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Figure S1. Spin-density distributions of open-singlet states. Yellow and blue represent the distributions for alpha and 

beta electrons, respectively. The threshold is 0.015 e–/Bohr3. For the dCB-Ni = 2.6 Å structure, no significant spin 

distribution is observed on the CB. In this structure, the electronic spins of the CB are delocalised to Ni(111), and the 

electronic states and energies of the dCB-Ni = 2.6 Å structures shown in Figs. S1–S3 are difficult to distinguish at the DFT 

level. 

 

  



 

 

Figure S2. Spin-density distributions of triplet_P states. Yellow and blue represent the distributions for alpha and beta 

electrons, respectively. The threshold is 0.015 e–/Bohr3. In this structure, the electronic spins of the CB are delocalised 

to Ni(111), and the electronic states and energies of the dCB-Ni = 2.6 Å structures shown in Figs. S1–S3 are difficult to 

distinguish at the DFT level. 

 

  



 

 

Figure S3. Spin-density distributions of triplet_AP states. Yellow and blue represent the distributions for alpha and beta 

electrons, respectively. The threshold is 0.015 e–/Bohr3. In this structure, the electronic spins of the CB are delocalised 

to Ni(111), and the electronic states and energies of the dCB-Ni = 2.6 Å structures shown in Figs. S1–S3 are difficult to 

distinguish at the DFT level. In addition, no significant spin distribution on the CB is observed at dCB-Ni = 2.7 Å, which 

is due to the effect of self-interaction error in DFT. 

  



 

Figure S4. Variation in bond length (a: short side; b: long side) vs. dCB-Ni of CB/Ni(111) system with singlet state. (a) 

Results for a/b ratio, and (b) specific values of a and b. In this calculation, geometry optimisation was performed for 

both open-shell and closed-shell singlet states. In regions where the open-shell singlet state is stable, the optimisation 

converged to the closed-shell singlet. Therefore, the results shown in (a) and (b) are the results of a closed-shell singlet. 

Optimisation preserving the open-shell singlet is difficult because radicals on CB delocalise to Ni, even with slight 

structural changes owing to self-interaction errors. When correcting for the self-interaction error, such as on-site 

Coulomb correction to the π orbitals, the open-shell singlet state would be converged as a ground state with optimised 

D4h geometry, although the search for optimal corrections is beyond the purpose of this study. 

 

  



Supplementary Note: 

Arrangement of spin-projection scheme of DFT/plane-wave 

 

General Introduction for Spin Contamination and Diradical Analysis 

The all-electron wave functions estimated using spin-polarised single-reference calculations for open-shell 

electronic states are not eigenfunctions of the total spin operator [s1, s2]. Using the spin non-polarised one-electron 

wavefunctions (𝜓HOMO  and 𝜓LUMO ), the Slater determinant of the spin-polarised wavefunction, ΨSP , for the two 

radical electrons is written as Eq. (s1).  
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β
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where α(ωx) and β(ωx) are spin functions that correspond to up and down spins, respectively; ωx and 𝐫𝐱 are the 

spatial and spin coordinates of electron x, respectively; and θ is a mixing parameter of the HOMO and LUMO. The 

HOMO is the spin-unpolarised orbital occupied by two radical electrons in the ground-state configuration, the LUMO 

is the spin-unpolarised orbital occupied in the excited configuration, and the SOMO is the spin-polarised orbital 

occupied by only one electron, that is, the origin of magnetism. Then,  
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Eq. (s2) is an expansion of the Slater determinant for the spin-polarised wave functions of two radical electrons, 

where the second term corresponds to a two-electron excitation configuration from the occupied to the unoccupied 

orbitals. The contribution of the two-electron excitation configuration is called the diradical character and is a 



characteristic quantity of diradical molecules [s3–s5]. Diradical character correlates with optical properties [s6–s8], 

electronic conductivity [s9], and chemical reactivity [s10, s11], which have been verified both theoretically and 

experimentally; hence, the diradical character has been analysed for the in silico design of functional open-shell 

molecules. More details on diradical analysis for material design can be found in some excellent review papers [s5, s6]. 

The first and second terms in Eq. (s2) are the singlet states, and the third term is the triplet excitation 

configuration. Owing to the third term, the spin-polarised wavefunction, ΨSP, is not the eigenfunction of the square of 

the total spin operator, Ŝ2 [s1, s2]. The contamination of higher-order spin states is called the spin-contamination error 

(SCE) and is always included in spin-polarised wave functions by spin-polarised DFT calculations [s2]. Therefore, to 

estimate the diradical character from ΨSP , the SCE should be corrected, and the spin-projected diradical character 

proposed by Yamaguchi (hereafter, y value) is widely used [s3, s5] (Eq. (s3)). 
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T in Eq. (s3) corresponds to the effective bond order between the two radical sites and is used as a chemical 

index for open-shell molecules, where T = 1 is defined as a closed-shell state, and T = 0 is a complete open-shell state 

(dominated by classical magnetic interactions). Therefore, T is a measure of the orbital interactions (covalent 

interactions) between radicals. 

SCE also has an impact on the total energy. This is a particular issue in the calculation of magnetic molecules. 

Several correction formulae have been proposed. Three well-known formulae for magnetic coupling between two sites 

(a-site and b-site), 𝐽ab, are 
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𝑆max is the maximum total spin in the system. Eq. (s4) introduces an approximation of the classical limit proposed by 

Ruiz and Bencini [s12, s13]. Eq. (s5) is a formula proposed by Ginsberg, Noodleman, and Davidson that is valid in the 

quantum limit, that is, the region where the orbital correlation between the two sites is significantly large [s14, s15]. Eq. 

(s6) is called Yamaguchi's equation and bridges these two limits (classical: Eq. (s4)) and quantum (Eq. (s5)) [s16, s17]. 

In Eq. (s6), 〈Ŝ2〉SP is the expectation value of the square of the total spin operator of ΨSP, and the approximation in 

Eq. (s7) holds when the interaction between the two sites is weak. 

〈Ŝ2〉SP
HS ≈ 𝑆max(𝑆max + 1)       (s7-a) 

〈Ŝ2〉SP
LS ≈ 𝑆max        (s7-b) 

Substituting Eq. (s7) into Eq. (s6) yields Eq. (s4). Similarly, at the quantum limit, the approximations in Eq. (s8) hold. 

〈Ŝ2〉SP
HS ≈ 𝑆max(𝑆max + 1)       (s8-a) 

  〈Ŝ2〉SP
LS ≈ 0        (s8-b) 

From Eq. (s8) and Eq. (s6), Eq. (s5), was derived. The correction of the SCE using Yamaguchi's equation is known as 

the approximate spin-projection (AP) method. 

 The AP method corrects for spin-contamination errors (SCEs) in ΨSP by projecting onto the two-site spin 

Heisenberg Hamiltonian (Eq. (s9)) [s16, s18]:  

 ĤHB = −2𝐽abŝa ∙ ŝb        (s9) 

The square of the total spin operator is  

 Ŝ2 = ŝa
2 + ŝb

2 − 2ŝa ∙ ŝb        (s10) 

Then, from Eq. (s9) and Eq. (s10), the expected value of ĤHB can be calculated using Eq. (s11).  

 ⟨Ψ|ĤHB|Ψ⟩ = −𝐽ab(〈Ŝ2〉 − 〈ŝa
2〉 − 〈ŝb

2〉)      (s11) 



Assuming that the amount of spin at each site does not depend on the spin state (HS: high spin; LS: low spin), the 

projection of Eq. (s11) into Jab yields Eq. (s12). 
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HS −〈Ŝ2〉exact

LS =
𝐸SP

LS−𝐸SP
HS
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〈Ŝ2〉exact is the exact value of 〈Ŝ2〉, that is, the eigenvalue of spin-adapted wave function ΨSA for Ŝ2. A key point of 

Eq. (s12), Jab can be calculated from the expected values of the total spin operators and wave functions of all electrons, 

which are the standard outputs of quantum chemical calculations. To obtain Eq. (s12), we assumed a two-site spin state. 

Hence, for multi-spin states, we cannot use 〈Ŝ2〉 for spin projection, and Eq. (s12). 

 In molecular orbital calculations, diradical and effective bond order analyses based on Eq. (s3) and energy 

analyses based on Eq. (s12) are generally used. However, these calculations require orbital information; specifically, T 

in Eq. (s3) and 〈Ŝ2〉 in Eq. (s12) require the overlap of the single-electron wavefunctions (orbitals). The wavefunction 

of surface-adsorption systems optimised by DFT/plane-wave, which is a standard first-principles approach for solid 

materials, requires large storage, and a transformation of the boundary conditions of the wavefunction (periodic system 

→ isolated system) is necessary to apply these equations. The artefacts of the analysis are difficult to eliminate in this 

conversion, and owing to the large amount of storage required for the wavefunction file, performing analyses based on 

Eqs. (3) and (12) using the results calculated by the DFT/plane-wave is unrealistic. 

 

Brief Explanation of the AP-DFT/plane-wave Scheme 

The aforementioned issue of applying the AP method to DFT/plane-wave calculations can be overcome using 

charge densities instead of wave functions. Although the methods to estimate 〈Ŝ2〉SP for the DFT method are still under 

debate [s19–s22], the results obtained from the AP scheme are almost independent of the estimation scheme of 〈Ŝ2〉SP 



[s20]. By estimating 〈Ŝ2〉SP using the formula proposed by Wang et al. (Eq. (s13)) [s19], Eq. (s12) can be applied to 

the calculated DFT/plane-wave results [s23, s24]. 

  〈Ŝ2〉SP = 𝑆(𝑆 + 1) − 𝜌−       (s13-a) 
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The 〈Ŝ2〉SP values of DFT are often calculated using Eq. (s14), which is derived for Hartree–Fock method 

[s1]. 
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According to Wang et al., Eq. (s14) is the non-interaction limit of the DFT [s19]. The difference between the values 

obtained using Eqs. (s13) and (s14) are determined to be Cint, and by simultaneously solving the equations of 〈Ŝ2〉SP 

for the LS and HS states, we obtain Eq. (s15) [s25]. 
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To estimate the T value using only the electron-density distribution, we applied the following approximation [s25]: 
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LS ≈ Cint
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We then obtained the formula for y values by electron density (Eq. (s19)) [s25, s26]. 

𝑦 = 1 −
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HS
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LS−𝜌−
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Here, the T value, which is the effective intra-radical bond order, is  



𝑇 =  √1 + 𝜌−
LS − 𝜌−

HS       (s20) 

The approximate accuracy of Eq. (s19) and Eq. (s20) was verified using the hybrid DFT method and found to be in good 

agreement with the values obtained from Eq. (s3) [s25]. Furthermore, we compared this method with a multi-reference 

method [s27]. The diradical character can be determined directly by performing calculations above the CISD level. A 

comparison of the results of the AP-DFT/plane-wave method and CASSCF calculations using the metal dimer models 

confirmed qualitative agreement, although the influence of the self-interaction error still remains [s27]. 

 

Combination with General Spin-Projection Scheme 

Using Eq. (s13), Eq. (s19), and Eq. (s20), we can analyse the SCE, diradical character, and effective bond 

order from the results calculated using spin-polarised DFT/plane-wave. However, these equations are tabular for two-

site spin systems. This is a constraint owing to the AP method: projection onto the two-site Heisenberg Hamiltonian. 

This constraint allows for a series of derivations using 〈Ŝ2〉SP. The CB/Ni(111) system investigated in this study is a 

multi-spin system; therefore, it is necessary to remove this constraint. The spin correlation function, 〈ŝa ∙ ŝb〉, solves this 

multi-spin-state issue [s28–s30].   

 ⟨Ψ|ĤHB|Ψ⟩ = −2𝐽ab〈ŝa ∙ ŝb〉.       (s21) 

Eq. (s21), a formula for two-spin systems, can easily be extended to multi-spin systems (Eq. (s22)). 

 ⟨Ψ|ĤHB|Ψ⟩ = −2 ∑ 𝐽ij〈ŝi ∙ ŝj〉i > j .       (s22) 

ŝi is a spin operator for spin site i. Although the estimation scheme of the spin-correlation function based on the results 

of the DFT calculations is still under debate, in this study, we used the formula in the generalised spin projection 

proposed by Shoji et al. [s28]:  

 〈ŝi ∙ ŝj〉
HS = |ŝi| ∙ |ŝi|        (s23) 



 〈ŝi ∙ ŝj〉
LS = −|ŝi| ∙ |ŝi| −

Nβ

2
𝑇ij

2       (s24) 

𝑇ij
2 is the square of the effective bond order between sites i and j, and Nβ is the number of β electrons. When 𝑇ij

2, Nβ, 

and the total energy are obtained, Eq. (s22)–(s24) yield the 𝐽ij values. 

 The three open-shell electronic states investigated in this study were approximated as four spin sites within the 

classical limit (Fig. S5), and quantum effects were incorporated into Eq. (s24), owing to orbital correlations. In Fig. S5, 

sites a and b are the spin sites in the CB, and sites c and d are the spin sites on the Ni (111) surface with which the CB 

interacts. The wavefunctions 𝜙1 (Fig. S5(a)), 𝜙2 (Fig. S5(b)), and 𝜙3 (Fig. S5(c)) correspond to the triplet_P (Fig. 

2(d)), open singlet (Fig. 2(c)), and triplet_AP (Fig. 2(e)) electronic states. J1, J2, and J3 are the Jij values of (i, j) = (a, b), 

(a, c), and (c, d), respectively; in other words, these J values are the magnetic coupling in CB, between CB and the Ni 

surface, and on the Ni surface. Similarly, T1 and T2 are the effective bond orders between a and b, and between a and c, 

respectively. Then, Eq. (s25)–(s27) are obtained from Eq. (s22)–(s24). 

 𝐸1 ≡ ⟨ϕ1|ĤHB|ϕ1⟩ = −2𝐽1|ŝa| ∙ |ŝb| − 4𝐽2|ŝa| ∙ |ŝc| − 2𝐽3|ŝc| ∙ |ŝd|,   (s25) 
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From Eq. (s25) and Eq. (s27), 
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From Eq. (s25) and Eq. (s26), 

 𝐽1 = −1 × ((
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When the J values are projected, E1, E2, E3, T1, and T2 correspond to the total energy of the triplet_P state, total energy 

of the open-singlet state, total energy of the triplet_AP state, ΔT in Fig. 4, and Ttriplet_AP in Fig. 4, respectively. |ŝa| =

|ŝb| = 1/2, where |ŝc| is approximately half the value of the local magnetic moment per Ni atom.  

 

 

Figure S5. Spin configuration and effective magnetic exchange integrals of (a) triplet_P, (b) open-singlet, and (c) 

triplet_AP states of CB/Ni(111) system.  

 

 An estimation scheme for T based on the electron density was introduced in the previous section (Eq. (s20)). 

However, in the present study, the spin polarisation of Ni metal resulted in a negative root sign in Eq. (s20). Therefore, 

T values were calculated using two methods of approximation: (1) T': considering dCB-Ni = 5.0 Å as the dissociation limit, 

the T value at this limit is 0; and (2) T'': considering dCB-Ni = 2.6 Å as the quantum limit, the T value at this limit is 1. 

Figure S6(a) shows the results of Topen-singlet (LS: open-singlet; HS: Triplet_P); the results for T' and T'' are in qualitative 

agreement, except for the convergence behaviour to the classical limit. The diradical character estimated using T'open-

singlet and T''open-singlet (y'open-singlet and y''open-singlet, respectively) and yopen-singlet (when the value of the root in Eq. (s14) is 

negative, and the values approximating 1) are compared in Fig. S6(b). All y values decreased as the molecule–surface 

distance decreased, although the convergence behaviour to the dissociation limit differed. 

 



  

Figure S6. (a) Comparison of Topen-singlet estimated using different definitions. (b) Comparison of yopen-singlet estimated 

using different definitions. 

  

 

Figure S7. Comparison of Ttriplet_AP estimated using different definitions. 

 

 A comparison of T' and T'' in triplet_AP (Ttriplet_AP) is shown in Fig. S7, where LS is triplet_AP and HS is 

triplet_P. Similar to Topen-singlet, a difference was observed only at the dissociation limit. Using the Ttriplet_AP and Topen-singlet 



values, diradical coupling within CB can be discussed (Fig. 4(c)), that is, the effective bond order of the diradical is 

approximated to the ΔT values (Eq. (s30)). 

 ∆𝑇 = 𝑇open−singlet − 𝑇triplet_AP     (s30) 

In the triplet_AP state, T was overestimated if the maximum number of bond orders between the cyclobutadiene and Ni 

atoms was 1. The local magnetic moment per Ni atom is <1, and the number of electrons that can be used for the covalent 

bond will be <1. Therefore, we also estimated the Ttriplet_AP values with a scaling factor equal to the local magnetic 

moment per Ni atom (specifically, 0.7) and compared the results with and without scaling. Figure S8(a) shows the 

unscaled results, and Figure S8(b) presents the scaled results. Without scaling, some ΔT values are negative, and physical 

interpretation is difficult because T is a bond order (Fig. S8(a)). By contrast, with weighting, ΔT remains in its defined 

range (0 to 1) (Fig. S8(b)). Both ΔT results are consistent with the discussion in the main text, which states that dCB-Ni 

decreases for dCB-Ni < 3.0 Å and reaches an extreme value at dCB-Ni = 2.8 Å. To satisfy the definition range, we used the 

value of ΔT' given in Fig. S4(b) to estimate J1 using Eq. (s13); the results are shown in Fig. 4 in the main text. The 

method for obtaining Tij for general spin projection remains an issue to be addressed. Nevertheless, the analysis in this 

study qualitatively shows how surface interactions affect diradical coupling. 

 



 

Figure S8. Comparison of ΔTtriplet_AP estimated using different definitions: (a) without and (b) with scaling by Ni 

magnetic moment. The black and red dots represent the results estimated using the T' and T'' values, respectively. 

 

 The Ni spins that should not be considered in the Heisenberg model were calculated and compared by 

projection onto the Heisenberg Hamiltonian. Therefore, the “correct” result for ΔT shown in Fig. S7 lies between those 

shown in Fig. S8(a) and Fig. S8(b). Furthermore, the SCE was not completely removed from the J values owing to these 

approximations. However, the tendency for the J value to decrease with surface–molecule distance is clear, and the 

ability to control the electronic structure of antiaromatic molecules by surfaces, which is the most important concept of 

this study, is retained. 

  



Computational Method 

The GGA-PBE formula [s31] was used for the exchange-correlation functional of the DFT. A plane wave was 

used for the basis functions, and the core region was treated using the projector-augmented wavefunction approach [s32, 

s33]. The electron numbers in the valence regions were set to Ni(10), C(4), and H(1). The cutoff energies were 600 eV 

for the wave function and 2400 eV for the augmented charge. Spin-polarised DFT/plane-wave calculations were 

performed using the VASP program [s34–s37], and spin projection was performed using a handmade program. 
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