

Journal Name

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxxx

Supplementary Information

1 Methodology

Our approach builds upon a series of prior studies exploring quantum entanglement and electronic correlations in small biomolecular systems such as dipeptides^{1–4}. In this work, we scale the framework to a full protein, employing MI and its coarse-grained form to quantify the correlation landscape within insulin.

1.1 Mutual Information from Reduced Density Matrices

At the core of our method is the quantification of electronic correlations using von Neumann entropy. For a bipartite quantum system described by a pure state with the Hilbert space of the subsystem and environment spanned by the states $|n\rangle$ and $|e\rangle$ respectively,

$$|\Psi\rangle = \sum_{n,e} \Psi_{n,e} |n\rangle \otimes |e\rangle, \quad (1)$$

we obtain the reduced density matrix (RDM) of the subsystem by tracing out the environment:

$$\rho = \text{Tr}_{|e\rangle} (|\Psi\rangle\langle\Psi|). \quad (2)$$

From the eigenvalues ω_α of this RDM, the entanglement entropy of a single orbital is calculated as:

$$s_i^{(1)} = - \sum_{\alpha=1}^4 \omega_{\alpha,i} \ln \omega_{\alpha,i}, \quad (3)$$

while the joint entropy of a pair of orbitals with 4 possible electron configurations $\{ |-\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle \}$ is defined as:

$$s_{ij}^{(2)} = - \sum_{\alpha=1}^{16} \omega_{\alpha,ij} \ln \omega_{\alpha,ij}. \quad (4)$$

These entropies are then used to compute the mutual information:

$$I_{ij} = s_{ij}^{(2)} - s_i^{(1)} - s_j^{(1)}, \quad (5)$$

which captures both quantum and classical correlations between orbitals i and j . This provides a resolution-independent means of identifying electronically significant interactions in the molecular system.

1.2 From Orbital to Atomic and Residue-Level Correlations

To interpret MI in a chemically and biologically meaningful way, we coarse-grain the orbital-based values to the atomic and residue levels. The AMI is defined as the sum over all orbital pairs belonging to atoms A and B :

$$I_{AB} \approx \sum_{i \in A} \sum_{j \in B} I_{ij}. \quad (6)$$

Further coarse-graining yields fragment mutual information (FMI), which aggregates atomic contributions over residues X and Y :

$$I_{XY} \approx \sum_{A \in X} \sum_{B \in Y} I_{AB}. \quad (7)$$

This hierarchy, from orbital to atomic to residue scale, enables the analysis of electronic structure across multiple levels of resolution, from covalent bonds to long-range intra-protein interactions.

1.3 System Preparation and Fragmentation

The 3D structure of insulin (PDB ID: 3I40)⁵ was obtained from the Protein Data Bank. The structure was protonated and energy minimized using the steepest descent algorithm implemented in GROMACS^{6,7} with the OPLS-AA force field^{8,9} and TIP3P water model. To reduce the computational cost associated with the full system (782 atoms), the protein was divided into 51 overlapping spherical fragments centered on α -carbon atoms using a primary radius of 5.0 Å; additional fragment radii of 4.0 and 6.0 Å were also investigated to assess the trade-off between computational cost and completeness of long-range correlation recovery. All spherical cuts were capped with NH₂/COOH groups and subjected to position-restrained energy minimization implemented in GROMACS with the OPLS-AA force field and the TIP3P water model to satisfy valencies and remove atomic overlaps. The purpose of this procedure was to preserve the structure of each fragment as closely as possible to that of the full protein while resolving steric artifacts introduced at the cut boundaries. Each fragment was subjected to DFT calculations using ORCA 6.0.1¹⁰ with the ω B97M-V functional¹¹ and 6-31G(d) basis set¹². Prior to the quantum mechanical calculations, all solvent molecules and ions were removed. AMI values were then extracted from the fragment wavefunctions. Contributions from the capping atoms were excluded before stitching overlapping fragments into the reconstructed full-protein AMI matrix.

To validate the accuracy of our divide-and-conquer approach, we conducted a full DFT calculation on the entire insulin protein without fragmenting the structure. Using the same functional and basis set, we extracted the complete wavefunction and computed the MI matrix from the full-system RDMs. This full-protein MI map served as a benchmark to evaluate the consistency and fi-

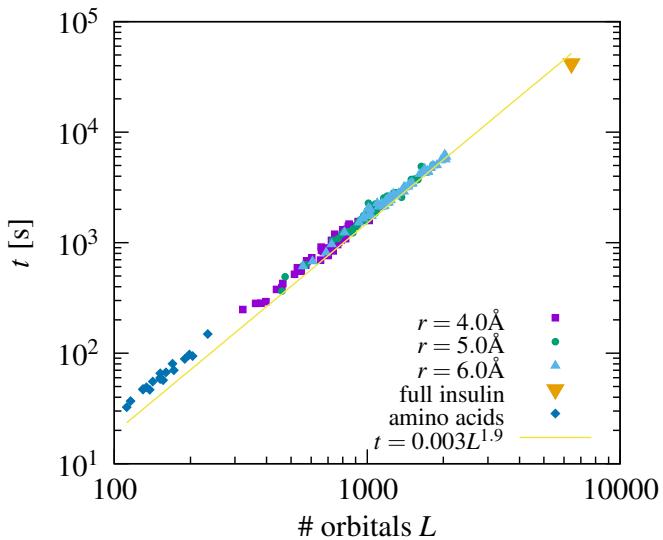


Fig. S1 CPU wall timings t (measured in s) as a function of the number of orbitals L in the ORCA 6.0.1 DFT computation at the ω B97M-V/6-31G(d) level of theory employing 1CPU nodes.

69 delity of the stitched correlation data assembled from the over-
70 lapping structural cuts.

71 Small quantitative differences in AMI/FMI values between the₁₂₅
72 stitched and full-protein matrices may arise from the position-₁₂₆
73 restrained minimization procedure. For example, the Glu17-₁₂₇
74 Arg22 salt bridge appears slightly stronger in the 5 and 6 Å₁₂₈
75 stitched matrices than in the full-protein reference. This differ-₁₂₉
76 ence can be traced to a modest rotation of the Glu17 carboxylate₁₃₀
77 side chain (approximately 19°) toward the Arg22 amino group₁₃₁
78 in the corresponding spherical fragment. The RMSD between₁₃₂
79 the original protein structure and the relevant spherical fragment₁₃₃
80 (centered at the C_α of Glu17) after position-restrained minimiza-₁₃₄
81 tion is 0.18 Å, indicating that these deviations are minor and lo-₁₃₅
82 calized. The average weighted RMSD values for fragment radii₁₃₆
83 of 4, 5, and 6 Å are 0.18, 0.15, and 0.17 Å, respectively. For₁₃₇
84 transparency, All data associated with this study including both₁₃₈
85 weighted and unweighted RMSD values for all individual frag-₁₃₉
86 ments relative to the full-protein structure, are publicly available₁₄₀
87 on GitHub (<https://github.com/QuNB-Repo/Insulin.git>) and the₁₄₁
88 UNB Dataverse (<https://doi.org/10.25545/OZX7DP>); the accom-₁₄₂
89 panying README file has been updated to document the folder₁₄₃
90 structure and project tree.

91 We recorded computational timings on all DFT runs at the
92 described ω B97M-V/6-31G(d) level of theory^{11,12} with ORCA
93 6.0.1¹⁰ on 1CPU nodes on the ACENET high-performance com-
94 pute cluster of the Digital Research Alliance Canada. As presented
95 in Figure S1, we extracted timings for the 51 $r = 4.0 - 6.0$ Å
96 fragments, the full insulin protein, as well as all single 20 capped
97 amino acids to set a reference. We observed a polynomial scaling
98 described by the $t = 0.003L^{1.9}$ curve in the Figure, testimony of
99 a highly performant DFT engine behind the ORCA software. A
100 summary of the timings can be found in Table 1 of the paper, and
101 the output files can be downloaded at the Dataverse¹³

2 Supplementary Figures and Tables

102 Fig. S2 provides SPAWN plots generated from the 5 Å stitched
103 AMI matrix obtained through fragment-wise DFT calculations
104 with the one derived from the full-protein DFT calculation. The
105 figure is a complementary view of the insulin protein as Fig. 3
106 in the main text. Again, these plots confirm strong correlations
107 between cysteine pairs forming disulfide bonds (Cys6–Cys11,
108 Cys7A–Cys7B, Cys20A–Cys19B).

109 The table S1 lists 31 hydrogen bonds, with donor–acceptor dis-
110 tances between 2.7–3.3 Å, validating the signals observed in the
111 heat map.

112 Notes and references

- 114 K. Boguslawski and P. Tecmer, *Int. J. Quantum Chem.*, 2015,
115 **115**, 1289–1295.
- 116 K. Boguslawski, P. Tecmer, O. Legeza and M. Reiher,
117 *J. Phys. Chem. Lett.*, 2012, **3**, 3129–3135.
- 118 K. Boguslawski, P. Tecmer, G. Barcza, O. Legeza and M. Reiher,
119 *J. Chem. Theory Comput.*, 2013, **9**, 2959–2973.
- 120 M. J. Moghadam, K. Boguslawski, R. Doucet, Ö. Legeza,
121 P. Tecmer and S. De Baerdemacker, *chemrxiv*, 2024.
- 122 V. Timofeev, R. Chuprov-Netochin, V. Samigina,
123 V. Bezuglov, K. Miroshnikov and I. Kuranova,
124 *Struct. Biol. Crystallogr. Commun.*, 2010, **66**, 259–263.
- 125 M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith,
126 B. Hess and E. Lindahl, *Softw. X*, 2015, **1**, 19–25.
- 127 D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark
128 and H. J. Berendsen, *J. Comput. Chem.*, 2005, **26**, 1701–
129 1718.
- 130 W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives,
131 *J. Am. Chem. Soc.*, 1996, **118**, 11225–11236.
- 132 W. L. Jorgensen and J. Tirado-Rives, *J. Am. Chem. Soc.*, 1988,
133 **110**, 1657–1666.
- 134 F. Neese, *WIREs Comput. Mol. Sci.*, 2012, **2**, 73–78.
- 135 N. Mardirossian and M. Head-Gordon, *J. Phys. Chem.*, 2016,
136 **144**, year.
- 137 R. Ditchfield, W. J. Hehre and J. A. Pople, *J. Chem. Phys.*,
138 1971, **54**, 724–728.
- 139 M. Javaheri Moghadam, R. Mulder and S. De Baerdemacker,
140 *Divide and Correlate: Mapping Electronic Correlations in
141 Proteins via Local Cut-Wise Reconstruction*, 2025, <https://doi.org/10.25545/OZX7DP>.

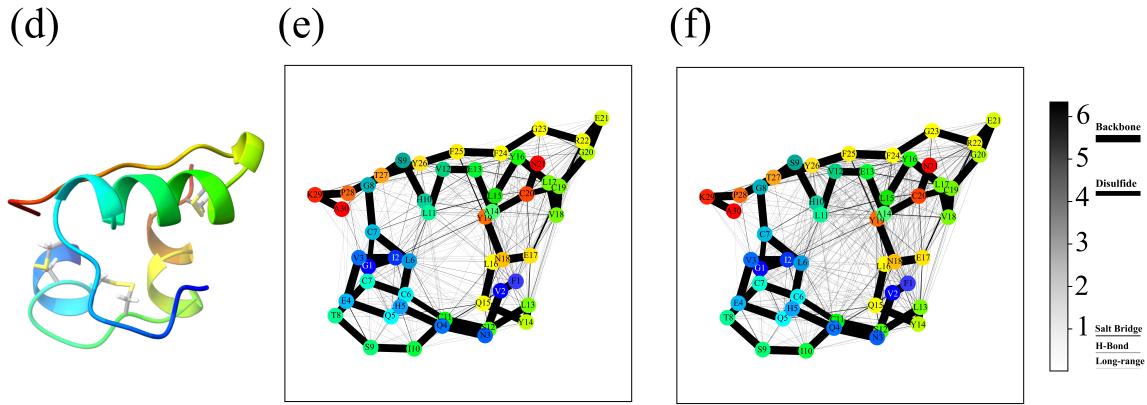


Fig. S2 Coarse-grained visualization of electronic correlations in insulin using FMI. (d) Back view of the insulin protein structure, with residues colored by sequence index using the rainbow gradient. Disulfide bonds are depicted as yellow sticks. (e) shows SPAWN plots reconstructed from 51 overlapping structural fragments using 5 Å cut-off, while (f) presents reference plots from a full-system DFT calculation. In all SPAWN plots, edges represent FMI values between residues, and edge thickness corresponds to correlation strength.

Table S1 List of 31 hydrogen bonds in the insulin protein structure. Each entry includes donor and acceptor residues and their interatomic distances in (Å).

No.	Donor	Acceptor	Dist. (Å)	No.	Donor	Acceptor	Dist. (Å)
1	GLN 5 (A)	GLY 1 (A)	3.168	17	LEU 6 (B)	CYS 6 (A)	2.723
2	CYS 6 (A)	ILE 2 (A)	2.828	18	HIS 10 (B)	CYS 7 (B)	3.150
3	CYS 7 (A)	VAL 3 (A)	2.824	19	LEU 11 (B)	GLY 8 (B)	3.132
4	THR 8 (A)	VAL 3 (A)	2.937	20	VAL 12 (B)	GLY 8 (B)	3.149
5	CYS 11 (A)	GLN 4 (B)	2.935	21	GLU 13 (B)	SER 9 (B)	2.887
6	GLN 15 (A)	SER 12 (A)	3.164	22	ALA 14 (B)	HIS 10 (B)	3.159
7	LEU 16 (A)	SER 12 (A)	2.998	23	LEU 15 (B)	LEU 11 (B)	2.977
8	GLU 17 (A)	LEU 13 (A)	3.003	24	TYR 16 (B)	VAL 12 (B)	2.923
9	ASN 18 (A)	GLN 15 (A)	3.215	25	LEU 17 (B)	GLU 13 (B)	2.974
10	TYR 19 (A)	LEU 16 (A)	3.001	26	VAL 18 (B)	ALA 14 (B)	2.897
11	CYS 20 (A)	GLU 17 (A)	3.234	27	CYS 19 (B)	LEU 15 (B)	2.915
12	ASN 21 (A)	GLY 23 (B)	2.968	28	GLY 20 (B)	TYR 16 (B)	3.222
13	GLN 4 (B)	PHE 1 (B)	2.889	29	ARG 22 (B)	CYS 19 (B)	3.256
14	HIS 5 (B)	CYS 7 (A)	3.112	30	ARG 22 (B)	CYS 19 (B)	3.319
15	ARG 22 (B)	GLU 17 (A)	3.183	31	GLY 23 (B)	GLY 20 (B)	3.122
16	PHE 25 (B)	TYR 19 (A)	2.998				