |
| C<br>  | -0.232095 | -1.580851  | 1.125129      |
| н      | -5.911986 | -2.429954  | 1.751153      |
| н      | -7.109587 | -1.109972  | 1.578083      |
| Н      | -6.529544 | -2.019016  | 0.159389      |
| С      | -5.100867 | -0.604843  | 0.926364      |
| С      | -5.415675 | 0.746530   | 1.207824      |
| Н      | -6.409947 | 0.885808   | 1.633533      |
| С      | -4.753110 | 1.959374   | 0.905128      |
| С      | -5.536427 | 3.209271   | 1.254168      |
| Н      | -5.237062 | 4.071362   | 0.645453      |
| Н      | -6.618224 | 3.051642   | 1.154756      |
| Н      | -5.333824 | 3.467627   | 2.307115      |
| С      | -3.830556 | -2.425338  | 0.138605      |
| С      | -3.361745 | -3.385578  | 1.067555      |
| С      | -3.310743 | -4.729686  | 0.679099      |
| Н      | -2.980801 | -5.481124  | 1.398488      |
| С      | -3.677340 | -5.128298  | -0.602043     |
| Н      | -3.632751 | -6.182752  | -0.884385     |
| С      | -4.093567 | -4.171735  | -1.523854     |
| Н      | -4.369486 | -4.484097  | -2.532871     |
| С      | -4.177942 | -2.819728  | -1.177401     |
| С      | -2.853597 | -2.962325  | 2.430960      |
| н      | -3.264663 | -1.959883  | 2.624508      |
| С      | -1.319938 | -2.802884  | 2.409004      |
| н      | -1.019154 | -2.308157  | 3.345477      |
| н      | -1 026545 | -2 102466  | 1 610259      |
| c      | -0 513217 | -4 079421  | 2 238980      |
| н      | -0.615623 | -4 758553  | 3 099836      |
| н      | -0.804/95 | -// 633210 | 1 336233      |
| ц      | 0.55/101  | -4.033213  | 2 1 2 0 0 0 7 |
| <br>C  | -3 3UCOEV | -2 262077  | 2.130007      |
| с<br>u | -3.300834 | -2.0020//  | 3.303432      |
| п      | -2.022924 | -3.490830  |               |
| п      | -5.9132/0 | -4.886290  | 3.4444425     |
|        | -4.813480 | -3.9153/2  | 3./81520      |
| н      | -5.08/099 | -4.553595  | 4.635821      |
| н      | -5.225325 | -2.9108/9  | 3.970352      |

| Н      | -5.316556             | -4.319543 | 2.889301  |
|--------|-----------------------|-----------|-----------|
| С      | -4.556715             | -1.776746 | -2.208713 |
| н      | -4.936108             | -0.902913 | -1.660132 |
| С      | -3.301852             | -1.282336 | -2.954363 |
| н      | -2.568265             | -0.930344 | -2.209677 |
| н      | -3.589222             | -0.397468 | -3.542048 |
| С      | -2.635402             | -2.296922 | -3.871158 |
| н      | -3 311251             | -2 631651 | -4 672897 |
| н      | -1 751659             | -1 859841 | -4 357218 |
| н      | -2 302/1/             | -3 18655/ | -3 318021 |
| r<br>C | -5 658025             | -2 211221 | -2 178872 |
| с<br>ц | -3.038323<br>E 222704 | 2.211321  | 2 766070  |
|        | -5.555764             | -5.065515 | -3./00020 |
| Г      | -5.794606             | -1.400047 | -3.915210 |
| C      | -6.990684             | -2.519221 | -2.511584 |
| н      | -7.750567             | -2.8191/6 | -3.249520 |
| н      | -6.891118             | -3.339328 | -1.783394 |
| Н      | -7.378759             | -1.638984 | -1.975709 |
| С      | -3.132609             | 3.292057  | -0.186777 |
| С      | -2.379881             | 4.250316  | 0.527037  |
| С      | -2.065882             | 5.463145  | -0.099044 |
| Н      | -1.491190             | 6.212756  | 0.450573  |
| С      | -2.467974             | 5.733493  | -1.402068 |
| Н      | -2.221046             | 6.690614  | -1.867260 |
| С      | -3.157626             | 4.759583  | -2.120734 |
| н      | -3.443263             | 4.954791  | -3.157152 |
| С      | -3.480071             | 3.529798  | -1.542560 |
| С      | -1.908637             | 4.010748  | 1.948713  |
| Н      | -2.230204             | 2.994465  | 2.231550  |
| С      | -0.374760             | 4.063871  | 2.028820  |
| н      | -0.057625             | 3 920561  | 3 074633  |
| н      | -0 040597             | 5 080289  | 1 757331  |
| c      | 0.31/1570             | 3 04/350  | 1 1/0681  |
| ц      | 0.187684              | 2 012225  | 1 /07728  |
|        | 0.187084              | 2.012233  | 0.119556  |
|        | -0.061069             | 2.002022  |           |
|        | 1.590715              | 3.224644  | 1.077708  |
| C      | -2.576930             | 4.999554  | 2.918//6  |
| н      | -3.662573             | 4.98/54/  | 2./32453  |
| Н      | -2.246065             | 6.021953  | 2.666680  |
| C      | -2.314/59             | 4./34344  | 4.395407  |
| н      | -2.860163             | 5.450705  | 5.028849  |
| Н      | -2.642344             | 3.723579  | 4.686644  |
| Н      | -1.247679             | 4.818848  | 4.650427  |
| С      | -4.228355             | 2.471788  | -2.327428 |
| Н      | -4.038736             | 1.515367  | -1.812120 |
| С      | -3.736815             | 2.326269  | -3.771985 |
| Н      | -4.006678             | 3.226490  | -4.352051 |
| Н      | -4.304979             | 1.505470  | -4.240345 |
| С      | -2.244913             | 2.056722  | -3.907535 |
| Н      | -1.923175             | 1.234418  | -3.250966 |
| Н      | -1.980531             | 1.788979  | -4.941653 |
| н      | -1.651931             | 2.937035  | -3.627632 |
| С      | -5.748186             | 2.718833  | -2.275894 |
| H      | -5.998677             | 3.518901  | -2.995520 |
|        |                       |           |           |

| Н       | -6.013481     | 3.119938              | -1.287975             |
|---------|---------------|-----------------------|-----------------------|
| С       | -6.589048     | 1.478208              | -2.537796             |
| Н       | -7.664272     | 1.714776              | -2.540427             |
| Н       | -6.353395     | 1.009857              | -3.505659             |
| Н       | -6.414989     | 0.729467              | -1.749615             |
| С       | -3.119172     | 0.734155              | 3.775871              |
| Н       | -3.155343     | 1.821036              | 3.977651              |
| н       | -3 962911     | 0.493658              | 3 114462              |
| c       | -3 165479     | -0 044317             | 5.076525              |
| н       | -4 083887     | 0.225903              | 5 621932              |
| ц       | -2 221/2/     | -1 120783             | 1 848020              |
| <br>C   | 1 010250      | -1.120785             | 4.848020<br>E 000226  |
|         | 1 025002      | 1 204240              | 5.909220              |
| п       | -1.925892     | 1.294349              | 0.231831              |
| Н       | -1.910945     | -0.371843             | 6.826748              |
| C       | -0.6/1029     | -0.030793             | 5.072702              |
| Н       | -0.581276     | -1.109701             | 4.871114              |
| Н       | 0.244208      | 0.267811              | 5.607666              |
| С       | -0.728336     | 0.717634              | 3.753808              |
| Н       | 0.084638      | 0.426718              | 3.075124              |
| Н       | -0.662847     | 1.807493              | 3.928163              |
|         |               |                       |                       |
| 227     | 7             |                       |                       |
| [(BI    | DI*)Ca(THP)   | )]₂(µ-O) ( <b>2</b> ) |                       |
| Са      | 1.965107      | 0.134945              | -0.704167             |
| 0       | 0.004351      | 0.027793              | -0.029715             |
| 0       | 1.853110      | 0.320745              | -3.177903             |
| Ν       | 3.779716      | -1.530893             | -0.564027             |
| Ν       | 3.815204      | 1.790893              | -0.336408             |
| С       | 5.933290      | -2.200810             | -1.546091             |
| H       | 6 373947      | -2 677267             | -0 657938             |
| н       | 6 747719      | -1 767874             | -2 140164             |
| н       | 5 / 5 8 5 6 3 | -3.006416             | -2 121103             |
| C II    | 1 022820      | -1 1/6022             | -2.121105             |
| c<br>c  | 4.922029      | -1.140332             | 1 277424              |
| C<br>II | 5.352347      | 0.182127              | -1.377434             |
| П       | 0.310882      | 0.212019              | -1.898375             |
| C       | 4.958833      | 1.470952              | -0.923728             |
| C       | 6.020457      | 2.525227              | -1.201652             |
| Н       | 6.074146      | 2.713274              | -2.286172             |
| Н       | 7.013280      | 2.169451              | -0.891789             |
| Н       | 5.812744      | 3.477544              | -0.700172             |
| С       | 3.663576      | -2.908359             | -0.219569             |
| С       | 4.171623      | -3.363375             | 1.029770              |
| С       | 4.090100      | -4.726441             | 1.340205              |
| Н       | 4.490033      | -5.083643             | 2.291806              |
| С       | 3.528111      | -5.642069             | 0.456370              |
| н       | 3.488580      | -6.704132             | 0.711467              |
| С       | 3.013228      | -5.190025             | -0.753636             |
| Н       | 2.574795      | -5.911775             | -1.446140             |
| c       | 3 058352      | -3 836119             | -1 111600             |
| c       | 2 429012      | -3 375167             | -7 412000             |
| Ч       | 2.723010      | _7 /1727/             | -2 672226             |
| с<br>С  | 2.300244      | -2 072160             | 2.073300<br>_7 777073 |
| с<br>ц  | 0.322320      | -3.07310U             | -2.2220/3             |
| п       | 0.192335      | -2.414003             | -1.343001             |

| Н       | 0.578928  | -2.482571 | -3.088284 |
|---------|-----------|-----------|-----------|
| С       | 0.007248  | -4.280609 | -2.060656 |
| Н       | -0.059024 | -4.879432 | -2.982544 |
| Н       | -1.013709 | -3.962381 | -1.803458 |
| Н       | 0.348590  | -4.944567 | -1.253701 |
| С       | 2.653635  | -4.314501 | -3.614957 |
| н       | 2.192952  | -5.297047 | -3.420851 |
| Н       | 2.087971  | -3.901125 | -4.469490 |
| C       | 4 105244  | -4 519238 | -4 029494 |
| н       | 4 177150  | -5 183122 | -4 905585 |
| н       | 4 696482  | -4 976510 | -3 220770 |
| ц       | 4.5990402 | -3 5663/1 | -1 208781 |
| C       | 4.588952  | -2 285002 | 2 028220  |
| с<br>ц  | 4.759125  | 1 516702  | 1 167/10  |
|         | 5.125465  | -1.510702 | 1.40/419  |
| C<br>II | 5.953762  | -2.922204 | 2.843400  |
| н       | 6.228115  | -2.148128 | 3.581902  |
| Н       | 5.654092  | -3.796692 | 3.444989  |
| C       | 7.184183  | -3.280056 | 2.018/94  |
| Н       | 8.004060  | -3.636159 | 2.662482  |
| Н       | 7.560505  | -2.408173 | 1.459763  |
| Н       | 6.966704  | -4.076854 | 1.290281  |
| С       | 3.658394  | -1.826974 | 2.971120  |
| Н       | 4.086155  | -0.971764 | 3.521888  |
| Н       | 2.855804  | -1.410889 | 2.338829  |
| С       | 3.052167  | -2.806500 | 3.970104  |
| Н       | 3.798814  | -3.184593 | 4.686040  |
| Н       | 2.597566  | -3.674085 | 3.468921  |
| Н       | 2.261324  | -2.317497 | 4.559994  |
| С       | 3.632943  | 3.084315  | 0.228315  |
| С       | 3.931586  | 3.287549  | 1.607433  |
| С       | 3.670369  | 4.535202  | 2.185023  |
| н       | 3.904440  | 4.692918  | 3.240938  |
| C       | 3.129629  | 5.583689  | 1.446713  |
| н       | 2 927486  | 6 548181  | 1 919676  |
| c       | 2 870718  | 5 393133  | 0.094918  |
| н       | 2.070710  | 6 222536  | -0 /0/086 |
| C       | 2,40,404  | 4 169402  | 0.404000  |
| c       | 3.122002  | 4.100495  | 2 /20277  |
| с<br>ц  | 4.020780  | 1 240101  | 2.439277  |
|         | 4.441910  | 1.249181  | 1.942549  |
| C<br>   | 0.152820  | 2.400289  | 2.421845  |
| н       | 6.462046  | 2.674365  | 1.38/03/  |
| Н       | 6.358281  | 3.397415  | 2.980901  |
| C       | 7.013899  | 1.332481  | 2.968409  |
| Н       | 8.084307  | 1.570526  | 2.863921  |
| Н       | 6.829979  | 0.394801  | 2.419875  |
| Н       | 6.830808  | 1.136654  | 4.036149  |
| С       | 4.118077  | 2.110792  | 3.886540  |
| Н       | 4.672217  | 1.295677  | 4.380126  |
| Н       | 4.395916  | 3.021860  | 4.446559  |
| С       | 2.626987  | 1.851470  | 4.037016  |
| Н       | 2.326984  | 0.944753  | 3.490121  |
| н       | 2.027344  | 2.684152  | 3.642695  |
| н       | 2.354278  | 1.712224  | 5.095470  |

| С         | 2.906659              | 4.088082                 | -2.044853             |
|-----------|-----------------------|--------------------------|-----------------------|
| Н         | 3.072738              | 3.039383                 | -2.341221             |
| С         | 1.482223              | 4.482267                 | -2.481213             |
| Н         | 1.368593              | 5.577736                 | -2.387797             |
| Н         | 1.379969              | 4.274644                 | -3.560092             |
| С         | 0.358168              | 3.801426                 | -1.720187             |
| н         | 0.411092              | 2.703017                 | -1.783762             |
| н         | -0.628923             | 4.106251                 | -2.098252             |
| н         | 0.394123              | 4.064757                 | -0.655661             |
| С         | 3.950436              | 4.963438                 | -2.777744             |
| н         | 3.721032              | 6.023619                 | -2.569821             |
| н         | 4 941109              | 4 788611                 | -2 333086             |
| c         | 4 043457              | 4 754765                 | -4 285908             |
| н         | 4 820254              | 5 402002                 | -4 722901             |
| н         | 3 100171              | 4 987728                 | -4 803493             |
| ц         | <i>J</i> .100171      | 2 71/111                 | -4.603433             |
| r<br>C    | 4.510221              | 0.620250                 | 4.036014              |
| с<br>ц    | 2.903414              | 0.020350                 | 2 420014              |
|           | 3.00/003              | 1.600506                 | -5.420907             |
| п<br>С    | 2.930084              | 1.099500                 | -4.271309             |
| C<br>II   | 2.930083              | -0.200063                | -5.305402             |
| н         | 3.795550              | 0.091058                 | -5.932424             |
|           | 3.071119              | -1.205934                | -5.055008             |
| C<br>II   | 1.615409              | 0.001833                 | -6.044586             |
|           | 1.554949              | 1 040050                 | -0.929571             |
| H<br>C    | 1.559862              | 1.040650                 |                       |
| с<br>ц    | 0.447750              | -0.202070                | -5.095625             |
|           | -0.515575             | 1 226172                 |                       |
| $\hat{c}$ | 0.403930              | 0 5/0761                 | 2 912002              |
| с<br>ц    | 0.390380              | 1 601000                 | 4 027146              |
| п         | -0 168660             | 0.270288                 | -4.02/140             |
| <br>Ca    | 1 022629              | 0.270300                 | 0 722255              |
|           | -1.922020             | 0.110550                 | 0.752555              |
| N         | -1.051/50             | 1 556225                 | 5.206940              |
|           | -3./3/350             | -1.550525                | 0.501175              |
|           | -3./89201             | 1.702230                 | 0.400474              |
| C<br>II   | -5.875031             | -2.2/4040                | 1.483082              |
| п         | -0.339634             | -2.092045                | 0.576059              |
| п         | -0.0/2039<br>E 202470 | -1.0/4222                | 2.12101/              |
| п<br>С    | -5.592476             | -3.1103/0                | 1.990025              |
| c<br>c    | -4.000119             | -1.202020                | 1.107950              |
| с<br>ц    | -5.200402<br>6.220100 | 0.1155//                 | 1.457055              |
| п<br>С    | -0.228109             | 1 421164                 | 1.331007              |
| c<br>c    | -4.908000             | 1.421104<br>2.47E070     | 1.031724              |
| с<br>ц    | -5.955504             | 2.4/30/9                 | 1.422915              |
| п         | -5.848097             | 2.004094                 | 1 245064              |
|           | -0.937013             | 2.11/940                 | 0.000100              |
| п<br>С    | -5.769200             | 3.422034<br>3.012523     | 0.009100              |
| c<br>c    | -3.02910/             | -2.210000                | 0.079223<br>-1 10/025 |
| c<br>c    | -4.1022611            | -7 611702                | -1.104025             |
| н         | -4 500071             | - <u>1</u> 9 <u>1</u> 93 | -2 522/77             |
| с<br>С    | -3 507705             | -5 607632                | -0 747909             |
| н         | -3 473179             | -6 654167                | -1 061314             |
|           | J. 47 J 17 J          | 0.00410/                 | T.001014              |

| С      | -2.971890       | -5.221834 | 0.475688  |
|--------|-----------------|-----------|-----------|
| Н      | -2.522334       | -5.980126 | 1.120254  |
| С      | -3.009345       | -3.889353 | 0.907718  |
| С      | -2.352188       | -3.505292 | 2.224981  |
| н      | -2.806066       | -2.553047 | 2.543276  |
| С      | -0.846268       | -3.209125 | 2.015781  |
| н      | -0 728602       | -2 493504 | 1 182561  |
| н      | -0 474149       | -2 685995 | 2 912133  |
| c      | 0.050374        | -4 412142 | 1 750915  |
| н      | 0.050574        | -5 079/01 | 2 62/299  |
| <br>   | 1 072244        | 4 099114  | 1 505593  |
|        | 1.072344        | -4.000114 | 1.303382  |
| Г      | -0.309218       | -5.0089/1 | 0.900802  |
| C      | -2.563851       | -4.508387 | 3.3/1812  |
| н      | -2.111807       | -5.480950 | 3.116900  |
| н      | -1.983080       | -4.146153 | 4.239252  |
| С      | -4.009755       | -4.729475 | 3.797493  |
| Н      | -4.071181       | -5.438585 | 4.638230  |
| Н      | -4.615445       | -5.141018 | 2.975051  |
| Н      | -4.485342       | -3.790525 | 4.124081  |
| С      | -4.761287       | -2.272431 | -2.131595 |
| н      | -5.107883       | -1.430140 | -1.512637 |
| С      | -5.975471       | -2.765878 | -2.935763 |
| н      | -6.262573       | -1.955943 | -3.629398 |
| н      | -5.692022       | -3.610352 | -3.585948 |
| С      | -7.189344       | -3.161337 | -2.103856 |
| н      | -8 024078       | -3 482344 | -2 746922 |
| н      | -7 550689       | -2 317838 | -1 493692 |
| н      | -6 959371       | -3 99//9/ | -1 /21276 |
| C II   | -3 676501       | -1 677771 | -1.421270 |
| с<br>ц | 4 111205        | 0.706541  | 2 562122  |
|        | -4.111205       | 1 205242  | -3.302133 |
| П      | -2.858557       | -1.295243 | -2.420998 |
| C      | -3.096655       | -2.611538 | -4.11/466 |
| н      | -3.860574       | -2.954735 | -4.832824 |
| н      | -2.632744       | -3.502257 | -3.668064 |
| Н      | -2.318291       | -2.096469 | -4.701613 |
| С      | -3.646828       | 3.076230  | -0.120698 |
| С      | -3.997921       | 3.319970  | -1.479832 |
| С      | -3.794388       | 4.594978  | -2.019665 |
| Н      | -4.072628       | 4.784017  | -3.059518 |
| С      | -3.255693       | 5.631404  | -1.263738 |
| Н      | -3.099160       | 6.618297  | -1.706824 |
| С      | -2.940485       | 5.398460  | 0.068918  |
| н      | -2.542279       | 6.218076  | 0.673247  |
| С      | -3.139496       | 4.145979  | 0.665603  |
| C      | -4.688886       | 2.260498  | -2.327833 |
| н      | -4 457134       | 1 281013  | -1 875967 |
| c      | -6 219347       | 2 462983  | -2 245494 |
| н      | -6 / 97756      | 2.402505  | -1 188722 |
| Ц      | -6 /685/5       | 2.307033  | -2 720620 |
| <br>C  | 7 060345        | J.424075  | -2.123020 |
| с<br>Ц | 0 1 / 1 005 340 | 1 54/123  | -2.043198 |
| п      | -8.141005       | 1.540109  | -2.004203 |
| н      | -0.841090       | 0.378322  | -2.3/1240 |
| Н      | -6.920413       | 1.234435  | -3.928114 |

| С                | -4.220650    | 2.231921    | -3.792111 |  |  |  |
|------------------|--------------|-------------|-----------|--|--|--|
| Н                | -4.759971    | 1.420175    | -4.307192 |  |  |  |
| Н                | -4.543219    | 3.156077    | -4.304558 |  |  |  |
| С                | -2.725596    | 2.030146    | -3.988302 |  |  |  |
| Н                | -2.391975    | 1.093629    | -3.516649 |  |  |  |
| н                | -2.142233    | 2.847981    | -3.540828 |  |  |  |
| н                | -2.469428    | 1.978912    | -5.058637 |  |  |  |
| C                | -2.861965    | 4.022570    | 2.158235  |  |  |  |
| н                | -3 123801    | 2 995080    | 2 459892  |  |  |  |
| c                | -1 373445    | 4 241095    | 2.433032  |  |  |  |
| н                | -1 07083/    | 5 22212/    | 2.477023  |  |  |  |
| н<br>Ц           | 1 225724     | 1 207200    | 2.033374  |  |  |  |
| п<br>С           | -1.255754    | 4.207200    | 1 906240  |  |  |  |
|                  | -0.405580    | 3.1/1191    | 1.090249  |  |  |  |
| н                | -0.618/15    | 2.204037    | 2.396356  |  |  |  |
| н                | 0.598159     | 3.427859    | 2.003448  |  |  |  |
| Н                | -0.652753    | 3.022539    | 0.823488  |  |  |  |
| С                | -3.757237    | 4.989291    | 2.965861  |  |  |  |
| Н                | -3.377181    | 6.018407    | 2.840307  |  |  |  |
| Н                | -4.767020    | 4.994372    | 2.525485  |  |  |  |
| С                | -3.867831    | 4.671423    | 4.453468  |  |  |  |
| Н                | -4.506165    | 5.406788    | 4.968149  |  |  |  |
| Н                | -2.889381    | 4.682309    | 4.958914  |  |  |  |
| Н                | -4.315037    | 3.677535    | 4.620054  |  |  |  |
| С                | -2.932312    | 0.479630    | 4.073127  |  |  |  |
| н                | -3.816573    | 0.459915    | 3.418628  |  |  |  |
| н                | -2.750051    | 1.526335    | 4.385451  |  |  |  |
| C                | -3 122516    | -0 401588   | 5 296910  |  |  |  |
| н                | -3 962691    | -0.006746   | 5 891662  |  |  |  |
| н                | -3 /11876    | -1 /1/551   | 1 969686  |  |  |  |
| C II             | 1 020002     | 0 462257    | 6 121756  |  |  |  |
| с<br>ц           | 1 042552     | 1 167621    | 6.062607  |  |  |  |
| п                | -1.945555    | -1.107051   | 0.902007  |  |  |  |
| н                | -1.641293    | 0.528868    | 6.56/29/  |  |  |  |
| C                | -0.669377    | -0.862123   | 5.224017  |  |  |  |
| н                | 0.289592     | -0./9354/   | 5./62/5/  |  |  |  |
| Н                | -0.783310    | -1.912334   | 4.908477  |  |  |  |
| С                | -0.599202    | 0.026773    | 3.991365  |  |  |  |
| Н                | -0.345387    | 1.062117    | 4.288801  |  |  |  |
| Н                | 0.164576     | -0.312943   | 3.278116  |  |  |  |
|                  |              |             |           |  |  |  |
| 3                |              |             |           |  |  |  |
| N <sub>2</sub> ( | 0            |             |           |  |  |  |
| Ν                | 0.000000     | -0.000000   | 0.073822  |  |  |  |
| Ν                | 0.000000     | -0.000000   | 1.223327  |  |  |  |
| 0                | -0.000000    | 0.000000    | -1.135006 |  |  |  |
|                  |              |             |           |  |  |  |
| 2                |              |             |           |  |  |  |
| N2               |              |             |           |  |  |  |
| Ν                | 0.000000     | 0.000000    | 0.545362  |  |  |  |
| Ν                | 0.000000     | -0.000000   | -0.545362 |  |  |  |
|                  |              |             |           |  |  |  |
| 1                | 95           |             |           |  |  |  |
| [(B              | DI*)Ca]₂(μ-0 | D) THP free |           |  |  |  |
| Ca               | -1.858044    | 0.211990    | 0.767126  |  |  |  |

| 0      | -0.000033 | -0.023645 | 0.000430             |
|--------|-----------|-----------|----------------------|
| Ν      | -3.627262 | -1.304311 | 1.191353             |
| Ν      | -3.659348 | 1.756414  | 0.518850             |
| С      | -5.565915 | -1.901350 | 2.557934             |
| н      | -6.060740 | -2.561704 | 1.832229             |
| н      | -6.336368 | -1.425771 | 3.177002             |
| н      | -4.942237 | -2.551402 | 3.187512             |
| С      | -4.709105 | -0.880368 | 1.844859             |
| Ċ      | -5.158951 | 0.458287  | 1.922273             |
| н      | -6.055267 | 0.586929  | 2.531021             |
| c      | -4 761706 | 1 636286  | 1 241221             |
| c      | -5 695208 | 2 816950  | 1 /0608/             |
| ц      | -5 572108 | 2.010000  | 2 /1/17/             |
|        | -5.573198 | 3.247075  | 1 21000/             |
|        | -0.744455 | 2.505015  | 1.510064             |
| П      | -5.485222 | 3.609206  | 0.07/385             |
| C      | -3.45/349 | -2.694888 | 0.978201             |
| C      | -4.183796 | -3.329907 | -0.064207            |
| C      | -4.003736 | -4.698495 | -0.277664            |
| Н      | -4.567514 | -5.196540 | -1.068945            |
| С      | -3.120374 | -5.440838 | 0.502602             |
| Н      | -2.997697 | -6.512177 | 0.327473             |
| С      | -2.389708 | -4.806538 | 1.500160             |
| Н      | -1.697369 | -5.391287 | 2.108212             |
| С      | -2.532691 | -3.435742 | 1.751649             |
| С      | -1.680342 | -2.763637 | 2.812062             |
| Н      | -2.188363 | -1.816780 | 3.068782             |
| С      | -0.283780 | -2.391168 | 2.265228             |
| н      | -0.359366 | -1.699980 | 1.405078             |
| н      | 0.246753  | -1.821245 | 3.049499             |
| С      | 0.588914  | -3.549099 | 1.805336             |
| н      | 0.868104  | -4.224293 | 2.628210             |
| н      | 1.518566  | -3.176883 | 1.351557             |
| н      | 0.083237  | -4.147502 | 1.036479             |
| c      | -1 579171 | -3 562129 | 4 117457             |
| н      | -1.063061 | -4 519306 | 3 936870             |
| н      | -0.920056 | -3 0018/0 | / 203101             |
| C II   | 2 017942  | 2 922059  | 4.000101             |
| с<br>ц | -2.91/042 | -3.023030 | 4.730333<br>E 7204E0 |
| п      | 2.794203  | 4.365324  | J./J04J0             |
|        | -3.384085 | -4.406976 | 4.13/8/2             |
| П      | -3.431047 | -2.8/8511 | 5.032875             |
| C      | -5.054655 | -2.504611 | -0.992190            |
| Н      | -5.38/960 | -1.620220 | -0.428875            |
| C      | -6.313136 | -3.213088 | -1.498626            |
| Н      | -6.803781 | -2.543812 | -2.226556            |
| Н      | -6.043037 | -4.115218 | -2.071568            |
| С      | -7.301827 | -3.583776 | -0.403342            |
| Н      | -8.188507 | -4.090006 | -0.815144            |
| Н      | -7.651247 | -2.688565 | 0.135305             |
| Н      | -6.844083 | -4.261051 | 0.334701             |
| С      | -4.198182 | -1.957090 | -2.150615            |
| Н      | -4.754353 | -1.137447 | -2.626720            |
| Н      | -3.297430 | -1.497027 | -1.712357            |
| С      | -3.789939 | -2.962928 | -3.215891            |
|        |           |           |                      |

| Н       | -4.655599   | -3.311586 | -3.799652 |
|---------|-------------|-----------|-----------|
| Н       | -3.300322   | -3.844386 | -2.778742 |
| Н       | -3.078726   | -2.509197 | -3.922991 |
| С       | -3.355270   | 2.908501  | -0.237017 |
| С       | -3.572899   | 2.873472  | -1.638842 |
| С       | -3.158920   | 3.956663  | -2.417467 |
| н       | -3.330425   | 3.937132  | -3.496029 |
| С       | -2.529553   | 5.059126  | -1.842188 |
| н       | -2.202555   | 5.893847  | -2.466463 |
| C       | -2.324073   | 5.089670  | -0.466802 |
| н       | -1 835926   | 5 957184  | -0.015170 |
| c       | -2 736387   | 4 034221  | 0.355752  |
| c<br>c  | -// 330200  | 1 700307  | -2 2/19/3 |
| с<br>ц  | 4.330200    | 0.955652  | 1 560274  |
| п<br>С  | -4.1015/U   | 0.000002  | -1.500574 |
| C<br>II | -5.838051   | 2.030144  | -2.231010 |
| н       | -6.0/6164   | 2.545220  | -1.288521 |
| н       | -6.045723   | 2.765106  | -3.029282 |
| С       | -6.752436   | 0.821018  | -2.367245 |
| Н       | -7.811139   | 1.122342  | -2.345279 |
| Н       | -6.590651   | 0.115808  | -1.537140 |
| Н       | -6.589678   | 0.274562  | -3.308920 |
| С       | -3.838514   | 1.292664  | -3.630210 |
| Н       | -4.474802   | 0.468097  | -3.988589 |
| Н       | -4.003724   | 2.114046  | -4.349544 |
| С       | -2.381613   | 0.854370  | -3.667062 |
| Н       | -2.179286   | 0.069870  | -2.921204 |
| Н       | -1.705651   | 1.690917  | -3.445101 |
| Н       | -2.105997   | 0.453292  | -4.654431 |
| С       | -2.523781   | 4.132647  | 1.854056  |
| н       | -2.980703   | 3.240656  | 2.312759  |
| С       | -1.028930   | 4.106700  | 2.197491  |
| Н       | -0.516206   | 4.915268  | 1.651078  |
| н       | -0.885041   | 4.324496  | 3.268059  |
| c       | -0 373818   | 2 783328  | 1 854651  |
| н       | -0 725096   | 1 979421  | 2 527554  |
| н       | 0.723030    | 2 822222  | 1 9/9821  |
| ц       | -0 577218   | 2.022555  | 0.812002  |
| C II    | -0.377318   | 5 262762  | 2 /2050/  |
| с<br>ц  | 2 6 2 0 1 5 | 5.302703  | 2.439394  |
| п       | -2.082913   |           | 2.155007  |
| п<br>С  | -4.220159   | 5.455275  | 1.905415  |
| C<br>   | -3.408610   | 5.314075  | 3.951768  |
| н       | -3.939077   | 6.204558  | 4.322398  |
| н       | -2.442/3/   | 5.266240  | 4.477819  |
| Н       | -3.991397   | 4.429018  | 4.255533  |
| Са      | 1.858024    | 0.211799  | -0.766259 |
| Ν       | 3.626952    | -1.304552 | -1.191460 |
| Ν       | 3.659639    | 1.756027  | -0.518868 |
| С       | 5.565082    | -1.901844 | -2.558676 |
| Н       | 6.060030    | -2.562299 | -1.833147 |
| Н       | 6.335419    | -1.426362 | -3.177964 |
| Н       | 4.941110    | -2.551778 | -3.188084 |
| С       | 4.708658    | -0.880755 | -1.845299 |
| С       | 5.158693    | 0.457821  | -1.922768 |

| н      | 6.054880  | 0.586374   | -2.531730  |
|--------|-----------|------------|------------|
| С      | 4.761806  | 1.635812   | -1.241489  |
| С      | 5.695612  | 2.816249   | -1.407189  |
| Н      | 5.574851  | 3.245546   | -2.414875  |
| Н      | 6.744697  | 2.504778   | -1.308862  |
| н      | 5.485003  | 3.609085   | -0.678407  |
| С      | 3.456925  | -2.695111  | -0.978245  |
| C      | 4.183579  | -3.330184  | 0.063997   |
| C      | 4.003445  | -4.698749  | 0.277525   |
| н      | 4 567382  | -5 196841  | 1 068663   |
| c      | 3 119808  | -5 441019  | -0 502504  |
| н      | 2 997076  | -6 5123/5  | -0 327325  |
| Ċ      | 2.337070  | -4 806667  | -1 /100882 |
| ц      | 1 606388  | -4.000007  | -1.455002  |
| C      | 2 521009  | 2 425006   | 1 751/20   |
| c      | 2.551998  | -3.433880  | 2 911605   |
| с<br>ц | 1.079402  | 1 016060   | -2.011095  |
|        | 2.16/4/0  | -1.810900  | -5.008589  |
| C      | 0.283006  | -2.391209  | -2.204031  |
| н      | 0.358704  | -1.699559  | -1.404860  |
| Н      | -0.247815 | -1.821//5  | -3.049058  |
| C      | -0.589372 | -3.549018  | -1.803845  |
| н      | -0.868324 | -4.224982  | -2.626167  |
| Н      | -1.519159 | -3.176719  | -1.350418  |
| Н      | -0.083538 | -4.146620  | -1.034477  |
| С      | 1.577950  | -3.562351  | -4.117017  |
| Н      | 1.061677  | -4.519414  | -3.936277  |
| Н      | 0.918835  | -3.001985  | -4.802596  |
| С      | 2.916456  | -3.823592  | -4.790757  |
| Н      | 2.792611  | -4.384141  | -5.730139  |
| Н      | 3.583315  | -4.407555  | -4.137695  |
| Н      | 3.430382  | -2.879163  | -5.032841  |
| С      | 5.054767  | -2.504960  | 0.991738   |
| Н      | 5.388008  | -1.620604  | 0.428330   |
| С      | 6.313314  | -3.213561  | 1.497842   |
| н      | 6.804207  | -2.544349  | 2.225663   |
| Н      | 6.043281  | -4.115683  | 2.070831   |
| С      | 7.301686  | -3.584308  | 0.402290   |
| н      | 8.188441  | -4.090608  | 0.813846   |
| н      | 7.651021  | -2.689113  | -0.136439  |
| Н      | 6.843693  | -4.261538  | -0.335640  |
| C      | 4 198656  | -1 957363  | 2 150391   |
| н      | 4.754992  | -1.137721  | 2.626303   |
| н      | 3 297790  | -1 497289  | 1 712376   |
| c      | 3 790685  | -2 9631/19 | 3 215821   |
| н      | 4 656507  | -2.303143  | 3 700333   |
| <br>Ц  | 2 200006  | 2 944601   | 3.755555   |
| <br>   | 2 070609  | 2 500272   | 2.778041   |
| C II   | 2 255604  | 2.303372   | 0.226066   |
| c      | 2 572200  | 2.30010/   | 0.230900   |
| C<br>C | 3.3/3390  | 2.0/31/9   | 1.USO//J   |
|        | 3.128210  | 3.950419   | 2.41/385   |
| н      | 3.331091  | 3.936922   | 3.495935   |
| C      | 2.530150  | 5.058881   | 1.842099   |
| Н      | 2.203213  | 5.893638   | 2.466358   |

| С              | 2.324594              | 5.089381                  | 0.466720  |
|----------------|-----------------------|---------------------------|-----------|
| Н              | 1.836430              | 5.956885                  | 0.015086  |
| С              | 2.736836              | 4.033898                  | -0.355823 |
| С              | 4.330695              | 1.709089                  | 2.241836  |
| н              | 4.182041              | 0.855364                  | 1.560249  |
| С              | 5.838542              | 2.029836                  | 2.230821  |
| н              | 6 076579              | 2 544910                  | 1 288308  |
| н              | 6.046264              | 2.544510                  | 3 029077  |
| с<br>С         | 6 75 2024             | 0 920710                  | 2 267010  |
|                | 7 911626              | 0.820710                  | 2.307010  |
| п              | 7.811030              | 1.122033                  | 2.344992  |
| н              | 6.591109              | 0.115496                  | 1.536915  |
| н              | 6.590222              | 0.274254                  | 3.308695  |
| С              | 3.839023              | 1.292318                  | 3.630095  |
| Н              | 4.475300              | 0.467729                  | 3.988449  |
| Н              | 4.004235              | 2.113678                  | 4.349453  |
| С              | 2.382119              | 0.854028                  | 3.666929  |
| Н              | 2.179821              | 0.069451                  | 2.921143  |
| Н              | 1.706157              | 1.690546                  | 3.444861  |
| Н              | 2.106461              | 0.453038                  | 4.654323  |
| С              | 2.524171              | 4.132263                  | -1.854116 |
| H              | 2 981022              | 3 240231                  | -2 312804 |
| c              | 1 029307              | 4 106356                  | -2 197495 |
| ц              | 0.516625              | 4.100550                  | -1 651247 |
| <br>Ц          | 0.010020              | 4.913002                  | 2 269109  |
| п<br>С         | 0.005425              | 4.525919                  | -5.206106 |
| C              | 0.374148              | 2.783084                  | -1.854353 |
| H              | 0.725384              | 1.979015                  | -2.52/0/9 |
| н              | -0./18/08             | 2.822115                  | -1.949474 |
| Н              | 0.577651              | 2.499912                  | -0.811724 |
| С              | 3.237306              | 5.362304                  | -2.439728 |
| Н              | 2.683554              | 6.274074                  | -2.155598 |
| Н              | 4.226687              | 5.454643                  | -1.963708 |
| С              | 3.408833              | 5.313690                  | -3.951931 |
| Н              | 3.939714              | 6.203949                  | -4.322512 |
| Н              | 2.442876              | 5.266422                  | -4.477876 |
| Н              | 3.991134              | 4.428373                  | -4.255866 |
| 2              |                       |                           |           |
| O <sub>2</sub> |                       |                           |           |
| 0              | 0.000000              | -0.000000                 | 0.599016  |
| 0              | -0.000000             | 0.000000                  | -0.599016 |
| 2              |                       |                           |           |
| N <sub>2</sub> |                       |                           |           |
| Ν              | -0.000000             | -0.000000                 | 0.545367  |
| N              | 0.000000              | 0 000000                  | -0 545367 |
|                | 0.000000              | 0.000000                  | 0.545507  |
| 19             | 96                    |                           |           |
| [(BI           | DI*)Ca]₂( <i>μ₂</i> - | O <sub>2</sub> ) THP free | 2         |
| Ν              | -3.845878             | -1.472318                 | 0.214013  |
| Ν              | 3.846074              | -1.472219                 | -0.213955 |
| 0              | -0.000737             | -0.001825                 | 0.757085  |
| c              | -5 152020             | -1 271339                 | 0 144461  |
| c              | -6 09959/             | -2 45097/                 | 0 166836  |
| -              | 5.555554              | 2.130374                  | 5.150050  |

| С      | -3.266332 | -2.694214 | 0.595659  |
|--------|-----------|-----------|-----------|
| С      | -3.353660 | -3.125220 | 1.948413  |
| С      | -2.671390 | -4.280543 | 2.330220  |
| Н      | -2.732914 | -4.623746 | 3.364881  |
| С      | -1.897678 | -4.998610 | 1.419138  |
| н      | -1.374025 | -5.902953 | 1.737998  |
| С      | -1.775484 | -4.543604 | 0.111882  |
| н      | -1.143439 | -5.085884 | -0.591739 |
| C      | -2 443497 | -3 391861 | -0 319933 |
| c      | -4 096436 | -2 264055 | 2 950262  |
| н      | -4 954240 | -1 811417 | 2 431894  |
| Ċ      | -3 205672 | -1 020007 | 2.451054  |
| ц      | -2 570/22 | -1.005507 | 1 251501  |
| Ц      | 2.373422  | -1.422300 | 4.251554  |
|        | -2.464514 | -0.045002 | 2.009004  |
|        | -3.996033 | 0.154195  | 3.770730  |
| н      | -3.338851 | 0.946405  | 4.160605  |
| н      | -4.746594 | -0.058582 | 4.553959  |
| н      | -4.528748 | 0.548262  | 2.896735  |
| С      | -4.668052 | -3.027561 | 4.146424  |
| Н      | -3.851152 | -3.517073 | 4.704573  |
| Н      | -5.095166 | -2.291874 | 4.848118  |
| С      | -5.736822 | -4.045526 | 3.773933  |
| Н      | -5.344515 | -4.807114 | 3.082683  |
| Н      | -6.588339 | -3.556618 | 3.274653  |
| Н      | -6.125348 | -4.566449 | 4.662488  |
| С      | -2.307542 | -2.912060 | -1.749442 |
| Н      | -2.580896 | -1.841320 | -1.762453 |
| С      | -0.869116 | -3.020650 | -2.271111 |
| Н      | -0.182959 | -2.693068 | -1.474648 |
| н      | -0.613986 | -4.073353 | -2.467962 |
| С      | -0.599151 | -2.191001 | -3.515452 |
| Н      | 0.442627  | -2.318295 | -3.842821 |
| Н      | -0.748908 | -1.118948 | -3.312076 |
| н      | -1.247892 | -2.473327 | -4.359592 |
| С      | -3.361310 | -3.575926 | -2.659750 |
| н      | -4.357191 | -3.284673 | -2.287948 |
| н      | -3 278940 | -3 138007 | -3 667412 |
| c      | -3 282809 | -5 092259 | -2 759915 |
| н      | -2 303941 | -5 428478 | -3 136568 |
| н      | -4 047920 | -5 475127 | -3 452711 |
| н      | -3 1/683/ | -5 572080 | -1 783/61 |
| Ċ      | 5 152203  | -1 271167 | -0 1//38/ |
| c      | 6 000921  | 2 450750  | 0.144504  |
| c      | 0.099651  | -2.430739 | -0.100070 |
| c      | 3.200336  | -2.094127 | 1 049334  |
| C<br>C | 3.333880  | -3.125137 | -1.948334 |
| C      | 2.671554  | -4.280427 | -2.330144 |
| н      | 2./33058  | -4.623628 | -3.36480/ |
| C      | 1.89/801  | -4.998453 | -1.419062 |
| Н      | 1.3/4098  | -5.902767 | -1./37925 |
| C      | 1.775617  | -4.543437 | -0.111807 |
| Н      | 1.143526  | -5.085674 | 0.591805  |
| С      | 2.443684  | -3.391723 | 0.320005  |
| С      | 4.096673  | -2.263979 | -2.950179 |

| Н       | 4.954552  | -1.811457             | -2.431834 |
|---------|-----------|-----------------------|-----------|
| С       | 3.206002  | -1.089700             | -3.405960 |
| Н       | 2.579700  | -1.421946             | -4.251379 |
| Н       | 2.484879  | -0.842887             | -2.608784 |
| С       | 3.996458  | 0.154381              | -3.776370 |
| Н       | 4.529241  | 0.548289              | -2.896337 |
| н       | 3.339333  | 0.946702              | -4.160115 |
| Н       | 4.746974  | -0.058362             | -4.553644 |
| С       | 4.668136  | -3.027456             | -4.146436 |
| н       | 3.851146  | -3.516815             | -4.704586 |
| н       | 5.095314  | -2.291766             | -4.848088 |
| С       | 5.736788  | -4.045595             | -3.774081 |
| н       | 6.588393  | -3.556845             | -3.274799 |
| н       | 6 125203  | -4 566493             | -4 662699 |
| н       | 5 344408  | -4 807191             | -3 082880 |
| c       | 2 307673  | -2 911780             | 1 749464  |
| н       | 2.507075  | -1 8/1082             | 1 762378  |
| C       | 0 860177  | -3 020030             | 2 270000  |
| с<br>ц  | 0.009177  | 2 602470              | 1 474200  |
|         | 0.183103  | -2.092479             | 2 469016  |
| п<br>С  | 0.013840  | 2 100101              | 2.400010  |
| с<br>ц  | 1 247701  | -2.190101<br>2 /7220E | 3.313133  |
|         | 1.247791  | -2.4/2505             | 4.559427  |
| н       | -0.442637 | -2.31/151             | 3.842411  |
| п<br>С  | 0.749181  |                       | 3.311398  |
| C<br>II | 3.361244  | -3.5/5/10             | 2.059951  |
|         | 4.357209  | -3.284099             | 2.288191  |
| H<br>C  | 3.2/88/4  | -3.13/039             | 3.00/545  |
| C<br>   | 3.282453  | -5.092020             | 2.760323  |
| н       | 4.047424  | -5.4/4933             | 3.453250  |
| н       | 3.446488  | -5.5/2009             | 1.783952  |
| Н       | 2.303485  | -5.428007             | 3.136925  |
| Ca      | -2.036018 | 0.000163              | -0.001969 |
| Ca      | 2.036096  | 0.000114              | 0.001738  |
| N       | -3.846721 | 1.472301              | -0.210858 |
| Ν       | 3.846686  | 1.472374              | 0.210856  |
| 0       | 0.000817  | -0.001869             | -0.757277 |
| С       | -5.750623 | -0.000204             | 0.003465  |
| Н       | -6.841953 | -0.000414             | 0.004670  |
| С       | -5.152721 | 1.271063              | -0.138389 |
| С       | -6.100156 | 2.450824              | -0.157610 |
| С       | -3.268219 | 2.694373              | -0.593359 |
| С       | -3.358271 | 3.125488              | -1.945939 |
| С       | -2.677033 | 4.281004              | -2.328988 |
| Н       | -2.740661 | 4.624283              | -3.363497 |
| С       | -1.901744 | 4.999204              | -1.419331 |
| Н       | -1.378940 | 5.903707              | -1.739121 |
| С       | -1.776873 | 4.544095              | -0.112364 |
| Н       | -1.143585 | 5.086482              | 0.590073  |
| С       | -2.443670 | 3.392085              | 0.320658  |
| С       | -4.103019 | 2.264272              | -2.946311 |
| Н       | -4.959826 | 1.811717              | -2.426205 |
| С       | -3.213372 | 1.089956              | -3.404029 |
| Н       | -2.589116 | 1.421998              | -4.251045 |

| Н     | -2.490195  | 0.843408  | -2.608611 |
|-------|------------|-----------|-----------|
| С     | -4.004659  | -0.154266 | -3.772190 |
| Н     | -3.348472  | -0.946660 | -4.157381 |
| н     | -4.757057  | 0.058343  | -4.547674 |
| н     | -4.535332  | -0.547954 | -2.890784 |
| С     | -4.676968  | 3.027689  | -4.141414 |
| н     | -3.861189  | 3.517287  | -4.701120 |
| н     | -5.105335  | 2.291930  | -4.842272 |
| С     | -5.745160  | 4.045516  | -3.766896 |
| н     | -5.351589  | 4.807243  | -3.076516 |
| н     | -6.595609  | 3.556505  | -3.265892 |
| н     | -6.135524  | 4.566300  | -4.654727 |
| C     | -2.304469  | 2,911948  | 1.749747  |
| н     | -2 577434  | 1 841133  | 1 763023  |
| c     | -0.864930  | 3 020857  | 2 268289  |
| н     | -0 180307  | 2 694747  | 1 469913  |
| н     | -0 610012  | 4 073504  | 2 /65728  |
| C     | -0.5010012 | 2 1200/2  | 2.403720  |
| с     | 0.391338   | 2.109943  | 2 0262/15 |
|       | 0.430793   | 2.51/94/  | 3.030343  |
|       | -0.740094  | 1.110052  | 3.300300  |
| Г     | -1.238779  | 2.4/0028  | 4.330838  |
| C<br> | -3.350213  | 3.5/541/  | 2.002008  |
| н     | -4.352898  | 3.283382  | 2.293680  |
| Н     | -3.270826  | 3.13/850  | 3.6/0228  |
| C     | -3.278486  | 5.091834  | 2.762154  |
| н     | -2.298756  | 5.428872  | 3.135823  |
| н     | -4.041820  | 5.474364  | 3.457096  |
| н     | -3.445722  | 5.571256  | 1.786048  |
| С     | 5.750712   | 0.000011  | -0.003414 |
| Н     | 6.842041   | -0.000115 | -0.004592 |
| С     | 5.152703   | 1.271233  | 0.138410  |
| С     | 6.100051   | 2.451065  | 0.157640  |
| С     | 3.268118   | 2.694421  | 0.593341  |
| С     | 3.358138   | 3.125533  | 1.945919  |
| С     | 2.676881   | 4.281045  | 2.328952  |
| н     | 2.740472   | 4.624322  | 3.363464  |
| С     | 1.901598   | 4.999229  | 1.419277  |
| н     | 1.378768   | 5.903721  | 1.739056  |
| С     | 1.776738   | 4.544102  | 0.112315  |
| н     | 1.143429   | 5.086458  | -0.590126 |
| С     | 2.443559   | 3.392096  | -0.320689 |
| С     | 4.102853   | 2.264284  | 2.946290  |
| н     | 4.959624   | 1.811679  | 2.426167  |
| С     | 3.213135   | 1.090019  | 3.404006  |
| н     | 2.588993   | 1.422057  | 4.251106  |
| н     | 2.489874   | 0.843607  | 2.608627  |
| С     | 4.004316   | -0.154330 | 3.771977  |
| н     | 4.534844   | -0.548004 | 2.890477  |
| Н     | 3.348076   | -0.946683 | 4.157165  |
| Н     | 4,756823   | 0.058116  | 4.547400  |
| С     | 4.676869   | 3.027666  | 4.141383  |
| Ĥ     | 3.861136   | 3.517360  | 4,701074  |
| н     | 5.105152   | 2,291878  | 4.842260  |
| ••    | 0.200102   | 1.1010/0  |           |

| С      | 5.745181                               | 4.045367  | 3.766861  |
|--------|----------------------------------------|-----------|-----------|
| Н      | 6.595580                               | 3.556247  | 3.265878  |
| н      | 6.135594                               | 4.566121  | 4.654687  |
| н      | 5.351710                               | 4.807126  | 3.076460  |
| С      | 2.304310                               | 2.911874  | -1.749746 |
| н      | 2.577232                               | 1.841047  | -1.762948 |
| С      | 0.864757                               | 3.020776  | -2.268254 |
| н      | 0.180152                               | 2.694798  | -1.469810 |
| н      | 0.609875                               | 4.073406  | -2.465821 |
| C      | 0.591282                               | 2.189710  | -3.510868 |
| н      | 1 238501                               | 2 470257  | -4 356766 |
| н      | -0.451057                              | 2 317711  | -3 836176 |
| ц      | 0.401037                               | 1 117071  | -3.850170 |
| п<br>С | 2 256061                               | 2 575215  | -3.300221 |
|        | 3.350001                               | 3.5/5215  | -2.002/50 |
| н      | 4.352742                               | 3.283229  | -2.293724 |
| Н      | 3.270677                               | 3.13/502  | -3.6/0254 |
| С      | 3.278344                               | 5.091618  | -2.762465 |
| Н      | 4.041681                               | 5.474041  | -3.457464 |
| Н      | 3.445584                               | 5.571182  | -1.786430 |
| Н      | 2.298617                               | 5.428609  | -3.136185 |
| Н      | 7.013167                               | -2.221586 | -0.732903 |
| Н      | 6.404584                               | -2.684238 | 0.866723  |
| н      | 5.631427                               | -3.349456 | -0.586841 |
| н      | 7.019020                               | 2.219540  | 0.713616  |
| н      | 6.394194                               | 2.690307  | -0.877543 |
| н      | 5.635325                               | 3.347454  | 0.586764  |
| н      | -7.019084                              | 2,219254  | -0.713637 |
| н      | -6 394366                              | 2 689996  | 0 877571  |
| н      | -5 635478                              | 3 347264  | -0 586679 |
| ц      | -7 012751                              | -2 221025 | 0.333407  |
| <br>   | 6 404601                               | -2.221935 | 0.753407  |
| п      | -0.404091                              | -2.064205 | -0.800505 |
| н      | -5.631024                              | -3.349731 | 0.586692  |
| 19     | )6                                     |           |           |
| [(B    | DI*)CaJ <sub>2</sub> (N <sub>2</sub> ) |           |           |
| Ν      | -3.980432                              | -1.471573 | 0.187846  |
| Ν      | 3.977515                               | -1.475581 | -0.187673 |
| Ν      | -0.004230                              | -0.001547 | 0.626642  |
| С      | -5.286696                              | -1.270697 | 0.143005  |
| С      | -6.229812                              | -2.453369 | 0.167335  |
| С      | -3.373353                              | -2.675219 | 0.575867  |
| С      | -3.452187                              | -3.104364 | 1.930896  |
| С      | -2.731565                              | -4.232691 | 2.322455  |
| н      | -2.787222                              | -4.571348 | 3.359036  |
| C      | -1 922774                              | -4 925207 | 1 422104  |
| н      | -1 368825                              | -5 808289 | 1 749098  |
| c.     | -1 80/15/                              | -4 468306 | 0 1152/5  |
| с<br>ц | 1 1 1 4 4 0 0 2                        | 4.408300  | 0.115245  |
| п<br>С | -1.144003                              | -4.30/144 | -0.J0UJJZ |
| C<br>C | -2.51125/                              | -3.344324 | -0.32/524 |
| C<br>  | -4.20489/                              | -2.253820 | 2.934060  |
| H      | -5.060466                              | -1./96192 | 2.416966  |
| C      | -3.311123                              | -1.086116 | 3.400712  |
| Н      | -2.673607                              | -1.434097 | 4.231582  |

| Н      | -2.598838 | -0.822454 | 2.600028  |
|--------|-----------|-----------|-----------|
| С      | -4.096497 | 0.150996  | 3.803356  |
| Н      | -3.433068 | 0.936766  | 4.189851  |
| н      | -4.835575 | -0.073625 | 4.588175  |
| н      | -4.641225 | 0.559656  | 2.937521  |
| c      | -4 779156 | -3 028414 | 4 121928  |
| н      | -3 962044 | -3 511539 | 4 685283  |
| ц      | -5 220685 | -2 200708 | 4.005205  |
| C C    | 5.220005  | 4 057262  | 2 725/05  |
| с<br>ц | -3.032223 | 4.037302  | 2 04495   |
|        | -3.423607 | -4.011111 | 2 220715  |
| н      | -0.085341 | -3.577110 | 3.230/15  |
| Н      | -6.222110 | -4.586928 | 4.618328  |
| C      | -2.36/239 | -2.862256 | -1.755912 |
| н      | -2.666359 | -1.798165 | -1.777527 |
| С      | -0.919714 | -2.938287 | -2.262304 |
| Н      | -0.242256 | -2.639113 | -1.446780 |
| Н      | -0.651968 | -3.981076 | -2.494075 |
| С      | -0.643718 | -2.057688 | -3.469855 |
| Н      | 0.402647  | -2.161525 | -3.791415 |
| Н      | -0.805080 | -0.997268 | -3.220514 |
| Н      | -1.282190 | -2.312141 | -4.330507 |
| С      | -3.391875 | -3.551903 | -2.680579 |
| н      | -4.399548 | -3.271088 | -2.333071 |
| Н      | -3.293432 | -3.124217 | -3.691331 |
| С      | -3.288666 | -5.067958 | -2.760158 |
| Н      | -2.296993 | -5.394335 | -3.111092 |
| н      | -4 032532 | -5 470489 | -3 464803 |
| н      | -3 466893 | -5 538065 | -1 781487 |
| c      | 5 284201  | -1 277330 | -0 142546 |
| c      | 6 225010  | -2 461866 | -0 166701 |
| c      | 2 268/75  | -2.401800 | -0.100701 |
| c      | 2 446002  | 2 107672  | 1 020607  |
| c      | 3.440905  | -3.10/0/5 | -1.950097 |
| C<br>  | 2.724806  | -4.235059 | -2.322248 |
| н      | 2.780183  | -4.5/3962 | -3.358/62 |
| C      | 1.914954  | -4.926374 | -1.421932 |
| н      | 1.359893  | -5.808765 | -1.748909 |
| С      | 1.796745  | -4.469137 | -0.115158 |
| Н      | 1.135831  | -4.986997 | 0.580441  |
| С      | 2.505309  | -3.346065 | 0.327559  |
| С      | 4.201078  | -2.258364 | -2.933814 |
| Н      | 5.057175  | -1.801886 | -2.416559 |
| С      | 3.309094  | -1.089469 | -3.400815 |
| Н      | 2.671075  | -1.436697 | -4.231615 |
| Н      | 2.597196  | -0.824504 | -2.600224 |
| С      | 4.096327  | 0.146388  | -3.803809 |
| н      | 4.641823  | 0.554311  | -2.938108 |
| н      | 3.434056  | 0.933131  | -4.190311 |
| н      | 4.834959  | -0.079431 | -4.588707 |
| С      | 4.774541  | -3.033949 | -4.121402 |
| Н      | 3.956897  | -3.516007 | -4.684904 |
| н      | 5.217262  | -2.306978 | -4.822391 |
| C      | 5.826050  | -4.064336 | -3.734553 |
| Ĥ      | 6.679798  | -3.585216 | -3.229771 |
| -      |           |           | · • · · • |

| Н       | 6.215278  | -4.594694 | -4.617203 |
|---------|-----------|-----------|-----------|
| Н       | 5.416411  | -4.817296 | -3.043786 |
| С       | 2.361904  | -2.863812 | 1.755941  |
| Н       | 2.662138  | -1.800036 | 1.777503  |
| С       | 0.914341  | -2.938121 | 2.262467  |
| н       | 0.237200  | -2.638218 | 1.446947  |
| н       | 0.645346  | -3.980550 | 2.494431  |
| С       | 0.639622  | -2.056979 | 3.469914  |
| н       | 1.278044  | -2.311972 | 4.330443  |
| н       | -0.406756 | -2.159601 | 3.791816  |
| н       | 0.802140  | -0.996800 | 3.220308  |
| С       | 3.385783  | -3.554714 | 2.680472  |
| н       | 4.393764  | -3.274901 | 2.333059  |
| н       | 3 287792  | -3 127178 | 3 691330  |
| c .     | 3 280926  | -5 070683 | 2 759616  |
| н       | 1 02/089  | -5 /7/2/6 | 3 /6//07  |
| ц       | 2 158052  | -5.5/0682 | 1 780856  |
|         | 2.420322  | 5.040085  | 2 110096  |
| п<br>Са | 2.200709  | -3.390090 | 0.012500  |
| Ca      | -2.170112 |           | -0.013330 |
| Ca<br>N | 2.176005  | -0.000205 | 0.015220  |
| IN N    | -3.980/1/ | 1.475289  | -0.1/15/4 |
|         | 3.983851  | 1.470929  | 0.1/1403  |
|         | 0.004136  | -0.002111 | -0.62/40/ |
| C<br>II | -5.885833 | 0.003330  | 0.021137  |
| H<br>C  | -6.9//11/ |           | 0.028758  |
| C<br>C  | -5.280547 | 1.270542  | -0.10//22 |
| c       | -0.22/390 | 2.401103  | -0.1105/0 |
| C       | -3.377662 | 2.0/9353  | -0.564826 |
| C       | -3.4/1666 | 3.109349  | -1.918611 |
| C       | -2.756079 | 4.238323  | -2.31/464 |
| н       | -2.823410 | 4.577798  | -3.353085 |
| С       | -1.938109 | 4.930776  | -1.425372 |
| н       | -1.388381 | 5.814487  | -1.757723 |
| С       | -1.804745 | 4.472902  | -0.120258 |
| н       | -1.137362 | 4.991819  | 0.568429  |
| С       | -2.505614 | 3.347725  | 0.329430  |
| С       | -4.236415 | 2.259282  | -2.913094 |
| Н       | -5.086369 | 1.802680  | -2.385880 |
| С       | -3.349888 | 1.090228  | -3.390370 |
| Н       | -2.724978 | 1.435474  | -4.231882 |
| Н       | -2.624622 | 0.829254  | -2.600450 |
| С       | -4.141485 | -0.148090 | -3.777000 |
| Н       | -3.484602 | -0.935062 | -4.172139 |
| Н       | -4.892900 | 0.074944  | -4.550452 |
| Н       | -4.672694 | -0.554122 | -2.901570 |
| С       | -4.823716 | 3.033917  | -4.094516 |
| Н       | -4.012915 | 3.517156  | -4.666806 |
| Н       | -5.272930 | 2.306194  | -4.790615 |
| С       | -5.872540 | 4.062665  | -3.696227 |
| Н       | -5.456416 | 4.816589  | -3.010411 |
| Н       | -6.719735 | 3.582238  | -3.181709 |
| Н       | -6.272554 | 4.592035  | -4.574628 |
| С       | -2.344529 | 2.863459  | 1.755215  |

| н      | -2.639223  | 1.798295  | 1.777452  |
|--------|------------|-----------|-----------|
| С      | -0.891741  | 2.942971  | 2.245566  |
| н      | -0.222726  | 2.648949  | 1.421287  |
| н      | -0.624707  | 3.985841  | 2.477879  |
| С      | -0.598671  | 2.058841  | 3.446472  |
| H      | 0.450564   | 2.166844  | 3.757301  |
| н      | -0 758062  | 0 998997  | 3 193814  |
| н      | -1 229010  | 2 306978  | 4 314944  |
| c      | -3 360205  | 3 549291  | 2 692388  |
| н      | -3.300203  | 3.343231  | 2.052500  |
| <br>   | 2 247666   | 2 121060  | 2,337,331 |
| п<br>С | -3.247000  | 5.121908  | 3.701785  |
|        | -3.201545  | 5.005720  | 2.770775  |
| н      | -2.2005/3  | 5.395684  | 3.108805  |
| н      | -3.997622  | 5.465603  | 3.485055  |
| н      | -3.454087  | 5.535291  | 1.794540  |
| С      | 5.886027   | -0.004571 | -0.020614 |
| Н      | 6.977316   | -0.006089 | -0.028039 |
| С      | 5.289295   | 1.269840  | 0.107961  |
| С      | 6.232312   | 2.452702  | 0.117010  |
| С      | 3.382502   | 2.675826  | 0.564586  |
| С      | 3.477058   | 3.105801  | 1.918369  |
| С      | 2.762876   | 4.235659  | 2.317192  |
| н      | 2.830651   | 4.575070  | 3.352805  |
| С      | 1.945711   | 4.929078  | 1.425089  |
| н      | 1.397042   | 5.813459  | 1.757401  |
| С      | 1.811765   | 4.471312  | 0.120006  |
| н      | 1.144975   | 4.991009  | -0.568663 |
| C      | 2.511269   | 3.345264  | -0.329677 |
| c      | 4 240541   | 2 254711  | 2 912956  |
| н      | 5 089923   | 1 796928  | 2 385862  |
| c      | 3 352308   | 1.086903  | 3 390129  |
| н      | 2 727669   | 1 /3300/  | A 231/50  |
| ц      | 2.727005   | 0 826705  | 2 600077  |
| с<br>С | 2.020872   | 0.820795  | 2.000077  |
|        | 4.142124   | -0.152440 | 3.777080  |
|        | 4.073018   | -0.559254 | 2.901820  |
| н      | 3.484072   | -0.938507 | 4.1/2082  |
| Н      | 4.893616   | 0.069648  | 4.550727  |
| С      | 4.828743   | 3.028552  | 4.094438  |
| н      | 4.018524   | 3.512777  | 4.666717  |
| н      | 5.277017   | 2.300235  | 4.790527  |
| С      | 5.878851   | 4.056021  | 3.696236  |
| Н      | 6.725435   | 3.574582  | 3.181661  |
| н      | 6.279531   | 4.584808  | 4.574683  |
| Н      | 5.463658   | 4.810526  | 3.010493  |
| С      | 2.349564   | 2.861198  | -1.755454 |
| н      | 2.643284   | 1.795750  | -1.777867 |
| С      | 0.896803   | 2.942295  | -2.245722 |
| Н      | 0.227435   | 2.649512  | -1.421285 |
| Н      | 0.631124   | 3.985422  | -2.478399 |
| С      | 0.602483   | 2.058058  | -3,446245 |
| H      | 1.233706   | 2.304449  | -4.314573 |
| н      | -0 446397  | 2 168017  | -3 757594 |
| н      | 0 759594   | 0 998046  | -3 192862 |
| •••    | J., JJJJ-T | 0.000000  | 0.101002  |

| С | 3.365888 | 3.545990  | -2.692728 |
|---|----------|-----------|-----------|
| Н | 4.376517 | 3.260235  | -2.358156 |
| Н | 3.252597 | 3.118960  | -3.702170 |
| С | 3.269126 | 5.062559  | -2.770834 |
| Н | 4.005393 | 5.461554  | -3.485412 |
| Н | 3.462758 | 5.531737  | -1.794630 |
| Н | 2.274437 | 5.393878  | -3.108357 |
| Н | 7.146288 | -2.235213 | -0.720752 |
| Н | 6.515061 | -2.708247 | 0.868105  |
| Н | 5.753383 | -3.352770 | -0.600005 |
| Н | 7.167529 | 2.220480  | 0.644624  |
|   |          |           |           |

| Н | 6.494784  | 2.707755  | -0.923082 |
|---|-----------|-----------|-----------|
| Н | 5.773430  | 3.340765  | 0.569520  |
| Н | -7.163509 | 2.230379  | -0.643208 |
| Н | -6.488405 | 2.717305  | 0.923616  |
| Н | -5.767306 | 3.348153  | -0.569958 |
| Н | -7.151337 | -2.224406 | 0.719986  |
| Н | -6.518957 | -2.700381 | -0.867580 |
| Н | -5.760352 | -3.344707 | 0.602120  |
|   |           |           |           |

## 7. References

- S1 B. Rösch, T. X. Gentner, J. Langer, C. Färber, J. Eyselein, L. Zhao, C. Ding, G. Frenking and S. Harder, Science, 2021, **371**, 1125–1128.
- S2 Rigaku Oxford Diffraction, CrysAlisPro Softw. Syst. version 1.171.40.84a, 2020, Rigaku Corporation, Wroclaw, Poland.
- S3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, 42, 339–341.
- S4 G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3–8.
- S5 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- S6 P. van der Sluis and A. L. Spek, *Acta Crystallogr. Sect. A Found. Crystallogr.*, 1990, **46**, 194–201.
- A. Thorn, B. Dittrich and G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2012, 68, 448–451.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, *Gaussian 16, Revis. A.03* Gaussian, Inc., Wallingford CT, 2016.
- S9 A. D. Becke, J. Chem. Phys., 1993, **98**, 5648–5652.
- S10 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B*, 1993, **48**, 4978–4978.
- S11 F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057.
- S12 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.
- S13 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, **32**, 1456–1465.
- S14 A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735–746.
- S15 N. J. R. van Eikema Hommes, *Molecule*, Erlangen, 2018.
- S16 R. F. W. Bader, *Chem. Rev.*, 1991, **91**, 893–928.
- S17 T. A. Keith, *AIMAII Version 17.01.25*, TK Gristmill Software, Overland Park KS, USA, 2017.