Supporting Information

Synergistic OH⁻/H⁺ Modulation over Amorphous Gd₂O₃-Pt Interfaces for Efficient Alkaline Hydrogen Oxidation Reaction Electrocatalysis

Jingwen Zhang,^a Mengjiao Liu,^a Wenkang Lu,^a Linbo Sun,^a Yi Yang,^a Jiawei Ke,^a Jinjin Ding,^{* a} Chenglin Yan, ^{b,c} Tongfei Li^{* a} and Tao Qian^a

^aSchool of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China

^bSchool of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

^cCollege of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, China

* E-mail: djjing@ntu.edu.cn (J. Ding); litongfei@ntu.edu.cn (T. Li)

Experimental section

Chemicals

Potassium tetrachloroplatinate (K₂PtCl₄), Gadolinium chloride (GdCl₃) and acetone were purchased from Sinopharm Chemical Reagent Co., Ltd. Ethanol (C₂H₅OH, 99.5 %), isopropanol (IPA, C₃H₈O, ACS, \geq 99.5%) was obtained from Macklin. Carbon black (XC-72R) was attained from Carbot. Pt/C (20 wt%) and Nafion (5 wt%) were obtained from Sigma-Aldrich. All chemicals were employed without further purification.

Preparation of amorphous Gd₂O₃/C

200 mg of XC-72R and 300 mg of GdCl₃ were ultrasonicated in 30 mL of ethanol for 15 min, followed by the addition of 5 mL of water. The resulting mixture was heated to 80 °C under vigorous stirring for 8 h. Subsequently, the mixture was centrifuged and dried. The resultant material was calcined in a muffle furnace at 300 °C for 2 h to form amorphous Gd_2O_3/C . Finally, the product was washed with water and acetone, and then dried for further use.

Preparation of Pt-Gd₂O₃/C

24 mg of K_2PtCl_4 and 100 mg of the synthesized amorphous Gd_2O_3/C were dispersed in 50 mL of deionized water and ultrasonicated for 1 h. The resulting suspension was subsequently evaporated under reduced pressure using a rotary evaporator at 60 °C. The residue was collected and dried overnight at ambient conditions. Finally, the material was calcined in a H₂-Ar atmosphere at 300 °C for 1 h to obtain Pt-Gd₂O₃/C. The resultant product was washed sequentially with deionized water and acetone, followed by drying under vacuum.

For comparison, Pt/C and Gd_2O_3/C catalysts were obtained using the identical procedure, except without the introduction of $GdCl_3$ and K_2PtCl_4 , respectively, under the same conditions.

Material Characterization

The surface morphologies were characterized using scanning electron microscopy (SEM Sigma 500). The transmission electron microscopy (TEM) images were collected using a JEM-2100F TEM operating at 200 kV. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and energy-dispersive Xray spectroscopy (EDS) mappings were obtained using the Titan Themis G2 STEM at 300 kV. The contact angle was measured using a contact drop angle measurement (JCY-1, FANGRUI). X-ray diffraction (XRD, Bruker D8 diffractometer) measurements were characterized with Cu K α radiation (λ =1.54056 Å). Raman measurement of the nanocomposites was conducted on a Horiba (HR Evolution) using a 532 nm laser source. X-ray photoelectron spectroscopy (XPS) measurements were carried out at an Escalab Xi+X-ray photoelectron spectrometer using a monochromated aluminium K α X-ray source at a pass energy of 187.85 eV, where the carbon 1s peak at 284.6 eV was taken as an internal standard. Ultraviolet photoelectron spectroscopy (UPS) spectra were recorded on a Thermo SCIENTIFIC ESCALAB Xi+analyzer with He I light source (hv = 21.22 eV). The Pt content was determined by an inductivelycoupled plasma mass-spectrometer (Agilent 8900x QQQ-ICP-MS, Agilent, USA).

Electrochemical measurements

Electrochemical measurements were performed on a CHI 660E workstation (Shanghai Chenhua Instrument Corporation, China) in a 0.1 M KOH solution using a three-electrode system. A graphite rod and an Hg/HgO electrode (saturated KCl) were used as the counter and reference electrodes, respectively. The rotating disk electrode (RDE) assembly (AFE7R9GCPT, Pine Research Instrumentation, USA) consisted of a rotation disk electrode. To prepare the catalyst ink, 5 mg of catalyst was mixed with 100 µL Nafion solution (5 wt. %), followed by the addition of 300 µL deionized water and 600 µL ethanol. After 30 min sonication, 10 µL catalyst ink was deposited onto a glassy carbon electrode (diameter 5 mm, geometric area: 0.196 cm²), which was used as a working electrode after dried at room temperature. Cyclic voltammetry (CV) curves were recorded on the RDE in H₂-saturated 0.1 M KOH electrolyte at a scan rate of 50 mV/s from 0.02 to 1.02 V (vs. RHE). Linear sweep voltammetry (LSV) curves were obtained on the RDE in H₂-saturated electrolyte with a scan rate of 1 mV s⁻¹ from -0.05 to 0.25 V (vs. RHE) at a rotation speed of 1600 rpm. Electrochemical impedance spectroscopy (EIS) was performed from 100 kHZ to 0.01 HZ at open circuit voltage with an amplitude of 5 mV. CO stripping voltammetry was conducted in 0.1 M KOH solution with the CV measurement. Prior to the test, the electrolyte was purged with pure N₂ to get rid of dissolved air in the electrolyte. Subsequently, the electrode was kept at 0.1 V vs. RHE for 15 min while bubbling CO gas. Following this, the electrolyte was purged with N₂ for 30 min to ensure complete remove of CO. CO stripping voltammetry was recorded from 0 V to 1.2 V (vs. RHE) at 20 mV s⁻¹. All potentials were calibrated relative to the reversible hydrogen electrode (RHE) scale according to

the Nernst equation ($E_{RHE} = E_{Hg/HgO} + 0.059 \times pH + 0.1989 V$), where $E_{Hg/HgO}$ is the external potential measured against the Hg/HgO reference electrode.

AEMFC tests

5 mg of Pt-Gd₂O₃/C was added into mixture solution containing of IPA, DI water, and Nafion to prepare the catalyst ink. Subsequently, the as-made ink was brush painted on one side of anion exchange membrane (Fuma 3-50) to form the anode catalyst layer. Commercial 40 wt% Pt/C (Johnson Matthey) was used as a cathode catalyst for forming the cathode catalyst layer on the opposite side of the membrane. The catalyst-coated membranes (CCMs) with an active area of 4 cm² were then sandwiched between two gas diffusion layers (GDLs). The fuel cell performance was examined at 40 °C under humidified H₂ and O₂ flow rates of 100 sccm at 80% relative humidity, with a back pressure of 150 kPa. Figures and Tables

Fig. S1 SEM image of Pt-Gd₂O₃/C.

Fig. S2 EDS spectrum of Pt-Gd₂O₃/C.

Fig. S3 (a) TEM image, and (b) XRD pattern of Gd₂O₃/C.

Fig. S4 (a) TEM image of Pt/C. (b) XRD pattern of Pt/C.

Fig. S5 (a) Contact angle measurement of Pt/C. (b) Contact angle measurement of $\mathrm{Gd_2O_3/C.}$

Fig. S6 The Raman spectra of Pt-Gd₂O₃/C, Gd₂O₃/C and Pt/C.

Fig. S7 The XPS survey spectrum of $Pt-Gd_2O_3/C$.

Fig. S8 CV curves of Pt-Gd₂O₃/C, commercial Pt/C, Pt/C and Gd₂O₃/C catalysts in H_2 atmosphere.

Fig. S9 LSV curves of different Pt-loading Pt-Gd₂O₃/C.

Fig. S10 LSV curves of different samples in N_2 -saturated 0.1 M KOH solution.

Fig. S11 (a) Polarization curves of commercial Pt/C at different rotation rates. (b) Polarization curves of Pt/C at different rotation rates.

Fig. S12 (a) The Koutecky–Levich plot of $Pt-Gd_2O_3/C$ at an overpotential of 50 mV. (b) The Koutecky–Levich plot of commercial Pt/C at an overpotential of 50 mV.

Fig. S13 Linear current potential region around the equilibrium potential.

Fig. S14 Comparison of j_0 and mass activity at an overpotential of 50 mV.

Fig. S15 (a)TEM image of $Pt-Gd_2O_3/C$ after HOR stability measurement. (b)TEM image of $Pt-Gd_2O_3/C$ after stability test of AEMFCs.

Element	Pt-Gd ₂ O ₃ /C	Pt /C
Pt (ωt. %)	13.60	1.85
Gd (wt. %)	4.74	-

 Table S1. Pt and Gd content (wt%) of samples determined using ICP-OES.

Number	Catalyst	$j_{\rm k} ({ m mA~cm^{-2}})@50{ m mV}$	Ref
1	Pt-Gd ₂ O ₃ /C	39.36	This work
2	Commercial Pt/C	6.94	This work
3	Pt/C	0.68	This work
4	Pt/Cu NWs	10.9	1
5	Ru@N-CNFs	2.73	2
6	Eu ₂ O ₃ @N-CNFs	3.27	2
7	Ni/N-CNT	2.33	3
8	Ni ₃ N/C	3.9	4
9	Ni/CeO ₂ /C	1.73	5
10	Ni/NiO/C	1.59	6
11	MoNi ₄	33.8	7
12	WNi ₄	8.31	7
13	np-Ni ₃ N	4.76	8
14	Ir/C-800C	4.1	9
15	PtRuTe	4.05	10

Table S2. Comparison of the HOR activity of $Pt-Gd_2O_3/C$ with other advanced electrocatalysts reported previously.

Number	Catalyst	Relative current (%)	Time	Ref
1	Pt-Gd ₂ O ₃ /C	87.47	80000s	This work
2	Pt/C	67.32	50000s	This work
3	GCN-Tb-Pt	67.5	3h	[11]
4	Pt-GCN	63.3	3h	[11]
5	PtIrFeCoNiMo	84.23	20000s	[12]

Table S3. Comparison with other recently reported Pt-based catalysts in terms ofchronoamperometry in 0.1 M KOH electrolyte at pure H_2 -saturated atmosphere.

Number	Catalyst	Overpotential (mV)	MA (mA mg ⁻¹ Pt)	Ref
1	Pt-Gd ₂ O ₃ /C	50	1130	This work
2	Pt/C	50	200	This work
3	LD-Pt WNPs	50	968.5	[13]
4	Pt _{0.9} Pd _{0.1} /C	50	255	[14]
5	(Pt _{0.9} Pd _{0.1}) ₃ Fe/C	50	326.1	[14]
6	PtCu NWs	50	660	[15]
7	PtRu/Mo ₂ C- TaC	25	403	[16]
8	PtRu NWs	50	600	[17]
9	Pd ₃ Co@Pt/C	25	685	[18]
10	Pd ₃ Fe@Pt/C	25	661	[18]
11	Pt/NiO	50	200	[19]
12	Pt-(PtOx)- NSs/C	50	500	[20]
13	Ru@Pt NPs	50	1030	[21]

Table S4. Comparison with other recently reported Pt-based catalysts in terms of MAin 0.1 M KOH electrolyte.

References

- [1] S. Alia, B. Pivovar and Y. Yan, J. Am. Chem. Soc., 2013, 135, 13473-13478.
- [2] L. Zhang, S. Chen, T. Du, X. Zhao, A. Dong, L. Zhang, T. Li, C. Yan, and T. Qian, ACS Nano, 2024, 18, 34195–34206.
- [3] Z. Zhuang, S. Giles, J. Zheng, G. Jenness, S. Caratzoulas, D. Vlachos and Y. Yan, *Nat. Commun.*, 2016, 7, 10141.
- [4] W. Ni, A. Krammer, C. Hsu, H. Chen, A. Schuler and X. Hu, *Angew. Chem. Int. Ed.*, 2019, **58**, 7445-7449.
- [5] F. Yang, X. Bao, P. Li, X. Wang, G. Cheng, S. Chen and W. Luo, *Angew. Chem. Int. Ed.* 2019, **58**, 14179-14183.
- [6] Y. Yang, X. Sun, G. Han, X. Liu, X. Zhang, Y. Sun, M. Zhang, Z. Cao and Y. Sun, Angew. Chem. Int. Ed., 2019, 58, 10644-10649.
- [7] Y. Duan, Z. Yu, L. Yang, L. Zheng, C. Zhang, X. Yang, F. Gao, X. Zhang, X. Yu,
 R. Liu, H. Ding, C. Gu, X. Zheng, L. Shi, J. Jiang, J. Zhu, M. Gao and S. Yu, *Nat. Commun.*, 2020, 11, 4789.
- [8] T. Wang, M. Wang, H. Yang, M. Xu, C. Zuo, K. Feng, M. Xie, J. Deng, J. Zhong,
- W. Zhou, T. Cheng and Y. Li, Energy Environ. Sci., 2019, 12, 3522-3529.
- [9] J. Zheng, Z. Zhuang, B. Xu and Y. Yan, ACS Catal., 2015, 5, 4449-4455.
- [10] S. Ma, T. Ma, Q. Hu, H. Yang and C. He, Sci. China Mater., 2022, 65, 3462-3469.
- [11] Y. Chen, M. Yuan, Y. Yang, X. Liu, L. Lin, Z. Liang, R. Gao, Z. Tao, P. Wang,
- H. Guo, Y. Liu and X. Zheng, Nano Research, 2025, 18, 94907349.
- [12] X. Ma, S. Zhang, Y. Zhou, W. Lei, Y. Zhai, Y. Zhao and C. Shan, J. Mater. Chem. A,2024, 12,8862–8868.
- [13] X. Li, X. Han, Z. Yang, S. Wang, Y. Yang, J. Wang, J. Chen, Z. Chen and H. Jin, *Nano Res.*, 2024, **17**, 3819–3826.
- [14] T. Zhao, G. Wang, M. Gong, D. Xiao, Y. Chen, T. Shen, Y. Lu, J. Zhang, H. Xin,Q. Li and D. Wang, *ACS Catal.*, 2020, 10, 15207.
- [15] S. M. Alia, B. S. Pivovar and Y. Yan, J. Am. Chem. Soc., 2013, 135, 13473.
- [16] E. Hamo, R. Singh, J. Douglin, S. Chen, M. Hassine, E. Carbo-Argibay, S. Lu, H.

Wang, P. Ferreira, B. Rosen and D. Dekel, ACS Catal., 2021, 11, 932.

[17] M. Scofield, Y. Zhou, S. Yue, L. Wang, D. Su, X. Tong, M. B. Vukmirovic, R. R. Adzic and S. S. Wong, ACS Catal., 2016, 6, 3895.

[18] T. Zhao, Y. Hu, M. Gong, R. Lin, S. Deng, Y. Lu, X. Liu, Y. Chen, T. Shen, Y.

Hu, L. Han, H. Xin, S. Chen and D. Wang, Nano Energy, 2020, 74, 104877.

[19] G. Zhao, L. Xia, P. Cui, Y. Qian, Y. Jiang, Y. Zhao, H. Pan, S. X. Dou and W. Sun, *Nano Lett.*, 2021, 21, 4845.

[20] M. Kundu, T. Bhowmik, R. Mishra and S. Barman, *ChemSusChem*, 2018, **11**, 2388–42401.

[21] K. Elbert, J. Hu, Z. Ma, Y. Zhang, G. Chen, W. An, P. Liu, H. Isaacs, R. Adzic and J. Wang, *ACS Catal.*, 2015, **5**, 6764.